Pd(II)-Catalyzed alkyne annulation through allylic isomerization: Synthesis of spiro-cyclopentadiene pyrazolones

Sumi Changmai, ${ }^{\text {a }}$ Sabera Sultana, ${ }^{\text {a }}$ Bipul Sarma, ${ }^{\text {b }}$ and Sanjib Gogoia*

${ }^{a}$ Chemical Sciences \& Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, AcSIR-Ghaziabad-201002, India, Fax: +913762370011 Tel.: +913762372948; skgogoi1@gmail.com; sanjibgogoi@neist.res.in. ${ }^{b}$ Department of Chemical Sciences, Tezpur University, Napaam, Tezpur-784028, India.

Supporting Information

Contents

General Experiment 3
Experimental Procedures 3-8
Characterization Data 9-21
Spectra of NMR \& HRMS 22-79
NOE Spectra 80-85
X-ray data 86

1. General Information

Melting points were measured with a Buchi B-540 melting point apparatus and are uncorrected. NMR spectra were recorded on Bruker Avance III 500 MHz FT NMR \& Jeol Resonance ECZ 400 MHz FT NMR spectrometer using tetramethylsilane (TMS) as an internal standard. All the commercially available regents were used as received. All experiments were monitored by thin layer chromatography. TLC was performed on Merck TLC Silica gel 60 F254 precoated plates. Column chromatography was performed on silica gel of 100-200 mesh obtained from Merck. HRMS data were recorded by electron spray ionization with a Q-TOF mass analyzer. Photophysical properties were evaluated on HITACHI (U-3900) UV-Vis spectrophotometer and Horiba (Fluorlolog-3) fluorescence spectrophotometer

2. Reaction Procedures

2.1 General procedure for the synthesis of antipyrine derivatives (1) ${ }^{1}$

Scheme SI-1: Synthesis of antipyrine derivatives
Preparation of antipyrine (1): 2-Phenyl pyrazolones were synthesized by following a known procedure. ${ }^{1}$ To a stirred solution of 2-phenyl pyrazolone (1.0 equiv), in acetonitrile $(4.0 \mathrm{~mL})$, methyl iodide/alkyl iodide (5.0 equiv) was added. The reaction mixture was heated in a sealed tube for 12 h . The solvent was removed under vacuo and the crude reaction mixture was purified by alumina column chromatography using EtOAc as the eluent to afford antipyrenes 1.

2.2. Optimization of the reaction conditions for the synthesis of compound 3aa

Table SI-1 Optimization of the reaction conditions for 3aa ${ }^{a}$

Entry	Catalyst	Additive	Solvent	$3 \mathrm{aa}(\%)^{b}$
1	[$\left.\left\{\mathrm{RuCl}_{2} \text { (p-cymene) }\right\}_{2}\right]$	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1,4-Dioxane	0
2	$\left[\mathrm{RhCp} * \mathrm{Cl}_{2}\right]_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1,4-Dioxane	0
3	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1,4-Dioxane	48
4	PdCl_{2}	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1,4-Dioxane	0
5	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc	1,4-Dioxane	20
6	$\mathrm{Pd}(\mathrm{OAc})_{2}$	CsOAc	1,4-Dioxane	36
7	$\mathrm{Pd}(\mathrm{OAc})_{2}$	NaOAc	1,4-Dioxane	38
8	$\mathrm{Pd}(\mathrm{OAc})_{2}$	KOAc	1,4-Dioxane	45
9	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	Toluene	74
10	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	MeCN	15
11	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	${ }^{t} \mathrm{AmOH}$	79
$12^{[\mathrm{c}]}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	MeOH	47
13	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	DMF	0
14	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	DMSO	0

${ }^{a}$ Reaction conditions: $\mathbf{1 a}(0.5 \mathrm{mmol})$, $\mathbf{2 a}(1.0 \mathrm{mmol})$, catalyst ($\left.5.0 \mathrm{~mol} \%\right)$, additive (0.5 mmol) and solvent (5.0 mL) at $90^{\circ} \mathrm{C}$ under air for 8 h ; unless otherwise mentioned. ${ }^{b}$ Isolated yields. ${ }^{c}$ Reaction was performed at $64{ }^{\circ} \mathrm{C}$.

2.3 General procedure for the synthesis of spiro-pyrazolone dervatives 3

A mixture of antipyrine ($\mathbf{1}, 0.5 \mathrm{mmol}$), alkyne ($2,1.0 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(5.0 \mathrm{~mol} \%)$ and $\mathrm{Cu}(\mathrm{OAc})_{2} . \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol})$ in ${ }^{t} \mathrm{AmOH}(5.0 \mathrm{~mL})$ was stirred at $90{ }^{\circ} \mathrm{C}$ under open air for 8 hours. The solvent ${ }^{t} \mathrm{AmOH}$ was removed under vacuo and the crude reaction mixture was poured into water and extracted with ethylacetate ($25 \mathrm{~mL} \times 2$). The organic layer was then washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuo and the crude product obtained was purified by silica gel (100-200 mesh) column chromatography using 5\% EtOAc in hexane as the eluent to afford spiro-pyrazolones 3 .

2.4 General procedure for one pot synthesis of spiropyrazolone dervatives 4

A mixture of antipyrine ($\mathbf{1}, 0.5 \mathrm{mmol}$), alkyne ($\mathbf{2}, 1.0 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(5.0 \mathrm{~mol} \%)$ and $\mathrm{Cu}(\mathrm{OAc})_{2} . \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol})$ in toluene $(5.0 \mathrm{~mL})$ was stirred at $90{ }^{\circ} \mathrm{C}$ for 8 hours. Then Lawessons reagent (1.5 equiv) was added and the mixture was again stirred at $90{ }^{\circ} \mathrm{C}$ for 6 hours. The solvent toluene was removed under vacuo and the crude reaction mixture was poured into water and extracted with ethylacetate ($25 \mathrm{~mL} \times 2$). The organic layer was then washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuo and the crude product obtained was purified by silica gel (100-200 mesh) column chromatography using 5\% EtOAc in hexane as the eluant to afford spiropyrazolones 4.

