Supporting Information

Ultrafast Heating to Boost the Electrocatalytic Activity of Iridium towards Oxygen Evolution Reaction

Bohan Deng,^a Yuanzheng Long ,^a Cheng Yang,^a Peng Du,^{ab} Ruyue Wang,^{ab} Kai Huang^b

and Hui Wu*^a

^a State Key Laboratory of New Ceramics and Fine Processing, School of Materials

Science and Engineering, Tsinghua University, Beijing, 100084, China. E-mail:

huiwu@tsinghua.edu.cn

^b State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing

100876, China.

METHODS

Materials Preparation. Carbon paper was purchased from Toray Industries, Inc. The carbon paper was pre-cleaned with ethanol and deionized water for several times and then was treated in a horizontal tube furnace with continuous flow of argon gas at 1173 K for 1 h. After pretreatment, the carbon paper was cut into pieces of 1.0 cm \times 4.0 cm and connected to copper foils using copper tapes in order to gain good electrical contact. Iridium trichloride (IrCl₃, Sigma-Aldrich) was dissolved in ethanol and 40 µL IrCl₃ solution was gradually dropped onto the carbon paper. After the carbon paper was uniformly covered with the Ir precursor solution, a high current pulse (5A, 5s) generated from a DC power (ITECH, IT6502D) was applied to the carbon paper in air. An infrared imaging device (CEM, DT-980H) was used to measure the temperature evolution during the ultrafast heating process. The emissivity ε was set as 0.95 and the reflected temperature compensation (RTC) was set as 298 K. After the heating process, the prepared sample (named as Ir/CP-UH) was cut from copper electrodes and rinsed with ethanol and deionized water for subsequent electrochemical measurements and other characterization.

To compare the effect of ultrafast heating, a contrast sample (named as Ir/CP-NH) was prepared by heating up the carbon paper covered with the Ir precursor solution to 800 K in a muffle furnace with a heating rate of 10 K min⁻¹. Except the heating process, other preparation processes of the Ir/CP-NH were the same as Ir/CP-UH.

Catalyst characterizations. X-ray diffraction analysis was performed by a D/max 2500V diffractometer in reflection mode at 40 kV and 150 mA with a scanning speed of 8 ° min⁻¹. Scanning electron microscopy (SEM) images were taken by a Zeiss microscope (MERLIN VP Compact) operated at 10 kV. HAADF STEM images and HR-TEM images were taken by 2100F transmission electron microscope operated at 200 kV. The Ir loading of the catalysts was confirmed by using an inductively coupled plasma-optical emission spectrometer (Vista-MPX) after sample dissolution. X-ray photoelectron spectra were collected using a Thermo Fisher spectrometer (Escalab 250Xi) equipped with an Al K α radiation source (1487.6 eV) and hemispherical analyzer with a pass energy of 30.0 eV and energy step size of 0.05 eV. All the XPS spectra were corrected by C 1s peak of 284.8 eV to prevent the charge effect. The raw curves were fitted using XPSPEAK41 software with Shirley backgrounds and Gaussian-Lorentzian functions.

Electrochemical Measurements. All electrochemical tests were carried out on a three-electrode cell connected to an electrochemical workstation (CHI 760E, Shanghai Chenhua Instruments). The alkaline electrolyte and acidic electrolyte were 1.0 M KOH and 0.5 M H₂SO₄ saturated by N₂ respectively. The sample was used as the working electrode (1 cm \times 0.5 cm), a graphite rod was used as the counter electrode, and a Hg/HgO electrode and a Ag/AgCl electrode were used as the reference electrode for alkaline electrolyte and acidic electrolyte, respectively. To make a commercial Ir/C catalyst sample, 1mg 20% Ir/C (Premetek) was dispersed into a mixture solution (800 µL of ethanol, 150 µL of ultrapure water and 50 µL of 5wt% Nafion solution). The mixture was treated by ultrasonic for 10 min to make a uniform catalyst ink. Subsequently, 50 µL of catalyst ink was uniformly loaded onto carbon paper (1 cm \times 0.5 cm), maintaining the loading of Ir element at 20 µg cm⁻². Before electrochemical tests, Cyclic voltammetry (CV) was conducted between 1.0 to 1.5 V vs. RHE with a scan rates of 100 mV/s for 40 cycles to activate the sample. The OER activity was characterized by linear sweep voltammetry (LSV) over the potential range of 1.2 to 1.7

V vs. RHE at a scan rate of 5 mV/s. To eliminate the effect of solution resistance, the LSV curves were iR corrected by 90% of the solution resistance. The electrochemically active surface area (ECSA) was fitted by cyclic voltammetry curves in the potential of 0–0.1 V vs Hg/HgO at 5–50 mV s⁻¹. Cyclic voltammetry (CV) was conducted between 1.2 V to 1.7 V vs. RHE with a scan rate of 100 mV/s. For stability test, chronopotentiometry was applied at the current of 10 mA/cm² for 10h. All assays were run at room temperature.

Figure S1. SEM images of original carbon paper at different magnifications.

Figure S2. SEM images of Ir/CP-UH at different magnifications.

Figure S3. SEM images of Ir/CP-NH at different magnifications. Agglomerate Ir particles with sizes at around 100~300 nm (in yellow circles) can be found in Ir/CP-NH.

