Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Enantioselective Synthesis of Polycyclic Pyrrole Derivatives by Iridium-Catalyzed Asymmetric Allylic Dearomatization and Ring-expansive Migration Reactions

Lin Huang, Jia-Hao Xie, Yue Cai, Chao Zheng,* Xue-Long Hou,

Li-Xin Dai, and Shu-Li You*

State Key Laboratory of Organometallic Chemistry, Center for Excellence in

Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese

Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032

Email: <u>zhengchao@sioc.ac.cn</u> <u>slyou@sioc.ac.cn</u>

Table of Contents

General methods	S2
Optimization of conditions	S3-4
General procedure for the synthesis of substituted pyrrole tethered allylic carbonates	S5-S12
General procedure for Ir-catalyzed asymmetric allylic dearomatization of pyrrole derivatives/migration reaction	S13-S22
Millimole-scale synthesis of 2a	S23
Transformations of 2a	S24-S25
Capture of spiro-2 <i>H</i> -pyrrole 5	S26-S27
X-Ray crystal structure of spiro-2 <i>H</i> -pyrrole 5	S28-S29
References	S30
Copies of NMR spectra and HPLC chromatograms	S31-S95
DFT calculations	S96-S108

General methods

Unless stated otherwise, all reactions were carried out in flame-dried glassware under a dry argon atmosphere. All solvents were purified and dried according to standard methods prior to use.

¹H and ¹³C NMR spectra were recorded on a Varian instrument (400 MHz and 101 Hz respectively) or an Agilent instrument (400, 600 MHz and 101, 151 MHz, respectively) and internally referenced to tetramethylsilane signal or residual protic solvent signals. ¹⁹F NMR spectra were recorded on a Varian instrument (376 MHz, respectively) and referenced relative to CFCl₃. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, coupling constant (s) in Hz, integration). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm).

Optimization of Reaction Conditions

Table S1. Screening of post-process conditions.^a

	1) [lr(CC (S,S, HN HN N Bn (S,C) CS ₂ C THF, 2) cond	DD)Cl] ₂ (2 mol%) S _a)- L1 (4 mol%) :O ₃ (100 mol%) 3 h, 50 °C ditions	BnN Ph	
entry	conditions	time (h)	yield (%) ^b	ee (%) ^c
1	THF/50 °C	72	52	83
2	THF/100 °C	15	55	83
3	dioxane/100 °C	10	63	84
4	toluene/100 °C	10	53	83
5 ^{<i>d</i>}	HCO ₂ H/THF/50 °C	15	< 5	
6 ^e	HOAc/THF/50 °C	72	< 5	
7 ^{<i>f</i>}	TsOH·H ₂ O/THF/50 °C	72	36	85
8	THF/50 °C	11	57	84

^{*a*} Reaction conditions: **1a** (0.2 mmol), [Ir(cod)Cl]₂ (2 mol%), **L1** (4 mol%) and Cs₂CO₃ (100 mol%) in THF (4 mL) at 50 °C. Catalyst was prepared by ^{*n*}PrNH₂ activation. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis with a chiral stationary phase. ^{*d*} HCO₂H (0.5 mL)/THF (1 mL). ^{*e*} HOAc (0.5 mL)/THF (1 mL). ^{*f*} TsOH·H₂O (30 mol%).

Table S2. Screening of additives.^a

2	Ag ₂ CO ₃	10	62	96
3	AgOAc	10	65	95
4	AgOTf	10	65	96
5	AgBF ₄	10	36	95

^{*a*} Reaction conditions: **1a** (0.2 mmol), [Ir(cod)Cl]₂ (4 mol%), **L7** (8 mol%), additive (16 mol%) and Cs₂CO₃ (100 mol%) in THF (4 mL) at 50 °C. Catalyst was prepared by ^{*n*}PrNH₂ activation. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis with a chiral stationary phase.

 \sim

 Table S3. Screening of concentration.^a

Ph	[lr(CO .OCO2Me(R_a)	D)Cl] ₂ (4 mol%) - L7 (8 mol%)	N N		P-N Ph
Bn	addit Cs ₂ C T	t ive (16 mol%) O ₃ (100 mol%) ℃HF, 50 ℃	BnN		Ph R_a - L7
entry	additive	<i>c</i> (mol/L)	time (h)	yield $(\%)^b$	ee (%) ^c
1	Ag(S)-TRIP-CPA	0.05	10	67	96
2	Ag(S)-TRIP-CPA	0.02	35	45	93
3	Ag(S)-TRIP-CPA	0.01	35	49	95
4	AgOAc	0.05	10	65	95
5	AgOAc	0.02	35	53	95
6	AgOAc	0.01	35	45	95
7	AgOTf	0.05	10	65	96
8	AgOTf	0.02	14	73	97
9	AgOTf	0.01	14	72	96

^{*a*} Reaction conditions: **1a** (0.2 mmol), [Ir(cod)Cl]₂ (4 mol%), **L7** (8 mol%), additive (16 mol%) and Cs₂CO₃ (100 mol%) in THF at 50 °C. Catalyst was prepared by ^{*n*}PrNH₂ activation. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis with a chiral stationary phase.

General procedure for the synthesis of substituted pyrrole tethered allylic carbonates

(1H-Pyrrol-2-yl)methanamine derivatives **S1** were synthesized according to literature procedures.¹⁻³

(*E*)-4-Bromobut-2-en-1-yl methyl carbonate (0.50 g, 2.4 mmol, 1.2 equiv) was added to a solution of **S1** (2 mmol, 1 equiv) and K₂CO₃ (0.55 g, 4 mmol, 2 equiv) in DMF (25 mL). The reaction mixture was stirred at rt for 12 h, the starting material was consumed completely as monitored by TLC. Then the crude reaction mixture was quenched with water and extracted with EtOAc (20 mL \times 3). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. Then the residue was purified by silica gel column chromatography (PE/EtOAc = 4/1, 2/1) to afford the desired product (**1a-1s**).

1a, viscous yellow oil, 1.82 g, 34% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.64 (s, 1H), 7.35-7.34 (m, 4H), 7.30-7.25 (m, 4H), 7.23-7.18 (m, 2H), 6.76 (t, J = 2.8 Hz, 1H), 6.31 (t, J = 2.8 Hz, 1H), 5.89-5.74 (m, 1H), 5.73-5.60 (m, 1H), 4.55 (d, J = 6.0 Hz, 2H), 3.76 (s, 3H), 3.71 (s, 2H), 3.54 (s, 2H), 3.04 (d, J = 6.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 155.7, 138.9, 136.8, 133.1, 128.9, 128.44, 128.41, 128.1, 127.2, 126.6, 125.9, 125.5, 122.7, 116.7, 108.9, 68.0, 58.3, 55.2, 54.9, 49.5. IR (thin film): v_{max} (cm⁻¹) = 3423, 3026, 2803, 1743, 1601, 1500, 1442, 1377, 1257, 1116, 940, 791, 766, 724, 697, 562. HRMS-ESI calcd for C₂₄H₂₇N₂O₃ [M+H]⁺: 391.2016, Found: 391.2015.

1b, viscous yellow oil, 718.1 mg, 41% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.66 (s,

1H), 7.40-7.29 (m, 4H), 7.19-7.12 (m, 3H), 6.78 (d, J = 8.4 Hz, 2H), 6.70 (t, J = 2.4 Hz, 1H), 6.30 (t, J = 2.4 Hz, 1H), 5.85-5.71 (m, 1H), 5.69-5.56 (m, 1H), 4.51 (d, J = 6.0 Hz, 2H), 3.71 (s, 6H), 3.66 (s, 2H), 3.44 (s, 2H), 2.98 (d, J = 6.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.6, 155.5, 136.7, 132.9, 130.5, 130.0, 128.3, 127.9, 126.3, 125.8, 125.2, 122.5, 116.6, 113.6, 108.7, 67.8, 57.4, 55.1, 54.8, 54.7, 49.2. IR (thin film): v_{max} (cm⁻¹) = 3417, 2953, 2832, 1743, 1606, 1507, 1442, 1245, 1175, 1099, 1032, 940, 764, 725, 700, 519. HRMS-ESI calcd for C₂₅H₂₉N₂O₄ [M+H]⁺: 421.2122, Found: 421.2110.

1c, viscous yellow oil, 564.3 mg, 34% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.66 (s, 1H), 7.38-7.28 (m, 4H), 7.22-7.14 (m, 2H), 6.84 (d, *J* = 7.6 Hz, 2H), 6.75 (d, *J* = 8.4 Hz, 1H), 6.70 (s, 1H), 6.30 (s, 1H), 5.84-5.72 (m, 1H), 5.71-5.58 (m, 1H), 4.51 (d, *J* = 6.0 Hz, 2H), 3.72 (s, 3H), 3.70 (s, 5H), 3.49 (s, 2H), 3.01 (d, *J* = 6.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.7, 155.7, 140.5, 136.8, 132.9, 129.4, 128.4, 128.1, 126.6, 125.8, 125.4, 122.7, 121.2, 116.8, 114.6, 112.3, 108.9, 67.9, 58.2, 55.2, 54.9, 49.6. IR (thin film): v_{max} (cm⁻¹) = 3421, 3026, 2951, 2807, 1741, 1603, 1504, 1442, 1376, 1256, 1087, 1030, 939, 791, 766, 724, 698, 575. HRMS-ESI calcd for C₂₅H₂₉N₂O₄ [M+H]⁺: 421.2122, Found: 421.2112.

1d, viscous yellow oil, 384.7 mg, 26% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 8.10 (d, J = 8.4 Hz, 2H), 7.41-7.33 (m, 6H), 7.25-7.21 (m, 1H), 6.77 (s, 1H), 6.30 (s, 1H), 5.87-5.76 (m, 1H), 5.75-5.63 (m, 1H), 4.56 (d, J = 5.6 Hz, 2H), 3.76 (s, 3H), 3.73 (s, 2H), 3.59 (s, 2H), 3.05 (d, J = 6.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 155.6, 147.0, 146.9, 136.5, 132.2, 129.3, 128.4, 128.1, 127.1, 125.6, 125.0, 123.5, 123.3, 117.1, 109.0, 67.7, 57.4, 55.5, 54.9, 49.7. IR (thin film): v_{max} (cm⁻¹) = 3417, 2953, 2818, 1742, 1600, 1515, 1442, 1342, 1259, 1104, 941, 844, 791, 726, 698, 566. HRMS-ESI calcd for C₂₄H₂₆N₃O₅ [M+H]⁺: 436.1867, Found: 436.1866.

1e, viscous yellow oil, 337.7 mg, 24% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.70 (s, 1H), 7.39-7.31 (m, 4H), 7.24-7.14 (m, 1H), 6.73 (t, *J* = 2.8 Hz, 1H), 6.31 (t, *J* = 2.8 Hz, 1H), 5.85-5.71 (m, 2H), 5.70-5.59 (m, 1H), 5.17-5.06 (m, 2H), 4.53 (d, *J* = 5.6 Hz, 2H), 3.75 (s, 3H), 3.70 (s, 2H), 3.04 (s, 2H), 3.02 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 155.6, 136.7, 135.3, 132.8, 128.3, 128.0, 126.4, 125.8, 125.3, 122.5, 117.8, 116.6, 108.8, 67.9, 56.9, 55.0, 54.8, 49.4. IR (thin film): v_{max} (cm⁻¹) = 3418, 3021, 2954, 2810, 1662, 1743, 1602, 1502, 1442, 1257, 1092, 937, 791, 765, 723, 699, 566. HRMS-ESI calcd for C₂₀H₂₅N₂O₃ [M+H]⁺: 341.1860, Found: 341.1860.

1f, viscous yellow oil, 369.9 mg, 18% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.59 (s, 1H), 7.45-7.39 (m, 1H), 7.27-7.19 (m, 8H), 6.77 (t, J = 2.8 Hz, 1H), 6.25 (t, J = 2.8 Hz, 1H), 5.83-5.71 (m, 1H), 5.70-5.58 (m, 1H), 4.53 (d, J = 6.0 Hz, 2H), 3.75 (s, 3H), 3.49 (d, J = 2.4 Hz, 4H), 2.99 (d, J = 6.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 155.6, 138.9, 135.5, 133.8, 133.1, 132.3, 129.67, 128.8, 128.3, 127.6, 127.1, 126.9, 126.4, 120.0, 116.3, 110.3, 67.9, 58.1, 55.0, 54.9, 49.3. IR (thin film): v_{max} (cm⁻¹) = 3433, 3026, 2953, 2803, 1742, 1493, 1443, 1378, 1259, 1119, 1032, 941, 791, 732, 551, 460. HRMS-ESI calcd for C₂₄H₂₆ClN₂O₃ [M+H]⁺: 425.1626, Found: 425.1622.

1g, viscous yellow oil, 489.2 mg, 44% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 7.38 (t, *J* = 1.6 Hz, 1H), 7.31-7.21 (m, 7H), 7.20-7.14 (m, 1H), 6.73 (t, *J* = 2.8 Hz, 1H), 6.28 (t, *J* = 2.8 Hz, 1H), 5.88-5.76 (m, 1H), 5.74-5.63 (m, 1H), 4.55 (dd, *J* = 6.0, 0.8 Hz, 2H), 3.75 (s, 3H), 3.68 (s, 2H), 3.53 (s, 2H), 3.03 (d, *J* = 6.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 155.6, 138.7, 138.6, 134.1, 132.9, 129.6, 128.8, 128.4, 127.9,

127.2, 126.6, 126.3, 126.1, 125.3, 121.3, 117.0, 108.8, 67.9, 58.3, 55.2, 54.9, 49.5. IR (thin film): v_{max} (cm⁻¹) = 3432, 3027, 2954, 2799, 1742, 1596, 1494, 1444, 1259, 1077, 941, 786, 724, 697. HRMS-ESI calcd for C₂₄H₂₆ClN₂O₃ [M+H]⁺: 425.1626, Found: 425.1622.