2.5 General procedure for the two-steps synthesis of spiropyrazolone dervatives 4

A mixture of olefinic product ($\mathbf{3}, 0.5 \mathrm{mmol}$) and Lawesson's reagent (1.0 equiv) was refluxed for 6 hours using toluene $(5.0 \mathrm{~mL})$ as the solvent. The solvent was removed under vacuo and the crude reaction mixture was poured into water and extracted with ethylacetate ($25 \mathrm{~mL} \times 2$). The organic layer was then washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuo and the crude product obtained was purified by silica gel (100-200 mesh) column chromatography using 5\% EtOAc in hexane as the eluent to afford spiropyrazolones 4.

3. Transformation of spiro-pyrazolone 3aa

(i) Synthesis of 3,4-dimethyl-2,6,7,8,9-pentaphenyl-2,3-diazaspiro[4.4]nona-6,8-dien-1one (4a) and 3,4-dimethyl-2,6,7,8,9-pentaphenyl-2,3-diazaspiro[4.4]non-6-en-1-one (4b):

Scheme SI-2
To a stirred solution of $\mathbf{3 a a}(54 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{MeOH}(8 \mathrm{~mL}), \mathrm{Pd} / \mathrm{C} 10 \mathrm{wt} \%(5 \mathrm{mg})$ was added. The reaction mixture was then stirred at room temperature for 12 hours under $\mathrm{H}_{2}(60$ psi). After completion of the reaction, the reaction mixture was filtered through a celite pad and the celite pad was washed with methanol (20 mL). The solvent was removed under vacuo and the crude product obtained was purified by silica gel (100-200 mesh) column chromatography using 5\% hexane in ethyl acetate as the eluent to afford $\mathbf{4 a}(34 \mathrm{mg}, 63 \%$) and $\mathbf{4 b}$ ($10 \mathrm{mg}, 18 \%$).

Compound 4a: White solid. M.p.: 156-159 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-6.90(\mathrm{~m}$, $25 \mathrm{H}), 3.24(\mathrm{q}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.6,147.6,146.9,143.1,142.1,136.1,135.9,135.4,135.0,130.7,130.2,130.1$, $128.4,128.2,127.5,127.4,127.3,127.1,126.7,126.6,126.2,124.0,74.2,66.1,29.6,11.8$. HRMS (+ESI) Calcd for $\mathrm{C}_{39} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 545.2593$; found: 545.2634.

Compound 4b: White solid. M.p.: $154-156{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.35(\mathrm{~m}$, $2 H), 7.23-6.98(\mathrm{~m}, 23 \mathrm{H}), 4.91(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{q}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.2$, $145.6,139.8,139.2,137.5,136.4,136.2,136.1,132.1,131.3,129.8,129.4,128.5,127.9$, 127.6, 127.3, 126.9, 126.8, 126.7, 126.0, 123.8, 70.7, 66.8, 58.2, 57.9, 43.1, 12.4. HRMS (+ESI) Calcd for $\mathrm{C}_{39} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 547.2749$; found: 547.2817.
(ii) Synthesis of 3,4-dimethyl-2,6,7,8,9-pentaphenyl-2,3-diazaspiro[4.4]nona-6,8-dien-1one (4a):

Scheme SI-3

To a solution of 3aa (108 mg, 0.2 mmol) in anhydrous THF, a solution of $\mathrm{BH}_{3} \cdot \mathrm{~S}_{\left(\mathrm{CH}_{3}\right)_{2}(0.2}$ $\mathrm{mL}, 2 \mathrm{M}$ solution in THF, 0.4 mmol) was added at $0{ }^{\circ} \mathrm{C}$ and the reaction was stirred at room temperature for 12 h . The solvent was removed under vacuo and to the crude product MeOH was added. Then $10 \mathrm{wt} \%$ of $\mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$ was added into the reaction mixture under nitrogen atmosphere. The reaction mixture was stirred again at room temperature for 24 h . The solvent was removed under vacuo and the crude product obtained was purified by silica gel (100-200 mesh) column chromatography using 5\% hexane in ethylacetate as the eluent to afford $\mathbf{4 a}(47 \mathrm{mg}, 43 \%)$.
(iii) Synthesis of 4-(dibromomethylene)-3-methyl-2,6,7,8,9-pentaphenyl-2,3-diazaspiro[4.4]nona-6,8-dien-1-one (4c):

Scheme SI-4

To a solution of $\mathbf{3} \mathbf{a a}(108 \mathrm{mg}, 0.2 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Br}_{2}(64 \mathrm{mg}, 0.40 \mathrm{mmol})$ was added and then the reaction was continued to stir at room temperature for 12 h . The solvent was removed under vacuo and the crude product obtained was purified by silica gel (100-200 mesh) column chromatography using 2% hexane in EtOAc as the eluent to afford 4c (103 $\mathrm{mg}, 74 \%$). Pale yellow solid. M.p.: $159-162{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36$ (t, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.05(\mathrm{~m}, 17 \mathrm{H}), 6.96-6.95(\mathrm{~m}, 4 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,147.9,145.6,139.4,135.4,134.6,134.5,129.7$, 129.3, 129.0, 128.1, 127.5, 127.4, 127.0, 126.1, 121.4, 73.9, 41.4, 29.6. HRMS (+ESI) Calcd for $\mathrm{C}_{39} \mathrm{H}_{29} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 699.0647; found: 699.0689.

4. Measurement of fluorescence quantum yield (Φ_{F})

Fluorescence quantum yields (Φ_{F}) of the compounds were calculated using quinine sulfate ($0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution) as a standard ($\Phi=0.54$). Emission spectra of all the compounds were recorded from 360 to 660 nm with excitation at 340 nm . Absorbance (optical density, OD) of all the samples were recorded at 340 nm and quantum yields were calculated according to equation (1), in which $\Phi_{\text {ref }}$ is the quantum yield of the reference, $A_{\text {sample }}$ and $A_{\text {ref }}$ are the areas
under the emission spectra of the dimers and the reference, $O D_{\text {ref }}$ and $O D_{\text {sample }}$ are the absorbances of the reference and the dimers which were measured at the excitation wavelength; $n_{\text {sample }}$ and $n_{\text {ref }}$ are the refractive indices of the dimers and the reference in solution.

$$
\begin{equation*}
\Phi F=\Phi r e f\left(\frac{\text { Asample }}{\text { Aref }}\right) x\left(\frac{\text { oDref }}{\text { oDsample }}\right) x\left(\frac{\text { nref }}{\text { nsample }}\right) \tag{1}
\end{equation*}
$$

Sl. No	Compound	$\lambda_{\max }(\mathbf{n m})$	$\lambda_{\text {em }}(\mathbf{n m})$	$\left(\boldsymbol{\Phi}_{\mathbf{F}}\right)^{\text {a,b }}$
1	4aa	347	449	0.48
2	4ab	341	457	0.75
3	4ad	340	450	0.64
4	4ca	340	450	0.52
5	4da	318	450	0.61
6	4fa	340	449	0.30
7	4ga	345	438	0.47

${ }^{a}$ Concentration $2.0 \times 10^{-5} \mathrm{M}$ in toluene; ${ }^{b}$ All the compounds were excited at 340 nm .

