Supporting Information

Transition metal- and photo-free radical borylation of alkyl bromides and iodides by silane

Beiqi Sun, Sihan Zheng and Fanyang Mo*

Contents

1. General information 2
2. Preparation of substrates 3
2.1 Preparation of alkyl bromides (1p,1q, 1r,1s,1u) 3
2.2 Preparation of other alkyl bromides 5
2.3 Preparation of alkyl iodides 7
3. Reaction optimization 9
4. Experimental procedures and characterization data 10
4.1 General procedure for alkyl bromides 10
4.2 General procedure for alkyl iodides 11
4.3 Compound data 12
5. Mechanistic studies 22
5.1 Radical clock reaction 22
5.2 Reaction with TEMPO 24
6. DFT computational data 25
6.1 Table of energies and lowest frequencies 26
6.2 Cartesian coordinates of the structures 28
6.3 IRC analysis for TS1 and TS2 40
7. X-Ray crystallographic data 42
8. NMR charts 44
9. References 72

1. General information

Unless otherwise noted, all experiments were carried out under an inert atmosphere in a nitrogen-filled glovebox or by standard Schlenk techniques. All solvents were purchased from J\&K Scientific and stored in a nitrogen-filled glovebox over $4 \AA$ molecular sieves. Tris(trimethylsilyl)silane (TTMSS) was purchased from J\&K Scientific and stored at $-20^{\circ} \mathrm{C}$ in glovebox for long-term storage. Bis(catecholato)diboron (B2cat2) was purchased from Beijing Innochem Science \& Technology co., LTD (Innochem) and stored in glovebox. Azobisisobutyronitrile (AIBN) was purchased from Tokyo Chemical Industry Co. (TCI) and stored in glovebox. (Bromomethyl)cyclopropane was purchased from Sigma-Aldrich and stored at $-20^{\circ} \mathrm{C}$. Purification of the products was conducted by column chromatography on silica gel (200-300 mesh, in some cases 300-400 mesh were used, from Qingdao, China). Thin-layer chromatography (TLC) was performed on silica gel plates ($10-40 \mu \mathrm{~m}$) purchased from WISH CHEMICAL, using UV light ($254 / 366 \mathrm{~nm}$) or phosphomolybdic acid (PMA) in ethanol (5\%) for detection. The substrates were purchased from commercial sources unless otherwise noted.
NMR spectra were measured on a Bruker ARX400 (${ }^{1} \mathrm{H}$ at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ at $101 \mathrm{MHz},{ }^{31} \mathrm{P}$ at 162 MHz) magnetic resonance spectrometer. The chemical shifts are reported as parts per million (ppm) referenced to residual protium or carbon of the solvents; $\mathrm{CHCl}_{3}, \delta \mathrm{H}(7.26$ ppm) and $\delta \mathrm{C}(77.00 \mathrm{ppm})$; Coupling constants are reported in Hertz (Hz). Data for 1H NMR spectra are reported as follows: chemical shift (ppm, referenced to protium; $s=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{td}=$ triplet of doublets, ddd = doublet of doublet of doublets, $m=$ multiplet, coupling constant (Hz), and integration $)$. XRD data were collected by XtaLAB PRO 007HF(Cu) Single crystal X-ray diffractometer. Infrared spectra were recorded on a Thermal Fisher Nicolet iS50 Fourier transform spectrometer ($\mathrm{FT}-\mathrm{IR}$) and were reported in wave numbers (cm^{-1}). HRMS data were obtained on a VG ZAB-HS mass spectrometer, Brucker Apex IV FTMS spectrometer. GCMS or FID data were measured using the Agilent Technologies 7890B GC and the Agilent Technologies 5977B MSD. The FID yields were all based on standard curves with 5 points and minimum $0.996 R^{2}$ value (or 4 points and minimum $0.997 R^{2}$ value).

2. Preparation of substrates

2.1 Preparation of alkyl bromides (1p,1q,1r,1s,1u)

General procedure: The alkyl bromide 1 were prepared according to literature procedure ${ }^{1}$. A solution of phenol S1 (10 mmol) and 1,3-dibromopropane ($80 \mathrm{mmol}, 8$ equiv, 8 mL) in $\mathrm{MeCN}(30 \mathrm{~mL})$ was added anhydrous potassium carbonate ($40 \mathrm{mmol}, 4$ equiv, 5.5 g). The reaction mixture was stirred at reflux for 24 h , and then potassium carbonate was removed by suction filtration and the solvent was removed under reduced pressure. The residue was purified by column chromatography (silica gel) using PE/ EtOAc as eluent to obtain compound 1.

4-(3-bromopropoxy)-1,1'-biphenyl (1p)

$0.76 \mathrm{~g}, 26 \%$ yield, white solid.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{t}, \mathrm{J}=9.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 2.38-2.32 (m, 2H) ${ }^{2}$.

(4-(3-bromopropoxy)phenyl)(methyl)sulfane (1q)
$0.73 \mathrm{~g}, 28 \%$ yield, colorless liquid.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{t}, \mathrm{J}$ $=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.27(\mathrm{~m}, 2 \mathrm{H})^{3}$.

1-(3-bromopropoxy)-4-fluorobenzene (1r)
$2.10 \mathrm{~g}, 90 \%$ yield, colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.99-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{q}, \mathrm{J}=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{t}, \mathrm{J}=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.60(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 2.33-2.27 (m, 2H) ${ }^{4}$.

1-(3-bromopropoxy)-4-(trifluoromethyl)benzene (1s)
$1.56 \mathrm{~g}, 55 \%$ yield, colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{t}, J$ $=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.37-2.31(\mathrm{~m}, 2 \mathrm{H})^{5}$.

1-(3-bromopropoxy)-4-(methylsulfonyl)benzene (1u)
$2.49 \mathrm{~g}, 85 \%$ yield, white solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{t}, J$ $=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.33(\mathrm{~m}, 2 \mathrm{H})^{1}$.

2.2 Preparation of other alkyl bromides

Preparation of N -(3-bromopropyl)-N-methylaniline (1m)

The alkyl bromide $\mathbf{1 m}$ were prepared according to literature procedure ${ }^{6}$. To a solution of N -methylaniline ($1.1 \mathrm{~g}, 10 \mathrm{mmol}$) in dry DMF (10 mL), potassium carbonate ($6.9 \mathrm{~g}, 50 \mathrm{mmol}$) was added and allowed to stir for 10 min . To this reaction mixture, 1,3 dibromopropane (80 $\mathrm{mmol}, 8$ equiv, 8 mL) was added slowly and then reaction mixture was allowed to stir for 12 h at room temperature under argon atmosphere. After the completion of reaction, reaction mixture was filtered and the compound was extracted with diethyl ether. Organic layer was washed with brine and solvent removed under reduced pressure. The residue was subjected to column purification on silica gel, eluting with hexane to give $\mathbf{1 m}$ as a yellow liquid ($1.03 \mathrm{~g}, 45 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.69(\mathrm{~m}$, 3H), 3.51-3.44 (m, 4H), 2.96 ($\mathrm{s}, 3 \mathrm{H})$, , 2.17-2.10 (m, 2H).

Preparation of (3-bromopropyl)(p-tolyl)sulfane (1n)

The substrate 4-methyl thiophenol ($1.24 \mathrm{~g}, 10 \mathrm{mmol}$) followed the same procedure in section 2.1 to obtain compound $\mathbf{1 n}$ as a colorless liquid ($1.64 \mathrm{~g}, 67 \%$). ${ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.17$ ($\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.08(\mathrm{~m}, 2 \mathrm{H})$.

Preparation of N -(4-(3-bromopropoxy)phenyl)-N-methylacetamide (1t)

Intermediate $\mathbf{S 2}$ was prepared according to procedure in section 2.1, affording $\mathbf{S 2}$ as a white solid ($1.10 \mathrm{~g}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39$ (d, J=8.8 Hz, 2H), 6.86 (d, J $=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.34-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~s}$, $3 \mathrm{H})^{1}$.
In inert atmosphere, NaH ($0.25 \mathrm{~g}, 10.5 \mathrm{mmol}, 3$ equiv) was added to 30 mL anhydrous THF at $0^{\circ} \mathrm{C}$, then added $\mathbf{S 2}(3.5 \mathrm{mmol}, 0.95 \mathrm{~g}$, resolved in 10 mL anhydrous THF) dropwise. The reaction mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$, followed by $\mathrm{CH}_{3 l}(10.7 \mathrm{~mL}, 10.5 \mathrm{mmol}$, 3 equiv, resolved in 10 mL anhydrous THF) dropwise. The reaction mixture was allowed to warm to room temperature, and stirred for 18 hours. After the reaction finished, added 20 mL water to quench the reaction, extracted by EtOAc ($3 \times 50 \mathrm{~mL}$) and purified by column chromatography using PE/ EtOAc 1:1 as eluent, afforded $\mathbf{1 t}$ as a yellow oil ($1.10 \mathrm{~g}, 96 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.10(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{t}, \mathrm{J}=$ $6.0 \mathrm{~Hz}, 0.74 \mathrm{H}$), 4.06 (t, J = $5.6 \mathrm{~Hz}, 1.23 \mathrm{H}$), 3.62 (t, J = $6.4 \mathrm{~Hz}, 0.75 \mathrm{H}), 3.38(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}$, 1.27 H), $3.23(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.26(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H})$.

