Supporting Information

Superiority of polymeric scavenger over its hexapodal monomer towards efficient ReO₄⁻ removal in water

Rajib Ghosh, Tamal Kanti Ghosh, and Pradyut Ghosh*

School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Kolkata – 700032. E-mail: <u>icpg@iacs.res.in</u>

Торіс	Page No
Material and Methods	28
Experimental Section	38-58
Spectral Characterization of monomer [Him-Br] and	6S-10S
Polymer [PHim-Br]	
Solution-state ¹ H-NMR studies	11 S
TEM-EDX data of [Him-Br] and [Him-Re]	128
FT-IR of [Him-Br] and [Him-Re]	138
Single crystal structure and packing diagram of Complex	13S-14S
[HIm-Re]	
Spectral Characterization of monomer [Him-Re]	14S-16S
pH stability of [Him-Br] and [Him-Re] by 'H-NMR	178
studies	
FT-IR and TEM-EDX spectrum of [PHIm-Re] from	18S-19S
mixed anion	
FT-IR spectrum of [PHim-Br] before and after irradiation	198
of 1000 kGy γ-ray	
IR Spectra of recycled receptor [PHIm-Br]	208
Crystallographic details of monomer perrhenate complex	21S
[Him-Re]	
Removal efficiency data by ICP-OES	218-268
References	268-278

Contents

 All chemicals were used as received without further purification. Hexakis(bromomethyl)benzene,1-Vinyl- imidazole, Sodium perrhenate(NaReO₄) were purchased from Sigma-Aldrich. NaOH, HNO₃, NaNO₃, NaCl, Na₂SO₄, TBAH₂PO₄, NaClO₄, NaBF₄ and other reagent were analytically pure and used as received. ReO₄⁻ stock solution was prepared by dissolving desired amount of NaReO₄ solid in Mili-Q ultrapure water.

2. Spectroscopic Measurement Instrumentation:

NMR experiments were carried out on FT-NMR Bruker DPX 300 MHz NMR spectrometer. All the samples for NMR spectroscopy were prepared by dissolving the samples in DMSO- d_6 and H_2O (Locking was performed using a capillary tube filled with D_2O) having concentrations $\approx 10^{-3}$ (M). Chemical shifts for ¹H and ¹³C NMR were reported in parts per million (ppm), calibrated to the residual solvent peak set. High resolution ESI-MS experiments were carried out with a Waters QtoF Model YA 263 mass spectrometer in positive ESI mode. Sample for mass spectrometry was prepared by dissolving the compound in CH₃CN/H₂O with concentration $\approx 10^{-6}$. The concentration of ReO₄⁻ in solution were measured by inductively coupled plasma –atomic emission spectrometry(ICP-AES ,Perkin Elmer optima 2100 DV). The FT-IR was recorded on a SHIMADZU FTIR-8400S infrared spectrophotometer with KBr pellets.

2.1.X-Ray single-Crystal structure measurement:

The crystallographic details of Complex [Him-Re] are given in (Table S1). In each case, a crystal of suitable size was dipped in paratone oil after collecting from the mother liquor. Further, it was mounted on nylon loop and data collected at 104 K under cold nitrogen gas stream. The X-ray diffraction data for the crystal collected on a Bruker D8 Venture Microfocous diffractometer equipped with a PHOTON II detector, using MoK α ($\lambda = 0.71073$ Å) radiation, controlled by the APEX3(v2017.3-0) software package and processes using SAINT^[1]. The raw data were integrated and corrected for Lorentz and polarization effects using the Bruker APEX II/APEX III program suite. Integration and reduction were processed with SAINT^[1] software. An empirical absorption correction was applied to the collected reflections with SADABS.^[2] The structures were solved by direct methods using SHELXTL^[3] and were refined on F² by the full-matrix least-squares technique using the SHELXL-2014^[4] program package. Graphics were generated using PLATON-97^[5] and MERCURY 3.7.^[6] Crystallographic data have been deposited with the CCDC (2027400).