Reference:

1. S. Baruah, P. Saikia, G. Duarah and S. Gogoi, Org. Lett., 2018, 20, 3753-3757.

Spectral and Analytical Data of 3ba-ka and 3aa-ak:

 3aa	3-Methyl-4-methylene-2,6,7,8,9-pentaphenyl-2,3- diazaspiro[4.4]nona-6,8-dien-1-one (3aa): The title compound was prepared by following the general procedure 2.3 from antipyrine, 1a ($94 \mathrm{mg}, 0.5 \mathrm{mmol}$) and alkyne 2a ($178 \mathrm{mg}, 1.0 \mathrm{mmol}$), which was then purified by column chromatography using $5 \% \mathrm{EtOAc}$ in hexane to afford white solid of 3aa ($214 \mathrm{mg}, 79 \%$). M.p.: $143-145{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-6.96(\mathrm{~m}, 25 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 2.46(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.0,150.1,146.1,145.0$, 136.1, 135.0, 130.4, 130.0, 129.1, 128.2, 127.9, 127.4, 127.2, 126.7, 123.3, 89.4, 74.4, 42.4. HRMS (+ESI) Calcd for $\mathrm{C}_{39} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 543.2436; found: 543.2338.
	3-Methyl-4-methylene-6,7,8,9-tetraphenyl-2-(p-tolyl)-2,3- diazaspiro[4.4]nona-6,8-dien-1-one (3ba): The title compound was prepared by following the general procedure 2.3 from antipyrine $\mathbf{1 b}$ ($101 \mathrm{mg}, 0.5 \mathrm{mmol}$) and alkyne $\mathbf{2 a}(178 \mathrm{mg}, 1.0 \mathrm{mmol})$ which was then purified by column chromatography using $5 \% \mathrm{EtOAc}$ in hexane to afford brown solid of $\mathbf{3 b a}$ ($181 \mathrm{mg}, 65 \%$). M.p.: $91-94{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22-7.06(\mathrm{~m}, 20 \mathrm{H}), 6.96(\mathrm{dd}, J=7.8,1.5$ $\mathrm{Hz}, 4 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.5,149.9,145.7,144.6,136.5,134.8,134.7$, 133.2, 130.0, 129.7, 129.4, 127.8, 127.5, 127.1, 126.8, 123.3, 122.3, 88.8, 74.0, 42.0, 21.0. HRMS (+ESI) Calcd for $\mathrm{C}_{40} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 557.2592; found: 557.2567.

	2-(3,4-Dimethylphenyl)-3-methyl-4-methylene-6,7,8,9- tetraphenyl-2,3-diazaspiro[4.4]nona-6,8-dien-1-one (3ca): The titled compound was prepared by following the general procedure $\mathbf{2 . 3}$ from antipyrine $\mathbf{1 c}(108 \mathrm{mg}, 0.5 \mathrm{mmol})$ and alkyne $\mathbf{2 a}(178 \mathrm{mg}, 1.0$ mmol) which was then purified by column chromatography using using 5\% EtOAc in hexane afford off white solid of 3ca ($202 \mathrm{mg}, 71$ \%). M.p.: 80-83 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23-7.21(\mathrm{~m}$, 4H), 7.19-7.15 (m, 6H), 7.13-7.06 (m, 7H), 6.97-6.92 (m, 6H), 4.46 (d, $J=3.9 \mathrm{~Hz}, 2 \mathrm{H}$), $2.45(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta 166.9,150.3,146.0,145.0,137.5,135.6,135.1,135.0$, 133.8, 130.4, 130.1, 128.1, 127.8, 127.4, 127.1, 125.1, 121.4, 88.9, 74.4, 42.2, 20.0, 19.6. HRMS (+ESI) Calcd for $\mathrm{C}_{41} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 571.2749; found: 571.2693.
	2-(4-Isopropylphenyl)-3-methyl-4-methylene-6,7,8,9-tetraphenyl- 2,3-diazaspiro[4.4]nona-6,8-dien-1-one (3da): The title compound was prepared by following the general procedure 2.3 from antipyrine $\mathbf{1 d}(112 \mathrm{mg}, 0.5 \mathrm{mmol})$ and alkyne $\mathbf{2 a}(178 \mathrm{mg}, 1.0 \mathrm{mmol})$ which was then purified by column chromatography using $5 \% \mathrm{EtOAc}$ in hexane to afford brown solid of 3da ($199 \mathrm{mg}, 70 \%$ yield). M.p.: $83-87{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.13(\mathrm{~m}$, $10 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 6 \mathrm{H}), 6.97-6.95(\mathrm{~m}, 4 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 2.87$ (heptet, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,150.3,147.6,146.0,145.0,135.1$, $135.0,133.6,130.4,130.0,128.1,127.8,127.4,127.1,123.6,89.3$, 74.3, 42.4, 34.0, 24.2. HRMS (+ESI) Calcd for $\mathrm{C}_{42} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 585.2905; found: 585.2861.
	2-(4-Fluorophenyl)-3-methyl-4-methylene-6,7,8,9-tetraphenyl- 2,3-diazaspiro[4.4]nona-6,8-dien-1-one (3ea): The title compound was prepared by following the general procedure 2.3 from antipyrine $\mathbf{1 e}(103 \mathrm{mg}, 0.5 \mathrm{mmol})$ and alkyne $\mathbf{2 a}(178 \mathrm{mg}, 1.0 \mathrm{mmol})$ which was then purified by column chromatography using $5 \% \mathrm{EtOAc}$ in hexane to afford yellow solid of $3 \mathrm{ea}(179 \mathrm{mg}, 64 \%)$. M.p.: $95-98{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20-7.18(\mathrm{~m}, 6 \mathrm{H}), 7.17-7.06(\mathrm{~m}, 12 \mathrm{H})$,

