Supporting Information for:

Valence tautomerism in a [2×2] Co₄ grid complex containing a ditopic arylazo ligand

Nico M. Bonanno, ^a Zackery Watts, ^a Cole Mauws, ^b Brian O. Patrick, ^d Christopher R. Wiebe, ^{b,c} Yuki Shibano, ^e Kenji Sugisaki, ^{e*} Hideto Matsuoka, ^e Daisuke Shiomi, ^e Kazunobu Sato, ^{e*} Takeji Takui, ^{e*} and Martin T. Lemaire ^{a*}.

^aDepartment of Chemistry, Brock University, St. Catharines, ON, L2S 3A1.

^bDepartment of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2.

^cDepartment of Chemistry, University of Winnipeg, Winnipeg, MB, R3B 2E9.

^dDepartment of Chemistry, University of British of Columbia, Vancouver, BC, V6T 1Z1.

^eDepartment of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka 558 8585, Japan.

Table of Contents

Experimental Section	S2-S6
Scheme S1. Preparation of H_2L^1 .	S7
Figure S1. ¹ H NMR spectrum of H_2L^1 (CDCl ₃).	S8
Figure S2. ¹³ C NMR spectrum of H_2L^1 (CDCl ₃).	S9
Figure S3. FT-IR spectrum of H_2L^1 (KBr).	S10
Figure S4. UV-visible spectrum of H_2L^1 (CH ₂ Cl ₂).	S11
Figure S5. ESI mass spectrum (positive ion mode) of H_2L^1 .	S12
Figure S6. Differential pulse voltammograms of H_2L^1 in CH_2Cl_2 .	S13
Figure S7. Cyclic voltammograms of H_2L^1 in CH_2Cl_2 .	S13
Figure S8. Calculated structures (BP86/def2-SVP) of $L^{3-}(S = 1/2)$.	S14
Table S1. Atomic coordinates of the radical anion of L^{3-} ($S = \frac{1}{2}$).	S15
Figure S9. Spin density distribution in L^{3-} ($S = \frac{1}{2}$) (B3LYP/def2-TZVPP).	S18
Table S2. Selected calculated electronic transitions of L^{3-} .	S19
Table S3. Crystal data and structure refinement for 1.	S20
Table S4. Bond lengths (Å) and angles (°) for 1.	S21
Figure S10. Molecular structure of the second crystallographically	
independent molecule of 1.	S24
Figure S11. Thermogravimetric analysis of 1.	S25
Figure S12. UV-vis-NIR spectra of 1 (CH ₂ Cl ₂) obtained over a 24 h period.	S26
Figure S13. (Top) Positive ion mode ESI mass spectrum of 1 (fresh solution). (Bottom)	
Experimental and calculated isotopic distribution of the M ⁺ cluster of peaks from the ESI.	S27
Figure S14. Positive ion mode ESI mass spectrum of 1 (in solution for 24 hours).	S28
Figure S15. (Top) Variable temperature UV-visible-NIR spectra of 1 in THF (298 – 333 K).	
(Bottom) Variable temperature UV-visible-NIR spectra of 1 in Toluene (298 – 373 K).	S29
Figure S16. Cyclic voltammogram of 1 in CH ₂ Cl ₂ (containing 0.5 M Bu ₄ NPF ₆).	
Scan rate 100 mV/s . Potential window = $+1000 \text{ mV}$ to -2000 mV .	S30
Table S5. Electrochemical data for complex 1.	S30
Table S6. Crystallographic parameters for $[Co(L^2)_2]CIO_4$.	S31
Table S7. Bond distances (Å) and angles (°) for $[Co(L_2)^2]CIO_4$.	S32
Figure S17. Molecular structure of [Co(L ₂) ²]ClO ₄ .	S34
Figure S18. ¹ H NMR spectrum of $[Co(L_2)^2]ClO_4$ (CDCl ₃).	S35
Figure S19. ¹³ C NMR spectrum of $[Co(L_2)^2]CIO_4$ (CDCl ₃).	S36
Figure S20. ESI mass spectrum (positive ion mode) of $[Co(L^2)_2]CIO_4$.	S37
Figure S21. Spin density (red = alpha spin density and blue = beta spin density) in	
the $S = 2$ state of 1 (BP86/def2-SVP).	S38
Table S8. Energies (<i>E</i>) and spin expectation values ($\langle S^2 \rangle$) for the <i>S</i> = 2 and broken	
symmetry $M_S = 0$ states ($\alpha \alpha \beta \beta$ and $\alpha \beta \alpha \beta$ configurations) of complex 1	
(BP86/def2-SVP).	S38
Figure S22. Temperature dependence of X-band EPR spectra of complex 1.	
(a) Normalized spectra between 4 K and 290 K,	
(b) Spectra between 100 K and 300 K.	S39
Figure S23: Variable temperature infrared spectra of 1 (KBr pellet)	S40
Figure S24: Variable temperature infrared spectra of 1 (KBr pellet)	S40
References in the Supporting Information	S41

Experimental section

General considerations

All reagents were commercially available and used as received. Anhydrous solvents (CH₂Cl₂, THF, toluene) were obtained by distillation over CaH₂. ¹H/¹³C-NMR spectra were recorded using either a Bruker Avance III HD 400 Digital NMR spectrometer with a 9.4 T Ascend magnet or a Bruker Avance AV 600 Digital NMR spectrometer with a 14.1 Tesla Ultrashield Plus magnet using deuterated solvents. FT-IR spectra were recorded with a Shimadzu IRAffinity spectrometer as KBr discs and UV/Vis/NIR spectra were obtained with a Shimadzu 3600 UV-Vis-NIR spectrophotometer in CH₂Cl₂ solution using quartz cuvettes. Variable temperature infrared spectra were obtained with a Specac variable temperature cell holder with temperature controller. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) experiments were performed with a Bioanalytical Systems Inc. (BASI) Epsilon electrochemical workstation. Complex 1 and H_2L were dissolved in anhydrous solvent (CH₂Cl₂) and sparged with N₂ gas for 10 min. Solution concentrations were approximately 10^{-3} M in 1 or H₂L¹ containing approximately 0.5 M ⁿBu₄NPF₆. A three-electrode set-up was used including a glassy carbon working electrode, Ag/AgCl reference electrode, and a platinum wire auxiliary electrode. The scan rate for all CV experiments was 100 mV/s. For DPV experiments pulse amplitude was 50 mV, pulse width was 50 ms and step potential was 4 mV. ESI mass spectra were obtained with a Bruker HCT Plus Proteineer LC-MS with electrospray and a syringe pump was used for direct sample infusion. A QD-MPMS SQUID magnetometer was used to record the variable temperature magnetic susceptibility properties of 1 at an external magnetic field of 10 kOe over a temperature range of 2-400K. The sample was weighed into a polycarbonate cap and diamagnetic contributions were calculated using Pascal's constants. Microanalyses were performed by Atlantic Microlab, Inc. (Norcross, GA, USA). Xband EPR spectra were recorded using a Bruker Elexsys E600 spectrometer. Thermal gravimetric analysis was performed using a Perkin-Elmer STA 8000 instrument over a temperature range of 30 to 1600°C.

