Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2021

Supporting Information for

Metal-Free C8–H Functionalization of Quinoline N-Oxides with Ynamides

Weican Hu, Feiyang Zhang, Chen Chen, Tianhang Qi, Yanlong Shen, Guoying Qian* and Zhouting Rong*

College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, People's Republic of China

Table of Contents

1. General Methods	2
2. Procedures for the preparation of terminal ynamides 1a-1	2
3. Procedures for the preparation of quinoline <i>N</i> -oxides 2b-k	3
4. Procedures for the preparation of 4a	3
5. Procedures for the C8-H functionalization of quinoline <i>N</i> -oxides	4
6. References	13
7. X-Ray crystal data of 3aa (CCDC 2061599)	14
8. ¹ H NMR and ¹³ C NMR Spectra	19

1. General Methods.

All reactions were carried out in solvents dried using a Solvent Purification System (SPS). Thin layer chromatography was carried out using TLC aluminum sheets coated with 0.2 mm of silica gel (Merck Gf234). Chromatographic purifications were carried out using flash grade silica gel (SDS Chromatogel 60 ACC, 40-60 μ m). NMR spectra were recorded at 23 °C on Bruker Avance 400 Ultrashield apparatus (400 MHz, CDCl₃ as solvent). Mass spectra were recorded on a Waters LCT Premier Spectrometer (ESI). Infrared spectra were recorded on a Nicolet AVATER FTIR330 spectrometer and are reported in reciprocal centimeter (cm⁻¹). Melting points were determined using a B üchi melting point apparatus.

2. Procedures for the preparation of terminal ynamides 1a-l.

Representative procedures—preparation of 1a: To a solution of triisopropylsilylacetylene **S1** (5 mL, 22.3 mmol) in acetone (20 mL) was added *N*-bromosuccinimide (4.36 g, 24.5 mmol) and silver nitrate (373.7 mg, 2.2 mmol) at 23 °C and the mixture was stirred at this temperature for 1 h. The precipitate was removed by filtration and the solvent was evaporated. The residue was dissolved in Et₂O (30 mL) and washed sequentially with water (3×30 mL) and brine (30 mL), dried over anhydrous Na₂SO₄. The solvent was evaporated and the residue was purified by flash column chromatography (100% hexane) to give **S2** (5.24 g, 90%).

To a solution of **S2** (2.0 g, 7.65 mmol) in toluene (20 mL) was added copper sulfate pentahydrate (191 mg, 0.77 mmol), 1,10-phenanthroline (276 mg, 1.53 mmol) and potassium phosphate (3.25 g, 15.3 mmol) under argon and the mixture was stirred at 80 °C for 24 h before it was diluted with EtOAc (30 mL). The mixture was washed sequentially with water (3×50 mL) and brine (50 mL), dried over anhydrous Na₂SO₄. The solvent was evaporated and the residue was purified by flash column chromatography (hexane/EtOAc=10/1) to give TIPS protected ynamide (2.38 g, 85%), which was dissolved in THF (30 mL) and tetrabutylammonium fluoride (7.8 mL, 1.0 M in THF, 7.8 mmol) was added dropwise at 0 °C. The reaction mixture was then stirred at 23 °C for 1 h before it was quenched with saturated aqueous NH₄Cl (15 mL). The aqueous layer was extracted with EtOAc (50 mL) and the combined organic layer was washed sequentially with water (2×80 mL) and brine (80 mL), dried over anhydrous Na₂SO₄. The solvent was evaporated and the residue was purified by flash column chromatography (hexane/EtOAc=10/1) to give **1a** (1.09 g, 80%). Substrates **1a-1** were synthesized using the same procedures, whose physical data have been reported in previous publications.¹

3. Procedures for the preparation of quinoline N-oxides 2b-k.

Representative procedures—preparation of 2b: To a stirred solution of 3methylquinoline (1.43 g, 10 mmol) in dichloromethane (30 mL) was added 3chloroperoxybenzoic acid (3.68 g, 75 wt%, 16 mmol) in portions over a period of 20 minutes at 0 $^{\circ}$ and the reaction mixture was allowed to stir at 23 $^{\circ}$ overnight. The reaction mixture was washed sequentially with saturated NaHCO₃ (5×30 mL) water (30 mL) and brine (30 mL). The organic layers were dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (EtOAc/MeOH=10/1) to give **2b** (1.24 g, 78%). Quinoline *N*-oxides **2b-k** were synthesized using the same procedures, whose physical data have been reported in previous publications.²

4. Procedures for the preparation of 4a.

To a solution of trimethylsilylacetylene (7.0 g, 71 mmol) in Et₂O (100 mL) was added *n*-BuLi (28.3 mL, 2.5 M in hexanes, 71 mmol) dropwise at -78 °C and the reaction was allowed to warm up to -20 °C during 2 h before it was re-cooled to -78 °C. Then powered sulfur (2.3 g, 72 mmol) was added in portions and the solution was warmed to 0 °C and treated with benzyl bromide (8.5 mL, 72 mmol), which was stirred at 23 °C overnight. The reaction was quenched with saturated aqueous NH₄Cl (100 mL). The aqueous layer was extracted with Et₂O (100 mL) and the combined organic layer was washed sequentially with water (200 mL) and brine (200 mL), dried over anhydrous Na₂SO₄. The solvent was evaporated and the residue was purified by flash column chromatography (hexane/EtOAc=40/1) to give **S3** (10.95 g, 70%).