	7.02-6.95 (m, 6H), $4.50(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.2,161.8(\mathrm{~d}, J=245.0 \mathrm{~Hz}), 149.8,145.9,144.6,134.8$ (d, $J=18.8 \mathrm{~Hz}), 132.0,130.0(\mathrm{~d}, J=37.5 \mathrm{~Hz}), 129.8,128.0(\mathrm{~d}, J=$ $37.5 \mathrm{~Hz}), 127.3,127.0,125.1,125.0,115.9,115.7(\mathrm{~d}, J=22.5 \mathrm{~Hz})$, 89.4, 74.1, 42.2. HRMS (+ESI) Calcd for $\mathrm{C}_{39} \mathrm{H}_{30} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 561.2342; found: 561.2330.
 3fa	2-(4-Chlorophenyl)-3-methyl-4-methylene-6,7,8,9-tetraphenyl- 2,3-diazaspiro[4.4]nona-6,8-dien-1-one (3fa): The title compound was prepared by following the general procedure $\mathbf{2 . 3}$ from antipyrine, $\mathbf{1 f}(111 \mathrm{mg}, 0.5 \mathrm{mmol})$ and alkyne $\mathbf{2 a}(178 \mathrm{mg}, 1.0 \mathrm{mmol})$ which was then purified by column chromatography using 5\% EtOAc in hexane to afford yellow solid of $\mathbf{3 f a}(181 \mathrm{mg}, 63 \%)$. M.p.: $113-116{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 2 \mathrm{H})$, 7.19-7.13 (m, 10H), 7.13-7.06 (m, 6H), 6.96-6.94 (m, 4H), $4.51(\mathrm{dd}$, $J=5.0,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 167.1, 149.6, 145.9, 144.4, 134.6, 134.5, 134.4, 131.5, 130.0, 129.7, $128.8,127.8,127.5,127.2,126.9,123.8,89.5,74.0,42.3$. HRMS (+ESI) Calcd for $\mathrm{C}_{39} \mathrm{H}_{30} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 577.2046$; found: 577.2012.
	2-(3-Chlorophenyl)-3-methyl-4-methylene-6,7,8,9-tetraphenyl- 2,3-diazaspiro[4.4]nona-6,8-dien-1-one (3ga): The title compound was prepared by following the general procedure $\mathbf{2 . 3}$ from antipyrine, $\mathbf{1 g}(111 \mathrm{mg}, 0.5 \mathrm{mmol})$ and alkyne $\mathbf{2 a}(178 \mathrm{mg}, 1.0 \mathrm{mmol})$ which was then purified by column chromatography using $5 \% \mathrm{EtOAc}$ in hexane to afford yellow solid of $\mathbf{3 g a}(161 \mathrm{mg}, 56 \%)$. M.p.: $105-110{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.07(\mathrm{~m}, 16 \mathrm{H})$, 6.96-6.94 (m, 4H), $4.52(\mathrm{dd}, J=10.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 167.7, 149.8, 146.2, 144.7, 137.4, 134.8, 134.7, 130.3, 130.0, 128.2, 127.9, 127.5, 127.2, 126.5, 122.6, 120.9, 89.9, 74.4, 42.7. HRMS (+ESI) Calcd for $\mathrm{C}_{39} \mathrm{H}_{30} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 577.2046; found: 577.2013.

	(\boldsymbol{E})-3-Methyl-2,6,7,8,9-pentaphenyl-4-propylidene-2,3- diazaspiro[4.4]nona-6,8-dien-1-one and (Z)-3-methyl-2,6,7,8,9-pentaphenyl-4-propylidene-2,3-diazaspiro[4.4]nona-6,8-dien-1one (3ha, $\boldsymbol{E}: \mathbf{Z}=\mathbf{3 : 1)}$): The title compound was prepared by following the general procedure $\mathbf{2 . 3}$ from antipyrine $\mathbf{1 h}(108 \mathrm{mg}, 0.5 \mathrm{mmol})$ and alkyne $\mathbf{2 a}(178 \mathrm{mg}, 1.0 \mathrm{mmol})$ which was then purified by column chromatography using $5 \% \mathrm{EtOAc}$ in hexane to afford white solid of 3ha ($188 \mathrm{mg}, 66 \%$). M.p.: $156-160{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.05(\mathrm{~m}, 17 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 4 \mathrm{H}), 4.98(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 0.75 \mathrm{H}), 4.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 0.25 \mathrm{H}), 2.37(\mathrm{~s}, 2.25 \mathrm{H}), 2.18$ ($\mathrm{t}, J=7.5 \mathrm{~Hz}, 1.5 \mathrm{H}$), $2.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.08(\mathrm{~s}, 0.75 \mathrm{H}), 1.00$ $(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2.25 \mathrm{H}), 0.96(\mathrm{t}, J=6.5 \mathrm{~Hz}, 0.75 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.5,166.1,146.1,145.4,145.0,143.0,141.0$, $139.9,136.1,135.2,135.0,134.9,134.8,130.0,129.8,129.7,129.5$, 128.7, 127.8, 127.6, 127.5, 127.1, 127.0, 126.8, 126.7, 126.0, 125.6, 122.4, 121.7, 112.6, 111.5, 73.6, 44.0, 42.9, 20.3, 18.9, 14.4, 13.9. HRMS (+ESI) Calcd for $\mathrm{C}_{41} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 571.2749; found: 571.2753.
	3-Methyl-2,6,7,8,9-pentaphenyl-4-(propan-2-ylidene)-2,3- diazaspiro[4.4]nona-6,8-dien-1-one (3ia): The title compound was prepared by following the general procedure $\mathbf{2 . 3}$ from antipyrine, $\mathbf{1 i}$ ($108 \mathrm{mg}, 0.5 \mathrm{mmol}$) and alkyne 2a ($178 \mathrm{mg}, 1.0 \mathrm{mmol}$) which was then purified by column chromatography using $5 \% \mathrm{EtOAc}$ in hexane to afford yellow solid of $\mathbf{3 i a}(177 \mathrm{mg}, 62 \%)$. M.p.: $156-159{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.25-7.05(\mathrm{~m}, 17 \mathrm{H}), 6.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.0(\mathrm{~s}, 3 \mathrm{H})$, $1.73(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.2$, 145.7, 143.6, 136.3, 135.0, 129.8, 129.4, 128.7, 127.8, 127.5, 127.0, 126.7, 125.4, 121.2, 116.7, 74.9, 43.0, 20.1, 17.9. HRMS (+ESI) Calcd for $\mathrm{C}_{41} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 571.2749; found: 571.2784.