1h, viscous yellow oil, 482.5 mg, 47% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.62 (s, 1H), 7.30-7.24 (m, 5H), 7.16 (d, J = 8.0 Hz, 2H), 6.74 (t, J = 2.8 Hz, 1H), 6.28 (t, J = 2.8 Hz, 1H), 5.88-5.76 (m, 1H), 5.74-5.61 (m, 1H), 4.54 (d, J = 6.0 Hz, 2H), 3.76 (s, 3H), 3.70 (s, 2H), 3.53 (s, 2H), 3.03 (d, J = 6.4 Hz, 2H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.5, 138.8, 134.7, 133.7, 132.9, 129.0, 128.7, 128.2, 127.9, 127.0, 126.3, 125.4, 122.5, 116.6, 108.7, 67.8, 58.1, 54.9, 54.7, 49.4, 21.0. IR (thin film): ν_{max} (cm⁻¹) = 3424, 3025, 2920, 2801, 1743, 1515, 1444, 1259, 1111, 941, 821, 791, 730, 699, 554. HRMS-ESI calcd for C₂₅H₂₉N₂O₃ [M+H]⁺: 405.2173, Found: 405.2170.

1i, viscous yellow oil, 323.6 mg, 40% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.62 (s, 1H), 7.37 (d, *J* = 8.8 Hz, 2H), 7.29 (d, *J* = 8.8 Hz, 2H), 7.25 (d, *J* = 4.4 Hz, 4H), 7.22-7.18 (m, 1H), 6.70 (t, *J* = 2.8 Hz, 1H), 6.29 (t, *J* = 2.8 Hz, 1H), 5.86-5.74 (m, 1H), 5.71-5.58 (m, 1H), 4.52 (d, *J* = 6.0 Hz, 2H), 3.72 (s, 3H), 3.70 (s, 2H), 3.52 (s, 2H), 3.02 (d, *J* = 6.0 Hz, 2H), 1.34 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 155.6, 148.0, 138.8, 133.8, 133.0, 128.8, 128.5, 128.3, 127.7, 127.1, 126.4, 125.5, 125.2, 122.5, 116.6, 108.8, 67.9, 58.2, 55.1, 54.8, 49.4, 34.4, 31.5. IR (thin film): v_{max} (cm⁻¹) = 3417, 2957, 2867, 2803, 1744, 1513, 1444, 1363, 1260, 1116, 942, 834, 791, 726, 568. HRMS-ESI calcd for C₂₈H₃₅N₂O₃ [M+H]⁺: 447.2642, Found: 447.2639.

1j, viscous yellow oil, 184.5 mg, 30% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.66 (s, 1H), 7.49-7.40 (m, 2H), 7.29-7.17 (m, 7H), 6.73 (t, *J* = 2.8 Hz, 1H), 6.27 (t, *J* = 2.8 Hz, 1H), 5.92-5.62 (m, 2H), 4.55 (d, *J* = 6.0 Hz, 2H), 3.75 (s, 3H), 3.66 (s, 2H), 3.52 (s, 2H), 3.02 (d, *J* = 6.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 155.6, 138.6, 135.6, 132.8, 131.4, 129.6, 128.8, 128.4, 127.2, 126.6, 126.0, 121.5, 119.1, 116.9, 108.7, 67.8, 58.2, 55.2, 54.9, 49.4. IR (thin film): v_{max} (cm⁻¹) = 3429, 3026, 2955, 2802, 1743, 1495, 1443, 1258, 1070, 1008, 941, 897, 826, 790, 729, 700. HRMS-ESI calcd for C₂₄H₂₆BrN₂O₃ [M+H]⁺: 469.1121, Found: 469.1121.

1k, viscous yellow oil, 505.8 mg, 22% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.67 (s, 1H), 7.33-7.16 (m, 9H), 6.70 (t, *J* = 2.8 Hz, 1H), 6.26 (t, *J* = 2.8 Hz, 1H), 5.85-5.73 (m, 1H), 5.72-5.58 (m, 1H), 4.53 (d, *J* = 6.0 Hz, 2H), 3.73 (s, 3H), 3.64 (s, 2H), 3.50 (s, 2H), 3.00 (d, *J* = 6.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 155.5, 138.6, 135.1, 132.7, 130.9, 129.1, 128.7, 128.4, 128.3, 127.1, 126.5, 125.9, 121.4, 116.9, 108.6, 67.7, 58.1, 55.0, 54.8, 49.4. IR (thin film): v_{max} (cm⁻¹) = 3432, 3027, 2954, 2802, 1743, 1498, 1444, 1258, 1091, 941, 829, 790, 732. HRMS-ESI calcd for C₂₄H₂₆ClN₂O₃ [M+H]⁺: 425.1626, Found: 425.1624.

11, viscous yellow oil, 192.3 mg, 33% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.64 (s, 1H), 7.37-7.23 (m, 7H), 7.03 (t, J = 8.4 Hz, 2H), 6.74 (s, 1H), 6.26 (s, 1H), 5.88-5.76 (m, 1H), 5.74-5.63 (m, 1H), 4.56 (d, J = 6.0 Hz, 2H), 3.76 (s, 3H), 3.66 (s, 2H), 3.53 (s, 2H), 3.04 (d, J = 6.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 161.2 (d, J = 244.0 Hz), 155.6, 138.7, 132.9, 132.7 (d, J = 3.1 Hz), 129.5 (d, J = 7.7 Hz), 128.9, 128.4, 127.2, 126.6, 125.7, 121.8, 116.8, 115.2 (d, J = 21.1 Hz), 108.8, 67.9, 58.2, 55.1, 54.9, 49.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -118.0 (m). IR (thin film): v_{max} (cm⁻¹) = 3429, 3027, 2956, 2803, 1743, 1511, 1444, 1260, 1157, 1096, 941, 836, 791, 731, 699, 593. HRMS-ESI calcd for C₂₄H₂₆FN₂O₃ [M+H]⁺: 409.1922, Found: 409.1926.

1m, viscous yellow oil, 134.1 mg, 45% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 7.36-7.26 (m, 4H), 7.24-7.18 (m, 1H), 7.14 (d, *J* = 8.4 Hz, 2H), 6.81 (d, *J* = 8.4 Hz, 2H), 6.12 (d, *J* = 1.6 Hz, 1H), 5.87-5.74 (m, 1H), 5.71-5.60 (m, 1H), 4.55 (d, *J* = 6.0 Hz, 2H), 3.77 (s, 3H), 3.76 (s, 3H), 3.61 (s, 2H), 3.47 (s, 2H), 3.03 (d, *J* = 6.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.8, 155.7, 135.7, 132.8, 130.3, 130.2, 128.5, 128.0, 126.8, 125.9, 125.3, 123.7, 113.8, 113.2, 106.6, 67.9, 57.5, 55.3, 55.0, 54.9, 48.8. IR (thin film): v_{max} (cm⁻¹) = 3399, 3339, 2954, 2910, 2833, 1743, 1607, 1507, 1442, 1393, 1246, 1175, 1033, 941, 791, 760, 699, 516. HRMS-ESI calcd for C₂₅H₂₈ClN₂O4 [M+H]⁺: 455.1732, Found: 455.1725.

1n, viscous yellow oil, 116.5 mg, 36% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 7.32-7.13 (m, 9H), 6.09 (d, *J* = 2.8 Hz, 1H), 5.87-5.74 (m, 1H), 5.71-5.60 (m, 1H), 4.55 (d, *J* = 6.0 Hz, 2H), 3.76 (s, 3H), 3.62 (s, 2H), 3.52 (s, 2H), 3.03 (d, *J* = 6.0 Hz, 2H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.7, 138.6, 135.6, 132.7, 129.2, 128.9, 128.5, 128.0, 127.3, 126.8, 124.9, 123.7, 113.1, 106.7, 67.9, 58.3, 55.2, 54.9, 49.1, 21.2. IR (thin film): v_{max} (cm⁻¹) = 3350, 3025, 2919, 2800, 1743, 1515, 1443, 1385, 1259, 1116, 941, 822, 789, 738, 698, 477. HRMS-ESI calcd for C₂₅H₂₈ClN₂O₃ [M+H]⁺: 439.1783, Found: 439.1781.

10, viscous yellow oil, 199.3 mg, 49% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.51 (s, 1H), 7.34-7.16 (m, 9H), 6.19 (d, *J* = 2.8 Hz, 1H), 5.89-5.76 (m, 1H), 5.73-5.60 (m, 1H),

4.57 (d, J = 4.8 Hz, 2H), 3.78 (s, 3H), 3.61 (s, 2H), 3.53 (s, 2H), 3.05 (d, J = 5.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 155.7, 138.3, 134.0, 132.5, 131.7, 129.2, 128.9, 128.6, 128.5, 127.4, 127.4, 127.0, 123.5, 110.6, 97.4, 67.8, 58.3, 55.2, 55.0, 49.1. IR (thin film): v_{max} (cm⁻¹) = 3411, 3337, 3027, 2953, 2802, 1739, 1495, 1444, 1378, 1259, 1090, 939, 832, 789, 740, 698, 509. HRMS-ESI calcd for C₂₄H₂₅BrClN₂O₃ [M+H]⁺: 503.0732, Found: 503.0726.

1p, pale yellow solid, m.p. = 66.6-68.7 °C, 410.0 mg, 28% yield.¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 7.28-7.19 (m, 5H), 5.91-5.62 (m, 2H), 4.57 (d, *J* = 5.6 Hz, 2H), 4.23 (q, *J* = 7.2 Hz, 2H), 3.74 (s, 3H), 3.51 (s, 2H), 3.41 (s, 2H), 3.02 (d, *J* = 6.0 Hz, 2H), 2.45 (s, 3H), 2.16 (s, 3H), 1.31 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 155.6, 138.8, 134.9, 133.1, 128.8, 128.3, 127.0, 126.5, 123.5, 118.4, 110.7, 67.9, 59.0, 57.8, 54.8, 54.7, 48.0, 14.5, 14.0, 11.0. IR (thin film): v_{max} (cm⁻¹) = 3312, 3027, 2954, 2925, 2803, 1746, 1668, 1441, 1378, 1255, 1088, 942, 787, 735, 699. HRMS-ESI calcd for C₂₃H₃₁N₂O₅ [M+H]⁺: 415.2227, Found: 415.2227.

1q, viscous yellow oil, 204.1 mg, 36% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), 7.38-7.26 (m, 8H), 7.24-7.16 (m, 2H), 6.76 (t, J = 2.8 Hz, 1H), 6.30 (t, J = 2.8 Hz, 1H), 5.83-5.70 (m, 1H), 5.66-5.49 (m, 1H), 4.52 (d, J = 6.0 Hz, 2H), 3.87 (q, J = 6.8 Hz, 1H), 3.80-3.68 (m, 4H), 3.63 (d, J = 14.4 Hz, 1H), 3.15 (dd, J = 14.4, 6.4 Hz, 1H), 2.95 (dd, J = 14.4, 6.4 Hz, 1H), 1.34 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.7, 142.8, 136.8, 133.7, 128.4, 128.3, 128.1, 127.8, 127.04, 126.5, 126.2, 125.3, 122.3, 116.5, 108.9, 67.9, 58.4, 54.8, 51.5, 45.7, 15.9. IR (thin film): v_{max} (cm⁻¹) = 3428, 3026, 2956, 2820, 1745, 1601, 1494, 1442, 1377, 1257, 1120, 1084, 939, 790, 763, 698, 546. HRMS-ESI calcd for C₂₅H₂₉N₂O₃ [M+H]⁺: 405.2173, Found: 405.2167.

1s, viscous yellow oil, 346.2 mg, 22% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.06 (s, 1H), 7.72-7.64 (m, 2H), 7.32-7.18 (m, 7H), 6.79 (t, J = 2.8 Hz, 1H), 6.22 (t, J = 2.8 Hz, 1H), 5.27-5.15 (m, 1H), 5.01-4.89 (m, 1H), 4.34 (s, 2H), 4.15 (d, J = 5.6 Hz, 2H), 3.73 (s, 3H), 3.59 (d, J = 6.8 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.3, 143.6, 137.0, 136.3, 129.9, 128.43, 128.40, 127.8, 127.0, 125.8, 124.9, 122.1, 118.5, 108.6, 66.8, 54.7, 48.3, 41.3, 21.5. IR (thin film): v_{max} (cm⁻¹) = 3406, 2955, 2923, 2855, 1745, 1599, 1501, 1442, 1259, 1154, 1089, 940, 898, 730, 700, 653, 546. HRMS-ESI calcd for C₂₄H₃₀N₃O₅S [M+H]⁺: 472.1901, Found: 472.1898.

General procedure for Ir-catalyzed asymmetric allylic dearomatization of pyrrole derivatives/migration reaction

A flame-dried Schlenk tube was cooled to rt and filled with argon. To this flask were added [Ir(cod)Cl]₂ (5.4 mg, 0.008 mmol, 4 mol%), phosphoramidite ligand (BHPphos) **L7** (9.2 mg, 0.016 mmol, 8 mol%), THF (0.5 mL) and *n*-propylamine (0.5 mL). The reaction mixture was heated at 50 °C for 30 min and then the volatile solvents were removed *in vacuo* to give a pale-yellow solid. After that, substrate **1** (0.20 mmol), AgOTf (8.2 mg, 0.032 mmol, 16 mol%), Cs₂CO₃ (65.2 mg, 0.20 mmol, 100 mol%) and CH₃CN (10 mL) were added. The reaction mixture was stirred at 50 °C for 2 h, and the starting material was consumed completely as monitored by TLC. The crude reaction mixture was quenched with water and extracted with EtOAc (10 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, filtrated and concentrated *in vacuo*. Then the residue was purified by silica gel column chromatography (PE/EtOAc = 20/1, 10/1) to afford the desired product (**2a-2r**). The analytical data of the products are summarized below.

2a, viscous yellow oil, 48.4 mg, 77% yield, 98% ee [Daicel Chiralpak AD-H (0.46 cm × 25 cm), *n*-hexane/2-propanol = 95/5, $v = 1.0 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t (major) = 4.76 min, t (minor) = 5.13 min]. [α] $_{D}^{29}$ = -25.0 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.4 Hz, 2H), 7.38-7.29 (m, 7H), 7.15 (t, J = 7.2 Hz, 1H), 6.55 (d, J = 2.4 Hz, 1H), 6.36 (d, J = 2.4 Hz, 1H), 5.76 (ddd, J = 17.2, 9.6, 7.6 Hz, 1H), 4.98-4.88 (m, 2H), 4.75 (d, J = 10.0 Hz, 1H), 4.48 (d, J = 10.0 Hz, 1H), 3.98 (dd, J = 12.4, 6.0 Hz, 1H), 3.78 (s, 2H), 3.03 (dd, J = 12.4, 5.6 Hz, 1H), 2.93 (dd, J = 12.4, 6.0 Hz, 1H).