Theoretical calculations. All theoretical calculations were performed with the programs ORCA 4.1.1¹. Geometry optimization and frequency calculations on $L^{3-\cdot}$ trianion radical were run using the BP86²⁻⁴ functional and def2-SVP^{5,6} basis set on all atoms. Broken-symmetry DFT⁷⁻⁹ (complex 1) and TD-DFT ($L^{3-\cdot}$) calculations were run using the BP86^{2,4} functional with the def2-SVP^{5,6} (complex 1) or def2-TZVPP⁶ ($L^{3-\cdot}$) basis set on all atoms. In the TD-DFT calculations the polarized continuum model (PCM) was used to model the solvent environment (THF) and 50 transitions were calculated. Tight SCF convergence criteria were used for all calculations. The program QMForge¹⁰ was used to analyse the TD-DFT results.

Synthesis

4,6-dihydrazine-1,3-pyrimidine. Methanol (75 mL) was added to hydrazine monohydrate (90 mL), and the mixture was cooled to 10 °C. 4,6-dichloropyrimidine (25.0 g, 168 mmol) was slowly added (internal temperature 20 °C or lower) and the resulting mixture was heated to reflux and left to react for approximately 12 h. The reaction mixture was cooled to slightly above room temperature and filtered using a Buchner funnel. The white solid was rinsed with isopropanol (4 x 50 mL), and then dried. Yield, 18.6 g (79%). Spectroscopic data matched reported values. ¹H-NMR (400 MHz, d₆-DMSO) 7.82 (s, 1H), 7.55 (s, 2H), 5.96 (s, 1H), 4.12 (s, 4H).

2-{6-[2-Hydroxy-3,5-bis(tert-butyl)phenylazo]-4-pyrimidinylazo}-4,6-bis(tert-

butyl)phenol (H₂L¹). 3,5-di-*tert*-butyl-*o*-benzoquinone (5.00 g, 22.7 mmol) and 4,6-dihydrazine-1,3-pyrimidine (1.59 g, 11.3 mmol) were added to a RBF (500 mL) containing glacial acetic acid (200 mL). The solution was refluxed for approximately 24 h. This resulted in a dark red color. The flask was cooled and its contents were added to a beaker (1 L) containing approximately 300 mL of ice water. The solution was stirred rapidly until the ice had completely melted, and then the material was slowly precipitated out of the solution by adding small quantities of NaHCO₃. The precipitated solid was filtered and rinsed with water (100 mL \times 4) and dried. Crude yield, 4.92 g The crude product was recrystallized by dissolving 0.200 g into 4 mL of (~80%). DCM/nitromethane (1:1 mixture) in a 2 dram vial. The vial was allowed to stand with the cap off for 6 d. The crystals were isolated by vacuum filtration and washed sparingly with nitromethane. Yield, 0.043 g (22%). ¹H-NMR (400.25 MHz, CDCl₃): δ 15.25 (s, 1H), 8.97 (d, 1H, J = 0.8 Hz), 7.94 (d, 1H, J = 0.8 Hz), 7.43 (d, 2H, J = 2.5 Hz), 7.30 (d, 2H, J = 2.5 Hz), 1.44 (s, 18 H), 1.35 (s, 18 H). ¹³C-NMR (100.65)MHz, CDCl₃): δ 170.3, 164.7, 159.4, 143.6, 143.2, 137.9, 134.0, 125.8, 95.2, 35.4, 34.6, 30.3, 29.4. Anal. Calc'd for % (found) C₃₂H₄₄N₆O₂·0.25CH₂Cl₂: C, 68.44 (68.50); H, 7.92 (8.27); N, 14.85% (14.67). MS (ESI+): m/z 545.3 [M+H⁺]⁺, 567.4 [M+Na⁺]⁺, 1111.6 [M₂ + Na⁺]⁺. FT-IR (KBr, cm⁻) ¹): 3429 (br, w), 2997 (w), 2959 (m), 2906 (w), 2868 (w), 1577 (s), 1552 (m), 1477 (br, s), 1406 (w), 1388 (w), 1364 (w), 1339 (w), 1306 (w), 1265 (m), 1200 (m), 1121 (m), 1094 (m), 1024 (w), 974 (m), 901 (m), 874 (w), 816 (w), 637 (w), 540 (w). UV-Vis (CH₂Cl₂, λ_{max}): 363, 490 nm.

[Co₄L¹₄]·1.65CH₂Cl₂·2CH₃CN (1). H₂L¹ (740 mg, 1.35 mmol) was added to MeOH (80 mL) in an Erlenmeyer flask, followed by the addition of solid Co(ClO₄)₂·6H₂O (490 mg, 1.35 mmol) resulting in a very dark green color. The solution was warmed to 50° C and allowed to stir for 4 d. After this time, the brown precipitate formed in the solution was filtered and washed with MeOH (25 mL × 3). Yields of this powder ranged from approximately 20-70%. Single crystals were grown by diffusion: dissolving approximately 20 mg of the complex powder in 6 mL of DCM in a 2 dram vial, with slow diffusion of acetonitrile (approximately 15 mL placed in the outer vessel). After 10 d the single crystals are filtered and washed with acetonitrile and dried under vacuum with mild heating (45°C) overnight. Individual experiments typically produced about 16 mg of single crystals (80%). Anal. Calc'd for % (found) $C_{128}H_{168}N_{24}O_8Co_4 \cdot 2CH_3CN \cdot 1.65CH_2Cl_2$: C, 61.06 (61.01); H, 6.80 (7.06); N, 13.85% (13.88). ESI-MS (+): *m/z* 2406.2 (M⁺, 100%), 1203.1 (M²⁺). FT-IR (KBr, cm⁻¹): 3099 (w), 2955 (s), 1607 (m), 1539 (w), 1481 (m), 1383 (m), 1256 (m), 1229 (m), 1200 (m), 1155 (m), 1124 (m), 1092 (m), 1041 (m), 1024 (m), 1011 (m), 991 (m), 933 (m), 903 (m), 733 (w), 638 (w), 542 (w), 502 (w). UV-Vis (CH₂Cl₂, λ_{max}): 560, 744, 1499 nm.

