
Highly Porous Fe/N/C Catalyst for Oxygen Reduction: The Importance of Pores 

Experimental Section

Synthesis of g-C3N4

Urea loaded in a covered corundum crucible was heated in a muffle furnace to desired temperature (525, 

550, 575 and 600) with a heating rate of 5 °C min-1 and kept at that temperature for 4 h. The obtained g-C3N4 

sample was denoted as g-C3N4-T (T represents pyrolysis temperature). 

Synthesis of Fe/N/C

0.5 g of g-C3N4, 2 g of glucose and 30 mg of FeCl3·6H2O were added to 40 mL of H2O, and the resultant 

suspension was ultrasonicated for 4 h and then transferred to a 50-mL Teflon-lined autoclave, which was then 

placed in a convection oven and kept at 160 °C for 10 h. The resultant product was centrifuged and washed 

alternately with ethanol and deionized water, and after three-time centrifugation-washing cycles the obtained 

sample was dried at 80 °C overnight and then transferred to a covered corundum boat placed in a quartz tube 

furnace, which was heated to 1100 °C with a heating rate of 5 °C min-1 and kept at that temperature for 1 h 

under flowing N2. The finally obtained sample was denoted as Fe/N/C-T (T represents the pyrolysis 

temperature of g-C3N4 obtained). 

Material characterization 

The morphology, structure and composition of the synthesized materials were characterized by 

transmission electron microscopy (TEM, JEM-2100, JEOL), high-resolution TEM (HRTEM, Titan Themis 

200, FEI) equipped with energy-dispersive X-ray spectrometry (EDS, Super-X, Bruker), X-ray diffraction 

(XRD, D8 Advance, Bruker), X-ray photoelectron spectroscopy (XPS, VG Multilab 2000, Bruker), surface 

area and porosity analyzer (ASAP2460, Micromeritics), Inductively coupled plasma mass spectrometry (ICP-
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MS, 7700, Agilent Technology) and laser confocal micro-Raman spectroscopy (DXR, American Thermo 

Electron). 

Electrochemical characterization

Electrochemical measurements were carried out by using an electrochemical workstation (PGSTAT 302 

N, Metrohm Autolab) in a three-electrode system consisting of a graphite rod counter electrode, a Hg/HgO 

reference electrode, and a catalyst-modified glassy-carbon (GC) working electrode (3 mm in diameter). All the 

electrode potentials reported in this work were reported with respect to reversible hydrogen electrode (RHE). 

The loading of Fe/N/C sample on the GC electrode was 397 μg·cm-2 and the loading of the commercial Pt/C 

(20 wt. %, Johnson Matthey) catalyst on GC electrode was 132 μg·cm-2. The electrolyte was 0.1 M KOH 

solution, and its temperature was maintained at 25 °C with circulating ethylene glycol/water. The ORR 

performance of the catalyst was measured in O2-saturated 0.1 M KOH solution by linear sweep voltammetry 

(LSV) with a sweep rate of 10 mV s-1 at 1600 rpm. Rotating ring-disk electrode (RRDE, Pine) was used to 

determine the HO2
- yield and the electron transfer number (n) with the Pt ring potential set to 1.2 V vs. RHE. 

The HO2
- yield and the electron transfer number during the ORR process were determined based on the 

following equations 1,   
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where Ir is the ring current, Id is the disk current, and N is the collecting efficiency of Pt ring (0.37). 

DFT calculation

Cambridge Sequential Total Energy Package (CASTEP) code was used for DFT calculations. The 



valence-core interaction was described by using a ultrasoft pseudopotential approach and an energy cutoff of 

600 eV was used for plane-wave expansion. The exchange-correlation functional was described by Perdew-

Burke-Ernzerhof (PBE) functional with the generalized gradient approximation (GGA). The single-layer g-

C3N4 (001) slab was constructed with a 2 × 2 supercell, two-layer Pt (111) slabs were constructed, and a single-

layer Fe/N/C slab was constructed with an 8 × 6 supercell, all with a vacuum region of 15 Å to avoid interaction 

between slabs. The convergence criteria for energy and force were set as 0.00001 eV and 0.01 eV/Å, 

respectively. The energy difference between the g-C3N4-coordinated Fe system and the corresponding isolated 

systems, were calculated based on Equation 3, 
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where was the adsorption energy of Fe3+ ion or Fe atom at the “nitrogen pot” of g-C3N4, andadsorptionE

,  and were the total energies of the g-C3N4-coordinated Fe system, single Fe3+ ion or Fe Fe g-C N3 4/E FeE g-C N3 4
E

atom, and bare g-C3N4, respectively. 

The Gibbs free energy change (ΔG) corresponding to each reaction was determined through ΔG 

= ΔE + ΔZPE − TΔS, where ΔE, ΔZPE and ΔS were the changes in energy, in zero-point energies, and 

in entropy, respectively, and T was the temperature (298.15 K). The Gibbs free energy of H2O(l) was 

calculated from the ideal gas of H2O(g) by , where R was the ideal gas 2 2H O(l) H O(g) 0+ ln( )G G RT p p /

constant, T was 298.15 K, and P and P0 were 0.035 and 1 bar, respectively. The Gibbs free energy of 

O2 was derived as  and that of OH- was derived as 2 2 2O H O(l) H2 2 + 4 92G G G . 