	2-(4-Chlorophenyl)-3-methyl-6,7,8,9-tetraphenyl-4-(propan-2-ylidene)-2,3-diazaspiro[4.4]nona-6,8-dien-1-one (3ja): The title compound was prepared by following the general procedure $\mathbf{2 . 3}$ from antipyrine $\mathbf{1 j}$ ($125 \mathrm{mg}, 0.5 \mathrm{mmol}$) and alkyne $\mathbf{2 a}(178 \mathrm{mg}, 1.0 \mathrm{mmol})$ which was then purified by column chromatography using 5\% EtOAc in hexane to afford yellow solid of $\mathbf{3 j a}$ ($202 \mathrm{mg}, 67 \%$). M.p.: 166 $170{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.29$ (m, 2H), 7.12-7.06 (m, 16H), $6.94(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H})$, $1.73(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6$, $145.8,143.5,134.9,134.7,130.3,129.8,128.8,127.9,127.5,127.1$, 126.7, 122.1, 117.2, 74.8, 43.0, 20.1, 17.8. HRMS (+ESI) Calcd for $\mathrm{C}_{41} \mathrm{H}_{34} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 605.2359$; found: 605.2364.
	3-Benzyl-4-methylene-2,6,7,8,9-pentaphenyl-2,3- diazaspiro[4.4]nona-6,8-dien-1-one (3ka): The title compound was prepared by following the general procedure $\mathbf{2 . 3}$ from antipyrine, $\mathbf{1 k}$ ($128 \mathrm{mg}, 0.5 \mathrm{mmol}$) and alkyne $2 \mathrm{a}(178 \mathrm{mg}, 1.0 \mathrm{mmol})$ which was then purified by column chromatography using $5 \% \mathrm{EtOAc}$ in hexane to afford yellow solid of $\mathbf{3 k a}$ (238 mg , 77\%). M.p.: $191-193{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.04(\mathrm{~m}, 26 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 4 \mathrm{H})$, $4.34(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9,148.6,145.7,144.4,136.7,135.8$, 134.7, 134.6, 130.0, 129.8, 128.8, 128.3, 127.9, 127.8, 127.5, 127.2, 126.8, 126.6, 123.5, 89.7, 74.5, 59.0. HRMS (+ESI) Calcd for $\mathrm{C}_{45} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 619.2749$; found: 619.2725 .

	3-Methyl-4-methylene-2-phenyl-6,7,8,9-tetra-p-tolyl-2,3- diazaspiro[4.4]nona-6,8-dien-1-one (3ab): The title compound was prepared by following the general procedure $\mathbf{2 . 3}$ from antipyrine $\mathbf{1 a}$ ($94 \mathrm{mg}, 0.5 \mathrm{mmol}$) and alkyne 2b ($206 \mathrm{mg}, 1.0 \mathrm{mmol}$) which was then purified by column chromatography using 5\% EtOAc in hexane to afford yellow solid of $\mathbf{3 a b}(227 \mathrm{mg}, 76 \%)$. M.p.: $112-115{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 2 \mathrm{H})$, $7.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 6.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $4 \mathrm{H}), 6.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.47(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.45(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.2,150.4,145.4,144.1,136.5,136.2,135.9$, $132.0,131.9,129.9,129.5,128.7,128.5,128.2,126.1,122.8,88.8$, 73.8, 42.3, 22.6. HRMS (+ESI) Calcd for $\mathrm{C}_{43} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 599.3062; found: 599.3070 .
$3 a c$	6,7,8,9-Tetrakis(4-methoxyphenyl)-3-methyl-4-methylene-2-phenyl-2,3-diazaspiro[4.4]nona-6,8-dien-1-one (3ac): The title compound was prepared by following the general procedure 2.3 from antipyrine, 1a ($94 \mathrm{mg}, 0.5 \mathrm{mmol}$) and alkyne 2c ($238 \mathrm{mg}, 1.0 \mathrm{mmol}$) which was then purified by column chromatography using 10% EtOAc in hexane to afford white solid of 3ac ($232 \mathrm{mg}, 70 \%$). M.p.: $198-200{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.12$ (d, $J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H})$, $6.64(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 4.46(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 12 \mathrm{H})$, $2.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.7,158.7,158.5$, $150.9,144.9,143.6,136.2,131.7,131.2,129.0,127.8,127.7,126.5$, 123.1, 113.6, 113.3, 89.0, 74.0, 55.2, 42.7. HRMS (+ESI) Calcd for $\mathrm{C}_{43} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 663.2858$; found: 663.2833.