HL². 2-hydrazinopyridine (0.99 g, 9.08 mmol) and 3,5-di-*tert*-butyl-o-benzoquinone (2.00 g, 9.08 mmol) were added to a Schlenk flask (250 mL) charged with glacial acetic acid (100 mL). The solution was sparged rapidly with N₂ for 5 min and then equipped with a condenser and refluxed for 4 d under an N₂ atmosphere. The flask was cooled and its contents were added to a beaker (500 mL) containing approximately 150 mL of ice water. The solution was stirred rapidly until the ice had completely melted, and then the material was slowly precipitated by adding small quantities of NaHCO₃. The precipitated solid was filtered and rinsed with water (75 mL × 4) and dried. While drying it is common for the product to form a dark red oily semi-solid, although powders have also been isolated. Yields ranged from 75-90%. Spectroscopic characterization was identical to reported data.

 $[Co(L^2)_2]CIO_4$ ·EtOH·2.2H₂O. HL² (200 mg, 0.638 mmol) was weighed into a tared 2 dram vial and dissolved with hexanes (3 mL). In another vial Co(ClO₄)₂·6H₂O (117 mg, 0.319 mmol) was fully dissolved in ethanol (3 mL). The metal ion solution was rapidly added by pipette to the ligand solution, which was then capped and shaken vigorously by hand for approximately 10 s resulting in a dark green solution. The vial was allowed to stand for several days resulting in large needle crystals of the desired product, which were suitable for X-ray diffraction. The crystals were filtered, and the remaining solution was left to stand for an additional 5 d. The solution was again filtered, and the crystals were washed sparingly with hexanes. The crystals were dried overnight using a vacuum pump. Yield, 146 mg (68%). ¹H-NMR (600.2 MHz, CD₂Cl₂): δ 8.109-8.05 (m, 4H), 7.94 (s, 2H), 7.52-7.43 (m, 4H), 7.29 (s, 2H), 1.44 (s, 18H), 1.089 (s, 18H). ¹³C-NMR (150.9 MHz, CDCl₃): δ 182.2, 169.5, 148.8, 144.8, 144.2, 143.9, 143.5, 136.6, 126.9, 122.9, 111.6, 35.15, 34. 8, 30.6, 28.7. Anal. Calc'd for % (found) C₃₈H₄₈N₆O₆ClCo ·EtOH·2.5H₂O: C, 55.55 (55.13); H, 6.81 (6.38); N, 9.72% (10.16). MS (ESI+): *m/z* 679.3 [(M-ClO₄)⁺, 100%]. FT-IR (KBr, cm⁻¹): 3099 (w), 2959 (m), 2907 (w), 2868 (w), 1603 (w), 1549 (w), 1481 (s), 1447 (m), 1377 (s), 1364 (s), 1292 (w), 1247 (m), 1223 (s), 1196 (s), 1172 (s), 1153 (s), 1098 (s br), 1040 (w), 912 (m), 830 (w), 775 (w), 717 (w), 623 (m), 542 (w). UV-Vis (CH₂Cl₂, λ_{max}): 402, 640, 698 nm.

Scheme S1. Preparation of H_2L^1 . Reagents and conditions: (i) hydrazine hydrate, MeOH, reflux (ii) 3,5-di-*tert*-butyl-1,2-quinone, glacial acetic acid, reflux.

Figure S1. ¹H NMR spectrum of H_2L^1 (CDCl₃).

Figure S2. ¹³C NMR spectrum of H_2L^1 (CDCl₃).

Figure S3. FT-IR spectrum of H_2L^1 (KBr).

Figure S4. UV-visible spectrum of H_2L^1 (CH₂Cl₂).

Figure S7. Cyclic voltammograms of H_2L^1 in CH_2Cl_2 .

Figure S8. (Top) Calculated structures (BP86/def2-SVP) of $L^{3-}(S = 1/2)$ with selected calculated bond distances (Å). (Bottom) Valence bond sketch of L^{3-} in the trianion-radical oxidation state from the crystal structure of **1** (from one of two independent molecules of the complex) with bond distances.

Table S1. Atomic coordinates of the radical anion of L^{3-1} ($S = \frac{1}{2}$)

Η	-0.612520	0.278300	-0.168670
С	-1.604940	0.702580	0.038710
С	-4.008300	1.725840	0.519490
С	-1.992060	1.043270	1.355750
С	-2.520030	0.909270	-1.032250
Ν	-3.768970	1.443840	-0.764950
Ν	-3.238670	1.575910	1.605640
Η	-5.018500	2.158860	0.720580
Ν	-1.054160	0.811330	2.362280
Ν	-2.292430	0.616380	-2.364170
Ν	-1.426770	1.117990	3.573120
Ν	-1.108070	0.133820	-2.661660
С	-0.465250	0.879950	4.554990
С	1.454380	0.415310	6.576120
С	0.819700	0.358020	4.251670
С	-0.840350	1.198220	5.950170
С	0.209680	0.932360	6.956020
С	1.794280	0.115780	5.227220
Н	0.979830	0.161090	3.180390
Η	2.213690	0.227680	7.354920
0	-1.977100	1.665210	6.275930
С	-0.113170	1.241890	8.431420
С	-1.339040	0.401050	8.869390
Η	-2.164770	0.618930	8.161590
Η	-1.651850	0.651810	9.911280
Η	-1.098600	-0.683160	8.827670
С	-0.463610	2.745160	8.568480
Η	-1.287880	2.961640	7.858310
Η	0.416340	3.372360	8.308820
Η	-0.778770	2.995160	9.609830
С	1.054140	0.928030	9.385220
Н	1.960290	1.521390	9.137330
Η	1.336450	-0.146070	9.352570
Η	0.762910	1.172000	10.432090
С	3.189130	-0.451740	4.903190
С	3.396380	-1.794070	5.648530
Н	3.288910	-1.664150	6.745380
Н	4.406040	-2.225030	5.448770
Н	2.632780	-2.531350	5.325700
С	3.367770	-0.706660	3.395640
Η	3.242360	0.225690	2.810230
Η	2.618960	-1.429500	3.015910
Η	4.381970	-1.114490	3.187290
С	4.283190	0.546800	5.357300