The resulting **S3** was dissolved in THF (200 mL) and tetrabutylammonium fluoride (59.6 mL, 1.0 M in THF, 59.6 mmol) was added dropwise at 0 $^{\circ}$ C. The reaction mixture was then stirred at 23 $^{\circ}$ C for 1 h before it was quenched with saturated

aqueous NH₄Cl (200 mL). The aqueous layer was extracted with Et₂O (200 mL) and the combined organic layer was washed sequentially with water (2×400 mL) and brine (400 mL), dried over anhydrous Na₂SO₄. The solvent was evaporated and the residue was purified by flash column chromatography (hexane/EtOAc=40/1) to give **4a** (5.60 g, 76%), whose physical data have been reported in previous publication.³

5. Procedures for the C8-H functionalization of quinoline N-oxides.

Representative procedures—preparation of 3aa: To a solution of ynamide **1a** (167.4 mg, 0.8 mmol) and quinoline *N*-oxide **2a** (185.6 mg, 1.28 mmol) in CH₂Cl₂ (4 mL) was added HNTf₂ (22.5 mg, 0.08 mmol) and the mixture was stirred at 23 °C for 2 h. The solvent was evaporated and the residue was purified by flash column chromatography (hexane/EtOAc=5/1) to give **3aa** (263.7 mg, 93%). Other 8-substituted quinolines were synthesized using the same procedures. Note: 0.16 mmol of HNTf₂ was used for the preparation of **5aa**.

Colorless crystal, m. p. 151-152 °C

¹**H** NMR (400 MHz, CDCl₃) δ 8.71 (dd, J = 4.4, 1.7 Hz, 1H), 8.10 (dd, J = 8.3, 1.7 Hz, 1H), 7.97 (d, J = 8.1 Hz, 2H), 7.75 – 7.70 (m, 1H), 7.51 (d, J = 6.3 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.38 – 7.31 (m, 3H), 4.63 (s, 2H), 3.37 (s, 3H), 2.43 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.20, 149.33, 146.40, 144.57, 136.27, 136.19, 133.48, 130.35, 129.66, 128.27, 127.83, 127.44, 126.26, 121.10, 39.31, 33.34, 21.62.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₉H₁₉N₂O₃S 355.1114; Found 355.1119.

White solid, m. p. 152-154 °C

¹**H** NMR (400 MHz, CDCl₃) δ 8.71 (dd, J = 4.2, 1.6 Hz, 1H), 8.09 (dd, J = 8.3, 1.7 Hz, 1H), 7.97 (d, J = 8.1 Hz, 2H), 7.71 (dd, J = 8.2, 1.4 Hz, 1H), 7.51 (d, J = 6.9 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.37 – 7.28 (m, 3H), 4.56 (s, 2H), 3.87 – 3.75 (m, 2H), 2.42 (s, 3H), 1.79 (h, J = 7.5 Hz, 2H), 0.90 (t, J = 7.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.04, 149.30, 146.38, 144.37, 137.01, 136.18, 133.60, 130.32, 129.55, 128.30, 127.93, 127.43, 126.28, 121.14, 48.84, 39.23, 23.30, 21.64, 11.19.

HRMS (ESI) m/z: $[M + H]^+ C_{21}H_{23}N_2O_3S$ 383.1424; Found 383.1429.

White solid, m. p. 151-153 °C

¹**H NMR** (400 MHz, CDCl₃) δ 8.70 (dd, J = 4.3, 1.6 Hz, 1H), 8.10 (dd, J = 8.2, 1.7 Hz, 1H), 7.96 (d, J = 8.1 Hz, 2H), 7.72 (dd, J = 8.2, 1.4 Hz, 1H), 7.51 (d, J = 6.9 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.35 (dd, J = 8.3, 4.2 Hz, 1H), 7.30 (d, J = 8.1 Hz, 2H), 5.96 (ddt, J = 16.0, 10.6, 5.4 Hz, 1H), 5.37 (d, J = 17.1 Hz, 1H), 5.25 (d, J = 10.3 Hz, 1H), 4.60 (d, J = 5.4 Hz, 2H), 4.50 (s, 2H), 2.42 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.96, 149.29, 146.36, 144.47, 136.74, 136.19, 133.41, 133.09, 130.37, 129.45, 128.31, 127.46, 126.30, 121.13, 118.08, 48.96, 39.00, 21.64.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₁H₂₁N₂O₃S 381.1271; Found 381.1268.