3. Synthesis and characterization

3.1. Synthesis and characterization of monomer [Him-Br]:

The hexapodal imidazolium monomer [Him-Br] was synthesized by the quaternization reaction between hexakis(bromomethyl)-benzene and 1-Vinyl- imidazole. Initially hexakis(bromomethyl)-benzene 0.318 g (0.5 mmol) was dissolved in 40 ml of acetonitrile at 80 °C under argon atmosphere, then 1-Vinyl- imidazole 0.315ml (3.25 mmol) was added in drop by drop fashion to the refluxing solution over a long period of time (6 hours). After the addition was completed, the solution was allowed to reflux for the 48 hours and gradual yellowish white precipitation was observed of [Him-Br]. After completion, the solution was filtered and solid mass was washed with dry acetonitrile for removal of excess 1-ethyl-imidazole. Then solid mass was dissolved in minimum amount of mild hot water. Finally, the water medium was dried in open air in a flat surface for 48 hours. Then solid mass was dried in an oven at 60 °C for 48 hours to remove a little trace of water from it.(Yield 82%).

¹**H NMR** (DMSO-*d*₆, 298K, 300 MHz) δ ppm: 5.43-5.39 (dd, 6H), 5.91 (s, 12H), 6.07-6.01 (dd, 6H), 7.33-7.25 (dd, 6H), 8.00-7.99 (d, 6H), 8.20-8.19 (d, 6H). 9.70 (s, 6H) ¹³**C NMR** (DMSO-*d*₆, 298K, 75 MHz) δ ppm: 48.53, 109.75, 118.80, 124.39, 128.84, 136.30, 139.18 ¹³**C DEPT-135 NMR** (DMSO-*d*₆, 298K, 75 MHz): 49.53 (CH₂), 110.72 (CH₂), 119.77 (CH), 125.37 (CH), 129.82 (CH), 137.29 (CH). **ESI-MS:** m/z: calcd for C₄₂H₄₈Br₅N₁₂ [**Him-Br**]⁺ 1118.9995, found 1118.9993; calcd for C₄₂H₄₈Br₄N₁₂ [**Him-Br**]²⁺, 520.0403, found 520.0406. FTIR in KBr disc (ν /cm⁻¹): 950, 1550, 1656, 2800-3000

3.2. Synthesis of polymeric networks [PHIm-Br]:

Hexapodal imidazolium based polymeric network **[PHIm-Br]** was synthesized by the free radical polymerization of monomer **[Him-Br]** using AIBN in DMSO. In a typical process 9 g (7.5 mmol) monomer **[Him-Br]** and 1g (6.1 mmol) AIBN were dissolved by 30 ml DMSO in 100 ml round-bottomed flask equipped with a magnetic stir bar. The solution was purged with N₂ for 20 minute and then the solution was heated for 6 hours at 75 °C. Then the obtained polymer was collected and thoroughly washed with H₂O and ethanol to remove the remaining catalyst and unconsumed monomer. Further purification of polymer **[PHIm-Br]** was done by Soxhlet extraction with ethanol for 24 h and the resulted mass was dried by high vacuum pump to generate pure **[PHIm-Br]**. FTIR in KBr disc (v/cm⁻¹): 1553, 1648, 2800-3000

3.3. Preparation of monomer perrhenate complex [Him-Re]:

An aliquot of 10ml 12.9 mM aqueous solution of **[Him-Br]** was added to the 10 equivalent aqueous NaReO₄ solutions at pH =7. Then the mixture was stirred for 6 min with 250 rpm and a white solid precipitate was observed. Then the white solid mass was separated by whatman grade 1 filter paper. Finally solid mass was dried in an oven at 60 °C for 48 hours and we get the complex **[Him-Re]**.