Η	4.206420	0.759020	6.443820
Η	4.165320	1.511460	4.821950
Η	5.307890	0.155570	5.152850
С	-0.940030	-0.168910	-4.008470
С	-0.569760	-0.809700	-6.747080
С	0.383580	-0.688550	-4.429050
С	-1.976220	0.000030	-4.962010
С	-1.827590	-0.307450	-6.325050
С	0.506760	-1.002830	-5.863420
Η	-2.915590	0.395910	-4.537670
Η	-0.430050	-1.060110	-7.809340
0	1.345540	-0.851230	-3.613910
С	1.859110	-1.548880	-6.363150
С	1.873400	-1.843340	-7.874730
Η	1.114050	-2.604950	-8.154430
Η	2.873000	-2.232900	-8.173720
Η	1.670300	-0.930740	-8.475290
С	2.187240	-2.863240	-5.610190
Н	1.431630	-3.643060	-5.847250
Η	2.155430	-2.644360	-4.523240
Η	3.194820	-3.252980	-5.891770
С	2.969200	-0.510620	-6.060470
Η	2.935180	-0.291080	-4.973730
Н	2.785880	0.427360	-6.627850
Н	3.977840	-0.899180	-6.340240
С	-3.013080	-0.100750	-7.288090
С	-2.667620	-0.473750	-8.742720
Η	-2.369720	-1.539750	-8.827180
Η	-1.825750	0.138910	-9.127340
Η	-3.546560	-0.308030	-9.405960
С	-4.207000	-0.978580	-6.837920
Η	-3.925450	-2.052150	-6.865340
Η	-5.100410	-0.830750	-7.490730
Η	-4.492430	-0.740060	-5.794390
С	-3.450300	1.384540	-7.265180
Η	-3.707810	1.697800	-6.234310
Η	-4.335340	1.565570	-7.920890
Η	-2.619230	2.035090	-7.609760
С	1.06824	-0.21249	0.42161
С	2.90439	1.34051	2.01283
С	2.46838	-0.09909	0.05363
С	0.70544	0.34546	1.67007
С	1.60107	1.13836	2.43123
С	3.38170	0.70447	0.83191
Н	1.24234	1.58384	3.37527
Н	3.58889	1.96548	2.60677

С	0.15595	-0.93295	-0.51516
Η	0.09787	-2.37786	-2.12910
С	0.78868	-1.76352	-1.53356
Η	2.54765	-2.30919	-2.63049
С	2.12134	-1.70671	-1.81311
С	2.99924	-0.82227	-1.07696
С	4.74657	0.82953	0.43097
Η	5.41649	1.46259	1.03374
С	5.22345	0.15036	-0.68348
Η	6.27851	0.24631	-0.98289
С	4.35550	-0.68430	-1.42075
Η	4.73959	-1.25034	-2.28412
0	-0.54553	0.09006	2.19711
Ν	-1.16029	-0.88180	-0.69061
Ν	-1.97515	-0.07315	-0.03265
С	-3.34062	-0.01280	-0.33330
С	-6.02800	0.16285	-0.91843
Ν	-3.80586	-0.69411	-1.39307
С	-4.16865	0.79357	0.49468
С	-5.52872	0.87586	0.18853
С	-5.11530	-0.60151	-1.66582
Η	-3.74461	1.33829	1.35333
Η	-6.19748	1.49173	0.81003
Η	-5.46508	-1.17550	-2.54405
Η	-7.09194	0.19936	-1.19492
Η	-0.59538	0.49812	3.08277
Η	-1.66868	0.37983	0.84597

Figure S9. Spin density distribution in L^{3-} ($S = \frac{1}{2}$) (B3LYP/def2-TZVPP).

Energy	λ (nm)	Oscillator	Main contributions (%)
(cm ⁻¹)	``	strength	
6473	1545	0.3237	$\alpha H \rightarrow \alpha L (91.6)$
11515	868	0.0583	βH→βL (59.9)
13315	751	0.1541	βH→βL (30.2)
			$\beta H \rightarrow \beta L+1 (22.7)$
			αH-1→αL (20.2)
18047	554	0.1509	$\beta H \rightarrow \beta L+1 (47.3)$
			αH-2→αL (24.4)
19095	523.7	0.3014	αH→αL+1 (86.3)
19724	507	0.1144	αH-3→αL (34.3)
			βH-1→βL (15.1)
22963	435.5	0.2497	βH-5→βL (24.5)
			βH-5→βL+1 (18.1)
25485	392.4	0.1858	αH→αL+5 (30.2)
			βH-5→βL (23.2)
27198	367.7	0.1483	βH-5→βL+1 (32.8)
			αH-8→αL (23.9)
28526	350.6	0.2269	αH→αL+7 (52.9)

Table S2. Selected calculated electronic transitions of $L^{3-\cdot}$ (B3LYP/def2-TZVPP/PCM(THF).