White solid, m. p. 156-158 °C

¹**H NMR** (400 MHz, CDCl₃) δ 8.69 (dd, J = 4.2, 1.6 Hz, 1H), 8.10 (dd, J = 8.3, 1.7 Hz, 1H), 7.93 (d, J = 8.0 Hz, 2H), 7.71 (dd, J = 8.1, 1.4 Hz, 1H), 7.49 (d, J = 6.9 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 7.34 (dd, J = 8.3, 4.2 Hz, 1H), 7.28 (d, J = 8.1 Hz, 2H), 5.06 (s, 1H), 5.00 (d, J = 2.1 Hz, 1H), 4.57 (s, 2H), 4.43 (s, 2H), 2.42 (s, 3H), 1.80 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.22, 149.30, 146.31, 144.42, 140.54, 136.64, 136.19, 133.28, 130.28, 129.28, 128.56, 128.33, 127.46, 126.30, 121.14, 111.89, 51.74, 38.64, 21.64, 20.27.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₂H₂₃N₂O₃S 395.1436; Found 395.1422.

Off-white solid, m. p. 160-161 °C

¹**H** NMR (400 MHz, CDCl₃) δ 8.62 (dd, J = 4.2, 1.7 Hz, 1H), 8.08 (dd, J = 8.3, 1.7 Hz, 1H), 7.80 (d, J = 8.1 Hz, 2H), 7.70 (dd, J = 8.0, 1.6 Hz, 1H), 7.50 – 7.38 (m, 4H), 7.35 – 7.26 (m, 4H), 7.26 – 7.21 (m, 2H), 5.23 (s, 2H), 4.47 (s, 2H), 2.39 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.32, 149.13, 146.32, 144.44, 136.93, 136.70, 136.15, 133.55, 130.50, 129.41, 128.52, 128.27, 128.22, 127.95, 127.56, 127.47, 126.29, 121.10, 49.81, 39.52, 21.64.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₅H₂₃N₂O₃S 431.1426; Found 431.1427.

Off-white solid, m. p. 159-161 °C

¹**H** NMR (400 MHz, CDCl₃) δ 8.63 (dd, J = 4.2, 1.7 Hz, 1H), 8.07 (dd, J = 8.3, 1.7 Hz, 1H), 7.81 (d, J = 8.2 Hz, 2H), 7.69 (dd, J = 7.9, 1.7 Hz, 1H), 7.47 – 7.38 (m, 2H), 7.32 (dd, J = 8.0, 5.1 Hz, 3H), 7.23 (d, J = 8.3 Hz, 2H), 7.12 (d, J = 7.8 Hz, 2H), 5.19 (s, 2H), 4.46 (s, 2H), 2.39 (s, 3H), 2.34 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.32, 149.15, 146.37, 144.36, 137.22, 136.81, 136.12, 133.94, 133.58, 130.46, 129.38, 129.18, 128.27, 128.22, 127.93, 127.42, 126.27, 121.09, 49.64, 39.46, 21.62, 21.16.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₆H₂₅N₂O₃S 445.1583; Found 445.1589.

Off-white solid, m. p. 162-164 °C

¹**H** NMR (400 MHz, CDCl₃) δ 8.61 (dd, J = 4.2, 1.6 Hz, 1H), 8.08 (dd, J = 8.3, 1.7 Hz, 1H), 7.79 (d, J = 8.1 Hz, 2H), 7.70 (dd, J = 7.9, 1.7 Hz, 1H), 7.48 – 7.41 (m, 2H), 7.39 (d, J = 8.5 Hz, 2H), 7.33 (dd, J = 8.3, 4.2 Hz, 1H), 7.26 – 7.21 (m, 3H), 6.84 (d, J = 8.4 Hz, 2H), 5.15 (s, 2H), 4.47 (s, 2H), 3.80 (s, 3H), 2.39 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.32, 159.08, 149.12, 146.35, 144.36, 136.84, 136.14, 133.62, 130.47, 129.67, 129.42, 129.08, 128.26, 128.13, 127.44, 126.29, 121.09, 113.82, 55.34, 49.26, 39.57, 21.63.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₆H₂₅N₂O₄S 461.1533; Found 461.1537.