NMR (101 MHz, CDCl₃) δ 138.9, 137.7, 136.8, 129.0, 128.6, 128.1, 128.0, 127.6, 125.2, 124.8, 121.8, 117.5, 116.0, 108.7, 66.6, 58.0, 55.6, 36.9. IR (thin film): v_{max} (cm⁻¹) = 2962, 2852, 2792, 1669, 1600, 1498, 1449, 1260, 1021, 912, 798, 738, 695. HRMS-ESI calcd for C₂₂H₂₃N₂ [M+H]⁺: 315.1856, Found: 315.1854.

2b, viscous yellow oil, 51.0 mg, 74% yield, 98% ee [Daicel Chiralpak AD-H (0.46 cm \times 25 cm), *n*-hexane/2-propanol = 98/2, v = 0.5 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 16.41 min, t (minor) = 20.07 min]. [α] $_{D}^{29}$ = -41.8 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.0 Hz, 2H), 7.29 (t, J = 8.0 Hz, 4H), 7.14 (t, J = 7.6 Hz, 1H), 6.88 (d, J = 7.6 Hz, 2H), 6.54 (d, J = 2.8 Hz, 1H), 6.35 (d, J = 2.8 Hz, 1H), 5.75 (ddd, J = 17.2, 9.6, 7.6 Hz, 1H), 4.93 (d, J = 16.4 Hz, 1H), 4.92 (d, J = 10.8 Hz, 1H), 4.72 (d, J = 10.0 Hz, 1H), 4.45 (d, J = 10.0 Hz, 1H), 3.97 (dd, J = 12.8, 6.4 Hz, 1H), 3.80 (s, 3H), 3.70 (s, 2H), 3.00 (dd, J = 12.4, 5.6 Hz, 1H), 2.90 (dd, J = 12.4, 6.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.1, 138.9, 136.7, 130.2, 129.6, 128.04, 127.97, 125.2, 124.8, 121.8, 117.5, 116.0, 113.9, 108.7, 66.5, 57.3, 55.43, 55.38, 36.9. IR (thin film): v_{max} (cm⁻¹) = 2957, 2833, 2782, 1605, 1508, 1454, 1409, 1353, 1301, 1243, 1174, 1095, 1031, 948, 911, 813, 753, 697, 515. HRMS-ESI calcd for C₂₃H₂₅N₂O [M+H]⁺: 345.1961, Found: 345.1966.

2c, viscous yellow oil, 56.5 mg, 82% yield, 99% ee [Daicel Chiralpak AD-H (0.46 cm $\times 25$ cm), *n*-hexane/2-propanol = 98/2, v = 0.5 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 16.06 min, t (minor) = 17.56 min]. [α]D²⁹ = -18.5 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.0 Hz, 2H), 7.29 (t, J = 7.6 Hz, 2H), 7.24 (d, J = 8.0 Hz, 1H), 7.15 (t, J = 7.2 Hz, 1H), 6.95 (d, J = 9.2 Hz, 2H), 6.84 (d, J = 8.0 Hz, 1H), 6.55 (d, J = 2.8 Hz, 1H), 6.36 (d, J = 2.8 Hz, 1H), 5.77 (ddd, J = 17.2, 10.0, 7.6 Hz, 1H), 4.94 (d, J = 12.8 Hz, 1H), 4.93 (d, J = 15.2 Hz, 1H), 4.75 (d, J = 10.0 Hz, 1H), 4.48 (d, J = 10.0 Hz, 1H),

3.97 (dd, J = 12.0, 5.6 Hz, 1H), 3.81 (s, 3H), 3.77 (d, J = 13.6 Hz, 1H), 3.72 (d, J = 13.6 Hz, 1H), 3.00 (dd, J = 12.4, 5.6 Hz, 1H), 2.92 (dd, J = 12.4, 6.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.9, 139.4, 139.0, 136.7, 129.5, 128.1, 127.9, 125.2, 124.7, 121.8, 121.2, 117.5, 116.0, 114.1, 113.3, 108.7, 66.7, 57.9, 55.5, 55.3, 36.9. IR (thin film): v_{max} (cm⁻¹) = 2917, 2832, 2787, 1672, 1598, 1489, 1455, 1353, 1260, 1152, 1043, 989, 911, 758, 694. HRMS-ESI calcd for C₂₃H₂₅N₂O [M+H]⁺: 345.1961, Found: 345.1960.

2d, pale yellow solid, m.p. = 71.2-74.9 °C, 45.3 mg, 63% yield, 99% ee [Daicel Chiralpak AD-H (0.46 cm × 25 cm), n-hexane/2-propanol = 95/5, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 14.45 min, t (minor) = 15.81 min]. [α]_D²⁹ = -30.3 (c = 1.0, CHCl₃).¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 8.8 Hz, 2H), 7.58 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.0 Hz, 2H), 7.30 (t, J = 7.6 Hz, 2H), 7.16 (t, J = 7.6 Hz, 1H), 6.57 (d, J = 2.8 Hz, 1H), 6.38 (d, J = 2.8 Hz, 1H), 5.77 (ddd, J = 17.6, 10.4, 7.6 Hz, 1H), 4.97 (d, J = 8.8 Hz, 1H), 4.94 (d, J = 16.4 Hz, 1H), 4.79 (d, J = 10.0 Hz, 1H), 4.50 (d, J = 10.0 Hz, 1H), 3.97 (dd, J = 12.0, 6.0 Hz, 1H), 3.90 (d, J = 14.4 Hz, 1H), 3.85 (d, J = 14.4 Hz, 1H), 3.02 (dd, J = 12.8, 5.6 Hz, 1H), 2.93 (dd, J = 12.4, 6.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 147.5, 145.6, 138.7, 136.5, 129.4, 128.1, 127.9, 125.4, 124.4, 123.9, 122.1, 117.6, 116.4, 108.9, 66.8, 57.1, 55.6, 36.8. IR (thin film): v_{max} (cm⁻¹) = 2921, 2853, 1640, 1601, 1516, 1446, 1341, 1229, 1160, 1093, 987, 906, 846, 742, 697. HRMS-ESI calcd for C₂₂H₂₂N₃O₂ [M+H]⁺: 360.1707, Found: 360.1707.

2e, viscous yellow oil, 37.5 mg, 71% yield, > 99% ee [Daicel Chiralpak AD-H (0.46 cm × 25 cm), *n*-hexane/2-propanol = 98/2, v = 0.5 mL·min⁻¹, $\lambda = 254$ nm, t (minor) = 10.72 min, t (major) = 11.76 min]. [α]_D²⁹ = -43.8 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 7.6 Hz, 2H), 7.29 (t, J = 7.6 Hz, 2H), 7.15 (t, J = 7.6 Hz, 1H),

6.58 (d, J = 2.8 Hz, 1H), 6.35 (d, J = 2.8 Hz, 1H), 5.97-5.83 (m, 1H), 5.74 (ddd, J = 17.2, 10.4, 7.2 Hz, 1H), 5.26 (d, J = 20.4 Hz, 1H), 5.23 (d, J = 10.8 Hz, 1H), 4.95 (d, J = 17.6 Hz, 1H), 4.94 (d, J = 9.6 Hz, 1H), 4.76 (d, J = 10.0 Hz, 1H), 4.52 (d, J = 10.0 Hz, 1H), 3.95 (dd, J = 12.4, 6.0 Hz, 1H), 3.33-3.18 (m, 2H), 3.00 (dd, J = 12.8, 5.6 Hz, 1H), 2.90 (dd, J = 12.8, 6.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 138.9, 136.7, 134.6, 128.0, 128.0, 125.2, 124.6, 121.8, 118.7, 117.5, 116.1, 108.7, 66.6, 56.7, 55.4, 36.8. IR (thin film): v_{max} (cm⁻¹) = 3075, 2918, 2852, 2780, 1693, 1601, 1502, 1406, 1350, 1160, 1097, 992, 915, 791, 761, 696. HRMS-ESI calcd for C₁₈H₂₁N₂ [M+H]⁺: 265.1699, Found: 265.1698.

2f, viscous yellow oil, 46.7 mg, 67% yield, 97% ee. [Daicel Chiralcel OD-H (0.46 cm × 25 cm), *n*-hexane/2-propanol = 98/2, $v = 1.0 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t (minor) = 7.88 min, t (major) = 9.50 min]. [α]_D²⁷ = -50.6 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.26 (m, 7H), 7.21-7.11 (m, 2H), 6.55 (d, J = 2.8 Hz, 1H), 6.23 (d, J = 2.8 Hz, 1H), 5.46 (ddd, J = 17.2, 10.0, 8.4 Hz, 1H), 4.76 (d, J = 10.4 Hz, 1H), 4.75 (d. J = 17.2 Hz, 1H), 4.67-4.55 (m, 2H), 3.90 (dd, J = 14.8, 8.4 Hz, 1H), 3.82 (s, 2H), 3.07 (dd, J = 12.8, 6.0 Hz, 1H), 2.81 (dd, J = 12.8, 8.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 137.6, 137.3, 136.2, 134.0, 132.3, 129.0, 128.9, 128.5, 127.5, 127.4, 126.0, 125.7, 119.3, 116.4, 115.5, 109.9, 66.0, 57.1, 54.8, 36.6 IR (thin film): v_{max} (cm⁻¹) = 3062, 3003, 2919, 2784, 1699, 1670, 1494, 1454, 1304, 1209, 1054, 914, 746, 697, 462. HRMS-ESI calcd for C₂₂H₂₂ClN₂ [M+H]⁺: 349.1466, Found: 349.1463.

2g, viscous yellow oil, 56.5 mg, 81% yield, 99% ee. [Daicel Chiralcel OD-H (0.46 cm × 25 cm), *n*-hexane/2-propanol = 98/2, $v = 1.0 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t (minor) = 10.79 min, t (major) = 11.91 min]. [α]_D²⁷ = -14.9 (c = 1.0, CHCl₃).¹H NMR (400 MHz, CDCl₃)

δ 7.41 (t, J = 2.0 Hz, 1H), 7.38-7.27 (m, 6H), 7.20 (t, J = 8.0 Hz, 1H), 7.10 (ddd, J = 8.0, 2.0, 1.2 Hz, 1H), 6.54 (d, J = 2.8 Hz, 1H), 6.34 (d, J = 2.8 Hz, 1H), 5.81-5.64 (m, 1H), 4.98 (d, J = 16.4 Hz, 1H), 4.97 (d, J = 10.0 Hz, 1H), 4.73 (d, J = 10.0 Hz, 1H), 4.47 (d, J = 10.0 Hz, 1H), 3.95 (dd, J = 13.2, 6.8 Hz, 1 H), 3.77 (s, 2H), 3.03 (dd, J = 12.8, 6.0 Hz, 1H), 2.91 (dd, J = 12.8, 6.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 138.43, 138.39, 137.5, 133.7, 129.1, 128.9, 128.5, 127.8, 127.56, 125.9, 125.1, 125.0, 120.4, 117.6, 116.4, 108.5, 66.5, 57.7, 55.4, 36.9. IR (thin film): v_{max} (cm⁻¹) = 3063, 2960, 2923, 2787, 1664, 1595, 1564, 1495 1453, 1351, 1259, 1076, 996, 916, 785, 749, 696, 614. HRMS-ESI calcd for C₂₂H₂₂ClN₂ [M+H]⁺: 349.1466, Found: 349.1463.

2h, viscous yellow oil, 40.7 mg, 62% yield, 98% ee. [Daicel Chiralpak AD-H (0.46 cm × 25 cm), *n*-hexane/2-propanol = 98/2, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 6.96 min, t (minor) = 9.47 min]. [α]_D²⁵ = -33.1 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.25 (m, 7H), 7.11 (d, J = 7.6 Hz, 2H), 6.53 (d, J = 2.8 Hz, 1H), 6.33 (d, J = 2.8 Hz, 1H), 5.77 (ddd, J = 17.6, 10.0, 7.6 Hz, 1H), 4.98-4.88 (m, 2H), 4.73 (d, J = 10.0 Hz, 1H), 4.46 (d, J = 10.0 Hz, 1H), 3.96 (dd, J = 12.8, 6.4 Hz, 1H), 3.81-3.72 (m, 2H), 3.05-2.97 (m, 1H), 2.91 (dd, J = 12.4, 6.4 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.0, 137.7, 134.6, 133.8, 129.0, 128.8, 128.6, 127.8, 127.6, 124.4, 121.7, 117.4, 116.0, 108.7, 66.6, 57.9, 55.6, 36.9, 21.2. IR (thin film): v_{max} (cm⁻¹) = 3062, 3026, 2918, 2787, 1673, 1551, 1511, 1494, 1415, 1260, 1187, 1097, 1017, 949, 913, 818, 739, 698. HRMS-ESI calcd for C₂₃H₂₅N₂ [M+H]⁺: 329.2012, Found: 329.2011.

2i, viscous yellow oil, 51.1 mg, 69% yield, 99% ee. [Daicel Chiralpak AD-H (0.46 cm \times 25 cm), *n*-hexane/2-propanol = 98/2, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 6.36

min, t (minor) = 8.30 min]. $[\alpha]_D^{25}$ = -11.5 (*c* = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.24 (m, 9H), 6.52 (d, *J* = 2.8 Hz, 1H), 6.36 (d, *J* = 2.8 Hz, 1H), 5.82 (ddd, *J* = 17.2, 10.4, 7.2 Hz, 1H), 5.02-4.88 (m, 2H), 4.73 (d, *J* = 10.0 Hz, 1H), 4.43 (d, *J* = 10.0 Hz, 1H), 3.93 (dd, *J* = 12.4, 5.6 Hz, 1H), 3.81-3.67 (m, 2H), 3.03-2.85 (m, 2H), 1.32 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 147.9, 139.4, 137.7, 133.7, 129.0, 128.6, 127.6, 127.4, 125.0, 124.6, 121.5, 117.4, 115.9, 108.7, 66.7, 58.1, 55.6, 37.0, 34.5, 31.5. IR (thin film): v_{max} (cm⁻¹) = 3080, 3028, 2957, 2865, 2787, 1674, 1637, 1550, 1508, 1455, 1411, 1357, 1267, 1092, 986, 950, 913, 833, 745, 697, 614, 569. HRMS-ESI calcd for C₂₆H₃₁N₂ [M+H]⁺: 371.2482, Found: 371.2480.