Figure S4. (A-C) CV curves measured in the non-faradaic potential (0-0.1 V vs Hg/HgO) at various scan rates (5, 10, 20, 30, 40 and 50 mV s⁻¹) for (A) Ir/CP-UH, (B) Ir/CP-NH and (C) commercial Ir/C. (D) The half currents difference at 0.05 V vs Hg/HgO plotted as a function of scan rate.

Figure S5. The LSV curves of Ir/CP-UH before and after accelerated CV measurement at 100 mV/s for 1000 cycles.

Figure S6. (A-C) STEM images of Ir/CP-UH after stability test (chronopotentiometry at 10 mA cm⁻²) at different magnifications. (D) Size distribution of Ir in Ir/CP-UH after stability test.

Figure S7. Ir 4*f* XPS spectra of Ir/CP-UH after stability test (chronopotentiometry at 10 mA cm⁻²). The Ir was oxidized to IrO₂ after OER under high potential, which is the active site for OER.

Catalyst	Electrolyte	Ir loading (μg cm ⁻²)	Overpotential (mV) at j=10 mA cm ⁻²	Tafel slope (mV dec-1)	Mass activity (A g _{1r} -1) at 1.5V vs RHE	Refs.
Ir/CP-UH	1.0M KOH	12.3	260	41.6	1405	This work
Ir/CP-UH	0.5M H ₂ SO ₄	12.3	264	68.3	981	This work
Co@Ir/NC-10%	1.0M KOH	15.1	280	73.8		[1]
Ir _{18 wt %} -NiO	1.0M KOH	263	215	38		[2]
Ir _l @Co/NC	1.0M KOH	3.6	260	163		[3]
Ir/Ni(OH) ₂	1.0M KOH	70	224	41		[4]
IrO _x -Ir	0.5M H ₂ SO ₄	133.3	~290	43.7		[5]
Ir/GF	0.5M H ₂ SO ₄	48.5	290	46		[6]
Ir/TiO ₂ -MoO _x	$0.05M\ H_2SO_4$	37.5	290	/		[7]
IrNiO _x	$0.05M~\mathrm{H_2SO_4}$	10.2	~330	/		[8]
/Meso-ATO-180						
IrO _x /SrIrO ₃	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	/	270	/		[9]
IrNi-RF	0.1 M HClO ₄	13.2	313.6	48.6	470 (@1.53V)	[10]
Pt-Ir-Pd	0.1 M HClO ₄	16.8 (for	372	128.7	200(@1.53V)	[11]
nanocages		Pt+Ir+Pd)				

Table S1. Summary of the OER activity of recently reported Ir based catalysts.

References

1. D. Li, Z. Zong, Z. Tang, Z. Liu, S. Chen, Y. Tian and X. Wang, Acs Sustainable Chemistry & Engineering, 2018, 6, 5105-5114.

2. Q. Wang, X. Huang, Z. L. Zhao, M. Wang, B. Xiang, J. Li, Z. Feng, H. Xu and M. Gu, J Am Chem Soc, 2020, 142, 7425-7433.

3. W.-H. Lai, L.-F. Zhang, W.-B. Hua, S. Indris, Z.-C. Yan, Z. Hu, B. Zhang, Y. Liu, L. Wang, M. Liu, R. Liu, Y.-X. Wang, J.-Z. Wang, Z. Hu, H.-K. Liu, S.-L. Chou and S.-X. Dou, Angewandte Chemie-International Edition, 2019, 58, 11868-11873.

4. G. Zhao, P. Li, N. Cheng, S. X. Dou and W. Sun, Adv. Mater., 2020, 32.

P. Lettenmeier, L. Wang, U. Golla-Schindler, P. Gazdzicki, N. A. Canas, M. Handl, R. Hiesgen, S. S. Hosseiny, A. S. Gago and K. A. Friedrich, Angew Chem Int Ed Engl, 2016, 55, 742-746.

6. J. Zhang, G. Wang, Z. Liao, P. Zhang, F. Wang, X. Zhuang, E. Zschech and X. Feng, Nano Energy, 2017, 40, 27-33.

7. E. J. Kim, J. Shin, J. Bak, S. J. Lee, K. H. Kim, D. Song, J. Roh, Y. Lee, H. Kim, K. S. Lee and E. Cho, Applied Catalysis B-Environmental, 2021, 280.

8. N. Hong Nhan, H.-S. Oh, T. Reier, E. Willinger, M.-G. Willinger, V. Petkov, D. Teschner and P. Strasser, Angewandte Chemie-International Edition, 2015, 54, 2975-2979.

9. L. C. Seitz, C. F. Dickens, K. Nishio, Y. Hikita, J. Montoya, A. Doyle, C. Kirk, A. Vojvodic, H. Y. Hwang, J. K. Norskov and T. F. Jaramillo, Science, 2016, 353, 1011-1014.

10. H. Jin, Y. Hong, J. Yoon, A. Oh, N. K. Chaudhari, H. Baik, S. H. Joo and K. Lee, Nano Energy, 2017, 42, 17-25.

11. J. W. Zhu, M. H. Xie, Z. T. Chen, Z. H. Lyu, M. F. Chi, W. Q. Jin and Y. N. Xia, Advanced Energy Materials, 2020, 10.