Formula	$C_{128}H_{168}Co_4N_{24}O_8$
$D_{calc.}$ / g cm ⁻³	0.987
μ/mm^{-1}	0.453
Formula Weight	2406.57
Colour	black
Shape	blade
Size/mm ³	0.35×0.10×0.02
T/K	100(2)
, Crystal System	tetragonal
Space Group	<i>I</i> -4
a/Å	39.4401(13)
b/Å	39.4401(13)
c/Å	10.4150(5)
αl°	90
B/°	90
vl°	90
V/Å ³	16200.8(13)
Z	4
_ Z'	0.5
– Wavelength/Å	0.71073
Radiation type	ΜοΚα
$\Theta_{\min}/^{\circ}$	2 271
$\Theta_{max}/^{\circ}$	22,779
Measured Refl	40015
Independent	10379
Refl	10079
Reflections with	7982
I > 2(I)	
Rint	0.1084
Parameters	834
Restraints	1551
Largest Peak	0.363
Deepest Hole	-0.403
GooF	1.030
wR_2 (all data)	0.1693
wR ₂	0.1588
R_1 (all data)	0.0926
R_1	0.0681

Table S3. Crystal data and structure refinement for 1 (CCDC 1922365).

ittoini		Dengen/11	Atom	Atom	Length/A
Co1	011	1.901(6)	Co2	O3 ²	1.887(6)
Co1	02	1.898(6)	Co2	04	1.886(6)
Co1	$N1^1$	1.856(8)	Co2	N7 ²	1.866(7)
Co1	$N3^{1}$	1.944(9)	Co2	N9 ²	1.917(8)
Co1	N4	1.965(9)	Co2	N10	1.956(8)
Co1	N6	1.859(8)	Co2	N12	1.861(7)
01	C1	1.306(11)	03	C33	1.288(10)
02	C24	1.271(12)	04	C56	1.356(10)
N1	N2	1.305(11)	N7	N8	1.296(10)
N1	C6	1.311(13)	N7	C38	1.350(11)
N2	C16	1 406(13)	N8	C48	1.387(12)
N3	C15	1 353(12)	N9	C47	1.371(11)
N3	C16	1.000(12) 1 $1.15(12)$	N9	C48	1432(11)
NJ.	C15	1 313(12)	N10	C47	1.132(11) 1.332(11)
N4	C19	1.313(12) 1.371(12)	N10	C50	1.332(11) 1.390(11)
NE		1.371(13) 1.220(11)	N10 N11	N12	1.350(11) 1270(10)
N5 NF		1.239(11)	NII N11		1.270(10) 1.202(12)
N5	C18	1.384(13)	INII N12		1.392(12)
N6	C19	1.425(13)	N12 622	C51	1.394(12)
CI	C2	1.459(14)	C33	C34	1.43/(13)
C1	C6	1.430(13)	C33	C38	1.421(12)
C2	C3	1.371(15)	C34	C35	1.378(14)
C2	C7	1.61(4)	C34	C39	1.541(14)
C2	C7A	1.46(5)	C35	C36	1.423(15)
C3	C4	1.396(15)	C36	C37	1.387(13)
C4	C5	1.361(14)	C36	C43	1.531(15)
C4	C11	1.551(15)	C37	C38	1.381(12)
C5	C6	1.453(14)	C39	C40	1.543(16)
C7	C8	1.510(19)	C39	C41	1.500(16)
C7	С9	1.500(19)	C39	C42	1.543(16)
C7	C10	1.503(19)	C43	C44	1.494(18)
C11	C12	1.551(18)	C43	C45	1.537(18)
C11	C13	1.521(15)	C43	C46	1.576(16)
C11	C14	1.541(18)	C48	C49	1.341(12)
C16	C17	1.337(13)	C49	C50	1.353(12)
C17	C18	1.430(14)	C51	C52	1.401(12)
C19	C20	1.411(14)	C51	C56	1.361(12)
C19	C24	1.427(13)	C52	C53	1.359(13)
C20	C21	1.376(14)	C53	C54	1.423(13)
C21	C22	1 406(15)	C53	C57	1.542(12)
C21	C25	1 542(14)	C54	C55	1.355(13)
C21	C25A	1 543(16)	C55	C56	1437(13)
C22	C23	1 367(16)	C55	C61	1545(14)
C22 C22	C24	1.507(10) 1.450(14)	C57	C58	1.513(11) 1528(15)
C23	C24	1.439(14) 1 E29(1E)	C57	C59	1.520(13) 1.548(14)
C25	C27	1.520(15)	C57	C60	1.540(14)
C25	C27	1.530(14)	C57	C60	1.521(13) 1.521(14)
C25	L28 C26	1.526(13)		C62	1.555(14)
L25		1.532(14)			1.541(15)
C26A	C25A	1.531(15)	L61	L04	1.511(15)
C29	C30	1.581(15)	C25A	C28A	1.531(15)
C29	C31	1.502(16)	C25A	C27A	1.534(15)
C29	C32	1.522(15)	C7A	C10A	1.58(3)

Table S4. Bond lengths (Å) and angles (°) for 1.