2j, viscous yellow oil, 59.0 mg, 75% yield, 97% ee. [Daicel Chiralpak AD-H (0.46 cm × 25 cm), *n*-hexane/2-propanol = 98/2, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 7.79 min, t (minor) = 11.19 min]. [α]_D²⁹ = -41.1 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.24 (m, 9H), 6.53 (d, J = 2.8 Hz, 1H), 6.31 (d, J = 2.8 Hz, 1H), 5.72 (ddd, J = 17.2, 10.4, 7.2 Hz, 1H), 4.94 (d, J = 8.0 Hz, 1H), 4.93 (d, J = 17.6 Hz, 1H), 4.72 (d, J = 10.0 Hz, 1H), 4.46 (d, J = 10.0 Hz, 1H), 3.92 (dd, dd, J = 12.8, 6.4 Hz, 1H), 3.83-3.67 (m, 2H), 3.02 (dd, J = 12.8, 6.0 Hz, 1H), 2.90 (dd, J = 12.8, 6.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 138.6, 137.6, 135.7, 131.1, 129.5, 128.9, 128.6, 127.7, 124.9, 120.6, 118.9, 117.7, 116.4, 108.5, 66.6, 57.8, 55.5, 36.9. IR (thin film): v_{max} (cm⁻¹) = 3061, 3028, 2918, 2786, 1655, 1590, 1544, 1597, 1452, 1412, 1353, 1184, 1097, 1069, 1006, 946, 915, 823, 738, 696, 612. HRMS-ESI calcd for C₂₂H₂₂BrN₂ [M+H]⁺: 393.0961, Found: 393.0961.

2k, viscous yellow oil, 54.4 mg, 78% yield, 98% ee. [Daicel Chiralpak AD-H (0.46 cm × 25 cm), *n*-hexane/2-propanol = 98/2, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 6.90 min, t (minor) = 9.24 min]. [α]_D²⁵ = -42.8 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.23 (m, 9H), 6.54 (d, J = 2.8 Hz, 1H), 6.31 (d, J = 2.8 Hz, 1H), 5.72 (ddd, J = 17.6 Hz, 10.4, 7.2 Hz, 1H), 4.94 (d, J = 9.6 Hz, 1H), 4.93 (d, J = 17.2 Hz, 1H), 4.73 (d, J = 10.0 Hz, 1H), 4.47 (d, J = 10.0 Hz, 1H), 3.92 (dd, J = 13.2, 6.8 Hz, 1H), 3.81-3.71 (m, 2H), 3.02 (ddd, J = 12.4, 5.6, 0.8 Hz, 1H), 2.90 (dd, J = 12.4, 6.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 138.5, 137.5, 135.1, 130.7, 129.1, 128.9, 128.5, 128.1, 127.6, 124.8, 120.6, 117.6, 116.3, 108.5, 66.5, 57.8, 55.4, 36.8. IR (thin film): v_{max} (cm⁻¹) = 3029, 2920, 2786, 1637, 1545, 1498, 1453, 1412, 1352, 1184, 1089, 1010, 947, 914, 827, 746, 697, 613, 543, 505. HRMS-ESI calcd for C₂₂H₂₂ClN₂ [M+H]⁺: 349.1466, Found: 349.1464.

21, viscous yellow oil, 57.8 mg, 87% yield, 98% ee. [Daicel Chiralpak AD-H (0.46 cm × 25 cm), *n*-hexane/2-propanol = 98/2, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 6.36 min, t (minor) = 8.21 min]. [α]_D²⁹ = -42.3 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.26 (m, 7H), 7.02-6.93 (m, 2H), 6.54 (d, J = 2.8 Hz, 1H), 6.30 (d, J = 2.8 Hz, 1H), 5.73 (ddd, J = 18.0, 10.0, 6.4 Hz, 1H), 4.92 (d, J = 10.0 Hz, 1H), 4.91 (d, J = 16.8 Hz, 1H), 4.74 (d, J = 10.0 Hz, 1H), 4.49 (d, J = 10.0 Hz, 1H), 3.92 (dd, J = 13.2, 6.4 Hz, 1H), 3.83-3.68 (m, 2H), 3.03 (dd, J = 12.4, 5.6 Hz, 1H), 2.91 (dd, J = 12.4, 6.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.0 (d, J = 243.6 Hz), 138.7, 137.6, 132.8, 129.5 (d, J = 7.6 Hz) 129.0, 128.6, 127.7, 124.6, 120.9, 117.5, 116.2, 114.8 (d, J = 21.1 Hz), 108.7, 66.6, 57.9, 55.6, 36.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -118.3 (m). IR (thin film): v_{max} (cm⁻¹) = 3061, 2921, 2852, 2788, 1665, 1551, 1507, 1452, 1353, 1219, 1156, 1094, 987, 915, 834, 739, 697, 592. HRMS-ESI calcd for C₂₂H₂₂FN₂ [M+H]⁺: 333.1762, Found: 333.1762.

2m, viscous yellow oil, 61.4 mg, 81% yield, 99% ee. [Daicel Chiralpak AD-H (0.46 cm × 25 cm), *n*-hexane/2-propanol = 98/2, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 5.95 min, t (minor) = 7.53 min]. [α]_D²⁵ = -34.0 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.35 (m, 2H), 7.33-7.26 (m, 4H), 7.20-7.13 (m, 1H), 6.93-6.86 (m, 2H), 6.24 (s, 1H), 5.71 (ddd, J = 17.2, 10.4, 7.2 Hz, 1H), 4.97-4.87 (m, 2H), 4.69 (d, J = 10.4 Hz, 1H), 4.45 (d, J = 10.4 Hz, 1H), 3.90 (dd, J = 13.2, 6.4 Hz, 1H), 3.82 (s, 3H), 3.75 (d, J = 13.2 Hz, 1H), 3.70 (d, J = 13.2 Hz, 1H), 2.95 (dd, J = 12.4, 5.6 Hz, 1H), 2.87 (dd, J = 12.4, 6.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 138.7, 135.8, 130.2, 129.4, 128.2, 128.0, 125.7, 124.6, 121.9, 116.3, 114.0, 113.5, 106.6, 64.7, 57.3, 55.4, 54.6, 36.7. IR (thin film): v_{max} (cm⁻¹) = 2958, 2911, 2833, 1607, 1509, 1458, 1244, 1175, 1030, 914, 802, 756, 696. HRMS-ESI calcd for C₂₃H₂₄ClN₂O [M+H]⁺: 379.1572, Found: 379.1562.

2n, viscous yellow oil, 64.6 mg, 89% yield, 98% ee. [Daicel Chiralpak AD-H (0.46 cm $\times 25$ cm), *n*-hexane/2-propanol = 98/2, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 5.89 min, t (minor) = 10.30 min]. [α] $p^{25} = -29.7$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.25 (m, 7H), 7.11 (d, J = 8.0 Hz, 2H), 6.22 (s, 1H), 5.73 (ddd, J = 17.2, 10.4, 7.2 Hz, 1H), 5.00-4.87 (m, 2H), 4.71 (d, J = 10.4 Hz, 1H), 4.45 (d, J = 10.4 Hz, 1H), 3.90 (dd, J = 12.8, 6.0 Hz, 1H), 3.82 (d, J = 13.2 Hz, 1H), 3.75 (d, J = 13.2 Hz, 1H), 2.95 (dd, J = 13.2, 5.6 Hz, 1H), 2.88 (dd, J = 13.2, 6.0 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.7, 137.4, 135.2, 132.8, 129.0, 128.9, 128.6, 127.8, 127.7, 124.2, 121.9, 116.3, 113.4, 106.5, 64.8, 57.9, 54.7, 36.7, 21.2. IR (thin film): v_{max} (cm⁻¹) = 3026, 2918, 2857, 2805, 1553, 1509, 1454, 1407, 1330, 1181, 1152, 1072, 1022,

914, 821, 780, 738, 697, 530. HRMS-ESI calcd for C₂₃H₂₄ClN₂ [M+H]⁺: 363.1623, Found: 363.1623.

20, viscous yellow oil, 58.2 mg, 68% yield, 99% ee. [Daicel Chiralpak AD-H (0.46 cm × 25 cm), *n*-hexane/2-propanol = 98/2, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 5.76 min, t (minor) = 12.02 min]. [α] $_{D}^{25}$ = -31.4 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.23 (m, 9H), 6.32 (s, 1H), 5.67 (ddd, J = 17.2, 10.0, 7.2 Hz, 1H), 4.99-4.86 (m, 2H), 4.70 (d, J = 10.4 Hz, 1H), 4.48 (d, J = 10.4 Hz, 1H), 3.91-3.71 (m, 3H), 2.97 (dd, J = 12.8, 5.6 Hz, 1H), 2.88 (dd, J = 12.8, 6.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 138.2, 137.3, 134.2, 131.4, 129.2, 129.0, 128.7, 128.3, 127.8, 126.5, 122.0, 116.7, 110.5, 99.0, 66.2, 57.8, 54.6, 36.8. IR (thin film): v_{max} (cm⁻¹) = 1637, 1598, 1544, 1490, 1453, 1407, 1330, 1179, 1090, 1013, 915, 831, 785, 740, 697, 549, 500. HRMS-ESI calcd for C₂₂H₂₁BrClN₂ [M+H]⁺: 427.0571, Found: 427.0570.

2p, viscous yellow oil, 46.0 mg, 68% yield, 97% ee. [Daicel Chiralcel OD-H (0.46 cm × 25 cm), *n*-hexane/2-propanol = 98/2, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (minor) = 10.09 min, t (major) = 10.54 min]. [α]_D³⁰ = -68.3 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.26 (m, 5H), 5.82 (ddd, J = 17.2, 10.8, 8.0 Hz, 1H), 5.07 (d, J = 10.4 Hz, 1H), 5.06 (d, J = 16.4 Hz, 1H), 4.57 (d, J = 10.8 Hz, 1H), 4.33-4.19 (m, 3H), 3.72 (s, 2H), 3.61 (dd, J = 13.2, 6.4 Hz, 1H), 2.96 (dd, J = 12.8, 6.0 Hz, 1H), 2.88 (dd, J = 12.8, 6.4 Hz, 1H), 2.36 (s, 3H), 2.15 (s, 3H), 1.33 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 139.2, 137.5, 132.6, 128.9, 128.6, 127.7, 123.5, 117.2, 115.4, 111.0, 63.9, 59.1, 57.7, 54.9, 36.3, 14.7, 11.2, 11.0. IR (thin film): v_{max} (cm⁻¹) = 2975, 2923, 1686, 1520,

1413, 1249, 1161, 1098, 913, 783, 740, 698. HRMS-ESI calcd for C₂₁H₂₇N₂O₂ [M+H]⁺: 339.2067, Found: 339.2070.

2q, viscous yellow oil, 57.8 mg, 88% yield, >20/1 dr. $[\alpha]_D^{31} = -65.9$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 7.2 Hz, 2H), 7.33-7.25 (m, 7H), 7.13 (t, J = 7.2 Hz, 1H), 6.42 (d, J = 2.8 Hz, 1H), 6.31 (d, J = 2.8 Hz, 1H), 5.71 (ddd, J = 17.2, 10.0, 7.6 Hz, 1H), 4.97 (d, J = 17.2 Hz, 1H), 4.92 (d, J = 10.0 Hz, 1H), 4.66 (d, J = 10.4 Hz, 1H), 4.42 (d, J = 10.4 Hz, 1H), 3.98 (dd, J = 14.0, 7.6 Hz, 1H), 3.77 (q, J = 6.4 Hz, 1H), 3.21 (dd, J = 12.8, 5.6 Hz, 1H), 2.95 (dd, J = 12.8, 8.0 Hz, 1H), 1.46 (d, J = 6.4 Hz, 1H), 1.13C NMR (101 MHz, CDCl₃) δ 144.0, 138.6, 136.8, 128.7, 128.1, 128.0, 127.54, 127.46, 125.1, 124.9, 121.7, 117.4, 116.1, 108.5, 65.5, 59.3, 52.6, 36.5, 21.1. IR (thin film): v_{max} (cm⁻¹) = 3059, 2971, 2924, 2788, 1685, 1601, 1498, 1451, 1353, 1261, 1089, 1027, 912, 795, 758, 696. HRMS-ESI calcd for C₂₃H₂₅N₂ [M+H]⁺: 329.2012, Found: 329.2010.

2r, viscous yellow oil, 52.6 mg, 80% yield, >20/1 dr. $[\alpha]_D^{31} = -0.74$ (*c* = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 7.6 Hz, 2H), 7.39-7.26 (m, 7H), 7.13 (t, *J* = 7.6 Hz, 1H), 6.57 (d, *J* = 2.8 Hz, 1H), 6.36 (d, *J* = 2.8 Hz, 1H), 5.72 (ddd, *J* = 17.2, 10.0, 7.2 Hz, 1H), 4.93-4.80 (m, 3H), 4.63 (d, *J* = 10.0 Hz, 1H), 3.87 (dd, *J* = 12.8, 6.4 Hz, 1H), 3.75 (q, *J* = 6.4 Hz, 1H), 2.86 (d, *J* = 6.0 Hz, 2H), 1.43 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.7, 139.0, 136.8, 128.7, 128.1, 127.9, 127.51, 127.47, 125.15, 125.10, 121.6, 117.5, 115.9, 108.6, 65.0, 60.3, 53.4, 37.0, 20.9. IR (thin film): v_{max} (cm⁻¹) = 3058, 2972, 2920, 2789, 1688, 1601, 1497, 1451, 1409, 1328, 1086, 946, 910, 761, 696, 552. HRMS-ESI calcd for C₂₃H₂₅N₂ [M+H]⁺: 329.2012, Found: 329.2009.