2.3 Preparation of alkyl iodides

The alkyl iodides 1 were prepared according to literature procedure ${ }^{1}$. A 100 mL roundbottom flask was charged with alcohol ($\mathbf{S 3}, 10 \mathrm{mmol}$), imidazole ($12.5 \mathrm{mmol}, 1.25$ equiv, 851 mg), I2 ($13 \mathrm{mmol}, 1.30$ equiv, 3.30 g), $\mathrm{PPh}_{3}\left(13 \mathrm{mmol}, 1.30\right.$ equiv, 3.41 g), and $\mathrm{Et}_{2} \mathrm{O} /$ $\operatorname{MeCN}(5: 1,60 \mathrm{~mL})$. The resulting solution was stirred for 4 h at room temperature. The reaction mixture was then quenched by 100 mL of sodium bicarbonate (sat.) and extracted with $3 \times 100 \mathrm{~mL}$ of ethyl acetate. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was purified by column chromatography (silica gel) using petroleum ether (PE) as eluent to give the desired alkyl iodide 1.

1x

1-(2-iodoethyl)naphthalene (1x)

yellow oil, $2.11 \mathrm{~g}, 75 \%$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97$ (d, J=8.3 Hz, 1H), 7.87 (dd, $\left.J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.78$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.52 (dddd, $J=21.6,8.1,6.8,1.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.42 (dd, $J=8.1,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35$ (dd, $J=7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.65$ (dd, $J=9.0,7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.47 (dd, $J=9.0,7.1$ $\mathrm{Hz}, 2 \mathrm{H})^{7}$.

1y

6-iodo-2-methylhept-2-ene (1y)

yellow oil, $1.60 \mathrm{~g}, 67 \%$ yield.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.07(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~h}, J=6.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$ (dh, $J=29.4,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.67$ (d, $J=17.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.59$ (dd, $J=$ $10.7,4.4 \mathrm{~Hz}, 1 \mathrm{H})^{8}$.

1aa

2-(2-iodoethyl)thiophene (1aa)

colorless oil, $2.10 \mathrm{~g}, 88 \%$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J$ $=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 4 \mathrm{H})^{9}$.

cholesteryl iodide (1ab)
recrystallization in acetone to give a white needle, $1.45 \mathrm{~g}, 79 \%$ yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.33(\mathrm{dt}, J=5.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{tt}, J=12.5,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.93 (ddt, $J=15.9,13.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ (ddd, $J=13.7,4.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.13$ (m, $2 \mathrm{H}), 1.98$ (ddt, $J=20.5,15.2,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{dtd}, J=13.2,9.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{dt}, J$ $=13.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-0.93(\mathrm{~m}, 23 \mathrm{H}), 0.91(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{dd}, J=6.6,1.8$ $\mathrm{Hz}, 6 \mathrm{H}), 0.67(\mathrm{~s}, 3 \mathrm{H})^{10}$.

3. Reaction optimization

The optimization of the reaction was carried out using 1-bromooctane (0.30 mmol) as the test system. In a glovebox under a nitrogen atmosphere, sequentially add B_{2} cat 2 , radical initiator and 2 mL solvent to a 10 mL Schlenk tube with a stir bar, followed by silane and1bromooctane (0.3 mmol). The capped Schlenk tube was removed from the glovebox, and the reaction mixture was stirred at a given temperature for given time. After cooling to room temperature, pinacol (4.0 equiv) and 1.0 mL triethylamine were added, and the mixture was stirred at room temperature for 1 hour. After that, the reaction mixture was washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, extracted using ethyl acetate (5 mL), then n -decane ($\sim 25 \mathrm{mg}$) was added as internal standard, the conversion of 1-bromooctane and the yield were measured by GC (FID). The results are shown in Table 1.

Table 1 Optimization of reaction conditions of alkyl bromide.

a: Reaction Condition: 1a (0.3 mmol), B2cat2 (Bis(catecholato)diboron), AIBN (Azobisisobutyronitrile), TTMSS (Tris(trimethylsily))silane), DMA (Dimethylacetamide) (2 mL), $80^{\circ} \mathrm{C}$. Then pinacol (4.0 equiv), $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$. Decane is used as an internal standard. GC-fid yield, the yield in bracket is isolated yield. b: The temperature is $70^{\circ} \mathrm{C}$. c: Using ACCN (1,1'-Azobis(cyclohexanecarbonitrile)) instead of AIBN. d 10W blue LED (10 cm distance), room temperature. e: in air.

4. Experimental procedures and characterization data

4.1 General procedure for alkyl bromides

In a glovebox under a nitrogen atmosphere, sequentially added B_{2} cat 2 ($0.75 \mathrm{mmol}, 1.5$ equiv, 178 mg), AIBN (0.55 mmol , 1.1 equiv, 90 mg), and 3 mL DMA to a 10 mL Schlenk tube with a stir bar, followed by TTMSS ($0.55 \mathrm{~mol}, 1.1$ equiv, $170 \mu \mathrm{~L}$) and alkyl bromide (0.5 mmol). The capped Schlenk tube was stirred at $80^{\circ} \mathrm{C}$ for 6 hours. After cooling to room temperature, pinacol ($236 \mathrm{mg}, 4.0$ equiv) and 1.5 mL triethylamine were added, and the mixture was stirred at room temperature for 1 hour.

Water was added to the reaction mixture and the aqueous layer was extracted with EtOAc (3x). If phase separation was slow, brine was added. The organic phases were combined and washed with 100 mL of saturated brine, the organic phase was dried over anhydrous sodium sulfate and filtered, and then concentrated under reduced pressure, and purified by column chromatography to give the product. The product was monitored by thin layer chromatography with phosphomolybdic acid (PMA) stain.

In some cases, after the removal of the solvent, added 5 mL diethyl ether, and then added TBAF (1mol / L in THF) (depending on the condition of different substrates) dropwise under an ice bath at $0{ }^{\circ} \mathrm{C}$ for 5 min , then isolated the product by column chromatography quickly. It is to remove the silyl by-products produced in reaction ${ }^{11}$.

4.2 General procedure for alkyl iodides

In a glovebox under a nitrogen atmosphere, sequentially added B_{2} cat 2 ($0.75 \mathrm{mmol}, 1.5$ equiv, 178 mg), AIBN ($0.55 \mathrm{mmol}, 1.1$ equiv, 90 mg), and 3 mL DMA to a 10 mL Schlenk tube with a stir bar, followed by TTMSS ($0.55 \mathrm{~mol}, 1.1$ equiv, $170 \mu \mathrm{~L}$) and alkyl iodide (0.5 $\mathrm{mmol})$. The capped Schlenk tube was stirred at $70^{\circ} \mathrm{C}$ for 2 hours. After cooling to room temperature, pinacol ($236 \mathrm{mg}, 4.0$ equiv) and 1.5 mL triethylamine were added, and the mixture was stirred at room temperature for 1 hour.

Water was added to the reaction mixture and the aqueous layer was extracted with EtOAc (3x). If phase separation was slow, brine was added. The organic phases were combined and washed with 100 mL of saturated brine, the organic phase was dried over anhydrous sodium sulfate and filtered, and then concentrated under reduced pressure, and purified by column chromatography to give the product. The product was monitored by thin layer chromatography with phosphomolybdic acid (PMA) stain.

4.3 Compound data

BPin

2a

4,4,5,5-tetramethyl-2-octyl-1,3,2-dioxaborolane (2a)

$97.3 \mathrm{mg}, 81 \%$ isolated yield, colorless oil. 4.0 equiv TBAF (1 M in THF) was added. $\mathrm{Rf}=0.4$ (PE), using PE/EtOAc = 50:1-30:1 as eluent.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.39(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 22 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 0.77(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 82.8,32.5,31.9,29.4,29.3,24.8,24.0,22.7,14.2$. The signal of the α-B-carbon was not observed.
All data matched that reported in the literature ${ }^{1}$.

2b
2-(cyclopentylmethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2b)
$47.8 \mathrm{mg}, 46 \%$ isolated yield, colorless oil. 4.0 equiv TBAF (1 M in THF) was added. $\mathrm{Rf}=0.6$ (PE/EtOAc $=20: 1$), using PE/ EtOAc $=50: 1-30: 1$ as eluent.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.96(\mathrm{p}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~m}, 2 \mathrm{H}), 1.50$ (m, 2H), $1.24(\mathrm{~s}, 12 \mathrm{H}), 1.06(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 82.8,36.1,35.1,25.1,24.8$. The signal of the α-B-carbon was not observed.
All data matched that reported in the literature ${ }^{12}$.

2c
2-(2-cyclohexylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2c)
$96.6 \mathrm{mg}, 81 \%$ isolated yield, colorless oil. 6.0 equiv TBAF (1M in THF) was added. $\mathrm{Rf}=0.6$ ($\mathrm{PE} / \mathrm{EtOAc}=20: 1$), using $\mathrm{PE} / \mathrm{EtOAc}=50: 1$ as eluent.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.68(\mathrm{~m}, 5 \mathrm{H}), 1.31(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 12 \mathrm{H}), 1.22-1.09(\mathrm{~m}, 4 \mathrm{H})$, $0.85(\mathrm{~m}, 2 \mathrm{H}), 0.79-0.71(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 82.8,40.0,33.0,31.4,26.8,26.5,24.8$. The signal of the $\alpha-\mathrm{B}-$ carbon was not observed.

All data matched that reported in the literature ${ }^{1}$.

2d

2-cyclohexyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2d)

$75.8 \mathrm{mg}, 72 \%$ isolated yield, colorless oil. 3.0 equiv TBAF (1 M in THF) was added. $\mathrm{Rf}=0.6$ (PE/EtOAc $=20: 1$), using $\mathrm{PE} / \mathrm{EtOAc}=50: 1-30: 1$ as eluent.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.59(\mathrm{~m}, 5 \mathrm{H}), 1.30(\mathrm{~m}, 6 \mathrm{H}), 1.23(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 82.7,28.0,27.2,26.8,24.8$. The signal of the α-B-carbon was not observed.
All data matched that reported in the literature ${ }^{1}$.