Atom	Atom	Len	gth/Å	 11 /2 1 /2	··· 2/2 -· 2	1 1
C7A	C8A	1.58	8(3)	1/2+y,1/2	x,3/2-2; ² +	y,1-x,1
C7A	C9A	1.57	7(3)			
Atom	Atom	Atom	Angle/°	Atom	Atom	Ato
011	Co1	N31	165.1(3)	C4	C11	C12
011	Co1	N4	89.4(3)	C13	C11	C4
02	Co1	011	90.7(3)	C13	C11	C12
02	Co1	N31	89.7(3)	C13	C11	C14
02	Co1	N4	164.6(3)	C14	C11	C4
$N1^1$	Co1	011	84.0(3)	C14	C11	C12
$N1^1$	Co1	02	90.1(3)	N4	C15	N3
$N1^1$	Co1	N31	81.1(4)	N2	C16	N3
$N1^1$	Co1	N4	105.2(4)	C17	C16	N2
$N1^1$	Co1	N6	173.8(4)	C17	C16	N3
$N3^{1}$	Co1	N4	94.2(3)	C16	C17	C18
N6	Co1	011	91.4(3)	N4	C18	N5
N6	Co1	02	85.7(3)	N4	C18	C17
N6	Co1	$N3^{1}$	103.4(4)	N5	C18	C17
N6	Co1	N4	78.9(4)	N6	C19	C24
C1	01	Co1 ²	111.6(6)	C20	C19	N6
C24	02	Co1	113.3(6)	C20	C19	C24
N2	N1	$Co1^2$	122.9(7)	C21	C20	C19
N2	N1	C6	121.3(8)	C20	C21	C22
C6	N1	Co1 ²	115.2(7)	C20	C21	C25
N1	N2	C16	108.3(8)	C20	C21	C25
C15	N3	$Co1^2$	136.1(7)	C22	C21	C25
C15	N3	C16	114.0(9)	C22	C21	C25
C16	N3	Co1 ²	109.9(7)	C23	C22	C23
C15	N4	Co1	134.7(8)	C22	C23	C24
C15	N4	C18	116.8(9)	C22	C23	C29
C18	N4	Co1	108.5(7)	C24	C23	C29
N6	N5	C18	107.1(9)	02	C24	C19
N5	N6	Co1	1252(7)	02	C24	C23
N5	N6	C19	122.9(8)	C19	C24	C23
C19	N6	Col	111.3(6)	C27	C25	C21
01	C1	C2	125 0(9)	C27	C25	C26
01	C1	<u>C6</u>	116.5(9)	C28	C25	C21
C6	C1	C2	118.5(9)	C28	C25	C27
C1	C2	C7	120.0(11)	C28	C25	C2.6
C3	C2	C1	115 2(9)	C26	C25	C21
C3	C2	C7	124 6(11)	C23	C29	C.3(
C3	C2	C7A	1280(14)	C31	C29	C23
C7A	C2	C1	1152(13)	C31	C29	C30
C2	C3	C4	1270(10)	C31	C29	C32
C3	C4	C11	1189(9)	C32	C29	C23
C5	C4 C4	C3	110.7(7)	C32	C29	C30
C5	C4 C4	C11	117.2(10) 1218(10)	033	Co2	N93
C4	65 65	С11 С6	118 2(10)	033	Co2	N1
N1	C6	C0 C1	112 4(R)	04	Co2	033
N1	C6	C5	126 1 (0)	04	Co2	NO
пт С1	C6	C5	120.1(7)	04 04	Co2	N1
CQ CQ	C7	C2	101 5(17)	N73	Co2	02
0 0	C7	C2	101.5(1/J 109(2)	N 73	Co2	03
67 60	U/ C7	C2	100(2)	N 73	Co2	04 MO
69 60	U/	ԱԾ C10	111.0(14)	IN / 3 N 73	Co2	1N9. M1
69 610	U/ C7	C10	111.8(14) 112(2)	IN / 3 NO3	Co2	IN LU M 17
CT0	L/	L2	112(2)	IN 9 ³	C02	IN T (

Angle/°

107.2(10) 111.4(10) 108.8(10)105.8(12) 111.0(9) 112.7(11) 127.6(10) 117.6(9) 118.8(9) 123.6(10) 116.5(10) 119.8(9) 121.4(10) 118.7(9) 112.1(8) 122.4(9) 125.5(10) 117.1(10) 118.9(9) 122.0(10) 114.2(15) 118.7(10) 124.7(15) 125.7(9) 117.5(9) 126.2(9) 116.2(9) 117.2(9) 127.6(9) 115.2(9) 105.2(13) 109.5(9) 113.0(13) 109.9(9) 110.1(9) 109.0(16) 111.0(9) 110.4(9) 108.3(9) 114.0(11) 108.6(9) 104.3(10) 164.4(3) 89.6(3) 90.1(3) 89.9(3) 165.6(3) 83.8(3) 88.8(3) 80.6(3) 105.5(3) 94.3(3)

92.0(3)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	An
2	Co2	04	85.9(3)	C49	C48	N8	121
2	Co2	N7 ³	173.3(3)	C49	C48	N9	122
2	Co2	N93	103 5(3)	C48	C49	C50	119
2	Co2	N10	79 7(3)	N10	C50	N11	117
2	03	Co24	1128(6)	C49	C50	N11 N10	121
6	03		112.0(0) 100 E(E)	C49 C40	C50	N1U N11	121.0
	04	C02	109.5(5)	L49	C50	N11 (52)	121.1
8	N7	C024	122.4(6)	N1Z	C51	C52	123.1
8	N7	C38	122.4(7)	C56	C51	N12	112.5
38	N7	Co2 ⁴	114.6(6)	C56	C51	C52	124.3
7	N8	C48	109.5(8)	C53	C52	C51	117.2
7	N9	Co2 ⁴	135.5(6)	C52	C53	C54	118.7
7	N9	C48	113.2(8)	C52	C53	C57	121.7
8	N9	$Co2^4$	111.3(6)	C54	C53	C57	119.5
·7	N10	Co2	132.7(6)	C55	C54	C53	125.1
7	N10	C50	117.0(8)	C54	C55	C56	115.3
0	N10	Co2	110.2(6)	C54	C55	C61	123.9
12	N11	C50	109.1(7)	C56	C55	C61	120.9
11	N12	Co2	123.3(6)	04	C56	C51	118.9
11	N12	C51	123.0(7)	04	C56	C55	1217
11 (1	N12	Co2	1124(6)	C51	C56	C55	119.3
2	C22	C34	112.4(0) 124.5(0)	C52	C57	C59	100 5
) >	C33	C34	124.3(0)	C22	C57	C59	112.5
))	C33	C38	117.0(8)	C28	C57	C53	112./(
8	C33	C34	118.0(8)	C58	C57	C59	107.7(
33	C34	039	119.8(8)	C60	C57	C53	110.8(
35	C34	C33	116.7(8)	C60	C57	C58	110.8(
35	C34	C39	123.4(9)	C60	C57	C59	105.0(
34	C35	C36	125.1(9)	C62	C61	C55	112.3(
35	C36	C43	118.8(9)	C62	C61	C63	109.3(
37	C36	C35	117.5(9)	C63	C61	C55	109.7(
37	C36	C43	123.6(9)	C64	C61	C55	108.8(
38	C37	C36	119.3(9)	C64	C61	C62	105.6
7	C38	C33	111.1(7)	C64	C61	C63	111.2
7	C38	C37	125.4(8)	C26A	C25A	C21	106(4
37	C38	C33	123.4(8)	C26A	C25A	C28A	109.60
34	C39	C40	109.0(9)	C26A	C25A	C27A	109.30
34	C39	C42	110 0(9)	C28A	C25A	C21	112(3)
41	C39	C34	1086(9)	C28A	C25A	C27A	109 40
11 11	C30	C40	100.0(7)	C20A	C25A	C21	111(2)
±⊥ 11	C20	C40	109.7(9) 109 E(11)	C27A	CZ3A	C21	100(2)
r⊥ 12	C20	C42	111 0(11)	C2	C7A	CIUA	112(2)
+4 20	C42	C40	111.0(11)		C7A		114(2)
	C43	C45	100.9(10)		C7A	C9A	114(3)
56	C43	C46	109.8(9)	CIUA	C7A	C8A	106.6(
14	C43	C36	111.8(11)	C9A	C7A	C10A	106.9(
14	C43	C45	109.9(12)	C9A	C7A	C8A	107.1(
44	C43	C46	110.1(11)				
45	C43	C46	108.3(12)	¹ 1/2+y,1	/2-x,3/2-z;	² 1/2-y,-1/2	+x,3/2-z;
10	C47	N9	126.2(9)	y,+x,1-z			