Millimole-scale synthesis of 2a

A flame-dried Schlenk tube was cooled to rt and filled with argon. To this flask were added [Ir(cod)Cl]₂ (69.5 mg, 0.10 mmol, 4 mol%), phosphoramidite ligand **L7** (118.7 mg, 0.21 mmol, 8 mol%), THF (2.5 mL) and *n*-propylamine (2.5 mL). The reaction mixture was heated at 50 °C for 30 min and then the volatile solvents were removed *in vacuo* to give a pale-yellow solid. After that, substrate **1a** (1.01 g, 2.59 mmol, 1 equiv), AgOTf (0.11 g, 0.41 mmol, 16 mol%), Cs₂CO₃ (0.84 g, 2.59 mmol, 100 mol%) and CH₃CN (125 mL) were added. The reaction mixture was stirred at 50 °C for 2 h, and the starting material was consumed completely as monitored by TLC. The crude reaction mixture was quenched with water and extracted with EtOAc (30 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, filtrated and concentrated *in vacuo*. Then the residue was purified by silica gel column chromatography (PE/EtOAc = 20/1, 10/1) to afford the desired product **2a** (0.54 g, 66% yield, 97% ee).

Transformations of 2a

Pt/C (39.0 mg, platinum on activated carbon, 5% Pt basis, 0.1 equiv) was added to a solution of **2a** (31.1 mg, 1 equiv, 98% ee) in EtOAc (2 mL). The reaction mixture was stirred under H₂ atmosphere (1 atm) at rt for 6 h. After the reaction was complete (monitored by TLC), the crude reaction mixture was filtrated with celite and washed with EtOAc. The solvent was removed under reduced pressure. Then the residue was purified by silica gel column chromatography (PE/EtOAc = 20/1, 10/1) to afford the desired product **3**.

3, viscous yellow oil, 25.8 mg, 82% yield, 99% ee. [Daicel Chiralcel OD-H (0.46 cm × 25 cm), *n*-hexane/2-propanol = 98/2, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (minor) = 8.80 min, t (major) = 9.71 min]. [α]_D³¹ = -41.6 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 7.6 Hz, 2H), 7.40-7.28 (m, 7H), 7.17 (t, J = 7.6 Hz, 1H), 6.49 (d, J = 2.8 Hz, 1H), 6.31 (d, J = 2.8 Hz, 1H), 4.69 (d, J = 9.6 Hz, 1H), 4.41 (d, J = 9.6 Hz, 1H), 3.76 (d, J = 13.2 Hz, 1H), 3.70 (d, J = 13.2 Hz, 1H), 3.35-3.26 (m, 1H), 2.94 (dd, J = 12.4, 5.2 Hz, 1H), 2.85 (dd, J = 12.4, 6.0 Hz, 1H), 1.62-1.54 (m, 2H), 0.72 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 137.7, 137.6, 128.9, 128.4, 128.2, 127.48, 127.45, 127.3, 125.0, 120.1, 116.6, 108.5, 67.0, 58.3, 53.3, 33.8, 26.0, 11.4. IR (thin film): v_{max} (cm⁻¹) = 3028, 2960, 2926, 2871, 2782, 1675, 1601, 1500, 1452, 1260, 1151, 1097, 1062, 765, 733, 696. HRMS-ESI calcd for C₂₂H₂₅N₂ [M+H]⁺: 317.2012, Found: 317.2011.

A solution of DMF (50 μ L, 0.6 mmol, 7 equiv) and POCl₃ (28 μ L, 0.3 mmol, 3.5 equiv) in DCM (2 mL) was stirred at 0 °C for 30 min before being treated with a solution of

compound **2a** (27.7 mg, 0.88 mmol, 1 equiv, 98% ee) in DCM (1 mL). The resulted mixture was stirred at rt for 5 h. Then, the crude reaction mixture was quenched with water and extracted with EtOAc (10 mL \times 3). The combined organic layers were washed with brine, dried over Na₂SO₄, filtrated and concentrated *in vacuo*. The crude material was purified by silica gel column chromatography (PE/EtOAc = 10/1, 5/1) to afford the desired product **4**.

4, pale yellow solid, 80.6-82.5 °C, 27.2 mg, 90% yield, 98% ee. [Daicel Chiralpak AD-H (0.46 cm × 25 cm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (minor) = 8.18 min, t (major) = 14.22 min]. [α]_D³² = -56.5 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 9.49 (s, 1H), 7.43-7.19 (m, 10H), 7.04 (s, 1H), 5.68 (ddd, J = 17.2, 10.0, 7.6 Hz, 1H), 5.27 (d, J = 11.6 Hz, 1H), 5.07 (d, J = 11.6 Hz, 1H), 4.91 (d, J = 10.0 Hz, 1H), 4.84 (d, J = 17.2 Hz, 1H), 3.97 (dd, J = 12.4, 6.0 Hz, 1H), 3.85 (d, J = 13.2 Hz, 1H), 3.74 (d, J = 13.2 Hz, 1H), 2.95 (dd, J = 12.4, 5.6 Hz, 1H), 2.84 (dd, J = 12.4, 6.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 137.1, 137.0, 135.6, 134.8, 129.9, 128.8, 128.5, 128.21, 128.19, 127.6, 126.4, 124.6, 123.6, 117.0, 67.4, 57.9, 53.1, 37.0. IR (thin film): v_{max} (cm⁻¹) = 3077, 2957, 2928, 2812, 1647, 1603, 1454, 1416, 1377, 1311, 1242, 1167, 1145, 1055, 1026, 923, 860, 744, 694, 601, 500. HRMS-ESI calcd for C₂₃H₂₃N₂O [M+H]⁺: 343.1805, Found: 343.1804.

Capture of the spiro-2H-pyrrole 5

A flame-dried Schlenk tube was cooled to rt and filled with argon. To this flask were added [Ir(cod)Cl]₂ (5.4 mg, 0.008 mmol, 8 mol%), phosphoramidite ligand **L7** (9.2 mg, 0.016 mmol, 16 mol%), THF (0.5 mL) and *n*-propylamine (0.5 mL). The reaction mixture was heated at 50 °C for 30 min and then the volatile solvents were removed *in vacuo* to give a pale-yellow solid. After that, substrate **1s** (0.1 mmol, 41.6 mg, 1 equiv), AgOTf (8.2 mg, 0.032 mmol, 32 mol%), Cs₂CO₃ (32.6 mg, 0.1 mmol, 100 mol%) and CH₃CN (2 mL) were added. The reaction mixture was stirred at 50 °C for 2 h, and the starting material was consumed completely as monitored by TLC. The crude reaction mixture was quenched with water and extracted with EtOAc (10 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, filtrated and concentrated *in vacuo*. Then the residue was purified by silica gel column chromatography (PE/EtOAc = 20/1, 10/1) to afford the desired product **5**.

5, pale yellow solid, 131.8-134.4 °C, 28.4 mg, 82% yield, >20/1 dr, 97% ee. [Daicel Chiralpak AD-H (0.46 cm × 25 cm), *n*-hexane/2-propanol = 90/10, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (minor) = 22.37 min, t (major) = 26.58 min]. [α]_D²⁹ = +4.05 (c = 0.05, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.78 (d, J = 8.4 Hz, 2H), 7.49-7.44 (m, 2H), 7.43-7.38 (m, 3H), 7.35 (d, J = 8.0 Hz, 2H), 6.73 (s, 1H), 5.18 (ddd, J = 17.6, 10.0, 7.6 Hz, 1H), 4.86 (dd, J = 10.0, 0.4 Hz, 1H), 4.73 (dt, J = 17.6, 1.2 Hz, 1H), 3.97 (m, 2H), 3.55 (dd, J = 11.2, 9.2 Hz, 1H), 3.37-3.28 (m, 2H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.22, 163.16, 143.8, 133.6, 131.6, 130.7, 129.9, 129.4, 129.1, 127.8, 126.8, 124.7, 118.8, 88.8, 53.6, 52.9, 51.0, 21.8. IR (thin film): v_{max} (cm⁻¹) = 3053, 2949,

2888, 1745, 1710, 1596, 1443, 1344, 1158, 1089, 1030, 991, 811, 764, 696, 661, 572, 543. HRMS-ESI calcd for C₂₂H₂₃N₂O₂S [M+H]⁺: 379.1475, Found: 379.1477.

X-Ray crystal structure of spiro-2*H*-pyrrole 5

The crystal was obtained by slow evaporation of **5** in hexane/dichloromethane (CCDC 2048880).

Table S4. Cr	ystal data a	and structure	refinement	for mo_	_d8v17087_	<u>0</u> m.
--------------	--------------	---------------	------------	---------	------------	-------------

Identification code	mo_d8v17087_0m	
Empirical formula	C22 H22 N2 O2 S	
Formula weight	378.47	
Temperature	300.88 K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P1	
Unit cell dimensions	a = 9.4904(7) Å	a= 71.155(2)°.
	b = 9.8661(7) Å	b= 70.007(2)°.
	c = 12.9696(9) Å	$g = 61.631(2)^{\circ}$
Volume	985.04(12) Å ³	
Z	2	
Density (calculated)	1.276 Mg/m3	
Absorption coefficient	0.183 mm ⁻¹	
F(000)	400	
Crystal size	$0.33\times0.3\times0.25~mm^3$	

2.504 to 25.999°.
-11<=h<=11, -12<=k<=12, -15<=l<=15
24092
7641 [R(int) = 0.0546]
99.3 %
Semi-empirical from equivalents
0.7461 and 0.6793
Full-matrix least-squares on F ²
7641 / 3 / 490
1.048
$R^1 = 0.0764, wR^2 = 0.1843$
$R^1 = 0.0860, wR^2 = 0.2003$
0.05(3)
0.21(4)
1.418 and -0.272 e.Å ⁻³

References

- Kim, H.-J.; Lindsey, J. S., De Novo Synthesis of Stable Tetrahydroporphyrinic Macrocycles: Bacteriochlorins and a Tetradehydrocorrin. *J. Org. Chem.* 2005, 70, 5475-5486.
- (2) Smith, N. D.; Huang, D.; Cosford, N. D. P. One-Step Synthesis of 3-Aryl- and 3,4-Diaryl-(1H)-Pyrroles Using Tosylmethyl Isocyanide (TOSMIC). *Org. Lett.* 2002, *4*, 3537-3539.
- (3) Trotter, B. W.; Bell, Ian M.; Zartman, C. B.; Lindsley, C.; Zhao, Z. Preparation of 2-carboxypyrroles as tyrosine kinase inhibitors. PCT Int. Appl., 2003035615, 01 May 2003.

Copies of NMR spectra and HPLC chromatograms

NMR Spectra of 1a

NMR Spectra of 1b

NMR Spectra of 1c

NMR Spectra of 1d

NMR Spectra of 1e

NMR Spectra of 1f

NMR Spectra of 1g

NMR Spectra of 1h

NMR Spectra of 1i

NMR Spectra of 1j

NMR Spectra of 1k

NMR Spectra of 11

NMR Spectra of 1m

NMR Spectra of 1n

NMR Spectra of 10

NMR Spectra of 1p

NMR Spectra of 1q

NMR Spectra of 1s

NMR Spectra and HPLC Chromatograms of 2a

Plotname: --Not assigned---

Plotname: --Not assigned---

S53

S54

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Injection: 1; Date Acquired: 11/21/2016 10:31:40 AM CST; Result Id: 4212; Processing Method: dfghdf

Peak Name:										
	Injection	RT	Area	% Area	Height					
1	1	5.156	1474057	50.01	180932					
2	1	4.770	1473697	49.99	192178					
Mean		4.963								
Std. Dev.		0.273								
% RSD		5.50								

Peak Name:									
	Injection	RT	Area	% Area	Height				
1	1	5.131	46123	0.84	6805				
2	1	4.758	5446354	99.16	699635				
Mean		4.945							
Std. Dev.		0.264							
% RSD		5.33							

. ..

NMR Spectra and HPLC Chromatograms of 2b

Peak Name:										
Injection RT Area % Area Heig										
1	1	20.073	448058	1.01	13497					
2	1	16.408	43863914	98.99	1862546					
Mean		18.241								
Std. Dev.		2.591								
% RSD		14.21								

NMR Spectra and HPLC Chromatograms of 2c

Peak Name:									
	Injection	RT	Area	% Area	Height				
1	1	17.749	21288947	50.29	837799				
2	1	15.874	21045794	49.71	872275				
Mean		16.811							
Std. Dev.		1.326							
% RSD		7.89							

Peak Name:										
	% Area	Height								
1	1	17.555	148203	0.62	7007					
2	1	16.063	23849735	99.38	1081535					
Mean		16.809								
Std. Dev.		1.055								
% RSD		6.28								

NMR Spectra and HPLC Chromatograms of 2d

Peak Name:										
	Injection	Area	% Area	Height						
1	1	15.807	59169	0.66	2671					
2	1	14.451	8849800	99.34	420618					
Mean		15.129								
Std. Dev.		0.959								
% RSD		6.34								

6.22

% RSD

NMR Spectra and HPLC Chromatograms of 2e

2:57:04 PM CST; Result Id: 3934; Processing Method: 5646

Peak Name:										
	Injection	RT	Area	% Area	Height					
1	1	11.928	3448585	49.15	205120					
2	1	10.897	3567284	50.85	210906					
Mean		11.412								
Std. Dev.		0.729								

6.39

% RSD

Peak Name:									
	Injection	RT	Area	% Area	Height				
1	1	11.762	18151183	99.97	1039334				
2	1	10.722	6075	0.03	-598				
Mean		11.242							
Std. Dev.		0.735							
% RSD		6.54							

NMR Spectra and HPLC Chromatograms of 2f

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Injection: 1; Date Acquired: 3/19/2017 10:25:16 AM CST; Result Id: 4342; Processing Method: ghfghf

	Peak Name:									
		Injection	RT	Area	% Area	Height				
	1	1	9.649	1922237	49.77	110643				
	2	1	7.821	1940269	50.23	140213				
	Mean		8.735							
	Std. Dev.		1.292							
	% RSD		14.79							

Peak Name:										
	Injection	RT	Area	% Area	Height					
1	1	9.499	2570240	98.67	147492					
2	1	7.880	34629	1.33	2047					
Mean		8.689								
Std. Dev.		1.145								
% RSD		13.18								

NMR Spectra and HPLC Chromatograms of 2g

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Injection: 1; Date Acquired: 3/10/2017 2:09:56 PM CST; Result Id: 4266; Processing Method: fgjfgh