2-cycloheptyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2e)

$73.6 \mathrm{mg}, 66 \%$ isolated yield, colorless oil. 9.0 equiv TBAF (1M in THF) was added. $\mathrm{Rf}=0.45$ (PE), using PE/ EtOAc = 50:1-30:1 as eluent.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 1.70(\mathrm{~m}, 4 \mathrm{H}), 1.62$ - $1.36(\mathrm{~m}, 8 \mathrm{H}), 1.24(\mathrm{~s}, 12 \mathrm{H}), 1.13-1.02(\mathrm{~m}$, 1H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 82.8,29.6,29.0,28.3,24.7$. The signal of the α-B-carbon was not observed.
All data matched that reported in the literature ${ }^{12}$.

2f
2-(adamantan-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2f)
$80.8 \mathrm{mg}, 62 \%$ isolated yield, white solid. 3.0 equiv TBAF (1 M in THF) was added. $\mathrm{Rf}=0.5$ (PE/ $\mathrm{EtOAc}=20: 1$), using $\mathrm{PE} / \mathrm{EtOAc}=40: 1-30: 1$ as eluent.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.85$ ($\mathrm{s}, 3 \mathrm{H}$), 1.75 ($\mathrm{m}, 12 \mathrm{H}$), 1.21 ($\left.\mathrm{s}, 12 \mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 82.6,38.0,37.5,27.6,24.7$. The signal of the α-B-carbon was not observed.
All data matched that reported in the literature ${ }^{13}$.

2-(adamantan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2g)
$71.8 \mathrm{mg}, 55 \%$ isolated yield, white solid. 3.0 equiv TBAF (1 M in THF) was added. $\mathrm{Rf}=0.5(\mathrm{PE} /$ $\mathrm{EtOAc}=20: 1$), using $\mathrm{PE} / \mathrm{EtOAc}=1-99: 1$ as eluent.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.05$ (s, 2H), 1.90 - 1.66 (m, 12H), 1.37 (s, 1H), 1.25 (s, 12H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 82.8,64.4,53.4,39.3,37.7,36.3,29.3,28.2,28.1,25.4,24.8$.
The signal of the α-B-carbon was not observed.
All data matched that reported in the literature ${ }^{12}$.

2h
methyl 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanoate (2h)
$55.2 \mathrm{mg}, 43 \%$ isolated yield, white solid. 4.0 equiv TBAF (1 M in THF) was added. $\mathrm{Rf}=0.4$ (PE), using PE/ $\mathrm{EtOAc}=50: 1-30: 1$ as eluent.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.47-$ 1.38 (m, 2H), $1.35-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 12 \mathrm{H}), 0.77(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 172.6,81.2,49.7,32.3,30.1,23.1,23.0,21.9$. The signal of the α-B-carbon was not observed.
All data matched that reported in the literature ${ }^{14}$.

4,4,5,5-tetramethyl-2-(3-phenylpropyl)-1,3,2-dioxaborolane (2i)

$53.0 \mathrm{mg}, 43 \%$ isolated yield, colorless oil. 0.5 equiv TBAF (1 M in THF) was added. $\mathrm{Rf}=0.5$ (PE/ EtOAc $=20: 1$), using PE/ EtOAc $=50: 1-30: 1$ as eluent.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.64-2.57(\mathrm{~m}, 2 \mathrm{H}), 1.73$ (p, J = $7.9 \mathrm{~Hz}, 2 \mathrm{H}$), $1.24(\mathrm{~s}, 12 \mathrm{H}), 0.83(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 142.7,128.6,128.2,125.6,83.0,38.6,26.1,24.9$. The signal of the α-B-carbon was not observed.
All data matched that reported in the literature ${ }^{1}$.

4,4,5,5-tetramethyl-2-(4-phenylbutan-2-yl)-1,3,2-dioxaborolane (2j)
$113 \mathrm{mg}, 87 \%$ isolated yield, colorless oil. $\mathrm{Rf}=0.6(\mathrm{PE} / \mathrm{EtOAc}=20: 1)$, using toluene as eluent.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.11(\mathrm{~m}, 5 \mathrm{H}), 2.78-2.46(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.56(\mathrm{~m}, 2 \mathrm{H})$, $1.25(\mathrm{~s}, 12 \mathrm{H}), 1.15-0.94(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.1,128.5,128.2,125.5,82.9,35.4,35.3,24.8,24.8,15.5$. The signal of the α-B-carbon was not observed.
All data matched that reported in the literature ${ }^{15}$.

2-(3-(4-bromophenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2k)
$50.2 \mathrm{mg}, 31 \%$ isolated yield, colorless oil. $\mathrm{Rf}=0.6(\mathrm{PE} / \mathrm{EtOAc}=10: 1)$, using $\mathrm{PE} / \mathrm{EtOAc}=50: 1-$ 30:1 as eluent.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41$ - $7.32(\mathrm{~m}, 2 \mathrm{H}), 7.08-6.99(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.49(\mathrm{~m}, 2 \mathrm{H})$, $1.75-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 12 \mathrm{H}), 0.80(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 141.6,131.2,130.4,119.97,84.6,37.5,25.9,24.1$. The signal of the α-B-carbon was not observed.
All data matched that reported in the literature ${ }^{1}$.

methyl 4-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)benzoate (2I)
$90.1 \mathrm{mg}, 59 \%$ isolated yield, colorless oil. $\mathrm{Rf}=0.3$ ($\mathrm{PE} / \mathrm{EtOAc}=10: 1$), using PE/EtOAc =30:120:1 as eluent.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.03(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{dd}$, $J=8.8,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{p}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.12(\mathrm{~s}, 12 \mathrm{H}), 0.69(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.3,148.3,129.6,128.6,83.0,52.0,38.6,25.7,24.8$. The signal of the α-B-carbon was not observed.
IR: $v=3480,2978,2935,2866,1931,1723,1610,1574,1510,1435,1413,1372,1317,1278$, 1229, 1144, 1110, 1004, 968, 848, 762, 705, 674, 610, 525, $486 \mathrm{~cm}^{-1}$.
HRMS (ESI) (m/z): Calcd. $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{BO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 305.1919$. Found: 305.1912.

N-methyl-N-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)aniline (2m)
$47.6 \mathrm{mg}, 50 \%$ isolated yield, yellow oil. $\mathrm{Rf}=0.6(\mathrm{PE} / \mathrm{EtOAc}=20: 1)$, using $\mathrm{PE} / \mathrm{EtOAc}=100: 1-$ 30:1 as eluent.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{tt}, \mathrm{J}=7.2,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.32-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.97-2.90(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H}), 0.78(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 149.4,129.1,115.7,112.0,83.1,54.9,38.3,24.9,21.1$. The signal of the α-B-carbon was not observed.
IR: $v=2975,2933,2880,1600,1506,1462,1410,1369,1321,1291,1273,1258,1242$, 1217, 1188, 1169, 1163, 1143, 1098, 1082, 1065, 1034, 990, 963, 842, 747, $691 \mathrm{~cm}^{-1}$.
HRMS (ESI) (m/z): Calcd. $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{BNO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 276.2129. Found: 276.2129.

4,4,5,5-tetramethyl-2-(3-(p-tolylthio)propyl)-1,3,2-dioxaborolane (2n)

$109.6 \mathrm{mg}, 75 \%$ isolated yield, yellow oil. 5.0 equiv TBAF (1M in THF) was added. $\mathrm{Rf}=0.4(\mathrm{PE} /$ $\mathrm{EtOAc}=20: 1)$, using $\mathrm{PE} / \mathrm{EtOAc}=100: 1-50: 1$ as eluent.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.92-2.85(\mathrm{~m}, 2 \mathrm{H})$, 2.31 (s, 3H), $1.79-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 12 \mathrm{H}), 0.90(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.6,133.2,129.6,129.5,83.1,36.3,24.8,24.0,21.0$. The signal of the α-B-carbon was not observed.
IR: $v=2978,2934,2924,2857,2852,1728,1493,1454,1407,1372,1320,1273,1222$, $1172,1164,1143,1105,969,845,804 \mathrm{~cm}^{-1}$.

HRMS (ESI) (m/z): Calcd. $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{BO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 293.1741. Found: 293.1740.

4,4,5,5-tetramethyl-2-(3-phenoxypropyl)-1,3,2-dioxaborolane (2o)

$79.5 \mathrm{mg}, 61 \%$ isolated yield, colorless oil. 3.0 equiv TBAF (1 M in THF) was added. $\mathrm{Rf}=0.5$ (PE/ EtOAc $=20: 1$), using $\mathrm{PE} / \mathrm{EtOAc}=50: 1-30: 1$ as eluent.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.78(\mathrm{~m}, 3 \mathrm{H}), 3.96(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.05-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 12 \mathrm{H}), 0.95(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 159.2,129.4,120.4,114.6,83.1,69.5,24.9,23.8$. The signal of the α-B-carbon was not observed.

All data matched that reported in the literature ${ }^{8}$.

2-(3-([1,1'-biphenyl]-4-yloxy)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2p)
$91.0 \mathrm{mg}, 87$ \% isolated yield, colorless oil. $\mathrm{Rf}=0.5(\mathrm{PE} / \mathrm{EtOAc}=10: 1)$, using $\mathrm{PE} / \mathrm{EtOAc}=50: 1$ as eluent.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{p}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H})$, $0.94(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.3,139.4,132.0,127.2,126.6,125.2,125.0,113.4,81.6$, $68.2,23.3,22.3$. The signal of the $\alpha-B-c a r b o n$ was not observed.
IR: $v=2978,2943,1609,1519,1466,1373,1320,1287,1269,1243,1176,1142,1077$, 1049, 846, 836, 760, 730, 696, 655, 628, 595, 593, 464, $348 \mathrm{~cm}^{-1}$.
HRMS (ESI) (m/z): Calcd. $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{BO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 339.2126. Found: 339.2118.