One t-butyl group was disordered and was modelled in two orientations using mild restraints on bond lengths to maintain reasonable geometries. The ratio of the occupancies of the two disordered fragments is approximately 0.63:0.37.

Figure S10. Molecular structure of the second crystallographically independent molecule of **1** (displacement ellipsoids at 30% probability) in the asymmetric unit. H atoms and solvent omitted for clarity.

Figure S11. Thermogravimetric analysis of 1.

Figure S12. UV-vis-NIR spectra of 1 (CH₂Cl₂) obtained over a 24 h period.

Figure S13. (Top) Positive ion mode ESI mass spectrum of **1** (fresh solution). (Bottom) Experimental and calculated isotopic distribution of the M^+ cluster of peaks from the ESI.

Figure S14. Positive ion mode ESI mass spectrum of 1 (in solution for 24 hours).

Figure S15. (Top) Variable temperature UV-visible-NIR spectra of **1** in THF (298 – 333 K). (Bottom) Variable temperature UV-visible-NIR spectra of **1** in Toluene (298 – 373 K).

Figure S16. Cyclic voltammogram of **1** in CH_2Cl_2 (containing 0.5 M Bu₄NPF₆). Scan rate 100 mV/s. Potential window = +1000 mV to -2000 mV.

 Table S5. Electrochemical data for complex 1.

E _{pa} & E _{pc} from Figure S16	E _{1/2} (V) vs Ag/AgCl
1 & 10	+0.39 V (qr)
2 & 9	+0.01 V (qr)
3 & 8	-0.58 V (qr)
4 & 7	-0.93 V (irr)
5 & 6	-1.3 V (irr)

*qr = quasi-reversible; irr = irreversible

Formula	C40H54ClCoN6O7
D_{calc} / g cm ⁻³	1.180
μ/mm^{-1}	0.476
Formula Weight	824.40
Colour	black
Shape	rod
Size/mm ³	0.26×0.13×0.10
T/K	100(2)
, Crvstal Svstem	monoclinic
Space Group	C2/c
a/Å	25.049(2)
b/Å	10.4508(9)
c/Å	36.994(3)
$\alpha /^{\circ}$	90
΄ β/°	106.546(5)
$\gamma / ^{\circ}$	90
V/Å ³	9283.3(15)
Ż	8
Ζ'	1
Wavelength/Å	0.71073
Radiation type	ΜοΚα
$\Theta_{min}/^{\circ}$	2.125
$\Theta_{max}/^{\circ}$	26.413
Measured Refl.	9241
Independent Refl.	9241
Reflections with I >	8391
2(I)	
R _{int}	0.082
Parameters	602
Restraints	689
Largest Peak	0.978
Deepest Hole	-0.461
GooF	1.112
<i>wR</i> ₂ (all data)	0.1812
wR ₂	0.1786
<i>R</i> 1 (all data)	0.0835
R_1	0.0772

 Table S6.
 Crystallographic parameters for 2 (CCDC 1922364).

Atom	Atom	Length/Å
Co1	01	1.904(3)
Co1	02	1.902(3)
Co1	N1	1.859(4)
Co1	N3	1.919(4)
Co1	N4	1.862(4)
Co1	N6	1.919(4)
01	C1	1.319(5)
02	C21	1.327(5)
N1	N2	1.290(5)
N1	C6	1.376(6)
N2	C15	1.407(6)
N3	C15	1.370(6)
N3	C19	1.332(6)
N4	N5	1.284(5)
N4	C20	1.373(6)
N5	C34	1.398(6)
N6	C34	1.384(6)
N6	C38	1.332(6)
C1	C2	1.432(6)
C1	C6	1.425(6)
C2	C3	1.388(6)
C2	C7	1.534(6)
C3	C4	1.439(7)
C4	C5	1.362(7)
C4	C11	1.549(6)
C5	C6	1.425(6)
C7	C8	1.538(7)
C7	C9	1.547(7)
C7	C10	1.538(7)
C11	C12	1.531(7)
C11	C13	1.537(7)
C11	C14	1.534(7)
C15	C16	1.393(7)
C16	C17	1.395(7)
C17	C18	1.391(8)

Atom	Atom	Length/Å
C18	C19	1.397(7)
C20	C21	1.424(7)
C20	C25	1.423(6)
C21	C22	1.429(6)
C22	C23	1.386(6)
C22	C26	1.535(6)
C23	C24	1.428(7)
C24	C25	1.367(7)
C24	C30	1.550(6)
C26	C27	1.549(7)
C26	C28	1.538(7)
C26	C29	1.530(7)
C30	C31	1.538(9)
C30	C32	1.520(8)
C30	C33	1.529(7)
C34	C35	1.381(7)
C35	C36	1.392(8)
C36	C37	1.389(8)
C37	C38	1.395(7)
Cl1	03	1.4423
Cl1	04	1.4436
Cl1	05	1.4411
Cl1	06	1.4435
Cl1A	03A	1.443(14)
Cl1A	04A	1.447(14)
Cl1A	05A	1.439(15)
Cl1A	06A	1.445(14)
Cl1B	03B	1.418(14)
Cl1B	04B	1.420(14)
Cl1B	05B	1.426(15)
Cl1B	06B	1.422(14)
07	C40	1.432(16)
C39	C40	1.500(15)
C39	C40A	1.498(11)
C40A	07A	1.431(12)