3.4. Characterization of extracted complex [Him-Re]:

¹**H NMR** (DMSO-*d*₆, 298K, 300 MHz) δ ppm: 5.49-5.45 (dd, 6H), 5.73 (s, 12H), 6.02-5.96 (dd, 6H), 7.25-7.17 (dd, 6H), 7.71-7.70 (d, 6H), 8.19-8.18 (d, 6H). 9.35 (s, 6H) ¹³**C NMR** (DMSO-*d*₆, 298K, 75 MHz) δ ppm: 48.08, 110.43, 119.46, 124.00, 128.81, 136.01, 139.00 ¹³**C**- **DEPT-135 NMR** (DMSO-*d*₆, 298K, 75 MHz): 47.93 (CH₂), 110.28 (CH₂), 119.31 (CH), 123.85 (CH), 128.65 (CH), 135.84 (CH). **ESI-MS:** m/z: calcd for C₄₂H₄₈N₁₂0₂₀ Re₅ [**Him-Re**]⁺ 1971.0834, found 1971.0832; calcd for C₄₂H₄₈N₁₂0₁₆Re₄ [**Him-Re**]²⁺, 861.0751, found 861.0756.

4. Experimental Section:

4.1. Batch Experiment: All the extraction experiments were conducted at room temperature (25°C) using MiliQ water. The pH value of solution was adjusted by using NaOH and HNO₃ solution. All the extraction experiments were performed at pH= 7. In a typical experiment, for monomer [HIm-Br], 1 ml 4.3 mM [HIm-Br] solution was added to 10 ml of ~630 ppm NaReO₄ solution along with 10 equiv. of different anions such as Cl⁻, SO₄²⁻, H₂PO₄⁻, AcO-, NO₃⁻, BF₄⁻ and ClO₄⁻. The mixture was stirred for 10 min and the resultant solution was centrifuged for another 10 min. After that, the solution was allowed to settle for 30 min and finally filtered through a 0.45 µm nylon membrane filter. For the polymeric scavenger [PHIm-Br], 10 mg [PHIm-Br] to 10 ml ~100 ppm aqueous solution of NaReO₄ along with lower and higher excess (10 and 400 eqv. w.r.t. ReO₄⁻) of different anions as mentioned above. The solution was stirred for 20 minutes and allowed to settle for 30 min. Finally the solution separated by 0.45µm nylon membrane filter. The concentration of Re in the filtrate was determined by ICP-OES measurement in both cases.

4.2. Anion extraction selectivity experiment:

4.2.1. Anion extraction selectivity experiment for Monomer [HIm-Br]:

The effect of interfering anion was studied by adding 10 equivalent different anion are Na₂SO₄(5.7mM)), NaNO₃(6.1 mM)), NaCl(5.4 mM), TBAH₂PO₄(5.8 mM), NaClO₄(5.7 mM),

NaBF₄(5.3 mM), TBAAcO(6.0 mM) in a solution of 10 ml 635 ppm NaReO₄ and Monomer [**Him-Br**] (0.76 mM). After being stirred at a rate of 200 rpm for 10 minutes, and the resultant solution was centrifuged for 10 min and settled for 30 min. Finally, the solution was separated with a 0.45 μ m nylon membrane filter. The filtrate was diluted with 10% nitric acid and was subjected to inductively coupled plasma optical emission spectrometry (ICP-OES).

4.2.2. Anion extraction selectivity experiment for Polymer [PHIm-Br]:

The effect of interfering anion was studied by adding 10 and 400 equivalent different anion are Na₂SO₄(5.7mM)), NaNO₃(6.1 mM)), NaCl(5.4 mM), TBAH₂PO₄(5.8 mM), NaClO₄(5.7 mM), NaBF₄(5.3 mM), TBAAcO(6.0 mM) in a 10 ml solution of 97.24 ppm NaReO₄ and 10 mg of polymer [PHim-Br]. After being stirred at a rate of 200 rpm for 20 minutes, and the resultant solution was centrifuged for 10 min and settled for 30 min. Finally, the solution was separated with a 0.45 μ m nylon membrane filter. The filtrate was diluted with 10% nitric acid and was subjected to inductively coupled plasma optical emission spectrometry (ICP-OES).