White solid, m. p. 166-167 °C

¹**H NMR** (400 MHz, CDCl₃) δ 8.60 (dd, J = 4.5, 1.6 Hz, 1H), 8.09 (dd, J = 8.3, 1.7 Hz, 1H), 7.83 (d, J = 8.1 Hz, 2H), 7.71 (dd, J = 8.1, 1.5 Hz, 1H), 7.48 (d, J = 6.7 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H), 7.39 – 7.31 (m, 3H), 7.29 – 7.23 (m, 4H), 5.14 (s, 2H), 4.50 (s, 2H), 2.41 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.25, 149.09, 146.32, 144.67, 136.64, 136.18, 135.42, 133.48, 133.38, 130.52, 129.55, 128.55, 128.28, 128.08, 127.52, 126.29, 121.13, 49.12, 39.67, 21.64.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₅H₂₂ClN₂O₃S 465.1041; Found 465.1044.

White solid, m. p. 132-133 °C

¹**H** NMR (400 MHz, CDCl₃) δ 8.85 – 8.77 (m, 1H), 8.16 (dt, *J* = 8.2, 1.3 Hz, 1H), 7.79 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.66 (d, *J* = 7.0 Hz, 1H), 7.53 (dd, *J* = 8.2, 7.0 Hz, 1H), 7.41 (ddd, *J* = 8.3, 4.2, 0.9 Hz, 1H), 4.54 (s, 2H), 3.46 (d, *J* = 1.0 Hz, 3H), 3.40 (d, *J* = 0.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.92, 149.43, 146.31, 136.49, 133.33, 130.87, 128.42, 127.68, 126.48, 121.30, 41.24, 39.20, 32.87.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{13}H_{15}N_2O_3S$ 279.0805; Found 279.0808.

Off-white solid, m. p. 160-162 °C

¹**H NMR** (400 MHz, CDCl₃) δ 8.78 (dd, J = 4.3, 1.7 Hz, 1H), 8.44 – 8.36 (m, 1H), 8.09 (dd, J = 8.3, 1.7 Hz, 1H), 7.77 – 7.70 (m, 2H), 7.64 (tt, J = 9.1, 6.6 Hz, 2H), 7.55 (d, J = 7.0 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.35 (dd, J = 8.3, 4.2 Hz, 1H), 4.44 (s, 2H), 3.61 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.40, 149.65, 147.84, 146.20, 136.27, 134.40, 134.31, 133.16, 132.44, 132.10, 130.33, 128.35, 127.78, 126.32, 124.42, 121.36, 38.44, 34.04.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{18}H_{16}N_3O_5S$ 386.0815; Found 386.0811.

Off-white solid, m. p. 153-155 °C

¹**H** NMR (400 MHz, CDCl₃) δ 8.88 – 8.82 (m, 1H), 8.12 (dt, *J* = 8.2, 1.2 Hz, 1H), 7.73 (d, *J* = 8.1 Hz, 1H), 7.57 (d, *J* = 6.9 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.35 (dd, *J* = 12.6, 8.0 Hz, 3H), 7.28 (t, *J* = 7.4 Hz, 2H), 7.25 – 7.20 (m, 1H), 4.93 (s, 2H), 4.83 (s, 2H), 1.43 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 174.79, 153.41, 149.43, 146.90, 138.49, 136.16, 135.03, 130.54, 128.33, 128.21, 127.78, 127.21, 126.98, 126.23, 121.02, 83.21, 47.71, 41.46, 27.97.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₃H₂₅N₂O₃ 377.1866; Found 377.1862.

Off-white solid, m. p. 154-156 °C

¹**H NMR** (400 MHz, CDCl₃) δ 8.84 (dd, J = 4.2, 1.6 Hz, 1H), 8.09 (dd, J = 8.3, 1.7 Hz, 1H), 7.70 (dd, J = 8.1, 1.3 Hz, 1H), 7.65 (d, J = 7.6 Hz, 2H), 7.54 – 7.45 (m, 2H), 7.43 (d, J = 7.7 Hz, 1H), 7.41 – 7.35 (m, 3H), 7.29 – 7.17 (m, 5H), 5.04 (s, 2H), 4.32 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 175.51, 174.54, 149.45, 146.46, 137.51, 136.19, 136.15, 134.24, 132.19, 130.82, 128.66, 128.58, 128.41, 128.30, 127.94, 127.41, 127.27, 126.27, 121.15, 49.69, 41.23.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₅H₂₁N₂O₂ 381.1605; Found 381.1601.

Off-white solid, m. p. 150-151 °C

¹**H** NMR (400 MHz, CDCl₃) δ 8.57 (d, *J* = 2.1 Hz, 1H), 7.97 (d, *J* = 8.1 Hz, 2H), 7.90 – 7.84 (m, 1H), 7.65 (dd, *J* = 6.3, 3.3 Hz, 1H), 7.42 (d, *J* = 6.5 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 4.61 (s, 2H), 3.36 (s, 2H), 2.48 (s, 3H), 2.45 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.28, 151.41, 144.73, 144.55, 136.31, 134.84, 133.21, 130.49, 129.68, 129.30, 128.14, 127.88, 126.85, 126.32, 39.37, 33.36, 21.66, 18.67.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₀H₂₁N₂O₃S 369.1279; Found 369.1272.