	6,7,8,9-Tetrakis(4-fluorophenyl)-3-methyl-4-methylene-2-phenyl- 2,3-diazaspiro[4.4]nona-6,8-dien-1-one (3ad): The title compound was prepared by following the general procedure $\mathbf{2 . 3}$ from antipyrine, $\mathbf{1 a}(94 \mathrm{mg}, 0.5 \mathrm{mmol})$ and alkyne $\mathbf{2 d}(214 \mathrm{mg}, 1.0 \mathrm{mmol})$ which was then purified by column chromatography using 7\% EtOAc in hexane to afford white solid of $\mathbf{3 a d}\left(203 \mathrm{mg}, 66 \%\right.$). M.p.: $190-194{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.14$ (m, $7 \mathrm{H}), 6.91-6.85(\mathrm{~m}, 8 \mathrm{H}), 6.80(\mathrm{t}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 4.44$ $(\mathrm{s}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5,163.3(\mathrm{~d}$, $J=246.3 \mathrm{~Hz}), 162.1(\mathrm{~d}, J=246.3 \mathrm{~Hz}), 149.6,144.9,144.1,135.8$, $132.0,131.9,131.7,130.6(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 129.2,127.0,123.1,115.5$, $115.2(\mathrm{~d}, J=22.5 \mathrm{~Hz}), 115.2,89.6,74.5,42.4$. HRMS (+ESI) Calcd for $\mathrm{C}_{39} \mathrm{H}_{27} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 615.2059$; found: 615.2382.
	6,7,8,9-Tetrakis(3-fluorophenyl)-3-methyl-4-methylene-2-phenyl- 2,3-diazaspiro[4.4]nona-6,8-dien-1-one (3ae): The title compound was prepared by following the general procedure $\mathbf{2 . 3}$ from antipyrine, $\mathbf{1 a}(94 \mathrm{mg}, 0.5 \mathrm{mmol})$ and alkyne $\mathbf{2 e}(214 \mathrm{mg}, 1.0 \mathrm{mmol})$ which was then purified by column chromatography using $7 \% \mathrm{EtOAc}$ in hexane to afford white solid of $\mathbf{3 a e}(224 \mathrm{mg}, 73 \%)$. M.p.: $85-88^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{t}, J$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 4 \mathrm{H}), 6.99-6.85(\mathrm{~m}, 8 \mathrm{H}), 6.75-6.73(\mathrm{~m}$, 2H), 6.68-6.65 (m, 2H) 4.56 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46$ (d, $J=2.3$ $\mathrm{Hz}, 1 \mathrm{H}$), $2.53(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,162.3$ (d, $J=244.3 \mathrm{~Hz}$), $162.2(\mathrm{~d}, J=244.8 \mathrm{~Hz}), 148.7,144.8,144.4,136.0$, $135.9(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 135.8(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 135.3,129.6(\mathrm{~d}, J=8.3$ $\mathrm{Hz}), 129.5(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 128.9,126.8,125.5(\mathrm{~d}, J=18.6 \mathrm{~Hz}), 125.4$ $(\mathrm{d}, J=18.6 \mathrm{~Hz}), 122.9,116.6(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 116.2(\mathrm{~d}, J=22.2 \mathrm{~Hz})$, $114.6(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 114.5(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 89.6,74.1,42.1$. HRMS (+ESI) Calcd for $\mathrm{C}_{39} \mathrm{H}_{27} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 615.2059; found: 615.2056.

 3af	3,6,8-Trimethyl-4-methylene-2,7,9-triphenyl-2,3- diazaspiro[4.4]nona-6,8-dien-1-one (3ag): The title compound was prepared by following the general procedure 2.3 from antipyrine, 1a ($94 \mathrm{mg}, 0.5 \mathrm{mmol}$) and alkyne $\mathbf{2 g}(116 \mathrm{mg}, 1.0 \mathrm{mmol})$ which was then purified by column chromatography using 7% EtOAc in hexane to afford brown gum of $\mathbf{3 a g}(121 \mathrm{mg}, 58 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{dd}, J=8.7,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.30$ (m, 7H), 7.25-7.21 (m, 2H), $4.42(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=1.9$ $\mathrm{Hz}, 1 \mathrm{H}$), $2.66(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $168.2,151.0,145.2,141.9,141.7,141.6,136.1,135.6,135.3,129.5$, 129.2, 128.9, 128.1, 127.2, 126.9, 126.3, 122.8, 88.1, 73.1, 42.4, 13.9, 11.5. HRMS (+ESI) Calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 419.2123$; found:. 419.2127.
 3ag	6,8-Diethyl-3-methyl-4-methylene-2,7,9-triphenyl-2,3- diazaspiro[4.4]nona-6,8-dien-1-one (3ag): The title compound was prepared by following the general procedure $\mathbf{2 . 3}$ from antipyrine, $\mathbf{1 a}$ ($94 \mathrm{mg}, 0.5 \mathrm{mmol}$) and alkyne $\mathbf{2 h}(130 \mathrm{mg}, 1.0 \mathrm{mmol})$ which was then purified by column chromatography using 5\% EtOAc in hexane to afford a gum of $\mathbf{3 a h}(123 \mathrm{mg}, 55 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.40-7.19 (m, 15H), 4.45 (0.75 H$), 4.35$ (s, 0.25 H$), 4.25(\mathrm{~s}, 0.75 \mathrm{H})$, $4.22(\mathrm{~s}, 0.25 \mathrm{H}), 2.58(\mathrm{~s}, 2.25 \mathrm{H}), 2.45-2.35(\mathrm{~m}, 1.5 \mathrm{H}), 2.35-2.30(\mathrm{~m}$, $1 \mathrm{H}), 2.29(\mathrm{~s}, 0.75 \mathrm{H}), 2.24-2.27(\mathrm{~m}, 1.5 \mathrm{H}), 1.14(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1.5 \mathrm{H})$, $0.98(\mathrm{t}, J=10.0 \mathrm{~Hz}, 2.25 \mathrm{H}), 0.74(\mathrm{t}, J=10.0 \mathrm{~Hz}, 2.25 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.8,167.6,150.5,149.9,147.7,146.9,143.4$, $142.9,137.5,136.1,135.6,132.9,129.5,129.3,128.9,128.6,128.2$, $128.0,127.9,127.9,127.0,126.1,126.0,122.9,122.5,88.8,88.2$, 74.1, 72.5, 42.3, 42.2, 19.9, 19.6, 14.8, 13.9. HRMS (+ESI) Calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 447.2436$; found: 447.2435