4,4,5,5-tetramethyl-2-(3-(4-(methylthio)phenoxy)propyl)-1,3,2-dioxaborolane (2q)

$101.4 \mathrm{mg}, 66$ \% isolated yield, colorless oil. $\mathrm{Rf}=0.5$ ($\mathrm{PE} / \mathrm{EtOAc}=10: 1$), using $\mathrm{PE} / \mathrm{EtOAc}=$ 50:1-40:1 as eluent.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.74(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}$, 2 H), 2.43 ($\mathrm{s}, 3 \mathrm{H}$), 1.88 (ddd, $J=14.6,7.9,6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.25 (s, 12H), 0.91 (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.8,130.3,128.3,115.3,83.1,69.8,24.9,23.7,18.2$. The signal of the α-B-carbon was not observed.
IR: $v=2980,2945,2923,1493,1429,1372,1319,1277,1239,1159,1143,1052,1015,967$, 967, $853,835 \mathrm{~cm}^{-1}$.

HRMS (ESI) (m/z): Calcd. $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{BO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 309.1690. Found: 309.1685.

2-(3-(4-fluorophenoxy)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2r)

$84.2 \mathrm{mg}, 60 \%$ isolated yield, colorless oil. $\mathrm{Rf}=0.3(\mathrm{PE} / \mathrm{EtOAc}=20: 1)$, using $\mathrm{PE} / \mathrm{EtOAc}=50: 1-$ 40:1 as eluent.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.00-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.77(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}$, $2 \mathrm{H}), 1.88(\mathrm{p}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H}), 0.91(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 158.3,155.3,115.8,115.6,115.5,83.1,70.3,24.8,23.8$. The signal of the α - B -carbon was not observed.

IR: $v=2948,1505,1373,1321,1248,1210,1143,1096,1088,1042,837,825,755 \mathrm{~cm}^{-1}$.
HRMS (ESI) $(\mathrm{m} / \mathrm{z})$: Calcd. $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{BFO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 281.1719 . Found: 281.1725.

4,4,5,5-tetramethyl-2-(3-(4-(trifluoromethyl)phenoxy)propyl)-1,3,2-dioxaborolane (2s) $115.1 \mathrm{mg}, 70 \%$ isolated yield, yellow oil. $\mathrm{Rf}=0.6(\mathrm{PE} / \mathrm{EtOAc}=10: 1)$, using $\mathrm{PE} / \mathrm{EtOAc}=40: 1-$ 30:1 as eluent.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{t}, \mathrm{J}=6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 1.91(\mathrm{p}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 161.6,126.8,126.8,114.5,83.2,69.8,24.9,23.6$. The signal of the α-B-carbon was not observed.
IR: $v=2958,2924,2915,2854,2115,1616,1374,1327,1303,1252,1168,1158,1143$, 1105, 1065, 1044, 1024, 1008, 966, 841, 807, 753, $746 \mathrm{~cm}^{-1}$
HRMS (ESI) (m/z): Calcd. $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BF}_{3} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 331.1687. Found: 331.1679.

N-methyl-N-(4-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propoxy)phenyl)acetamide

 (2t)$145.7 \mathrm{mg}, 87 \%$ isolated yield, yellow oil. $\mathrm{Rf}=0.3(\mathrm{PE} / \mathrm{EtOAc}=10: 1)$, using $\mathrm{PE} / \mathrm{EtOAc}=30: 1$ as eluent.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.75(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.20(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 12 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.1,158.5,137.2,128.0,115.4,83.2,69.9,37.3,24.8,23.7$, 22.3. The signal of the α-B-carbon was not observed.

IR: $v=2980,2934,1643,1595,1568,1511,1488,1470,1434,1432,1424,1372,1342$, 1319, 1297, 1277, 1241, 1193, 1165, 1141, 1107, 1079, 1057, 1030, 1011, 971, $949 \mathrm{~cm}^{-1}$ HRMS (ESI) (m/z): Calcd. $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{BNO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 334.2184$. Found: 334.2190.

4,4,5,5-tetramethyl-2-(3-(4-(methylsulfonyl)phenoxy)propyl)-1,3,2-dioxaborolane (2u) $118.7 \mathrm{mg}, 70 \%$ isolated yield, colorless oil. $\mathrm{Rf}=0.5$ (PE/EtOAc $=3: 2$), using $\mathrm{PE} / \mathrm{EtOAc}=5: 1$ as eluent.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.06-6.90(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, 3.03 (s, 3H), $1.94-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 12 \mathrm{H}), 0.93(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 163.4,131.8,129.5,115.0,83.2,70.1,44.9,24.9,23.4$. The
signal of the $\alpha-B$-carbon was not observed.
IR: $v=2957,1594,1373,1314,1294,1255,1140,796,724,690,658,611,570,489,473,436$, 428, $403 \mathrm{~cm}^{-1}$.
HRMS (ESI) (m/z): Calcd. $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{BNO}_{5} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 358.1854. Found: 358.1844. Calcd. $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{BNaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 363.1407 . Found: 363.1406.

2v

2-dodecyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2v)

$99.9 \mathrm{mg}, 67 \%$ isolated yield, colorless oil. $\mathrm{Rf}=0.5$ ($\mathrm{PE} / \mathrm{EtOAc}=20: 1$), using PE/EtOAc $=50: 1-$ 30:1 as eluent.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.25-1.24(\mathrm{~m}, 30 \mathrm{H}), 0.88(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 0.76(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 82.8,32.4,31.9,29.7,29.7,29.6,29.4,29.4,24.8,24.0,22.7$, 14.1. The signal of the α-B-carbon was not observed.

All data matched that reported in the literature ${ }^{1}$.

2w

2-(6-chlorohexyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2w)

$76.1 \mathrm{mg}, 65 \%$ isolated yield, colorless oil. $\mathrm{Rf}=0.5$ ($\mathrm{PE} / \mathrm{EtOAc}=20: 1$), using PE/EtOAc $=50: 1-$ 30:1 as eluent.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.52(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.38(\mathrm{~m}, 4 \mathrm{H})$, 1.33 (dd, $J=8.7,5.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.24 (s, 12H), 0.77 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 82.9,45.2,32.6,31.6,26.7,24.8,23.8$. The signal of the α-Bcarbon was not observed.

All data matched that reported in the literature ${ }^{1}$.

2x

4,4,5,5-tetramethyl-2-(2-(naphthalen-1-yl)ethyl)-1,3,2-dioxaborolane (2x)

$93.8 \mathrm{mg}, 66 \%$ isolated yield, colorless oil. $\mathrm{Rf}=0.5(\mathrm{PE} / \mathrm{EtOAc}=20: 1)$, the product is not stable in silica gel, purified by using $\mathrm{PE} / \mathrm{EtOAc}=50: 1$ (with $5 \% \mathrm{Et}_{3} \mathrm{~N}$) as eluent quickly.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13-8.06(\mathrm{~m}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dt}, J=$ $6.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 3.28-3.11(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.27$ (m, 2H), 1.25 (s, 12H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 140.5,133.8,131.8,128.7,126.3,125.6,125.6,125.3,125.0$, 124.0, 83.2, 27.0, 24.9. The signal of the α-B-carbon was not observed.

All data matched that reported in the literature ${ }^{16}$.

2y
4,4,5,5-tetramethyl-2-(6-methylhept-5-en-2-yl)-1,3,2-dioxaborolane (2y)
$90.7 \mathrm{mg}, 76 \%$ isolated yield, colorless oil. $\mathrm{Rf}=0.6(\mathrm{PE} / \mathrm{EtOAc}=10: 1)$, using $\mathrm{PE} / \mathrm{EtOAc}=$ 40:1-30:1 as eluent.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.12$ (tdd, $\mathrm{J}=7.2,2.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.98 ($\mathrm{q}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.67 (d, J = $1.4 \mathrm{~Hz}, 3 \mathrm{H}$), $1.49(\mathrm{dt}, \mathrm{J}=13.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 12 \mathrm{H}), 1.09-$ 0.92 (m, 4H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 131.1,125.0,82.8,33.4,27.5,25.7,24.8,24.7,17.6,15.5$. The signal of the α-B-carbon was not observed.
All data matched that reported in the literature ${ }^{15}$.

$2 z$

4,4,5,5-tetramethyl-2-(tetrahydro-2H-pyran-4-yl)-1,3,2-dioxaborolane (2z)

$68.0 \mathrm{mg}, 32 \%$ isolated yield, colorless oil. $\mathrm{Rf}=0.5(\mathrm{PE} / \mathrm{EtOAc}=10: 1)$, using $\mathrm{PE} / \mathrm{EtOAc}=$ 40:1-30:1 as eluent.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3) $\delta 3.83$ (dt, J = $11.2,4.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.47 (ddd, $\mathrm{J}=11.2,7.1,5.5 \mathrm{~Hz}$, 2H), $1.67-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{~s}, 13 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 83.1,68.8,27.6,24.8$. The signal of the α-B-carbon was not observed.
All data matched that reported in the literature ${ }^{1}$.

2aa

4,4,5,5-tetramethyl-2-(2-(thiophen-2-yl)ethyl)-1,3,2-dioxaborolane (2aa)

$90.3 \mathrm{mg}, 76 \%$ isolated yield, colorless oil. 0.4 equiv TBAF (1 M in THF) was added. $\mathrm{Rf}=0.6$ ($\mathrm{PE} / \mathrm{EtOAc}=20: 1$), using $\mathrm{PE} / \mathrm{EtOAc}=10: 1$ as eluent.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.08$ (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.89 (dd, $\left.J=5.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.80(\mathrm{~d}, J$ $=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 15 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.8,126.6,123.4,122.6,83.2,24.8,24.4$. The signal of the α-B-carbon was not observed.
All data matched that reported in the literature ${ }^{16}$.