Off-white solid, m. p. 149-151 °C

¹**H** NMR (400 MHz, CDCl₃) δ 8.56 (d, *J* = 4.3 Hz, 1H), 7.98 (d, *J* = 8.1 Hz, 2H), 7.92 (dt, *J* = 8.0, 1.2 Hz, 1H), 7.54 – 7.43 (m, 2H), 7.33 (d, *J* = 8.2 Hz, 2H), 7.18 (d, *J* = 4.3 Hz, 1H), 4.62 (s, 2H), 3.36 (s, 3H), 2.67 (s, 3H), 2.44 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.36, 148.99, 146.15, 144.52, 144.44, 136.34, 133.99, 130.08, 129.65, 128.30, 127.88, 125.93, 123.49, 121.93, 39.73, 33.35, 21.65, 18.83.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₀H₂₁N₂O₃S 369.1279; Found 369.1274.

Off-white solid, m. p. 153-155 °C

¹**H** NMR (400 MHz, CDCl₃) δ 8.71 (dd, J = 4.1, 1.5 Hz, 1H), 8.28 (dd, J = 8.4, 1.6 Hz, 1H), 7.97 (d, J = 8.1 Hz, 2H), 7.42 – 7.36 (m, 2H), 7.34 (d, J = 8.1 Hz, 2H), 7.29 (d, J = 7.2 Hz, 1H), 4.58 (s, 2H), 3.36 (s, 3H), 2.65 (s, 3H), 2.45 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.46, 148.80, 146.60, 144.51, 136.36, 134.22, 132.63, 131.49, 130.01, 129.65, 127.88, 127.70, 126.68, 120.66, 39.38, 33.36, 21.65, 18.55.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₀H₂₁N₂O₃S 369.1279; Found 369.1272.

Off-white solid, m. p. 155-156 °C

¹**H** NMR (400 MHz, CDCl₃) δ 8.65 (dd, J = 4.3, 1.6 Hz, 1H), 8.01 (dd, J = 8.3, 1.6 Hz, 1H), 7.97 (d, J = 8.1 Hz, 2H), 7.49 (s, 1H), 7.37 – 7.28 (m, 4H), 4.59 (s, 2H), 3.36 (s, 3H), 2.47 (s, 3H), 2.44 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.31, 148.50, 145.05, 144.55, 136.31, 136.07, 135.49, 133.03, 132.57, 129.66, 128.39, 127.89, 126.26, 121.12, 39.19, 33.38, 21.64, 21.56.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{20}H_{21}N_2O_3S$ 369.1279; Found 369.1274.

Off-white solid, m. p. 159-161 °C

¹**H** NMR (400 MHz, CDCl₃) δ 8.58 – 8.54 (m, 1H), 7.98 (t, *J* = 7.5 Hz, 3H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.30 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.18 (d, *J* = 2.7 Hz, 1H), 6.98 (d, *J* = 2.7 Hz, 1H), 4.58 (s, 2H), 3.89 (s, 3H), 3.36 (s, 3H), 2.45 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.91, 157.24, 146.84, 144.57, 142.73, 136.27, 135.13, 134.88, 129.70, 129.40, 127.83, 123.22, 121.43, 104.64, 55.45, 39.27, 33.33, 21.64.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₀H₂₁N₂O₄S 385.1223; Found 385.1226.

Off-white solid, m. p. 161-162 °C

¹**H** NMR (400 MHz, CDCl₃) δ 8.55 (d, J = 4.7 Hz, 1H), 8.17 (dd, J = 7.4, 2.6 Hz, 1H), 7.96 (d, J = 8.2 Hz, 2H), 7.62 – 7.54 (m, 2H), 7.44 (d, J = 4.6 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 4.64 (s, 2H), 3.36 (s, 3H), 2.46 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.95, 148.70, 147.39, 144.69, 142.84, 136.22, 134.14, 131.49, 129.74, 127.80, 127.29, 126.58, 123.82, 121.28, 39.75, 33.34, 21.69.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{19}H_{18}ClN_2O_3S$ 389.0725; Found 389.0723.

Off-white solid, m. p. 118-120 °C

¹**H** NMR (400 MHz, CDCl₃) δ 8.91 (dd, J = 4.4, 1.6 Hz, 1H), 8.14 (dd, J = 8.3, 1.6 Hz, 1H), 7.78 (d, J = 8.2 Hz, 1H), 7.66 (d, J = 7.0 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.40 (dd, J = 8.3, 4.2 Hz, 1H), 7.29 – 7.16 (m, 5H), 4.56 (s, 2H), 4.10 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 197.46, 149.88, 146.76, 137.63, 136.23, 132.79, 130.91, 128.91, 128.53, 128.43, 127.86, 127.14, 126.24, 121.30, 45.71, 33.50.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₆NOS 294.0955; Found 294.0949.