4.3. pH effect :

4.3.1. pH effect study for Monomer [HIm-Br]:

The effect of pH for extraction of ReO_{4^-} was carried out by ranging pH values from 1 to 14. 1 ml 4.6 Mm of **[HIm-Br]** was added to 10 ml of aqueous solution containing ~610 ppm ReO_{4^-} . After being stirred at a rate of 200 rpm for 10 minutes, and the resultant solution was centrifuged for 10 min and settled for 30 min. Finally, the solution was separated with a 0.45µm nylon membrane filter for ICP measurement

4.3.2. pH effect study for Monomer [HIm-Br]:

The effect of pH for extraction of ReO_4^- was carried out by ranging pH values from 1 to 14. 10 mg **[PHIm-Br]** was added to 10 ml of aqueous solution containing ~97 ppm ReO_4^- . After being stirred at a rate of 200 rpm for 5 minutes, and the resultant solution was centrifuged for 5 min and settled for 30 min. Finally, the solution was separated with a 0.45µm nylon membrane filter for ICP measurement

4.4 Recyclability study.

4.4.1. Recyclability for Monomer bounded complex:

This reversible anion exchange process was carried out by treating complex [Him-Re] (20 mg) with 10 ml 1 M TBABr solution in CH₃CN at 333K for 3 h by stirred at a rate of 200 rpm.

After cooling the solution the suspension was separated by whatman grade 1 filter paper followed by washing with distilled water for three times.

4.4.2. Recyclability for Polymer bounded complex:

This reversible anion exchange process was carried out by treating complex **[PHIm-Re]** (20 mg) with 10 ml 1.5 M TBABr solution in CH₃CN at 343K for 6 h by stirred at a rate of 200 rpm. After cooling the solution the suspension was separated by whatman grade 1 filter paper followed by washing with distilled water for three times.

Fig.S1a: Previously reported N-ethyl substituted imidazolium based monomeric receptor [L-Br].

Fig. S1: ¹H-NMR spectrum of [HIm-Br] in DMSO-d₆ at 298 K in 300 MHz

Fig. S2: ¹³C-NMR spectrum of [HIm-Br] in DMSO-*d*₆ at 298 K in 100 MHz

Fig. S3: ¹³C-DEPT-135 spectrum of [HIm-Br] in DMSO-d₆ at 298K in 75 MHz

Fig. S4: FT-IR spectrum of [HIm-Br]

Fig. S5: ESI-MS (+ve) spectrum of [HIm-Br] at 298K.

Fig. S6: Isotropic distribution of ESI-MS (+ve) spectrum of (a) **[HIm-Br]** ²⁺and (b) **[HIm-Br]** ⁺ at 298K.

Fig. S7: ¹H-NMR spectrum of receptor [HIm-Br] in D₂O at 298 K in 300 MHz

Fig. S8: FT-IR spectrum of polymeric network [PHIm-Br]

Fig. S9: FT-IR spectrum of (a) Monomer [Him-Br] (b) Polymeric network [PHIm-Br]

Fig. S10:Partial ¹H-NMR spectra of (a) Receptor **[HIm-Br]** (7.3 mM) and **[HIm-Br]** (7.3 mM) with 10 equivalents of (b) TBAF (c) TBACl (d) NaI (e) TBAH₂PO₄ (f) TBAAcO (g) Na₂SO₄ (h) TBABF₄ (i) NaNO₃ and (j) NaCLO₄ (k) NaReO₄ (5 equivalent) in H_2O at 298 K (Locking was performed using an capillary tube filled with D_2O)

Fig. S11: ¹H-NMR spectrum of **[HIm-Br]** (14.4 mM) in H₂O with different equivalents of NaReO₄ in 300 MHz at 298 K. (Locking was performed using an capillary tube filled with (D_2O))

Fig. S13: TEM EDX data of [HIm-Re] after extraction.