2-((3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2ab)
$146.2 \mathrm{mg}, 59 \%$ isolated yield, white solid. $\mathrm{Rf}=0.6(\mathrm{PE} / \mathrm{EtOAc}=20: 1)$, using $\mathrm{PE} / \mathrm{EtOAc}=$ 50:1 as eluent.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.40-5.22(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{t}, \mathrm{J}=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-0.76(\mathrm{~m}$, 52 H), 0.67 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 118.7,83.0,57.0,56.3,50.7,42.5,41.1,40.0,39.7,37.5,36.4$, 36.0, 34.0, 32.1, 32.0, 28.4, 28.2, 24.9, 24.9, 24.5, 24.2, 24.0, 23.0, 22.7, 20.9, 19.7, 18.9,
12.0. The signal of the α-B-carbon was not observed.

All data matched that reported in the literature ${ }^{11}$.

5. Mechanistic studies

5.1 Radical clock reaction

(1)

TTMSS (1.1 equiv)
AIBN (1.1 equiv), DMA, $80^{\circ} \mathrm{C}$
then pinacol (4.0 equiv)
$\mathrm{Et}_{3} \mathrm{~N}(1.5 \mathrm{~mL})$

2ac, 53\%

The reaction was carried out according to General procedure for alkyl bromides using (bromomethyl)cyclopropane 1ac (0.5 mmol) as substrate. Water was added to the reaction mixture and the aqueous layer was extracted with EtOAc (3x). If phase separation was slow, brine was added. The organic phases were combined and washed with 100 mL of saturated brine, the organic phase was dried over anhydrous sodium sulfate and filtered, and then concentrated under reduced pressure, then added 1,1,2,2-tetrachloroethane $(28.0 \mathrm{mg})$ as an internal standard, and $\mathrm{CDCl}_{3}(5 \mathrm{~mL})$ was added to the mixture, the yield of compound was tested by ${ }^{1} \mathrm{H}$ NMR (400 MHz) according to the ratio of the area of the signals $\delta 4.89$ (d, 1H, terminal) and $\delta 4.98\left(\mathrm{~d}, 1 \mathrm{H}\right.$, terminal) ${ }^{17}$ with the signal of $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{4}$ (28.0 mg added, signal in $\delta 5.96,2 \mathrm{H}$).
2ac: 1.59*28.0 / 167.84 / $0.5=53 \%$ (NMR yield).

(2)

> TTMSS (1.1 equiv)
> AIBN (1.1 equiv), DMA, $80^{\circ} \mathrm{C}$
> then pinacol (4.0 equiv)
> $E t_{3} \mathrm{~N}(1.5 \mathrm{~mL})$
> 2ad, 23\%

The reaction was carried out according to General procedure for alkyl bromides using 6 -bromo-1-hexene 1 ad (0.5 mmol) as substrate. Water was added to the reaction mixture and the aqueous layer was extracted with EtOAc (3x). If phase separation was slow, brine was added. The organic phases were combined and washed with 100 mL of saturated brine, the organic phase was dried over anhydrous sodium sulfate and filtered, and then concentrated under reduced pressure, added 1,1,2,2-tetrachloroethane (27.5 mg) as an internal standard, and $\mathrm{CDCl}_{3}(5 \mathrm{~mL})$ was added to the mixture, then the yield of compound was tested by ${ }^{1} \mathrm{H}$ NMR (400 MHz) according to the ratio of the area of the signals δ 4.92$5.03\left(\mathrm{~m}, 2 \mathrm{H}\right.$, terminal) and $\delta 1.76-2.03\left(\mathrm{tt}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ connect to Boron atom) ${ }^{15}$ with the signal of $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{4}(27.5 \mathrm{mg}$ added, signal in $\delta 5.96,2 \mathrm{H}$).
2ad: 0.69*27.5 /167.84 / $0.5=23 \%$ (NMR yield);
2ae: $0.76 * 27.5 / 167.84 / 0.5=25 \%$ (NMR yield).

5.2 Reaction with TEMPO

In a glovebox under nitrogen atmosphere, sequentially added B_{2} cat 2 ($0.75 \mathrm{mmol}, 1.5$ equiv, 178 mg), AIBN ($0.55 \mathrm{mmol}, 1.1$ equiv, 90 mg), 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO, 1.0 mmol 2.0 equiv, 156 mg) and 3 mL DMA to a 10 mL Schlenk tube with a stir bar, followed by TTMSS ($0.55 \mathrm{~mol}, 1.1$ equiv, $170 \mu \mathrm{~L}$) and alkyl bromide (0.5 mmol). The capped Schlenk tube was removed from the glovebox, and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 6 hours. After cooling to room temperature, pinacol ($236 \mathrm{mg}, 4.0$ equiv) and 1.5 mL triethylamine were added, and the mixture was stirred at room temperature for 1 hour. Then the reaction mixture was tested by GC-MS using ethyl acetate as solvent, it showed that only trace product was formed.

6. DFT computational data

All density functional theory (DFT) calculations were performed with Gaussian 09w and supported by National Supercomputing Center in Shenzhen. All geometry optimizations and vibrational frequency analysis were computed at the B3LYP (or uB3LYP for open shell systems) level of theory with $6-31+G(d)$ basis set. Based on the gas phase optimized structures, the single point (SP) energies were calculated with the M062X (or uM062X for open shell systems) functional and a basis set of $6-311+G(d, p)$, and solvent energy corrections were calculated using the SMD model with DMA as the solvent.

6.1 Table of energies and lowest frequencies

Figure 1 Gibbs free energy profiles for C-B bond formation via radical pathway

In Table 2, the energies are in unit of Hartree (1 Hartree $=627.5 \mathrm{kcal} / \mathrm{mol}=2625 \mathrm{~kJ} / \mathrm{mol}$), and the lowest frequencies are in unit of cm^{-1}. A 'negative frequency' means imaginary frequency, e.g. - 173.53 means $173.53 \mathrm{i} \mathrm{cm}^{-1}$.

Table 2 Energies and lowest frequencies

Structures	SP energy	TCG	G	G in kcal/mol	Lowest frequency
CN	-210.6992963	0.057569	-210.6417273	-132179.7903	75.56
$(\mathrm{TMS})_{3} \mathrm{SiH}$	-1517.75729	0.289596	-1517.467694	-952226.1528	14.47
iPrCN	-211.350263	0.074116	-211.276147	-132577.895	187.40
$(\mathrm{TMS})_{3} \mathrm{Si}^{\circ}$	-1517.1248	0.281236	-1516.843564	-951834.5046	23.76
$\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{Br}$	-2889.204582	0.199184	-2889.005398	-1812879.777	44.03
$(\mathrm{TMS}){ }_{3} \mathrm{Br}$	-4091.397098	0.282362	-4091.114736	-2567215.408	36.78
$\mathrm{C}_{8} \mathrm{H}_{17}$	-314.9527579	0.193362	-314.7593959	-197514.6685	53.42
B2cat 2	-812.8026806	0.146077	-812.6566036	-509950.1453	22.80
INT1	-1127.775414	0.362219	-1127.413195	-707463.0542	11.55
DMA	-287.7914783	0.097299	-287.6941793	-180530.9744	17.56
$\mathrm{C}_{8} \mathrm{H}_{17}$ Bcat	-721.4421258	0.282104	-721.1600218	-452535.1253	17.19
	-694.1673684	0.181922	-693.9854464	-435482.8075	15.54
TS1	-1127.763086	0.361173	-1127.401913	-707455.9743	-150.38
TS2	-1127.760349	0.360827	-1127.399522	-707454.4739	-92.72

6.2 Cartesian coordinates of the structures

02

C	0.30954400	-0.00001500	-0.00003100
C	1.06586900	-1.29782300	0.00000300
H	0.39961200	-2.16410700	-0.00038400
H	1.72041300	-1.36367200	-0.88182200
C	1.71982800	-1.36400500	0.88223400
H	1.06546600	1.29803900	-0.00000100
H	1.72021600	1.36397400	-0.88166400
H	0.39893600	2.16411400	-0.00067100
C	1.71918600	1.36457000	0.88238600
N	-1.08320100	-0.00025700	0.00002300

(TMS) ${ }_{3} \mathrm{SiH}$
01
Si
H
Si
Si
Si
C
H
H
H
C
H
H
H
C
H
H
H
C
H
H

H

-0.00041500	0.00055200	0.66846300
-0.00122300	0.00086500	2.17289600
1.03062800	2.04426300	0.02824200
-2.28681400	-0.12938500	0.02863500
1.25515500	-1.91425300	0.02841000
-0.13738700	3.52079300	0.30977400
0.37530100	4.46073400	0.06320700
-1.03505400	3.46018800	-0.31758600
-0.46382100	3.58516700	1.35491900
2.59860000	2.33308500	1.06678600
3.33565300	1.53307100	0.92948900
3.07704000	3.28027000	0.78203100
2.36304700	2.38781200	2.13679500
1.51486800	2.01283700	-1.81282000
0.64635600	1.84237600	-2.46082400
1.96323200	2.97191500	-2.10561500
2.24931900	1.22688900	-2.02781600
-3.31821300	1.08064600	1.07278100
-2.98757800	2.11780500	0.94211500
-4.37751400	1.02825700	0.78606800
-3.25007900	0.84265800	2.14144400
-2.50694000	0.30813700	-1.81133100
-3.56065500	0.20447500	-2.10388200
-2.20718000	1.34153900	-2.02532700
-1.91741100	-0.35042200	-2.46117700