6. References

(1) For compounds 1a-b, see: (a) Tu, Y.; Zeng, X.; Wang, H.; Zhao, J. Org. Lett.
2018, 20, 280. For compound 1c, see: (b) Zhang, X.; Hsung, R. P.; Li, H. Chem.
Commun. 2007, 2420. For compound 1d, see: (c) Hoffmann, R. W.; Brückner, D.
New. J. Chem. 2001, 25, 369. For compounds 1e-g see: (d) Wezeman, T.; Zhong, S.;
Nieger, M.; Bräse, S. Angew. Chem., Int. Ed. 2016, 55, 3823. For compound 1i, see:
(e) Hu, L.; Xu, S.; Zhao, Z.; Yang, Y.; Peng, Z.; Yang, M.; Wang, C.; Zhao, J. J. Am.

Chem. Soc. 2016, *138*, 13135. For compound 1j, see: (f) Zimin, D. P.; Dar'in, D. V.; Kukushkin, V. Y.; Dubovtsev, A. Y. J. Org. Chem. 2021, *86*, 1748. For compound 1k, see: (g) Clavier, H.; Lepronier, A.; Bengobesse-Mintsa, N.; Gatineau, D.; Pellissier, H.; Giordano, L.; Tenaglia, A.; Buono, G. Adv. Synth. Catal. 2013, *355*, 403. For compound 1l, see: (h) Cass é M.; Nisole, C.; Dossmann, H.; Gimbert, Y.; Fourquez, J.; Haberkorn, L.; Ollivier, C.; Fensterbank, L. Sci. China Chem. 2019, *62*, 1542.
(2) For compounds 2b-c, 2e-f, 2h and 2j-k see: (a) Zhang, Y.; Zhang, S.; Xu, G.; Li, M.; Tang, C.; Fan, W. Org. Biomol. Chem. 2019, *17*, 309. For compounds 2d and 2g, see: (b) Tröster, A.; Alonso, R.; Bauer, A.; Bach, T. J. Am. Chem. Soc. 2016, *138*, 7808. For compound 2i, see: (c) Kim, D.; Ghosh, P.; Kwon, N. Y.; Han, S. H.; Han, S.; Mishra, N. K.; Kim, S.; Kim, I. S. J. Org. Chem. 2020, *85*, 2476.
(3) Zhang, Y.-Q.; Zhu, X.-Q.; Chen, Y.-B.; Tan, T.-D.; Yang, M.-Y.; Ye, L.-W. Org. Lett. 2018, *20*, 7721.

7. X-Ray crystal data of 3aa (CCDC 2061599)

Table 1 Crystal data and structure refinement for exp 7989.

-	
Identification code	exp_7989
Empirical formula	$C_{19}H_{18}N_2O_3S$
Formula weight	354.432
Temperature/K	293
Crystal system	monoclinic
Space group	I2/a
a/Å	27.124(3)
b/Å	7.6958(15)
c/Å	16.5624(16)
α/°	90
β/°	92.951(11)
γ/°	90
Volume/Å ³	3452.7(9)
Ζ	8
$\rho_{calc}g/cm^3$	1.364
μ/mm^{-1}	0.208
F(000)	1489.7
Crystal size/mm ³	$0.23 \times 0.21 \times 0.11$
Radiation	MoK α ($\lambda = 0.71073$)

4.92 to 50
$\textbf{-22} \leq h \leq 36, \textbf{-10} \leq k \leq 9, \textbf{-21} \leq l \leq 22$
9517
2910 [$R_{int} = 0.0761$, $R_{sigma} = 0.0958$]
2910/0/228
1.048
$R_1 = 0.1076, wR_2 = 0.2587$
$R_1 = 0.1497, wR_2 = 0.2998$
1.55/-0.53