Fig. S14: FT-IR spectrum of (a) Free monomer **[Him-Br]** (b) After ReO_{4⁻} extraction **[HIm-Re]**

Fig. S15: Single crystal X-ray structure of **[HIm-Re]** with thermal ellipsoid drawn at the 50% probability level. Colour code; C: grey, H: cyan blue, N blue, O: red, Re: yellow. All interactive hydrogen atoms and distance (in A^o unit) shown here. Solvent molecules are omitted for clarity

Fig. S16: Crystal packing diagram of Complex **[HIm-Re]**. Colour code; C: grey, N: blue, O: red, Re: yellow, hydrogen atoms, solvent molecules are omitted for clarity.

Fig. S17: ¹H-NMR spectrum of Complex [HIm-Re] in DMSO-d₆ at 298 K in 300 MHz

Fig. S18: ¹³C-NMR spectrum of Complex [HIm-Re] in DMSO-d₆ at 298 K in 100 MHz

Fig. S19: ¹³C-DEPT-135 spectrum of Complex [HIm-Re] in DMSO-d₆ at 298K in 75 MHz

Fig. S20: Stack plot of ¹H-NMR spectra of (a) Extracted mass of Complex **[HIm-Re]** in DMSO- d_6 and (b) Pure crystal of Complex **[HIm-Re]** in DMSO- d_6 at 298K in 300 MHz

Fig. S21: ESI-MS(+ve) spectrum of Complex [HIm-Re] at 298K

Fig. S22: ¹H-NMR spectrum of **[Him-Br]** (15 mM) in H_2O at different pH range in 300 MHz. (Locking was performed using a capillary tube filled with D_2O)

Fig. S23: ¹H-NMR spectrum of **[Him-Re]** in *DMSO-d*₆ at 298 Kin 300 MHz, after being immersed the Complex **[Him-Re]** in different pH water solution for 12 hours.

Fig. S24: IR Spectra of recycled monomeric receptor [HIm-Br]

Fig. S25: FT-IR spectrum of **[PHIm-Re]** from mixed anion (such as Cl-, SO₄²⁻, H₂PO₄⁻, AcO⁻, NO₃⁻, BF₄⁻, ClO₄⁻)

Fig. S26: TEM EDX data of **[PHIm-Re]** from mixed anion (such as Cl-, SO_4^{2-} , $H_2PO_4^{-}$, AcO, NO_3^{-} , BF_4^{-} , ClO_4^{-})

Fig. S27: FT-IR spectrum of [PHim-Br] before and after irradiation of 1000 kGy γ-ray

Fig. S28: IR Spectra of recycled receptor [PHIm-Br]

Compound reference	Complex [Him-Re]
Chemical formula	$C_{42}H_{48}N_{12}O_{27}Re_6$
Formula Mass	2276.17
Crystal system	triclinic
a/Å	12.5252(19)
b/Å	13.3924(19)
c/Å	19.020(3)
$\alpha/^{\circ}$	90.778(5)
<i>β</i> /°	95.203(5)
γ/°	06.280(5)
Unit cell volume/Å ³	3047.3(8)
Temperature/K	104(2)
Space group	PĪ
No. of formula units per unit cell, Z	2
Radiation type	ΜοΚα
No. of reflections measured	33267
No. of independent reflections	12832
R _{int}	0.0733
Final R_I values $(I > 2\sigma(I))$	0.0714
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.1746
Final R_1 values (all data)	0.0986
Final $wR(F^2)$ values (all data)	0.1941
Goodness of fit on F^2	1.036
CCDC number	2027400

Table S1: Crystallographic details of [Him-Re] obtained from water-ACN solvent mixture.

Table S2: ReO₄⁻ removal efficiency of **[Him-Br]** in presence of different concentration of **ReO**₄⁻

Solution	Initial concentration	Final concentration of	Removal Efficiency	Errors in % of
	of Re (ppm)	Re (ppm)	(%)	Removal
				Efficiency
ReO ₄ -	415.6	109.2	73.7	1.6
ReO ₄ -	510.5	84.6	83.4	1.5
ReO ₄ -	650.4	89.5	86.2	2.1
ReO ₄ -	785.5	107.8	86.3	1.3