2. The electrode potential effect on G was adjusted by shifting the - +2 2 2H O(l) H O(l) HOH H
= 1/2G G G G G  



G at zero potential by neU, where U and n were the electrode potential vs. RHE and the number of 

electrons transferred, respectively 3. 

 

Fig. S1. Schematic illustration of the g-C3N4 framework with the inclusion of metal ion (Mn+) via an ion 

coordination route.

Fig. S2. Stable configurations of Fe3+ ion and Fe atom in the nitrogen pore.



Fig. S3. TEM images of Fe/N/C-525 (a) and Fe/N/C-550 (b). 
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Fig. S4. N2 adsorption-desorption isotherms (a) and the corresponding pore distribution curves (b) of g-C3N4 

samples.
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Fig. S5. Raman spectra of Fe/N/C samples.

900 800 700 600 500 400 300 200 100

In
te

ns
ity

/a
. u

.

Binding energy/eV

 Fe/N/C-525
 Fe/N/C-550
 Fe/N/C-575

C 1s

N 1sO 1s
Fe 2p

Fig. S6. XPS spectra of Fe/N/C samples.

Table S1. Compositions of Fe/N/C samples determined by XPS and ICP-MS.

Sample C/at. % O/at. % Fe/at. % N/at. % Fe/wt. % *

Fe/N/C-525 94.61 2.00 0.29 3.61 1.23

Fe/N/C-550 92.95 2.52 0.40 4.12 1.75

Fe/N/C-575 92.88 2.50 0.34 4.28 1.50

* Fe content determined by ICP-MS.
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Fig. S7. High-resolution N1s spectra of Fe/N/C-525 and Fe/N/C-550.
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Fig. S8. Fe 2p spectra of Fe/N/C-525 (a) and Fe/N/C-550 (b), O 1s spectra of Fe/N/C-525 (c), Fe/N/C-550 (d), 

and Fe/N/C-575 (e).



Table S2. ORR activity of Fe/N/C and Pt/C catalysts.

Sample Eonset/V E1/2/V jk/mA cm-2@0.9 V jm/mA mg-1@0.9 V

Fe/N/C-525 0.938 0.851 0.768 1.935

Fe/N/C-550 0.962 0.868 1.692 4.262

Fe/N/C-575 0.966 0.882 2.481 6.246

Pt/C

Fe/N/C-575-A

0.956

0.972

0.851

0.890

1.237

3.614

9.371

9.103

          jm=mass specific activity

Fig. S9. TEM image of Fe/N/C-575-A sample.
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Fig. S10. N2 adsorption-desorption isotherm (a) and the corresponding pore distribution curve (b) of Fe/N/C-

575-A sample.
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Fig. S11. XRD pattern of Fe/N/C-575-A sample.
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Fig. S12. Raman spectrum of Fe/N/C-575-A sample.
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Fig. S13. XPS spectrum of Fe/N/C-575-A sample.

The associated mechanism of ORR in alkaline environment was as follows 4, 5,
O2 + * → O2*                              (4)

O2* + H2O + e- → OOH* + OH-               (5)

OOH* + e- → O* + OH-                     (6)

O* + H2O + e- → OH* + OH-                 (7)

OH* + e- → OH- + *                        (8)

where * denoted the active site in catalyst.



Fig. S14. Stable configurations of four oxygen-containing species O2, OOH, O and OH adsorbed on Fe-N4 

with (a) and without (b) adjacent pore and on Pt (111) (c) (the gray, blue, purple, red and white balls represent 

C, N, Fe, O and H atoms, respectively).



Table S3. Comparison of ORR performance of non-precious catalyst. 
Catalyst Eonset [V] E1/2 [V] Reference

Fe/N/C-575-A 1.032 0.908 This work
FeNx-embedded PNC 0.997 0.86 6

Fe-NC SAC
FeNC-1

0.98
/

0.90
0.90

7
8

Fe-ISA/SNC / 0.896 9
Co/Co-N-C 0.97 0.85 10
Cu@Fe-N-C 1.01 0.892 11

Fe-N-C HNSs 1.045 0.87 12
Co-N-C/CoOx-800 0.89 0.82 13

Cu-Fe-N-C 0.967 0.864 14
Zn/CoN-C 1.004 0.861 15

Fe/Fe5C2@N-C-1000 / 0.85 16
SA-Fe-HPC / 0.89 17

FeSAs/PTF-600 1.01 0.87 18
CoN4/NG 0.98 0.87 19
1100-CNS 0.99 0.85 20

N-Fe/CNs-700-800-NH3      0.930  0.859 21
S, N-Fe/N/C-CNT / 0.85 22

FeBNC 0.968  0.838 23
SA-Fe/NG / 0.88 24
3D MPC / 0.88 25

The methanol crossover effect on the catalytic performance of catalyst was examined by 

chronoamperometric test, which was carried out in O2-saturated 0.1 M KOH solution at 0.625 V vs. RHE and 

1600 rpm.
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Fig. S15. Chronoamperometric responses of Fe/N/C-575-A and Pt/C catalysts (a), LSV curves of Fe/N/C-575-

A (b) and Pt/C (c) before and after ADT.
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