Table 2 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for exp_7989. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom <i>x</i>		У	Ζ	U(eq)
S 1	5947.6(5)	8046.7(18)	5348.3(7)	57.6(6)
02	6335.9(16)	9234(5)	5569(2)	75.5(12)
01	5662.4(17)	8294(6)	4614(2)	78.2(13)
N1	6190.1(15)	6046(6)	5312(2)	57.5(12)
N2	6759.2(15)	5610(6)	7622(3)	58.4(12)
O3	6703.4(17)	3895(6)	5651(3)	88.9(14)
C4	4886(2)	7808(7)	7395(3)	57.0(14)
C1	5533.7(18)	7907(6)	6139(3)	44.6(12)
C5	5391(2)	7637(8)	7544(3)	62.8(15)
C9	6630(2)	5446(7)	5689(3)	54.6(14)
C19	7227.4(19)	5288(7)	7418(3)	54.9(14)
C15	7584.8(19)	4499(7)	7969(3)	53.6(14)
C6	5715(2)	7731(8)	6926(3)	60.3(15)
C10	7003(2)	6702(8)	6075(3)	61.6(15)
C2	5043(2)	8076(8)	5970(3)	66.5(17)
C11	7371.7(18)	5790(8)	6646(3)	56.8(14)
C18	6638(2)	5185(8)	8349(4)	65.6(16)
C14	8064.8(19)	4217(9)	7728(4)	66.1(17)
C3	4720(2)	8050(8)	6605(4)	68.6(16)
C16	7430(2)	4075(8)	8748(3)	67.0(16)
C8	5862(2)	4737(9)	4924(4)	76.5(18)
C12	7842(2)	5484(9)	6434(3)	72.4(18)
C17	6958(2)	4440(9)	8935(4)	71.9(17)
C13	8188(2)	4698(10)	6969(4)	79(2)
C7	4533(2)	7784(10)	8066(4)	87(2)

		I	-	· .		······································	
Atom	n U ₁₁	U ₂₂		U ₃₃	U ₁₂	U ₁₃	U ₂₃
S1	68.7(10)	72.6(10)		31.1(7)	-2.7(7)	-0.4(6)	7.2(6)
02	92(3)	67(3)		67(3)	-27(2)	4(2)	10(2)
01	91(3)	100(3)		43(2)	3(2)	-3(2)	17(2)
N1	51(2)	81(3)		41(2)	-2(2)	-0.8(19)	-19(2)
N2	42(2)	69(3)		64(3)	3(2)	8(2)	-11(2)
03	91(3)	74(3)		99(4)	6(3)	-27(3)	-24(2)
C4	66(4)	47(3)		58(3)	6(3)	13(3)	1(2)
C1	48(3)	50(3)		35(2)	3(2)	-6(2)	-3(2)
C5	75(4)	75(4)		38(3)	13(3)	0(3)	1(3)
C9	64(3)	60(3)		39(3)	-3(3)	2(2)	-13(2)
C19	50(3)	71(4)		44(3)	-1(3)	0(2)	-19(3)
C15	48(3)	59(3)		52(3)	2(2)	-11(2)	-19(3)
C6	51(3)	90(4)		39(3)	6(3)	0(2)	6(3)
C10	55(3)	87(4)		41(3)	-12(3)	-3(2)	-4(3)
C2	70(4)	86(4)		42(3)	17(3)	-8(3)	-9(3)
C11	48(3)	74(4)		49(3)	-7(3)	3(2)	-21(3)
C18	53(3)	84(4)		61(4)	-6(3)	13(3)	-13(3)
C14	48(3)	89(4)		60(4)	16(3)	-8(3)	-27(3)
C3	44(3)	88(4)		74(4)	7(3)	-3(3)	0(3)
C16	70(4)	81(4)		50(3)	19(3)	-6(3)	-18(3)
C8	84(4)	76(4)		69(4)	-10(3)	-10(3)	-23(3)
C12	60(4)	111(5)		46(3)	-9(3)	12(3)	-20(3)
C17	74(4)	84(4)		59(4)	-1(3)	14(3)	-18(3)
C13	41(3)	112(5)		84(5)	8(3)	1(3)	-36(4)
C7	82(4)	102(5)		80(5)	10(4)	29(4)	1(4)
Table	e 4 Bond Length	is for exp_7989.					
Aton	n Atom	Length/Å	Ato	om Atom	Length/Å		
S1	02	1.427(4)	C5	C6	1.385(7)		
S 1	01	1.420(4)	C9	C10	1.517(7)		
S 1	N1	1.677(5)	C19	9 C15	1.431(8)		
S1	C1	1.771(5)	C19	9 C11	1.411(7)		
N1	С9	1.396(7)	C1:	5 C14	1.398(7)		
N1	C8	1.469(7)	C1:	5 C16	1.416(8)		
N2	C19	1.354(6)	C10	0 C11	1.513(7)		
N2	C18	1.306(7)	C2	C3	1.402(8)		
O3	C9	1.212(7)	C1	1 C12	1.360(7)		
C4	C5	1.385(8)	C18	8 C17	1.391(9)		
C4	C3	1.375(8)	C14	4 C13	1.368(9)		
C4	C7	1.503(8)	C10	5 C17	1.362(8)		
C1	C6	1.376(7)	C12	2 C13	1.395(9)		

Table 3 Anisotropic Displacement Parameters ($\text{\AA}^2 \times 10^3$) for exp_7989. The Anisotropic displacement factor exponent takes the form: -2 π^2 [$\text{h}^2a^{*2}U_{11}$ +2hka*b*U₁₂+…].