Solution	Initial	Final concentration	Removal	Errors in %
	concentration of	of Re (ppm)	Efficiency (%)	of Removal
	Re (ppm)			Efficiency
ReO ₄ -	630.6	85.3	86.4	2.3
$\text{ReO}_4^- + \text{Cl}^-$	630.6	105.6	83.2	1.7
$\text{ReO}_4^- + \text{SO}_4^{2-}$	630.6	110.9	82.4	2.0
$\text{ReO}_4^- + \text{H}_2\text{PO}_4^-$	630.6	118.8	81.2	1.8
$ReO_4^- + AcO^-$	630.6	104.2	83.5	1.6
$\text{ReO}_4^- + \text{NO}_3^-$	630.6	119.1	81.1	1.7
$ReO_4 + BF_4$ -	630.6	116.7	81.5	2.1
$ReO_4^- + ClO_4^-$	630.6	124.9	80.2	1.8
$ \begin{array}{r} ReO_{4^{-}} + Cl^{-} + \\ SO_{4}^{2^{-}} + H_{2}PO_{4^{-}} + \\ AcO^{-} + NO_{3^{-}} + \\ BF_{4}^{-} + ClO_{4^{-}} \end{array} $	630.6	169.4	73.1	2.2

Table S3: ReO_4^- removal efficiency of [Him-Br] in presence of 10 equivalent amount of different anion.

 Table S4: ReO4⁻ removal efficiency of [Him-Br]in different pH value of solution

pН	Initial concentration of	Final concentration of	Removal Efficiency (%)	Errors in % of Removal
	Re (ppm)	Re (ppm)		Efficiency
1	630.8	96.2	84.7	1.9
3	630.8	91.3	85.5	2.1
5	630.8	89.7	85.8	1.6
7	630.8	87.5	86.1	1.7
9	630.8	88.9	86.0	2.3
12	630.8	95.8	84.8	1.5
14	630.8	114.9	81.8	1.8

Cycle No	Initial concentration of Re (ppm)	Final concentration of Re (ppm)	Removal Efficiency (%)	Errors in % of Removal Efficiency
1	631.1	101.7	83.9	2.5
2	631.1	105.8	83.2	1.4
3	631.1	107.3	83.0	1.8
4	631.1	114.5	81.9	1.3
5	631.1	122.6	80.6	2.1
6	631.1	136.5	78.4	1.9

 Table S5: ReO₄- removal efficiency of recycled [Him-Br]

Table S6: ReO₄⁻ removal efficiency of [PHIm-Br] in different retention time interval.

Sample stirring time	Initial concentration of Re (ppm)	Final concentration of Re (ppm)	Removal Efficiency (%)	Errors in % of Removal Efficiency
5 min		7.13	92.5	1.8
10 min		3.14	96.7	2.1
15 min		1.71	98.2	1.7
20 min	95.3	0.98	99.0	2.0
25 min		0.98	99.0	2.1
30 min		0.98	99.0	1.7
60 min		0.98	99.0	1.9

Fig. S29: Plot of removal efficiency of [PHim-Br] with retention time.

Solution	Initial concentration of Re (ppm)	Final concentration of Re (ppm)	Removal Efficiency (%)	Errors in % of Removal Efficiency
ReO ₄ -	95.5	0.99	99.0	2.4
$\text{ReO}_4^- + \text{Cl}^-$	95.5	1.65	98.3	2.1
$ReO_4^- + SO_4^{2-}$	95.5	1.70	98.2	2.0
$\text{ReO}_4^- + \text{H}_2\text{PO}_4^-$	95.5	1.27	98.6	1.8
$ReO_4^- + AcO^-$	95.5	1.25	98.7	1.5
$ReO_4^- + NO_3^-$	95.5	2.46	97.4	2.1
$ReO_4^- + BF_4^-$	95.5	2.39	97.5	1.6
$ReO_4 + ClO_4$	95.5	2.84	97.0	2.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	95.5	5.12	94.6	2.0

Table S7: ReO₄⁻ removal efficiency of **[PHIm-Br]** in presence of 10 equivalent amount of different anion.