C	-2.97676200	-1.88174600	0.30758300
H	-2.86400800	-2.19970100	1.35126300
H	-4.04814800	-1.90982000	0.06591700
H	-2.47642500	-2.62573100	-0.32425800
C	0.99642800	-2.31127600	-1.81547700
H	1.59482300	-3.18624300	-2.10342900
H	-0.05262500	-2.54073200	-2.03982900
H	1.29948200	-1.47697800	-2.46013000
C	0.71435000	-3.41954600	1.05846300
H	1.30198700	-4.30485100	0.77892900
H	0.86632800	-3.24409300	2.13055800
H	-0.34439100	-3.66137900	0.90833000
C	3.11677300	-1.64441200	0.32221600
H	3.51852600	-0.83674200	-0.30147200
H	3.33060500	-1.39582000	1.36895000
H	3.67437100	-2.55910000	0.07808100

iPrCN
01

C

-0.35740100	-0.00002200	0.39993400
-0.44534900	-0.00002600	1.49526500
-1.02347100	-1.28061800	-0.14401500
-0.55342800	-2.17976900	0.26649200
-2.08376000	-1.28698500	0.13166300
-0.95069400	-1.32284300	-1.23613900
-1.02258600	1.28111000	-0.14392800
-2.08289400	1.28826100	0.13166900
-0.55192500	2.17990000	0.26666300
-0.94971900	1.32337400	-1.23604400
1.08422800	-0.00062100	0.09679300
2.21902100	-0.00014400	-0.15318200

$(\mathrm{TMS})_{3} \mathrm{Si}^{\circ}$

02

0.00000000	0.00000000	0.31169600
0.00000000	2.34475400	0.01882400
-2.03061700	-1.17237700	0.01882400
2.03061700	-1.17237700	0.01882400
-1.74694400	3.04594800	0.29332000
-1.73488800	4.13814800	0.17490200
-2.46871700	2.64419900	-0.42796400
-2.11947800	2.82547300	1.30075000

C	1.17381000	3.17181200	1.26739300
H	2.20933900	2.83553600	1.13929000
H	1.15973100	4.26277700	1.13661000
H	0.87827800	2.95494200	2.30103600
C	0.56462300	2.83000300	-1.73509400
H	-0.09918000	2.41515000	-2.50317500
H	0.56392600	3.92349100	-1.84607900
H	1.58068900	2.47588600	-1.94719100
C	-3.33377500	-0.56935600	1.26739300
H	-3.56031600	0.49557500	1.13929000
H	-4.27153900	-1.12703200	1.13661000
H	-2.99819400	-0.71686000	2.30103600
C	-2.73316600	-0.92602400	-1.73509400
H	-3.67980600	-1.47337200	-1.84607900
H	-2.93452500	0.13097400	-1.94719100
H	-2.04199100	-1.29346800	-2.50317500
C	-1.38719300	-3.24825800	1.30075000
H	-2.71629700	-3.57153100	0.17490200
H	-1.05558500	-3.46007100	-0.42796400
H	2.16854300	-1.90397900	-1.73509400
C	3.11588000	-2.45012000	-1.84607900
H	1.35383600	-2.60686000	-1.94719100
H	2.14117200	-1.12168200	-2.50317500
H	2.15996400	-2.60245500	1.26739300
H	3.11180800	-3.13574500	1.13661000
H	2.11991600	-2.23808300	2.30103600
H	1.35097700	-3.33111200	1.13929000
H	3.51134100	-0.01007600	0.29332000
H	3.52430200	0.81587200	-0.42796400
H	-3.03587200	0.29332000	
H	-0.56661700	0.17490200	
H			
H			

$\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{Br}$

01

C
H
H
H
C
H
H
C

6.54608300	-0.52897000	-0.00000300
6.55630000	-1.17774200	0.88541000
7.47813600	0.04898800	0.00000200
6.55629900	-1.17772600	-0.88542800
5.31748300	0.38858200	0.00000600
5.35372500	1.04884100	0.87896900
5.35372500	1.04885600	-0.87894700
3.98914500	-0.37974700	-0.00000200

H	3.95461200	-1.04118500	0.87929500
H	3.95461700	-1.04117800	-0.87930400
C	2.75087000	0.52698500	-0.00000200
H	2.78366300	1.18765900	-0.87974600
H	2.78366600	1.18765800	0.87974200
C	1.43027400	-0.25369600	0.00000200
H	1.39971800	-0.91469700	0.87915700
H	1.39969400	-0.91466100	-0.87918000
C	0.18397200	0.64079500	0.00003700
H	0.20796700	1.30003400	-0.88040700
H	0.20794400	1.29994200	0.88055100
C	-1.12462000	-0.16913400	-0.00002900
H	-1.16016500	-0.82260800	0.88095800
H	-1.16011400	-0.82255700	-0.88105700
C	-2.32883500	0.75354100	-0.00003800
H	-2.36085400	1.38625100	-0.88894200
H	-2.36083600	1.38628400	0.88884500
Br	-4.04383800	-0.22435100	0.00000700

$(\mathrm{TMS})_{3} \mathrm{SiBr}$
01
Si
Si
Si
Si

C
H
H
H
C
H
H
H
C
H
H
H
C
H
H
H
C
H

0.00000000	0.00000000	0.04234400
-0.86606000	2.13769000	-0.56114400
-1.41826400	-1.81887500	-0.56114400
2.28432400	-0.31881500	-0.56114400
-2.72640700	2.22246100	-0.21717300
-3.10397300	3.23095500	-0.41957500
-3.29633700	1.53092400	-0.84427600
-2.95634500	1.99091000	0.82646200
0.00000000	3.49030700	0.43834300
1.07409800	3.52989900	0.23872300
-0.41757100	4.47267700	0.19099500
-0.12809300	3.33763200	1.51314200
-0.56787000	2.43657700	-2.41133000
-1.02796100	1.66678800	-3.03750600
-0.99533600	3.39880400	-2.71429900
0.49792100	2.46606400	-2.65590600
-3.02269500	-1.74515300	0.43834300
-3.59403100	-0.83475300	0.23872300
-3.66466600	-2.59796600	0.19099500
-2.82642800	-1.77974800	1.51314200
-1.82620300	-1.71007800	-2.41133000
-2.44578300	-2.56138800	-2.71429900

H	-2.38463500	-0.80182000	-2.65590600
H	-0.92950000	-1.72363400	-3.03750600
C	-0.56150400	-3.47236800	-0.21717300
H	-0.24600600	-3.55572500	0.82646200
H	-1.24610300	-4.30359700	-0.41957500
H	0.32234900	-3.62017400	-0.84427600
C	2.39407300	-0.72649900	-2.41133000
H	3.44111900	-0.83741600	-2.71429900
H	1.88671400	-1.66424400	-2.65590600
H	1.95746100	0.05684600	-3.03750600
C	3.02269400	-1.74515400	0.43834300
H	4.08223700	-1.87471100	0.19099500
H	2.95452100	-1.55788400	1.51314200
H	2.51993300	-2.69514600	0.23872300
C	3.28791100	1.24990700	-0.21717300
H	2.97398800	2.08925000	-0.84427600
H	3.20235100	1.56481500	0.82646200
H	4.35007600	1.07264200	-0.41957500
Br	0.00000000	0.00000000	2.37442400

$\mathrm{C}_{8} \mathrm{H}_{17}$

02
C
H
H
H
C
H
H
C
H
H
C
H
H
C
H
H
C
H
H
C

-4.42789900	0.26576700	-0.00000700
-4.49625100	0.91115100	0.88552400
-5.30484700	-0.39315500	-0.00001000
-4.49624500	0.91115300	-0.88553700
-3.12233000	-0.53857800	-0.00000200
-3.10020000	-1.19961300	0.87903400
-3.10019300	-1.19961000	-0.87903900
-1.86599700	0.34338800	0.00000500
-1.88902100	1.00536500	0.87955900
-1.88901400	1.00536800	-0.87954600
-0.55404100	-0.45365400	0.00000600
-0.53208000	-1.11536800	-0.87949200
-0.53208100	-1.11536600	0.87950700
0.70175700	0.42932500	0.00000500
0.68070100	1.09092700	0.87966300
0.68069700	1.09092900	-0.87965100
2.01137700	-0.37116600	0.00000100
2.04269200	-1.02981200	-0.87975400
2.04269700	-1.02981300	0.87975500
3.27428900	0.53209600	-0.00000200

H	3.22695800	1.18737800	0.88242000
H	3.22695300	1.18737900	-0.88242300
C	4.55719200	-0.23023500	-0.00000600
H	4.99657500	-0.58428800	-0.92861800
H	4.99657900	-0.58429000	0.92860400

$\mathrm{B}_{2} \mathrm{Cat}_{2}$
01
C
C
C
C
C
C
H
H
H
H
0
O
B
B
C
C
C
C
C
C
H
H
H
H
0
$0 \quad-1.63533500 \quad 1.14387500 \quad-0.00054100$

INT 1

02

C	-2.89003600	-3.39902900	1.56780800
C	-2.35758100	-2.48242700	0.64787100
C	-2.86844700	-2.38868800	-0.68480700
C	-3.92117600	-3.20891800	-1.11953600
C	-4.43770000	-4.11234300	-0.19978900