Peak Name:										
	Injection	RT	Area	% Area	Height					
1	1	11.886	4387585	49.88	202647					
2	1	10.560	4409085	50.12	237117					
Mean		11.223								
Std. Dev.		0.938								
% RSD		8.36								

Peak Name:									
	Injection	RT	Area	% Area	Height				
1	1	11.913	7746078	99.56	366006				
2	1	10.791	33988	0.44	2351				
Mean		11.352							
Std. Dev.		0.793							
% RSD		6.99							

NMR Spectra and HPLC Chromatograms of 2h

	Peak Name:							
		Injection	RT	Area	% Area	Height		
	1	1	9.507	4632572	49.29	310758		
	2	1	7.005	4765254	50.71	407532		
	Mean		8.256					
	Std. Dev.		1.769					
	% RSD		21.43					

Peak Name:						
	Injection	RT	Area	% Area	Height	
1	1	9.470	65936	0.91	4207	
2	1	6.963	7218165	99.09	639400	
Mean		8.217				
Std. Dev.		1.773				
% RSD		21.58				

NMR Spectra and HPLC Chromatograms of 2i

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Injection: 1; Date Acquired: 3/19/2017 12:55:45 PM CST; Result Id: 4330; Processing Method: fghudfgh

	Peak Name:							
		Injection	RT	Area	% Area	Height		
	1	1	6.543	2327532	50.76	220526		
	2	1	8.616	2257817	49.24	168262		
	Mean		7.579					
	Std. Dev.		1.466					
	% RSD		19.34					

	Peak Name:							
		Injection	RT	Area	% Area	Height		
	1	1	8.297	50030	0.75	3856		
	2	1	6.359	6600730	99.25	621085		
	Mean		7.328					
	Std. Dev.		1.370					
	% RSD		18.70					

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Injection: 1; Date Acquired: 3/5/2017 3:21:27 PM CST; Result Id: 4270; Processing Method: ftyhrth

Peak Name:							
	Injection	RT	Area	% Area	Height		
1	1	11.066	3801832	50.13	232679		
2	1	7.749	3781398	49.87	320766		
Mean		9.408					
Std. Dev.		2.345					
% RSD		24.93					

Peak Name:								
	Injection	RT	Area	% Area	Height			
1	1	11.191	19177	1.32	992			
2	1	7.787	1432942	98.68	119413			
Mean		9.489						
Std. Dev.		2.407						
% RSD		25.37						

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Injection: 1; Date Acquired: 3/19/2017 1:36:30 PM CST; Result Id: 4338; Processing Method: hjfgvhjgf

Peak Name:							
	Injection	RT	Area	% Area	Height		
1	1	9.261	1993322	50.64	142079		
2	1	6.911	1943261	49.36	177440		
Mean		8.086					
Std. Dev.		1.662					
% RSD		20.55					
	1 2 Mean Std. Dev. % RSD	Injection1121Mean	Peak Injection RT 1 9.261 2 1 6.911 Mean 8.086 Std. Dev. 1.662 % RSD 20.55	Peak Name: Injection RT Area 1 9.261 1993322 2 1 6.911 1943261 Mean 8.086 Std. Dev. 1.662 % RSD 20.55	Peak Name: Injection RT Area % Area 1 1 9.261 1993322 50.64 2 1 6.911 1943261 49.36 Mean 8.086 Std. Dev. 1.662 % RSD 20.55		

Peak Name:							
	Injection	RT	Area	% Area	Height		
1	1	9.244	38020	0.93	2633		
2	1	6.901	4052780	99.07	376820		
Mean		8.073					
Std. Dev.		1.657					
% RSD		20.53					

Peak Name:							
	Injection	RT	Area	% Area	Height		
1	1	8.177	2347387	50.00	193354		
2	1	6.340	2347637	50.00	236962		
Mean		7.258					
Std. Dev.		1.299					
% RSD		17.90					

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Injection: 1; Date Acquired: 2/26/2017 11:31:16 AM CST; Result Id: 4192; Processing Method: cghdsf

Peak Name:							
	Injection	RT	Area	% Area	Height		
1	1	8.214	81004	1.24	5361		
2	1	6.364	6439688	98.76	640897		
Mean		7.289					
Std. Dev.		1.308					
% RSD		17.94					

Peak Name:

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Injection: 1; Date Acquired: 3/23/2017 8:26:33 PM CST; Result Id: 4388; Processing Method: fhgdfgds

Peak Name:							
	Injection	RT	Area	% Area	Height		
1	1	7.597	1185512	50.37	94621		
2	1	6.004	1168179	49.63	113935		
Mean		6.800					
Std. Dev.		1.126					
% RSD		16.56					

Peak Name:							
	Injection	RT	Area	% Area	Height		
1	1	7.532	10407	0.30	1330		
2	1	5.949	3487596	99.70	337583		
Mean		6.741					
Std. Dev.		1.119					
% RSD		16.61					

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Injection: 1; Date Acquired: 3/23/2017 5:27:25 PM CST; Result Id: 4379; Processing Method: fgdsfgsdf

Peak Name:							
	Injection	RT	Area	% Area	Height		
1	1	10.258	1048350	50.01	64449		
2	1	5.855	1047866	49.99	102309		
Mean		8.056					
Std. Dev.		3.113					
% RSD		38.65					

Peak Name:							
	Injection	RT	Area	% Area	Height		
1	1	10.304	61745	1.06	3730		
2	1	5.887	5748214	98.94	567160		
Mean		8.095					
Std. Dev.		3.124					
% RSD		38.58					

NMR Spectra of 2q

NMR Spectra of 2r

DFT Calculations

Computational Methods

All the calculations in this study were performed with Gaussian16 package.¹ The density functional theory (DFT) method was employed using the PBE1PBE functional.² The def2-TZVP basis sets³ for all atoms were used. Optimizations were conducted without any constraint using implicit solvation model (SMD)⁴ in acetonitrile (ϵ = 35.688). The Gibbs free energies in THF (ΔG) were discussed throughout the paper. The 3D images of the calculated structures were prepared using CYLView.⁵

Computational results

Figure S1. Optimized structures for the key transition states and intermediates in the possible ring-expansive migration pathways of spiro-2*H*-pyrrole intermediate **I-a**. Calculated at the PBE1PBE/def2-TZVP level of theory. Relative Gibbs free energies (in MeCN) are in kcal/mol. Values in brown are bond distances in Å.

Figure S2. Optimized structures for the key transition states and intermediates in the possible ring-expansive migration pathways of spiro-2*H*-pyrrole intermediate **I-s**. Calculated at the PBE1PBE/def2-TZVP level of theory. Relative Gibbs free energies (in MeCN) are in kcal/mol. Values in brown are bond distances in Å.

<u>References</u>

Gaussian 16, Revision A.03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria,
 G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.;
 Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.;

Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Iz-maylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

- (a) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. (b)
 Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396.
- (a) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297. (b) Weigend,
 F. Phys. Chem. Chem. Phys. 2006, 8, 1057.
- 4. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.
- CYLview, 1.0b; Legault, C. Y., Université de Sherbrooke, 2009 (http://www.cylview.org)

Cartesian coordinates of the calculated structures

I-a
Opt @ PBE1PBE/def2-TZVP in acetonitrile (SMD model)
SCF Done: E(RPBE1PBE) = -960.250579695 a.u.

Zero-point correction = 0.387514 Hartree/Particle Sum of electronic and thermal Free Energies = -959.914226 a.u. _____ N, 0, -1.0400854301, -0.134028421, 1.0972710808 N, 0, 0.1165307114, 1.7207184616, -0.8994165893 C, 0, -0.2134530959, -0.5128302345, -0.0301024497 H, 0, -0.801666665, -0.6331651194, -0.9418621353 H, 0, 0.3285997555, -1.4536820166, 0.1567782725 C, 0, 0.7747616908, 0.6572881746, -0.1486310243 C, 0, 0.9807862721, 1.0957157156, 1.3527174155 H, 0, 1.9672527927, 0.7637741672, 1.6765789536 C, 0, -0.1048527328, 0.3122123779, 2.1130859877 H, 0, 0.3612367849, -0.5421456608, 2.6338895249 H, 0, -0.6131721486, 0.9208323949, 2.8657422912 C, 0, 0.905714079, 2.5714772672, 1.5672492551 H, 0, -0.0687494982, 3.0316310989, 1.4232084445 C, 0, 1.9379642191, 3.3196528682, 1.9387862011 H, 0, 2.923877076, 2.8885324902, 2.0928173584 H, 0, 1.8343768294, 4.3877689656, 2.1013138348 C, 0, 0.8783631518, 2.0067737669, -1.8909229957 H, 0, 0.6043566954, 2.7710611735, -2.6138389898 C, 0, 2.0893167423, 1.2189569851, -1.9466695414 H, 0, 2.8540529167, 1.3153673148, -2.7047464478 C, 0, 2.0579639338, 0.3646343452, -0.8985041993 C, 0, 3.0723579698, -0.6381281328, -0.5670400168 C, 0, 4.1708152923, -0.8257421251, -1.4204653235 H,0,4.2594817756,-0.230432998,-2.3212368756 C, 0, 5.1479899293, -1.7625589267, -1.1406817036 H,0,5.983640881,-1.8836178647,-1.8214190324 C, 0, 5.0611957422, -2.5471482599, 0.0042962072 H, 0, 5.8274224091, -3.2823047885, 0.2241781886 C, 0, 3.98420439, -2.3789181355, 0.8599424414 H, 0, 3.9017157548, -2.9825391436, 1.757215512 C, 0, 3.0025701308, -1.4381756816, 0.5798102842 H, 0, 2.1801425477, -1.337603814, 1.2746617268 C, 0, -1.9386073095, -1.1709862113, 1.5589747185 H, 0, -1.3916703576, -2.1027749262, 1.7866318392 H, 0, -2.3782964228, -0.8248463901, 2.5010100506 C, 0, -3.0454791015, -1.473278104, 0.5836149185 C, 0, -3.8749043292, -0.4556326769, 0.1138575394 C, 0, -3.2779954779, -2.7750484533, 0.1522525925 C, 0, -4.910946775, -0.7350483256, -0.7643513042 H, 0, -3.7000779457, 0.5648346495, 0.4390106896 C, 0, -4.3177164052, -3.0602796284, -0.7253409071 H, 0, -2.6353678787, -3.5753686819, 0.5067012655 C, 0, -5.1372926056, -2.0405328365, -1.1864381919 H, 0, -5.5480902359, 0.0680916017, -1.1195780489 H, 0, -4.4832408718, -4.0816464181, -1.0515417612 H, 0, -5.9482761864, -2.2591728434, -1.8727370562 _____

TS-a

Opt @ PBE1PBE/def2-TZVP in acetonitrile (SMD model) SCF Done: E(RPBE1PBE) = -960.216307269 a.u. Zero-point correction = 0.385683 Hartree/Particle Sum of electronic and thermal Free Energies = -959.881941 a.u. Imaginary frequency = -247.8991 cm⁻¹ N, 0, -1.0091852935, -0.6822346509, -0.5989438489 N, 0, 0.6400192115, 1.8800946156, -0.6380122739 C, 0, -0.0672918243, -0.6301988014, -1.4995521613 H, 0, -0.2628645485, -0.1453683122, -2.4476363724 H, 0, 0.7611141904, -1.318093042, -1.4172001534 C, 0, 1.1969072241, 0.7368012331, -0.1026123472 C, 0, 0.5709103078, 0.095538961, 1.108689814 H,0,1.3474870668,-0.4484442878,1.6512796389 C, 0, -0.5226674905, -0.9846460083, 0.7218832979 H, 0, -0.0520104012, -1.9680178345, 0.7101753209 H, 0, -1.3475021825, -1.0021184982, 1.4323048211 C, 0, -0.0073151843, 1.1121475474, 2.048261928 H, 0, -0.7884374584, 1.7524372718, 1.6466437742 C, 0, 0.3731422349, 1.2570947054, 3.3119762657 H, 0, 1.1563381943, 0.639091927, 3.7438458572 H, 0, -0.0804168768, 2.0025338197, 3.9575188739 C, 0, 1.5704225386, 2.4164968228, -1.4276478749 H, 0, 1.3613505164, 3.3082385788, -2.0094303001 C, 0, 2.761602391, 1.6782965219, -1.4171732764 H, 0, 3.6560593036, 1.882915715, -1.9908128947 C, 0, 2.5471879966, 0.5964754845, -0.5568143347 C, 0, 3.5370865192, -0.4240454072, -0.2148088618 C, 0, 4.9059557634, -0.1187189457, -0.2711434908 H,0,5.2117803622,0.8845642691,-0.5468469017 C, 0, 5.8711474747, -1.0633927362, 0.0349567826 H, 0, 6.92041769, -0.7911257622, -0.0147768522 C, 0, 5.5031148076, -2.3494882485, 0.4137016288 H, 0, 6.2580218573, -3.0886656527, 0.6580656183 C, 0, 4.1551601293, -2.6730671873, 0.4740719669 H, 0, 3.848874788, -3.674049535, 0.759946873 C, 0, 3.1880791022, -1.7272313803, 0.1626806701 H, 0, 2.1463752032, -2.0202696985, 0.1965003105 C, 0, -2.2399753523, 0.0885379733, -0.7380697494 H, 0, -2.201696163, 0.9423640282, -0.057702558 H, 0, -2.2688825699, 0.4718084346, -1.7595137575 C, 0, -3.4621995784, -0.7433147178, -0.4530697724 C, 0, -3.714683087, -1.9057749963, -1.1787723436 C, 0, -4.3686197092, -0.3454617841, 0.5230096886 C, 0, -4.8545294536, -2.6549012423, -0.9313184892 H, 0, -3.0130720638, -2.2255149634, -1.9430725758 C, 0, -5.5143413355, -1.0922243504, 0.7694842077 H, 0, -4.1753418761, 0.5574297203, 1.0937325825 C, 0, -5.7586742397, -2.248773826, 0.0437123949 H, 0, -5.0413508034, -3.5573981533, -1.5032963146 H, 0, -6.2138731825, -0.7701850069, 1.5332539197 H, 0, -6.6507711988, -2.8348696003, 0.2359712696 2a