	3-Methyl-4-methylene-2-phenyl-6,7,8,9-tetrapropyl-2,3- diazaspiro[4.4]nona-6,8-dien-1-one (3ah): The title compound was prepared by following the general procedure $\mathbf{2 . 3}$ from antipyrine, 1a ($94 \mathrm{mg}, 0.5 \mathrm{mmol}$) and alkyne $\mathbf{2 h}(110 \mathrm{mg}, 1.0 \mathrm{mmol})$ which was then purified by column chromatography using 5\% EtOAc in hexane to afford brown gum of $\mathbf{3 a h}(112 \mathrm{mg}, 55 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.89$ ($\mathrm{s}, 3 \mathrm{H}$), 2.22-2.18 (m, 8H), 1.47-1.43 (m, 8H), $0.92(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $6 \mathrm{H}), 0.83(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.1$, $152.0,143.9,142.0,136.4,128.8,125.7,122.1,86.8,70.8,42.2,28.0$, 23.0, 22.2, 14.6, 14.2. HRMS (+ESI) Calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 407.3062; found: 407.3084.
 3ai	6,7,8,9-Tetrabutyl-3-methyl-4-methylene-2-phenyl-2,3- diazaspiro[4.4]nona-6,8-dien-1-one (3ai): The title compounds were prepared by following the general procedure 2.3 from antipyrine, 1a ($94 \mathrm{mg}, 0.5 \mathrm{mmol}$) and alkyne $\mathbf{2 i}$ ($138 \mathrm{mg}, 1.0 \mathrm{mmol}$) which was then purified by column chromatography using $5 \% \mathrm{EtOAc}$ in hexane to afford brown gummy of 3ai ($120 \mathrm{mg}, 52 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.20(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.9(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.16(\mathrm{~m}, 8 \mathrm{H}), 1.44-1.22(\mathrm{~m}, 16 \mathrm{H})$, $0.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.3,152.1,144.2,142.0,136.6,128.8,125.8$, $122.2,86.9,71.0,42.4,36.6,32.3,31.1,26.6,25.8,23.2,22.9,14.0$, 13.9. HRMS (+ESI) Calcd for $\mathrm{C}_{31} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 463.3688$; found: 463.3619.
	4-Methyl-2,6,7,8,9-pentaphenyl-2,3-diazaspiro[4.4]nona-3,6,8-trien-1-one (4aa): To a solution of $\mathbf{3 a a}(100 \mathrm{mg}, 0.18 \mathrm{mmol})$ in anhydrous toluene (20 mL), Lawessons reagent (1.5 equiv) was added. The reaction mixture was then refluxed for 6 hours. The solvent was removed under vacuo and the crude product obtained was purified by silica gel (100-200 mesh) column chromatography using 3\% EtOAc

	in hexane as the eluent to afford compound 4aa ($89 \mathrm{mg}, 47 \%$). One pot synthesis of $\mathbf{4 a} \mathbf{a}$ has been carried out by following the general procedure 2.4 from antipyrine, 1a $(94 \mathrm{mg}, 0.5 \mathrm{mmol})$ and alkyne 2a $(178 \mathrm{mg}, \quad 1.0 \mathrm{mmol})$, which was then purified by column chromatography using 5\% EtOAc in hexane to afford $\mathbf{4 a a}(153 \mathrm{mg}$, 29%). white solid, m.p.: 211-213 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.68(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.09(\mathrm{~m}$, $13 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6,158.8,149.2,138.0,137.7,134.3$, 133.5, 129.9, 128.8, 128.5, 128.4, 127.8, 127.6, 127.3, 125.4, 78.5, 14.0. HRMS (+ESI) Calcd for $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 529.2274$; found: 529.2198.
	4-Methyl-2-phenyl-6,7,8,9-tetra-p-tolyl-2,3-diazaspiro[4.4]nona- 3,6,8-trien-1-one (4ab): To a solution of 3ab ($100 \mathrm{mg}, 0.17 \mathrm{mmol}$) in anhydrous toluene (20 mL), Lawessons reagent (1.5 equiv) was added. The reaction mixture was then refluxed for 6 hours. The solvent was removed under vacuo and the crude product obtained was purified by silica gel (100-200 mesh) column chromatography using 3\% EtOAc in hexane as the eluent to afford compound $\mathbf{4 a b}$ (89 $\mathrm{mg}, 45 \%$). One pot synthesis of $\mathbf{4 a b}$ has been carried out by following the general procedure $\mathbf{2 . 4}$ from antipyrine, $\mathbf{1 a}(94 \mathrm{mg}, 0.5$ mmol) and alkyne 2b ($206 \mathrm{mg}, 1.0 \mathrm{mmol}$), which was then purified by column chromatography using $5 \% \mathrm{EtOAc}$ in hexane to afford $\mathbf{4 a b}$ (198 mg, 34\%). White solid, m.p.: 196-200 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{dd}, J=8.6,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.0-6.88(\mathrm{~m}, 12 \mathrm{H}), 6.88-6.80(\mathrm{~m}, 4 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H})$, $2.21(\mathrm{~s}, 6 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0$, $159.5,148.7,137.8,137.2,137.1,136.8,131.5,130.8,129.8,129.0$, 128.7, 128.5, 128.3, 125.2, 119.5, 78.3, 21.2, 21.1, 13.9. HRMS (+ESI) Calcd for $\mathrm{C}_{42} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 585.2900; found: 585.2627.

	6,7,8,9-Tetrakis(4-fluorophenyl)-4-methyl-2-phenyl-2,3- diazaspiro[4.4]nona-3,6,8-trien-1-one (4ad): To a solution of 3ab ($100 \mathrm{mg}, 0.17 \mathrm{mmol}$) in anhydrous toluene (20 mL), Lawessons reagent (1.5 equiv) was added. The reaction mixture was then refluxed for 6 hours. The solvent was removed under vacuo and the crude product obtained was purified by silica gel (100-200 mesh) column chromatography using $3 \% \mathrm{EtOAc}$ in hexane as the eluant to afford compound $\mathbf{4 a d}(85.6 \mathrm{mg}, 42 \%)$. One pot synthesis of 4ad has been carried out by following the general procedure 2.4 from antipyrine, $\mathbf{1 a}(94 \mathrm{mg}, 0.5 \mathrm{mmol})$ and alkyne $\mathbf{2 d}(214 \mathrm{mg}, 1.0 \mathrm{mmol})$, which was then purified by column chromatography using 5\% EtOAc in hexane to afford $\mathbf{4 a d}(186 \mathrm{mg}, 31 \%)$. White solid, m.p.: 185-189 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.97(\mathrm{~m}, 4 \mathrm{H}), 6.92-6.80$ $(\mathrm{m}, 12 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.1,162.1$ (d, $J=247.3 \mathrm{~Hz}$), $162.0(\mathrm{~d}, ~ J=247.3 \mathrm{~Hz}), 158.1,147.8,137.4,137.2$, $131.6(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 130.1(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 129.6(\mathrm{~d}, J=3.3 \mathrm{~Hz})$, 129.6 (d, $J=3.5 \mathrm{~Hz}$), 128.9, 125.7, 119.4, $115.7(\mathrm{~d}, J=21.4 \mathrm{~Hz})$, 78.5, 14.1. HRMS (+ESI) Calcd for $\mathrm{C}_{38} \mathrm{H}_{25} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 601.1898$; found: 601.1717.
	2-(3,4-Dimethylphenyl)-4-methyl-6,7,8,9-tetraphenyl-2,3- diazaspiro[4.4]nona-3,6,8-trien-1-one (4ca): To a solution of 3ca ($100 \mathrm{mg}, 0.18 \mathrm{mmol}$) in anhydrous toluene (20 mL), Lawessons reagent (1.5 equiv) was added. The reaction mixture was then refluxed for 6 hours. The solvent was removed under vacuo and the crude product obtained was purified by silica gel (100-200 mesh) column chromatography using $3 \% \mathrm{EtOAc}$ in hexane as the eluent to afford compound $\mathbf{4 c a}(74 \mathrm{mg}, 37 \%)$. One pot synthesis of 4ca has been carried out by following the general procedure 2.4 from antipyrine, $\mathbf{1 c}(94 \mathrm{mg}, 0.5 \mathrm{mmol})$ and alkyne 2a ($138 \mathrm{mg}, 1.0 \mathrm{mmol}$) which was then purified by column chromatography using 5% EtOAc in hexane to afford 4ca(155 mg, 28\%). Sticky solid. ${ }^{1}$ H NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~d}, J=2.3 \mathrm{~Hz}$,