Solution	Initial concentration of Re (ppm)	Final concentration of Re (ppm)	Removal Efficiency (%)	Errors in % of Removal Efficiency
ReO ₄ -	95.5	0.99	99.0	2.1
$ReO_4 + Cl^-$	95.5	2.15	97.7	2.0
$\text{ReO}_4^- + \text{SO}_4^{2-}$	95.5	2.63	97.2	1.8
$\text{ReO}_4^- + \text{H}_2\text{PO}_4^-$	95.5	2.10	97.8	2.3
$ReO_4^- + AcO^-$	95.5	2.20	97.6	2.1
$\text{ReO}_4^- + \text{NO}_3^-$	95.5	3.95	95.8	1.7
$\text{ReO}_4^- + \text{BF}_4^-$	95.5	3.15	96.7	2.3
$ReO_4 + ClO_4$	95.5	4.20	95.6	2.2
$ \begin{array}{c} ReO_4^- + Cl^- + \\ SO_4^{2-} + H_2PO_4^- + \\ AcO^- + NO_3^- + \\ BF_4^- + ClO_4^- \end{array} $	95.5	7.90	91.7	1.9

Table S8: ReO₄⁻ removal efficiency of **[PHIm-Br]** in presence of 400 equivalent amount of different anion.

Table S9: ReO_4^- removal efficiency of **[PHIm-Br]** before and after irradiation of 1000 kGy γ -ray

Polymer [PHIm-Br]	Initial concentration of Re (ppm)	Final concentration of Re (ppm)	Removal Efficiency (%)	Errors in % of Removal Efficiency
Before irradiation	98.7	0.95	99.0	2.2
	210.5	2.16	99.0	2.3
	420.6	3.95	99.1	1.8
	630.5	5.80	99.1	2.0
	805.4	6.00	99.3	1.9
After irradiation of	98.7	3.80	96.1	2.3
1000 kGy γ-ray	210.5	7.95	96.2	2.1
	420.6	16.10	96.1	1.9
	630.5	24.35	96.1	2.1
	805.4	30.36	96.2	2.0

рН	Initial concentration of Re (ppm)	Final concentration of Re (ppm)	Removal Efficiency (%)	Errors in % of Removal Efficiency
1	95.8	1.60	98.3	1.7
3	95.8	0.97	98.9	1.6
5	95.8	0.91	99.1	2.1
7	95.8	0.86	99.1	2.2
9	95.8	0.96	99.0	1.8
12	95.8	1.98	97.9	2.0
14	95.8	4.10	95.7	2.1

Table S10: ReO₄⁻ removal efficiency of [PHIm-Br] in different pH value of solution

Table S11: ReO₄⁻ removal efficiency of recycled [PHIm-Br].

Cycle No	Initial concentration of	Final concentration of	Removal	Errors in % of Removal
	Re (ppm)	Re (ppm)	Efficiency (70)	Efficiency
1	95.9	0.97	98.9	1.6
2	95.9	1.20	98.7	1.8
3	95.9	1.33	98.6	2.1
4	95.9	1.80	98.1	2.5
5	95.9	1.96	97.9	2.1
6	95.9	2.90	97.1	1.7
7	95.9	3.55	96.3	1.5
8	95.9	4.25	95.5	2.3
9	95.9	6.30	93.4	1.6
10	95.9	9.65	90.0	2.2

References:

[1] SAINT and XPREP, 5.1 ed.; Sheldrick, G. M., Ed.; Siemens Industrial Automation Inc.: Madison, WI , **1995**.

[2] SADABS, Empirical Absorption Correction Program; University of Göttingen: Göttingen,Germany, **1997**

[3] Sheldrick, G. M. SHELXTL Reference Manual: Version 5.1; Bruker AXS: Madison, WI, **1997**.

[4] Sheldrick, G. M. SHELXL-2014: Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, **2014**.

[5] Spek, A. L. PLATON-97, University of Utrecht, Utrecht, the Netherlands, 1997.

[6] Mercury, version 3.7, supplied with Cambridge Structural Database, CCDC, Cambridge, U.K., **2003–2004**.