Opt @ PBE1PBE/def2-TZVP in acetonitrile (SMD model) SCF Done: E(RPBE1PBE) = -960.280791860 a.u.Zero-point correction = 0.388498 Hartree/Particle Sum of electronic and thermal Free Energies = -959.943562 a.u. _____ N, 0, -1.6920240912, -1.1535531961, 0.0598399222 N, 0, -0.1453870218, -0.0753269435, -1.3578441785 C, 0, -1.4844191834, -0.611049636, -1.2594731766 H, 0, -2.1946298074, 0.1934765752, -1.4535011736

H, 0, -1.6181915543, -1.3902514694, -2.0315985741 C, 0, 0.9299887445, -0.5572690014, -0.6690709506 C, 0, 0.7067650794, -1.5256883853, 0.4573221632 H, 0, 1.4394468446, -2.3340743504, 0.4077501673 C, 0, -0.680308652, -2.1622577874, 0.3265744474 H, 0, -0.6593317563, -2.9213885512, -0.4754418491 H, 0, -0.9301413362, -2.6721579152, 1.2589451163 C, 0, 0.864521167, -0.8285992348, 1.7806132241 H, 0, 0.2009179981, 0.0168624059, 1.9512644243 C, 0, 1.7389575888, -1.1805057922, 2.7149738683 H,0,2.4177589187,-2.01714353,2.5728756387 H, 0, 1.8062151827, -0.6446827906, 3.6564833628 C, 0, 0.2495627762, 0.8842609476, -2.2403005913 H, 0, -0.4637650439, 1.3602652763, -2.8959725384 C, 0, 1.6037567739, 1.043334064, -2.1106202913 H, 0, 2.2188861446, 1.7268111573, -2.6774382127 C, 0, 2.0544832354, 0.13116329, -1.11389223 C, 0, 3.4430889033, 0.01076938, -0.6579361227 C, 0, 4.2618255104, 1.1453719856, -0.607170346 H, 0, 3.8474754272, 2.1103266094, -0.8790262564 C, 0, 5.5851870234, 1.0599704167, -0.202388618 H, 0, 6.1941828365, 1.9573754598, -0.1694328954 C, 0, 6.1282314425, -0.1638917636, 0.1668800257 H, 0, 7.1624034832, -0.231914036, 0.4861954735 C, 0, 5.3316373588, -1.3002248086, 0.1175912967 H, 0, 5.7449759468, -2.2653599501, 0.3914135327 C, 0, 4.0093238408, -1.2151606455, -0.2931196385 H, 0, 3. 4165721719, -2. 1201713035, -0. 3535997099 C, 0, -3.0401305266, -1.6865413017, 0.1946268724 H, 0, -3.2632940866, -2.4221389375, -0.5960673595 H, 0, -3.0747851003, -2.2234923812, 1.1471821674 C, 0, -4.1019063853, -0.6187123652, 0.1911035077 C, 0, -4.069498541, 0.4144541518, 1.126812698 C, 0, -5.1472986855, -0.656880668, -0.7255517675 C, 0, -5.0594362832, 1.3851607167, 1.1435551302 H, 0, -3.2590226429, 0.455299992, 1.8473779816 C, 0, -6.1436690047, 0.3122993547, -0.7101133028 H, 0, -5.180677053, -1.4552798204, -1.460740861 C, 0, -6.1017095392, 1.3365012172, 0.2243897168 H, 0, -5.0216263615, 2.1816093567, 1.8792751744 H, 0, -6.9514690183, 0.2672118873, -1.4327772267 H, 0, -6.8766307243, 2.0952853207, 0.2381729591 _____

TS-a'

H, 0, 1.1585114221, 2.0443905923, 0.9575047024 C, 0, -0.9532987081, 1.8101029999, 1.4444912324 H, 0, -0.6752165674, 1.9580279432, 2.5029685675 H, 0, -1.8770864559, 2.3690900592, 1.2672460155 C, 0, 0.1459535308, 3.7457492215, 0.2086182798 H, 0, -0.8245950875, 4.197174639, 0.0216159944 C, 0, 1.2730443716, 4.4308959791, -0.0092553496 H, 0, 2.2453787704, 3.9827644341, 0.1703339662 H, 0, 1.2526956738, 5.4576322415, -0.3582955176 C, 0, 0.2459609872, 2.0607894728, -2.2629115465 H, 0, -0.2017639137, 2.8282427806, -2.8805545827 C,0,1.502392609,1.4809936418,-2.3973287862 H, 0, 2.2144465395, 1.6696259274, -3.1910381628 C, 0, 1.6527185883, 0.5414610588, -1.3566060975 C, 0, 2.8366565353, -0.2833565483, -1.1097383097 C, 0, 4.1047856213, 0.1809342913, -1.4853870674 H, 0, 4.1974009617, 1.1629139258, -1.9370492186 C, 0, 5.2423218056, -0.5823855686, -1.277210041 H, 0, 6.2101374833, -0.193777632, -1.576700501 C, 0, 5.1492514209, -1.8338001002, -0.6802364499 H, 0, 6.0392636056, -2.4304605488, -0.5132431045 C, 0, 3.9015401907, -2.3113095785, -0.3034982936 H, 0, 3.8103536416, -3.2911683897, 0.1535249641 C, 0, 2.761142132, -1.5502554479, -0.5183874121 H, 0, 1.7972190682, -1.9621644253, -0.2455772099 C, 0, -1.6705037598, -0.3445270096, 2.2843668653 H, 0, -0.8925293578, -0.5167456057, 3.0475514635 H, 0, -2.440297946, 0.2765716709, 2.7550637643 C, 0, -2.2854769203, -1.6650510992, 1.8999478933 C, 0, -3.2651928395, -1.7313353754, 0.9101260498 C, 0, -1.9113788478, -2.8375957318, 2.5478091345 C, 0, -3.855419509, -2.9413508586, 0.5784992222 H, 0, -3.5609892392, -0.8239722946, 0.3935715016 C, 0, -2.5037393373, -4.0521007593, 2.2214553876 H, 0, -1.1452155782, -2.7994494423, 3.3163963017 C, 0, -3.4773007935, -4.1074410998, 1.2349480416 H, 0, -4.6168662042, -2.9761159197, -0.1936082666 H, 0, -2.1986867428, -4.9566616582, 2.7368680056 H, 0, -3.9394893049, -5.0538216676, 0.9756559525 _____

2a '

```
Opt @ PBE1PBE/def2-TZVP in acetonitrile (SMD model)
SCF Done: E(RPBE1PBE) = -960.282315022 \text{ a.u.}
Zero-point correction = 0.388317 Hartree/Particle
Sum of electronic and thermal Free Energies = -959.944894 a.u.
    _____
N, 0, -1.0834748458, -1.1949918221, -0.9219172568
N, 0, 1.5400499934, -1.9119908134, -0.5900958553
C, 0, -0.1022934437, -0.1396836506, -1.1086801084
H, 0, -0.4019543154, 0.7433171425, -0.5386683363
H, 0, -0.0724063403, 0.1659267284, -2.1731453856
C, 0, 1.2506885367, -0.5828827457, -0.6693574852
C, 0, 0.5790038953, -2.984646593, -0.8168204445
H, 0, 1.0551580794, -3.7370964527, -1.4515884072
C, 0, -0.6173800602, -2.4075406249, -1.5646340228
H, 0, -0.3341156331, -2.2236990912, -2.6162730496
H, 0, -1.4170324688, -3.1501008635, -1.561801077
```

C, 0, 0.1884222385, -3.6237559133, 0.483435506 H, 0, -0.2699717213, -2.9652414193, 1.2177709773 C, 0, 0.3666479136, -4.910337002, 0.7489515878 H, 0, 0.8287243479, -5.5791309475, 0.0274828458 H, 0, 0.055211095, -5.3420244569, 1.6945263087 C, 0, 2.8232834947, -2.0845212942, -0.1548592753 H, 0, 3.2341562716, -3.0741575713, -0.0258416471 C, 0, 3.3733036932, -0.8473994175, 0.0415693087 H, 0, 4.3859793422, -0.6496012498, 0.3609997648 C, 0, 2.382610747, 0.1254556215, -0.2855820993 C, 0, 2.5534943713, 1.5761717218, -0.2056814643 C,0,3.4752954087,2.1262647035,0.6950203655 H, 0, 4.0451410725, 1.4667705431, 1.3407123873 C, 0, 3.6610172178, 3.4962567058, 0.7875441304 H, 0, 4.379928252, 3.8919115497, 1.4974563872 C, 0, 2.9271380192, 4.3613829308, -0.0150682228 H, 0, 3.0691682446, 5.4338830141, 0.0595899994 C, 0, 2.0125857732, 3.833965004, -0.9162884965 H, 0, 1.4394755784, 4.494867213, -1.5582496723 C, 0, 1.8313389404, 2.4616922401, -1.014702041 H, 0, 1.1354891909, 2.075256699, -1.7497512691 C, 0, -2.3910460834, -0.793501579, -1.4176922986 H, 0, -2.3382307448, -0.476697618, -2.4732760319 H, 0, -3.0361329086, -1.6768772164, -1.3796988547 C, 0, -3.0169195934, 0.3082595474, -0.6045914359 C, 0, -3.2509531938, 0.1358890546, 0.7591817526 C, 0, -3.393729112, 1.5076766892, -1.1994491649 C, 0, -3.8466891905, 1.1395087972, 1.5077745015 H, 0, -2.9616928781, -0.795220322, 1.2359132546 C, 0, -3.9943505077, 2.5153999015, -0.4536358833 H, 0, -3.2129569409, 1.6545518304, -2.2599876276 C, 0, -4.2214774182, 2.3340904303, 0.9026503231 H, 0, -4.0240216924, 0.989276281, 2.567522457 H, 0, -4.2809879055, 3.4446126703, -0.934526559 H, 0, -4.6885267196, 3.118739645, 1.4880636148 _____

I-s

Opt @ PBE1PBE/def2-TZVP in acetonitrile (SMD model) SCF Done: E(RPBE1PBE) = -1508.69062075 a.u.Zero-point correction = 0.397905 Hartree/Particle Sum of electronic and thermal Free Energies = -1508.349104 a.u. _____ _____ _____ N, 0, -0.405885013, -1.5767933674, -0.4612303436 N, 0, -2.9455672066, -0.1524093471, -0.626690095 C, 0, -0.6047982936, -0.3253591528, -1.1960475132 H, 0, -0.9921262965, -0.5158188085, -2.1962836637 H, 0, 0.3211312192, 0.2493454226, -1.2788719561 C, 0, -1.6344836451, 0.4177885214, -0.3373894539 C, 0, -1.2211316192, 0.0031632622, 1.1044963923 H, 0, -0.3164920604, 0.5582444947, 1.3598462814 C, 0, -0.8633321357, -1.4726427602, 0.9300927914 H, 0, -0.0885946254, -1.7742632204, 1.6371069617 H, 0, -1.735985776, -2.112336853, 1.0803387907 C, 0, -2.2516457987, 0.2474947222, 2.153182413 H, 0, -3.1830337079, -0.3044179428, 2.0504787353 C, 0, -2.0845418191, 1.0735860888, 3.1782855562 H, 0, -1.1644505403, 1.6365265169, 3.3105627837

H, 0, -2.8622386025, 1.2150924645, 3.921743122 C, 0, -3.7005378809, 0.82107176, -0.9839182051 H, 0, -4.7396926902, 0.6610294327, -1.2591839119 C, 0, -3.0391529939, 2.1069177288, -0.9840798721 H, 0, -3.5113094415, 3.0409917257, -1.2538938816 C, 0, -1.759403099, 1.9047000271, -0.5959402003 C, 0, -0.7278517891, 2.9330955786, -0.4438171673 C, 0, -1.0568226075, 4.2814130734, -0.6547018447 H, 0, -2.0707633727, 4.5529069879, -0.9226272452 C, 0, -0.111889136, 5.2815379785, -0.5234848106 H, 0, -0.3988424704, 6.3136339782, -0.6928648387 C, 0, 1.1977908746, 4.9693224298, -0.175363374 H, 0, 1.9391859942, 5.7538272544, -0.0718071798 C, 0, 1.5433948515, 3.6447399393, 0.0390822346 H, 0, 2.560130621, 3.3834546457, 0.3116575878 C, 0, 0.5949049839, 2.639976736, -0.0921291226 H, 0, 0.908817416, 1.6203545269, 0.0820375945 S, 0, 0.8205778256, -2.5614216534, -0.8566458762 0,0.0.6240792251,-3.780829085,-0.1235223662 0,0.0.8805870024,-2.5807023033,-2.2920990782 C, 0, 2.3071762697, -1.8166985665, -0.2709650467 C, 0, 2.9896356524, -0.9102872316, -1.0783525592 C, 0, 2.771448578, -2.1061783359, 1.0063952491 C, 0, 4.1305604518, -0.2939628627, -0.5960734283 H, 0, 2.6387826471, -0.704105439, -2.0821752777 C, 0, 3.9168346385, -1.4799981287, 1.4735607403 H,0,2.2523750407,-2.8285469257,1.6245079654 C, 0, 4.6115424889, -0.5642518835, 0.6863664492 H, 0, 4.6652427285, 0.4058148707, -1.2304593346 H, 0, 4.2829125202, -1.7136593412, 2.4678681919 C, 0, 5.8446252272, 0.1137692147, 1.1933718798 H, 0, 6.6800162745, -0.0245412971, 0.5016358595 H, 0, 5.6829443338, 1.1919561429, 1.2875799816 H, 0, 6.1376067565, -0.2727330191, 2.1704200853 _____ TS-s Opt @ PBE1PBE/def2-TZVP in acetonitrile (SMD model) SCF Done: E(RPBE1PBE) = -1508.62706049 a.u.Zero-point correction = 0.394218 Hartree/Particle Sum of electronic and thermal Free Energies = -1508.289462 a.u. Imaginary frequency = -420.4130 cm⁻¹ _____ _____ N, 0, -0.7720395415, -0.0049972875, -0.3108104368 N, 0, 1.5669729453, 1.4852211357, -1.0111993061 C, 0, 0.0438496973, -0.0728674271, -1.3776358432 H, 0, -0.2304467456, 0.5191101956, -2.2368583954 H, 0, 0.537339683, -1.0191080378, -1.5606759146 C, 0, 1.8522738258, 0.3440761399, -0.2449340603 C, 0, 1.2061400529, 0.1260852338, 1.0951337679 H, 0, 1.8109610721, -0.5967984125, 1.6474036976 C, 0, -0.2012267956, -0.5235363069, 0.9167411703 H, 0, -0.0874908857, -1.6036687186, 0.8117697171 H, 0, -0.8604982807, -0.3233591096, 1.7591426648 C, 0, 1.1460138937, 1.3915337806, 1.8999756872 H, 0, 0.5644120995, 2.2065899743, 1.4795037308 C,0,1.7572029479,1.5504258501,3.0671760985 H, 0, 2.3513519687, 0.755897024, 3.5113053293