Atom	Atom	Atom	Angle/°
01	Co1	N3	166.77(16)
01	Co1	N6	88.63(15)
02	Co1	01	91.66(13)
02	Co1	N3	88.60(15)
02	Co1	N6	166.91(16)
N1	Co1	01	85.58(16)
N1	Co1	02	94.52(16)
N1	Co1	N3	81.22(17)
N1	Co1	N4	178.88(19)
N1	Co1	N6	98.55(17)
N4	Co1	01	93.37(15)
N4	Co1	02	85.88(15)
N4	Co1	N3	99.84(17)

Atom	Atom	Atom	Angle/°
N4	Co1	N6	81.03(17)
N6	Co1	N3	94.09(16)
C1	01	Co1	110.4(3)
C21	02	Co1	110.1(3)
N2	N1	Co1	121.5(3)
N2	N1	C6	124.3(4)
C6	N1	Co1	114.2(3)
N1	N2	C15	108.7(4)
C15	N3	Co1	110.8(3)
C19	N3	Co1	130.4(3)
C19	N3	C15	118.7(4)
N5	N4	Co1	121.5(3)
N5	N4	C20	124.5(4)

Table S7. Bond distances (Å) and angles (°) for 2.

Atom	Atom	Atom	Angle/°
C20	N4	Co1	114.0(3)
4	N5	C34	109.4(4)
34	N6	Co1	110.8(3)
138	N6	Col	129.8(3)
38	N6	C34	119.3(4)
01	C1	C2	123.1(4)
01	C1	C6	1190(4)
01 C6	C1	C2	117.0(1) 117.9(4)
C1	C2	C7	1200(4)
C3	C2	C1	1164(4)
C3	C2	C7	1235(4)
C2	C3	C4	125.5(1) 125.4(4)
C2 C3	C4	C11	123.1(1) 121.2(4)
C5	C4	C3	121.2(1) 1181(4)
C5		C11	120.7(4)
CJ C4	C5	C6	118 4(4)
04 N1	C5 C6	C0 C1	110.4(4)
N1			110.0(4) 125 E(4)
	C0 C6	C3	123.3(4) 122.7(4)
C2	C8		123.7(4) 110E(4)
C2	C7		110.5(4) 100.7(4)
C2	C7	C9	109.7(4)
	C7		111.2(4)
	C7	C9	109.6(4)
C10	C7		107.7(4)
C10	C7	(9	108.1(4)
C12	C11	C4	112.6(4)
C12	C11	C13	109.1(5)
C12	C11	C14	108.4(5)
C13	C11	C4	109.2(4)
C14	C11	C4	108.8(4)
C14	C11	C13	108.7(4)
N3	C15	N2	117.8(4)
N3	C15	C16	122.1(5)
C16	C15	N2	120.1(4)
C15	C16	C17	118.2(5)
C18	C17	C16	119.7(5)
C17	C18	C19	118.6(5)
N3	C19	C18	122.6(4)
N4	C20	C21	111.0(4)
N4	C20	C25	125.4(4)
C25	C20	C21	123.5(4)
02	C21	C20	119.0(4)
02	C21	C22	122.3(4)
C20	C21	C22	118.6(4)
C21	C22	C26	121.0(4)
C23	C22	C21	115.3(4)

Figure S17. Molecular structure of 2 (displacement ellipsoids at 30% probability). H atoms and solvent omitted for clarity.

Figure S18. ¹H NMR spectrum of 2 (CDCl₃).

Figure S20. ESI mass spectrum (positive ion mode) of 2.

State	E (hartrees)	$\Delta E (\text{cm}^{-1})$	<s<sup>2></s<sup>
<i>S</i> = 2	-12419.194375	59.4	6.0157
$M_S = 0$ (BS, $\alpha\alpha\beta\beta$)	-12419.194646	0	1.9181
$M_S = 0$ (BS, $\alpha\beta\alpha\beta$)	-12419.194257	85.4	1.9671

Table S8. Energies (*E*) and spin expectation values ($\langle S^2 \rangle$) for the *S* = 2 and broken symmetry $M_S = 0$ states ($\alpha\alpha\beta\beta$ and $\alpha\beta\alpha\beta$ configurations) of complex 1 (BP86/def2-SVP).

Exchange interactions, $J_{\text{neighboring}}$ and $J_{\text{face-to-face}}$, of complex 1 was analytically considered by the following spin-Hamiltonian ($S_A = S_B = S_C = S_D = 1/2$):

$$H = -2J_{\text{neighboring}} (S_A S_B + S_B S_C + S_C S_D + S_D S_A) - 2J_{\text{face-to-face}} (S_A S_C + S_B S_D)$$

The exchange interactions are given by

 $J_{\text{neighboring}} = [E(BS, \alpha\beta\alpha\beta) - E(S=2)]/4$ and $J_{\text{face-to-face}} = [E(BS, \alpha\alpha\beta\beta) - E(BS, \alpha\beta\alpha\beta) + 2J_{\text{neighboring}}]/2.$

Figure S21. Spin density (red = alpha spin density and blue = beta spin density) in the S = 2 state of 1 (BP86/def2-SVP).

Figure S22. Temperature dependence of X-band EPR spectra of complex **1.** (a) Normalized spectra between 4 K and 290 K, (b) Spectra between 100 K and 300 K.

Figure S23. Variable temperature infrared spectra of 1 (KBr pellet).

Figure S24. Variable temperature infrared spectra of 1 (KBr pellet).

References in the Supporting Information

(1) Neese, F. The ORCA Program System. *Wiley Interdiscip. Rev. Comput. Mol. Sci.* **2012**, *2*, 73–78.

- (2) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
- (3) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200-1211.
- (4) Perdew, J. P. Phys. Rev. B 1986, 33, 8822-8824.
- (5) Schäfer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571–2577.
- (6) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- (7) Ginsberg, A. P. J. Am. Chem. Soc. 1980, 102, 111-117.
- (8) Noodleman, L. J. Chem. Phys. 1981, 74, 5737-5743.
- (9) Noodleman, L.; Davidson, E. R. Chem. Phys. 1986, 109, 131-143.
- (10) Tenderholt, A. L. QMForge, Version 2.4, <u>Http://Qmforge.Sourceforge.Net</u>.