-3.92966300	-4.20589400	1.124184
-2.49682400	-3.46080000	2.57725300
-4.30272000	-3.12888200	-2.
-5.25299400	-4.76679600	-0.49507700
-4.37112400	-4.92901000	1.80420500
-2.21921600	-1.46609900	-1.
-1.37789600	-1.62090000	0.83126600
-1.17489300	-0.84220100	-0.45157600
-1.60637500	0.82628600	-0.21076200
-1.62689600	4.33316	00
-2.37772300	5.29305400	-0.22805800
-3.20805100	4.93399500	0.843126
-3.32416400	3.59936100	1.26388000
-2.57872100	2.66340400	0.5656
-1.75204300	3.02090600	-0.49976300
-0.98037700	4.59971100	-1.75583800
-2.31188200	6.33572600	-0.52628000
-3.77434200	5.70339200	1.36064700
-3.96314100	3.31049500	2.
-2.49626500	1.29856900	0.
-1.13907800	1.88555500	-0.99073400
1.46114700	-0.55582500	-0.15112200
1.34407100	0.52384700	0.02277800
1.38909300	-1.0358680	0.
0.32526000	-1.0588490	-1.0542
0.37198100	-0.55587600	-2.03037100
0.45409000	-2.13620100	-1.24789900
2.85949100	-0.81547400	-0.73398000
2.98408500	-1.89530100	-0.90785900
2.93325100	-0.33664300	-1.7222490
4.00018700	-0.31160000	0.161
3.87702100	0.76890800	0.33164300
3.92047900	-0.78662100	1.15
5.39796100	-0.57698500	-0.4147880
5.52016800	-1.65750300	-0.5864410
5.47880600	-0.10069800	-1.4039290
6.53877100	-0.07630300	0.4819
6.41836300	1.00454300	0.6531
6.45806800	-0.55167200	1.47172600
7.93710600	-0.34294000	-0.09213200
8.05833100	-1.42287300	-0.26236900
8.01922200	0.13241800	-1.08064900
9.06982600	0.16029200	0.81086
9.03569200	-0.32277400	1.79

H	10.05404000	-0.04618000	0.37287100
H	8.99733800	1.24384300	0.97146900

DMA

01

C	-0.72853200	0.29184900	0.00012300
O	-1.06870300	1.47529500	-0.00037600
C	-1.78139700	-0.81075100	0.00006200
H	-1.70643300	-1.45145700	-0.88650500
H	-1.70705900	-1.45095900	0.88704300
H	-2.75778000	-0.32435500	-0.00040400
N	0.59511200	-0.08203800	0.00100000
C	1.08118700	-1.45235100	-0.00038700
H	1.69691800	-1.64052400	-0.89137500
H	1.70341700	-1.63943500	0.88623000
H	0.25869400	-2.16582500	0.00319200
C	1.63045700	0.94326000	-0.00002100
H	2.26409000	0.84539000	-0.89208300
H	1.15459700	1.92325500	0.00158400
H	2.26710400	0.84377500	0.88966700

$\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{Bcat}$

01

C	-3.66045700	0.69533900	-0.05058900
C	-4.16007400	-0.60394100	0.04794400
C	-5.51796900	-0.86480900	0.12547400
C	-6.37306300	0.24915700	0.09946400
C	-5.87090300	1.55390900	0.00015000
C	-4.49077800	1.80311900	-0.07726100
H	-5.89610400	-1.87937300	0.20196400
H	-7.44669900	0.09336500	0.15729400
H	-6.56181700	2.39212000	-0.01765800
H	-4.09063000	2.80916100	-0.15435600
O	-2.28131700	0.64198300	-0.11052800
O	-3.10318500	-1.49221700	0.05193200
B	-1.94950800	-0.71144000	-0.04941500
C	-0.49702300	-1.29033900	-0.10337300
H	-0.39615700	-2.05835800	0.67907900
H	-0.39008500	-1.84678700	-1.04953000
C	0.63813900	-0.25654500	0.01792300
H	0.54494700	0.27896900	0.97350800
H	0.52425100	0.50660200	-0.76437300

C	2.03772700	-0.87888300	-0.07919600
H	2.14854700	-1.64654500	0.70213300
H	2.13221800	-1.40768400	-1.04027800
C	3.17431400	0.14432300	0.05011300
H	3.08229000	0.66808100	1.01388100
H	3.05828900	0.91501300	-0.72716200
C	4.57484000	-0.47480800	-0.05743500
H	4.66710400	-0.99716600	-1.02201200
H	4.69104400	-1.24646800	0.71896100
C	5.71118000	0.54868800	0.07307500
H	5.62111500	1.07019500	1.03843900
H	5.59453200	1.32163900	-0.70212600
C	7.11238600	-0.06810300	-0.03768000
H	7.20291200	-0.58980400	-1.00176900
H	7.23093800	-0.83869600	0.73816500
C	8.24035200	0.96276700	0.09104700
H	8.19789100	1.47838200	1.05923300
H	9.22670100	0.49027000	0.00847000
H	8.17025100	1.72690800	-0.69394500

02

C	-2.40231000	1.17847200	1.54003300
H	-1.95440800	0.91771700	2.50415100
H	-1.79267800	1.98613600	1.09715500
H	-3.40178400	1.57696800	1.74041100
C	-2.46543400	-0.05163900	0.68710700
N	-3.03025000	-0.01651600	-0.59531400
C	-3.32806600	-1.31772600	-1.20121500
H	-4.25341900	-1.75502700	-0.78774100
H	-3.44945500	-1.19018000	-2.28170500
H	-2.50587700	-2.00982000	-1.01777500
C	-4.08322600	0.96445000	-0.82844100
H	-3.74108900	1.96697200	-0.56305300
H	-4.32891600	0.96321200	-1.89469600
H	-5.00530900	0.73862700	-0.26273300
O	-1.34831200	-0.90318900	0.75574900
B	-0.07900500	-0.54650700	0.46126300
O	0.97281800	-1.46260300	0.52785500
O	0.36959100	0.72215000	0.08135100
C	2.09658800	-0.74237600	0.17703900

C	1.73403300	0.57972800	-0.09395200
C	3.40755800	-1.17558200	0.08175600
C	2.66169500	1.53321000	-0.47414400
C	4.36154700	-0.21786000	-0.30333100
H	3.67878600	-2.20468000	0.29504100
C	3.99724300	1.10658900	-0.57533400
H	2.36747100	2.55689800	-0.68322700
H	5.40296700	-0.51468200	-0.39075800
H	4.75994800	1.82153600	-0.87093500

TS1
02

C
C
C
C
C
C

H
H
H
H
0
0
B
B
C
C
C
C
C
C
H
H
H
H
O
0
C
H
H
C
H

-3.07070900	-3.47865700	1.50068700
-2.87622300	-2.31294800	0.77309300
-3.48620500	-2.10685800	-0.47055300
-4.31968500	-3.05677500	-1.04444300
-4.52421600	-4.23810000	-0.31631500
-3.91274200	-4.44460300	0.93006600
-2.59504400	-3.62678100	2.46514400
-4.78903400	-2.88532900	-2.00810300
-5.17072300	-5.00857800	-0.72716900
-4.09484800	-5.37191300	1.46614300
-3.12543500	-0.87768400	-0.95463500
-2.12004900	-1.21697000	1.09456500
-2.22326800	-0.33570900	-0.00826900
-1.80703200	1.29656000	0.05434000
-1.43232900	4.63235500	-1.18149000
-0.87478700	5.69909600	-0.45889900
-0.40433100	5.52883300	0.85125600
-0.47082000	4.28402500	1.49690800
-1.02238800	3.24021900	0.77156700
-1.48996100	3.40946500	-0.53251200
-1.80151400	4.75343500	-2.19499400
-0.80862100	6.67749200	-0.92656000
0.01972800	6.37763900	1.38041300
-0.11234700	4.14077100	2.51137100
-1.21299800	1.92715600	1.14898000
-1.97939000	2.20490500	-0.99274100
0.95162400	-0.48853300	-0.24864600
1.08605900	0.59739300	-0.16041200
0.81469500	-0.87625700	0.76949700
-0.25349600	-0.80291000	-1.08168400
-0.41453400	-0.23824000	-1.99895900

H	-0.56741600	-1.84558800	-1.13554500
C	2.24672300	-1.09874300	-0.84454400
H	2.13172800	-2.18957600	-0.91765900
H	2.38267800	-0.73084900	-1.87146400
C	3.49274600	-0.76618700	-0.01060500
H	3.34635800	-1.12571400	1.01891300
H	3.59995000	0.32667600	0.05900400
C	4.78499000	-1.36766000	-0.58039700
H	4.68009700	-2.46150900	-0.64286200
H	4.92512000	-1.01477700	-1.61347800
C	6.03362700	-1.02516100	0.24441200
H	5.89394900	-1.37629400	1.27832500
H	6.13877900	0.06890700	0.30603000
C	7.32841500	-1.62491400	-0.32107900
H	7.22513800	-2.71836800	-0.38004700
H	7.46790500	-1.27538500	-1.35458900
C	8.57017900	-1.27428900	0.50749600
H	8.47597800	-1.64075300	1.53795300
H	9.47668800	-1.71780900	0.07810800
H	8.72123600	-0.18804600	0.55533200

TS2
02

-3.06723500	-3.27142400	1.52701400
-2.34544400	-2.62837500	0.53409500
-2.92181900	-2.27690300	-0.68931800
-4.24870600	-2.54976600	-0.98169800
-4.98984400	-3.20493200	0.01428600
-4.41148000	-3.55804700	1.24189400
-2.61019000	-3.53764900	2.47488200
-4.68607700	-2.27020400	-1.93505400
-6.03354800	-3.44246900	-0.17198600
-5.01514500	-4.06392800	1.99031500
-1.97640900	-1.65353700	-1.47180500
-1.02719400	-2.23556600	0.54315400
-0.79970700	-1.60967200	-0.69468600
-1.40800800	0.82109200	-0.01772100
-1.73044700	4.28460500	-0.73035900
-2.73677600	5.11588900	-0.21264000
-3.72131200	4.62108300	0.65428800
-3.74524600	3.27233700	1.04395100
-2.74735600	2.46603600	0.52478600
-1.76779300	2.95823600	-0.33682800