H, 0, 1.6876685667, 2.4827980293, 3.6183085161 C, 0, 2.5029124855, 1.5328025751, -1.9631627245 H, 0, 2.4786632234, 2.2994032011, -2.7282517507 C, 0, 3.4247087321, 0.490608906, -1.8307335818 H, 0, 4.279158272, 0.3021371889, -2.4682741311 C, 0, 3.0249987432, -0.2804528337, -0.7343116611 C, 0, 3.7057062328, -1.4748730215, -0.2312759321 C, 0, 5.1034993296, -1.5598617179, -0.2730774261 H, 0, 5.6735602976, -0.7196928604, -0.655333631 C, 0, 5.7684086654, -2.6883364913, 0.1795151575 H, 0, 6.852066528, -2.7242511985, 0.1380971478 C, 0, 5.0556711334, -3.7653166355, 0.6929985774 H,0,5.5757918524,-4.6469580085,1.0511426475 C, 0, 3.6699500113, -3.700233383, 0.7386098935 H, 0, 3.0988184868, -4.5377817014, 1.1254711257 C, 0, 3.0037272644, -2.5729345424, 0.2784303806 H, 0, 1.9197711684, -2.5596049514, 0.2900609614 S, 0, -2.0698014874, 1.0751272334, -0.2750346825 0,0,-1.9684032087,1.8516367106,0.9231214625 0,0,-2.0826529324,1.7108775457,-1.5577758057 C, 0, -3.4463840941, 0.0031478375, -0.1363156392 C, 0, -4.0957766095, -0.127472052, 1.0822814719 C, 0, -3.877280652, -0.6972008137, -1.2602154407 C, 0, -5.1929548586, -0.9705727779, 1.1718541274 H, 0, -3.7547641049, 0.428459477, 1.9467382746 C, 0, -4.970376659, -1.532816894, -1.1498313356 H, 0, -3.3655000511, -0.5849979979, -2.2091111812 C, 0, -5.6457913402, -1.683958254, 0.0653698269 H, 0, -5.70834797, -1.0726101209, 2.1207791332 H, 0, -5.3129622271, -2.0788228342, -2.0225878502 C, 0, -6.8288500158, -2.5918490041, 0.1625383062 H, 0, -7.615694364, -2.277797817, -0.5293642188 H, 0, -6.5551067938, -3.6154016585, -0.1091703145 H, 0, -7.2412815616, -2.6015581687, 1.1720223895 _____ 2sOpt @ PBE1PBE/def2-TZVP in acetonitrile (SMD model) SCF Done: E(RPBE1PBE) = -1508.71416753 a.u.Zero-point correction = 0.398189 Hartree/Particle Sum of electronic and thermal Free Energies = -1508.372862 a.u. _____ ------N, 0, -1.5898352915, -1.4827177868, -0.3282304263 N, 0, -0.0588529511, -0.1868771662, -1.5328645385 C, 0, -1.353799807, -0.8250077231, -1.596781286 H, 0, -2.1143715919, -0.0671384247, -1.7716525044 H, 0, -1.3616681223, -1.5536398251, -2.4189132083 C, 0, 0.9946778248, -0.6330939124, -0.7832891482 C, 0, 0.765500005, -1.667218413, 0.2829405395 H, 0, 1.5729380782, -2.4019835325, 0.2732750022 C, 0, -0.530018987, -2.4331496601, -0.0014504541 H, 0, -0.3780700274, -3.1245044866, -0.84022502 H, 0, -0.8191985157, -3.0039905986, 0.8784495548 C, 0, 0.7282394264, -1.0175394722, 1.6388289798 H, 0, -0.0385540967, -0.2577931704, 1.778381746 C, 0, 1.556655832, -1.3129074277, 2.6321689598 H, 0, 2.3346427902, -2.0631663736, 2.5204838882 H, 0, 1.4849637099, -0.8142302172, 3.5934143578

C, 0, 0.3320971991, 0.8463086854, -2.3316628167 H, 0, -0.3606121964, 1.3061055735, -3.0199782221 C, 0, 1.6559069963, 1.0900665233, -2.0821443341 H, 0, 2.2616971148, 1.8465492937, -2.5590232015 C, 0, 2.0930749147, 0.1572233159, -1.0989791517 C, 0, 3.4453153026, 0.1094148716, -0.5323670632 C, 0, 4.1554007986, 1.2965185638, -0.3200341967 H, 0, 3.6826994502, 2.2454557291, -0.5500152579 C,0,5.4441086186,1.2803590166,0.1915909243 H, 0, 5.9695098717, 2.2163668329, 0.34977192 C, 0, 6.0580951831, 0.0753056462, 0.5075493066 H, 0, 7.0651012198, 0.0613929942, 0.909843463 C, 0, 5.3690738377, -1.1119580029, 0.2979763152 H, 0, 5.840405569, -2.0616276744, 0.5287621383 C, 0, 4.0817945963, -1.0955191545, -0.2187924315 H, 0, 3.5737874977, -2.034768719, -0.4034361081 S, 0, -3.1404633, -1.8481787517, 0.0680458643 0,0,-3.1055616781,-2.3327644202,1.4175569663 0,0,-3.9220073829,-0.6909372238,-0.2633751767 C, 0, -3.6490090039, -3.171333345, -0.9749254574 C, 0, -4.221134906, -2.8929416561, -2.2118697323 C, 0, -3.4374692373, -4.4853132474, -0.5739831315 C, 0, -4.5820704876, -3.9392954837, -3.042850433 H, 0, -4.3929718415, -1.8676940535, -2.5165857611 C, 0, -3.805285577, -5.5198602652, -1.4183373042 H, 0, -2.9999263672, -4.6973688147, 0.3939046266 C, 0, -4.3827833133, -5.2666065473, -2.6617969781 H, 0, -5.0308396885, -3.722276266, -4.0066485553 H, 0, -3.6431164126, -6.5455991348, -1.104181993 C, 0, -4.80651105, -6.3888710235, -3.5544353052 H, 0, -5.8681650073, -6.6137574569, -3.4064299585 H, 0, -4.6740858176, -6.1297213919, -4.6067775841 H, 0, -4.2447020992, -7.2998482233, -3.3414188231 _____ TS-s' Opt @ PBE1PBE/def2-TZVP in acetonitrile (SMD model) SCF Done: E(RPBE1PBE) = -1508.62687423 a.u.Zero-point correction = 0.394578 Hartree/Particle Sum of electronic and thermal Free Energies = -1508.288569 a.u. Imaginary frequency = -481.4856 cm⁻¹ _____ N, 0, 0.4823092758, -1.1655870128, -0.5978557206 N, 0, -2.181272829, -1.4871744401, -0.1526054034 C, 0, -0.3241753699, 0.0219535957, -0.844374202 H, 0, -0.3926003137, 0.1645019792, -1.9256301008 H,0,0.1306343093,0.9229992792,-0.419527004 C, 0, -1.6866223099, -0.1827828524, -0.2745687578 C, 0, -0.8664081754, -1.2417558253, 1.4028008912 H, 0, -0.7229779827, -0.2180310215, 1.7394955385 C, 0, 0.3053614663, -1.8275369459, 0.6942922644 H, 0, 1.1791453855, -1.6722012292, 1.3427367341 H, 0, 0.1711807365, -2.8987335605, 0.545418628 C, 0, -1.5953178511, -2.0448723206, 2.3575952541 H, 0, -1.6548021864, -3.1134188983, 2.1701936987 C, 0, -2.1992094689, -1.4976040512, 3.4142393106 H, 0, -2.1501478146, -0.4287856963, 3.5984001547 H, 0, -2.7502295462, -2.1028348482, 4.1258208714

C, 0, -3.4816775667, -1.3617615983, 0.1613902101 H, 0, -4.0931913105, -2.2310868836, 0.3615948216 C, 0, -3.8537764682, -0.0241140479, 0.1983512528 H, 0, -4.8480432812, 0.3615491504, 0.3860333553 C, 0, -2.7079122112, 0.7514915631, -0.0663990563 C, 0, -2.6567774332, 2.2163029938, -0.1254076391 C, 0, -3.7159695931, 2.9324271127, -0.6944401724 H, 0, -4.5556985615, 2.3907419399, -1.1168985368 C, 0, -3.7023149456, 4.318205353, -0.7386816018 H, 0, -4.5348534125, 4.8482092244, -1.1893222892 C, 0, -2.6268378677, 5.0259961316, -0.2175204671 H, 0, -2.6134804729, 6.1097086027, -0.255283949 C, 0, -1.5709419863, 4.3305645146, 0.3566613769 H, 0, -0.7304383144, 4.8708811853, 0.779437379 C, 0, -1.5873133003, 2.9442840617, 0.4062331969 H, 0, -0.767854196, 2.4228440971, 0.8882848527 S, 0, 1.9326360901, -1.3013145989, -1.3294647288 0,0,2.3815744057,-2.6427918563,-1.0844698566 0,0,1.7634012588,-0.8296143794,-2.6747883312 C, 0, 3.0359428359, -0.2026414727, -0.5063658362 C, 0, 3.1029043227, 1.1311844056, -0.9012689455 C, 0, 3.8046717591, -0.6611767835, 0.5559577436 C, 0, 3.9403527147, 1.9986056862, -0.2239011407 H, 0, 2.5160676183, 1.4819943056, -1.7415662491 C, 0, 4.6391022218, 0.2224915054, 1.2236502622 H, 0, 3.7643919016, -1.7035115764, 0.8477227953 C, 0, 4.7196641393, 1.5616326811, 0.8493922275 H, 0, 3.9968731529, 3.0362063155, -0.5370793505 H, 0, 5.2443824683, -0.1378191443, 2.0488340788 C, 0, 5.622579963, 2.5132958659, 1.5675833012 H, 0, 5.053483736, 3.3472946174, 1.9883197172 H, 0, 6.1573358241, 2.0181278634, 2.3791303788 H, 0, 6.3589651832, 2.9431490129, 0.8823860436 _____ 2s' Opt @ PBE1PBE/def2-TZVP in acetonitrile (SMD model) SCF Done: E(RPBE1PBE) = -1508.71766697 a.u.Zero-point correction = 0.398317 Hartree/Particle Sum of electronic and thermal Free Energies = -1508.373908 a.u. _____ N, 0, -0.8713466672, -1.3165652415, -1.1574796437 N, 0, 1.7052254305, -1.9497409962, -0.5893900171 C, 0, 0.0631777393, -0.195606708, -1.2109979362 H, 0, -0.3327917393, 0.6328170707, -0.6239868596 H,0,0.1768317262,0.1483620217,-2.2507233942 C, 0, 1.3807214119, -0.626515548, -0.6591945326 C, 0, 0.804529597, -3.0526776483, -0.9049973784 H, 0, 1.3615122409, -3.7889557062, -1.4901531958 C, 0, -0.3242437306, -2.5161809222, -1.7773564994 H, 0, 0.0596490739, -2.2864100088, -2.7796311236 H, 0, -1.098699605, -3.2754610084, -1.8602798072 C, 0, 0.3002535667, -3.7012479342, 0.3502670886 H, 0, -0.2562529488, -3.0581996504, 1.0286051176 C, 0, 0.4964618019, -4.979786267, 0.639006578 H, 0, 1.0553228011, -5.6320694149, -0.0267217489 H, 0, 0.1037041571, -5.4202633798, 1.5494591183 C, 0, 2.9492126207, -2.0913565364, -0.0437166235

H, 0, 3. 379340858, -3. 0707704576, 0. 0991112568 C, 0, 3. 4360428503, -0. 8436277552, 0. 2326676472 H, 0, 4.4083958404, -0.6217509057, 0.6470689644 C,0,2.4472519682,0.1066306846,-0.1581507903 C, 0, 2.5625853331, 1.5597466377, -0.0245130556 C, 0, 3.3605926266, 2.1069057576, 0.9885871523 H, 0, 3.8725811436, 1.443899975, 1.677645178 C, 0, 3.494985642, 3.4780458385, 1.1358040283 H, 0, 4.117623892, 3.8722403482, 1.9321583112 C, 0, 2.8316545708, 4.345678211, 0.2766130017 H, 0, 2.9338118607, 5.4189579177, 0.3933273706 C, 0, 2.0400172974, 3.8209059397, -0.7354413543 H, 0, 1.5247564774, 4.4845867539, -1.4219214725 C, 0, 1.9106723505, 2.4476642867, -0.8879125834 H, 0, 1.3147170683, 2.0659708572, -1.7083117839 S, 0, -2.4642936536, -0.9830318284, -1.3694404677 0,0,-3.1673683061,-2.2161684792,-1.1562534394 0,0,-2.7494546026,0.1579083956,-0.5465469818 C, 0, -2.6828663617, -0.5113754665, -3.0513331177 C, 0, -2.5699293175, 0.8251295556, -3.4128374332 C, 0, -2.9299561188, -1.4854015413, -4.0147842086 C, 0, -2.7059252631, 1.1827010834, -4.7453785345 H, 0, -2.3927566976, 1.5817341835, -2.6581530483 C, 0, -3.0626141957, -1.1106430634, -5.3394364486 H, 0, -3.0334854367, -2.5245919702, -3.7269973736 C, 0, -2.9507725069, 0.2259796798, -5.7277995097 H, 0, -2.624964808, 2.2273934311, -5.0265046719 H, 0, -3.2635491709, -1.8694774647, -6.0888138375 C, 0, -3.0941181991, 0.6123491679, -7.1653287503 H, 0, -2.3089438436, 0.1499576507, -7.7709462035 H, 0, -4.0512897885, 0.2695152003, -7.5680583322 H, 0, -3.0329723249, 1.6936615348, -7.2946013944