Table	3	Anisotropic	Displacement	Parameters	$(\text{\AA}^2 \times 10)$	³) for	exp_	_7989.	The	Anisotropic
displa	lisplacement factor exponent takes the form: $-2 \pi^2 [h^2 a^{*2} U_{11} + 2hka^* b^* U_{12} + \cdots]$.									

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	$U_{23} \\$
C1	C2	1.353(8)				

Table 5 Bond Angles for exp_7989.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
01	S 1	02	119.7(3)	C15	C19	N2	122.1(5)
N1	S 1	02	108.1(2)	C11	C19	N2	118.9(5)
N1	S 1	01	106.8(2)	C11	C19	C15	118.9(5)
C1	S 1	02	109.7(2)	C14	C15	C19	119.6(5)
C1	S 1	01	107.7(3)	C16	C15	C19	117.1(5)
C1	S 1	N1	103.6(2)	C16	C15	C14	123.2(5)
C9	N1	S 1	128.0(4)	C5	C6	C1	119.7(5)
C8	N1	S 1	114.6(4)	C11	C10	C9	111.9(5)
C8	N1	C9	116.9(5)	C3	C2	C1	119.3(5)
C18	N2	C19	117.9(5)	C10	C11	C19	119.2(4)
C3	C4	C5	117.0(5)	C12	C11	C19	119.6(5)
C7	C4	C5	121.9(5)	C12	C11	C10	121.2(5)
C7	C4	C3	121.1(6)	C17	C18	N2	124.7(5)
C6	C1	S 1	119.8(4)	C13	C14	C15	119.6(6)
C2	C1	S 1	119.7(4)	C2	C3	C4	122.0(5)
C2	C1	C6	120.3(5)	C17	C16	C15	119.1(6)
C6	C5	C4	121.6(5)	C13	C12	C11	121.3(6)
O3	C9	N1	116.3(5)	C16	C17	C18	119.1(6)
C10	C9	N1	120.9(5)	C12	C13	C14	120.9(5)
C10	C9	03	122.7(5)				

Table 6 Torsion Angles for exp_7989.

A	B	С	D	Angle/°	A	B	С	D	Angle/°
S 1	N1	C9	03	171.9(5)	C4	C5	C6	C1	-3.5(7)
S 1	N1	C9	C10	-11.7(5)	C4	C3	C2	C1	-1.9(7)
S 1	C1	C6	C5	179.5(4)	C9	C10	C11	C19	-76.9(5)
S 1	C1	C2	C3	-176.8(4)	C9	C10	C11	C12	104.7(5)
N1	C9	C10	C11	163.5(5)	C19	C15	C14	C13	-0.0(6)
N2	C19	C15	C14	-179.2(5)	C19	C15	C16	C17	-0.4(6)
N2	C19	C15	C16	-0.6(6)	C19	C11	C12	C13	-0.7(7)
N2	C19	C11	C10	1.2(6)	C15	C14	C13	C12	0.7(7)
N2	C19	C11	C12	179.6(5)	C15	C16	C17	C18	1.4(7)
N2	C18	C17	C16	-1.7(7)	C10	C11	C12	C13	177.7(5)

Table 6 Torsion Angles for exp_7989.

A B	C D Angle/°	A B C D Angle/°
O3 C9	C10C11-20.2(6)	C11 C12 C13 C14 -0.3(8)

Table 7 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for exp_7989.

Atom x		У	Ζ	U(eq)
H5	5515(2)	7454(8)	8071(3)	75.4(18)
H6	6054(2)	7675(8)	7043(3)	72.3(18)
H10a	7177(2)	7280(8)	5655(3)	73.9(18)
H10b	6830(2)	7582(8)	6371(3)	73.9(18)
H2	4921(2)	8208(8)	5439(3)	80(2)
H18	6315(2)	5395(8)	8485(4)	78.7(19)
H14	8299.3(19)	3705(9)	8082(4)	79(2)
H3	4384(2)	8202(8)	6487(4)	82.3(19)
H16	7648(2)	3554(8)	9127(3)	80(2)
H8a	5585(9)	4540(50)	5251(15)	115(3)
H8b	5747(14)	5140(30)	4400(12)	115(3)
H8c	6040(6)	3670(20)	4870(30)	115(3)
H12	7935(2)	5805(9)	5922(3)	87(2)
H17	6851(2)	4194(9)	9447(4)	86(2)
H13	8506(2)	4499(10)	6808(4)	95(2)
H7a	4502(15)	6618(15)	8260(20)	131(3)
H7b	4657(10)	8520(50)	8499(14)	131(3)
H7c	4216(6)	8200(70)	7866(9)	131(3)

8. ¹H NMR and ¹³C NMR Spectra