H	-0.96365600	4.65619400	-1.40242100
H	-2.75085500	6.16546900	-0.49229500
H	-4.48430900	5.29437900	1.03447900
H	-4.50247900	2.87785000	1.71371700
0	-2.52383300	1.10788200	0.73471300
0	-0.91016500	1.91779500	-0.68661400
C	1.72594800	-1.01423100	-0.23691000
H	1.45475600	-0.13339400	0.36312600
H	1.77810900	-1.85503800	0.46847600
C	0.62347400	-1.28508600	-1.27663400
H	0.55911300	-0.45281000	-1.99071700
H	0.91048500	-2.16159600	-1.88463400
C	3.10900800	-0.78762600	-0.86273700
H	3.38054600	-1.66584900	-1.46869700
H	3.05554100	0.06071400	-1.56204400
C	4.21243100	-0.52544200	0.17146600
H	3.93949800	0.35139700	0.77837800
H	4.26291500	-1.37493800	0.86965600
C	5.59789400	-0.29869000	-0.44939600
H	5.86826700	-1.17230000	-1.06217900
H	5.55006200	0.55582500	-1.14166600
C	6.70165100	-0.04823300	0.58751600
H	6.43107600	0.82392200	1.20250000
H	6.75106500	-0.90386300	1.27844900
C	8.08797700	0.18160800	-0.03007100
H	8.35898100	-0.68894800	-0.64533200
H	8.03999200	1.03821400	-0.71841600
C	9.18311900	0.42799700	1.01480800
H	9.28015300	-0.42722400	1.69611000
H	10.15962800	0.58980500	0.54225800
H	8.95718300	1.31250600	1.62446900

6.3 IRC analysis for TS1 and TS2

To further identify the reasonability of the reaction pathway, the IRC analysis of TS1 and TS2 were conducted. These IRC analyses were taken using the local quadratic approximation (LQA) method under uB3LYP/6-31+G(d), the same basis set with the structure optimization and frequency analysis. For each transition state, 50 points were examined in each direction with step size of 10 (in unit of 0.01 Bohr).

Figure 2 IRC analysis for TS1 (10 points SG smooth)

Figure 3 IRC analysis for TS2 (10 points SG smooth)

In Figure 2, IRC analysis clearly gives us the information of the reaction pathway. Along with the formation of C-B bond, the total energy decreases after a small energy barrier, and $\mathrm{B}-\mathrm{B}$ bond remains almost unchanged, which leads to INT1. In Figure 3, when C-B bond is established, the bond length remains almost unchanged, then the cleavage of B B bond happened, gave the $\mathrm{C}_{8} \mathrm{H}_{17}$ Bcat product, and Bcat radical, which is then stabilized by DMA.

These results strongly identified the reasonability of the reaction pathway and the structure of TS1 and TS2.

The energies, length of the C-B bond formed in the reaction and the length of $B-B$ bond broken in the reaction are shown in Table 3.

Table 3 Comparison of bond length

Structure	B-B bond length (A)	C-B bond length (A)
$\cdot \mathrm{C}_{8} \mathrm{H}_{17}+\mathrm{B}_{2}$ Cat $_{2}$	1.687	none
Step -50 of TS1	1.684	3.212
Step -40 of TS1	1.684	3.182
Step -30 of TS1	1.684	3.092
Step -20 of TS1	1.684	2.896
Step -10 of TS1	1.683	2.654
TS1	1.686	2.291
Step 10 of TS1	1.715	1.767
Step 20 of TS1	1.723	1.661
Step 30 of TS1	1.722	1.666
Step 40 of TS1	1.725	1.661
Step 50 of TS1	1.727	1.657
INT1	1.740	1.650
Step -50 of TS2	1.745	1.620
Step -40 of TS2	1.745	1.618
Step -30 of TS2	1.748	1.616
Step -20 of TS2	1.773	1.613
Step -10 of TS2	1.923	1.623
TS2	2.596	1.571
Step 10 of TS2	3.024	1.566
Step 20 of TS2	3.310	1.565
Step 30 of TS2	3.481	1.565
Step 40 of TS2	3.501	1.565
Step 50 of TS2	3.491	TSne
C8H17Bcat		

7. X-Ray crystallographic data

Figure 4 X-Ray crystallographic data for 2ab. Compound 2ab crystallizes with four formula units in the asymmetric unit, both formula units exhibit similar bond metrics.

Table 4 Crystal data and structure refinement for 2ab

8. NMR charts

$\stackrel{\text { ®o }}{ }$	\cdots
¢ ¢ ¢	N
$1 /$	V

$\underbrace{20}_{2 d}$

®领帯
$\stackrel{\circ}{\text { Ni }} \stackrel{\infty}{\infty} \stackrel{\infty}{\infty} \stackrel{\sim}{\dot{\infty}}$

$\stackrel{\text { con }}{\stackrel{\infty}{0}}$
$\underset{\sim}{\infty}$
$\stackrel{\sim}{\infty}$
2g

[^0]
$$
110111
$$

Cles

ヘic

[^1]

1

115
83.08

77.35 CDCl 3
77.03 CDCL 3
76.71 CDCI 3
m
$\stackrel{1}{\infty}$
$\underset{\sim}{1}$

$\stackrel{+}{\sim}$ ̇ㅣㅇ
Bpin

(~)

2x

[^2]$60 \quad 55$

/ Sf
Bean

9. References

1. Liu, Q.; Hong, J.; Sun, B.; Bai, G.; Li, F.; Liu, G.; Yang, Y.; Mo, F., Transition-Metal-Free Borylation of Alkyl Iodides via a Radical Mechanism. Organic Letters 2019, 21 (17), 6597-6602.
2. Tomassi, S.; Pfahler, J.; Mautone, N.; Rovere, A.; Esposito, C.; Passeri, D.; Pellicciari, R.; Novellino, E.; Pannek, M.; Steegborn, C.; Paiardini, A.; Mai, A.; Rotili, D., From PARP1 to TNKS2 Inhibition: A Structure-Based Approach. ACS Medicinal Chemistry Letters 2020, 11 (5), 862-868.
3. Yang, Y.; Tsien, J.; Ben David, A.; Hughes, J. M. E.; Merchant, R. R.; Qin, T., Practical and Modular Construction of C(sp3)-Rich Alkyl Boron Compounds. Journal of the American Chemical Society 2021, 143 (1), 471-480.
4. Koshcheev, B. V.; Bredikhin, R. A.; Maksimov, A. M.; Platonov, V. E.; Andreev, R. V. J. O. C., Reactions of 4-substituted-1-[(difluoromethyl) sulfinyl] polyfluorobenzenes with phenolate anion. 2020, (part vi), 0-0.
5. Ma, H.-J.; Xie, R.-L.; Zhao, Q.-F.; Mei, X.-D.; Ning, J., Synthesis and Insecticidal Activity of Novel Carbamate Derivatives as Potential Dual-Binding Site Acetylcholinesterase Inhibitors. Journal of Agricultural and Food Chemistry 2010, 58 (24), 12817-12821.
6. Shimi, M.; Sankar, V.; Rahim, M. A.; Nitha, P.; Das, S.; Radhakrishnan, K.; Raghu, K. J. C. C., Novel glycoconjugated squaraine dyes for selective optical imaging of cancer cells. 2017, 53 (39), 5433-5436.
7. Moriya, T.; Yoneda, S.; Kawana, K.; Ikeda, R.; Konakahara, T.; Sakai, N., Indium(III)Catalyzed Reductive Bromination and Iodination of Carboxylic Acids to Alkyl Bromides and Iodides: Scope, Mechanism, and One-Pot Transformation to Alkyl Halides and Amine Derivatives. The Journal of Organic Chemistry 2013, 78 (21), 10642-10650.
8. Yi, J.; Liu, J.-H.; Liang, J.; Dai, J.-J.; Yang, C.-T.; Fu, Y.; Liu, L., Alkylboronic Esters from Palladium- and Nickel-Catalyzed Borylation of Primary and Secondary Alkyl Bromides. Advanced Synthesis \& Catalysis 2012, 354 (9), 1685-1691.
9. Liu, X.; Liu, B.; Liu, Q., Migratory Hydrogenation of Terminal Alkynes by Base/Cobalt Relay Catalysis. Angewandte Chemie International Edition 2020, 59 (17), 6750-6755.
10. Pilli, R.; Balakrishnan, V.; Chandrasekaran, R.; Rasappan, R., Iron-catalyzed protodehalogenation of alkyl and aryl halides using hydrosilanes. Organic \& Biomolecular Chemistry 2019, 17 (7), 1749-1753.
11. Friese, F. W.; Studer, A., Deoxygenative Borylation of Secondary and Tertiary Alcohols. Angewandte Chemie International Edition 2019, 58 (28), 9561-9564.
12. Zhang, L.; Wu, Z.-Q.; Jiao, L., Photoinduced Radical Borylation of Alkyl Bromides Catalyzed by 4-Phenylpyridine. Angewandte Chemie International Edition 2020, 59 (5), 2095-2099.
13. Wei, D.; Liu, T.-M.; Zhou, B.; Han, B., Decarboxylative Borylation of mCPBAActivated Aliphatic Acids. Organic Letters 2020, 22 (1), 234-238.
14. Yin, Q.; Kemper, S.; Klare, H. F. T.; Oestreich, M., Boron Lewis Acid-Catalyzed Hydroboration of Alkenes with Pinacolborane: BArF3 Does What B(C6F5)3 Cannot Do! Chemistry - A European Journal 2016, 22 (39), 13840-13844.
15. Cheng, Y.; Mück-Lichtenfeld, C.; Studer, A., Metal-Free Radical Borylation of Alkyl and Aryl Iodides. Angewandte Chemie International Edition 2018, 57 (51), 1683216836.
16. Liu, Y.; Zhou, Y. H.; Wang, H.; Qu, J. P., FeCl2-catalyzed hydroboration of aryl alkenes with bis(pinacolato) diboron. Rsc Adv 2015, 5 (90), 73705-73713.
17. Hu, D.; Wang, L.; Li, P., Decarboxylative Borylation of Aliphatic Esters under VisibleLight Photoredox Conditions. Organic Letters 2017, 19 (10), 2770-2773.

[^0]:

[^1]:

[^2]: $\begin{array}{llllllllllllllllll}150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65\end{array}$