	$1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-6.94(\mathrm{~m}, 21 \mathrm{H}), 2.24(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 6 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.6$, $158.7,149.3,138.2,137.3,135.7,134.5,134.2,133.7,130.2,130.0$, $128.7,128.6,128.4,128.0,127.8,127.5,121.1,117.5,78.7,20.0$, 19.4, 14.2. HRMS (+ESI) Calcd for $\mathrm{C}_{40} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 557.2587$; found: 557.2446.
	2-(4-Isopropylphenyl)-4-methyl-6,7,8,9-tetraphenyl-2,3- diazaspiro[4.4]nona-3,6,8-trien-1-one (4da): To a solution of 3da ($100 \mathrm{mg}, 0.17 \mathrm{mmol}$) in anhydrous toluene (20 mL), Lawessons reagent (1.5 equiv) was added. The reaction mixture was then refluxed for 6 hours. The solvent was removed under vacuo and the crude product obtained was purified by silica gel (100-200 mesh) column chromatography using $3 \% \mathrm{EtOAc}$ in hexane as the eluant to afford compound 4da ($79 \mathrm{mg}, 41 \%$). One pot synthesis of 4da has been carried out by following the general procedure 2.4 from antipyrine, $\mathbf{1 d}(94 \mathrm{mg}, 0.5 \mathrm{mmol})$ and alkyne $\mathbf{2 a}(138 \mathrm{mg}, 1.0 \mathrm{mmol})$ which was then purified by column chromatography using 5\% EtOAc in hexane to afford brown gummy of 4da ($159 \mathrm{mg}, 28 \%$). ${ }^{1} \mathrm{H}$ NMR $\begin{aligned} & \left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=2.1 \mathrm{~Hz}, \\ & 1 \mathrm{H}), 7.20(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.01(\mathrm{~m}, 17 \mathrm{H}), 6.96(\mathrm{t}, J=1.5 \\ & \mathrm{Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.00-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), \\ & 1.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \text { NMR }\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.7,158.8, \\ & 149.3,146.4,138.2,135.6,134.5,133.7,130.1,128.7,128.6,128.4, \\ & 128.0,127.8,127.5,126.9,120.2,78.6,33.8,24.1,14.2 . \mathrm{HRMS} \\ & (+\mathrm{ESI}) \text { Calcd for } \mathrm{C}_{41} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 571.2744 ; \text { found: } 571.2837 . \end{aligned}$
	2-(4-Chlorophenyl)-4-methyl-6,7,8,9-tetraphenyl-2,3-diazaspiro[4.4]nona-3,6,8-trien-1-one (4fa): To a solution of 3fa ($100 \mathrm{mg}, 0.17 \mathrm{mmol}$) in anhydrous toluene (20 mL), Lawessons reagent (1.5 equiv) was added. The reaction mixture was then refluxed for 6 hours. The solvent was removed under vacuo and the crude product obtained was purified by silica gel (100-200 mesh) column chromatography using $3 \% \mathrm{EtOAc}$ in hexane as the eluant to afford compound $\mathbf{4 f a}(74 \mathrm{mg}, \mathbf{3 9 \%}$). One pot synthesis of $\mathbf{4 f a}$ has

	been carried out by following the general procedure 2.4 from antipyrine, $\mathbf{1 f}(94 \mathrm{mg}, 0.5 \mathrm{mmol})$ and alkyne $\mathbf{2 a}(138 \mathrm{mg}, 1.0 \mathrm{mmol})$ which was then purified by column chromatography using $5 \% \mathrm{EtOAc}$ in hexane to afford $\mathbf{4 f a}(146 \mathrm{mg}, 26 \%)$. Sticky solid. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.27-7.24 (m, 2H), 7.23-6.92 (m, 20H), $2.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.8,159.4,149.5,138.8,137.9,134.5,134.2$, $133.4,130.1,129.9,128.6,128.5,127.9,127.8,127.5,125.2,119.1$, 117.0, 78.6, 14.1. HRMS (+ESI) Calcd for $\mathrm{C}_{38} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{OCl}[\mathrm{M}+\mathrm{H}]^{+}$: 563.1885; found 563.1721.
	2-(3-Chlorophenyl)-4-methyl-6,7,8,9-tetraphenyl-2,3- diazaspiro[4.4]nona-3,6,8-trien-1-one (4ga): To a solution of 3aa ($100 \mathrm{mg}, 0.17 \mathrm{mmol}$) in anhydrous toluene (20 mL), Lawessons reagent (1.5 equiv) was added. The reaction mixture was then refluxed for 6 hours. The solvent was removed under vacuo and the crude product obtained was purified by silica gel (100-200 mesh) column chromatography using $3 \% \mathrm{EtOAc}$ in hexane as the eluant to afford compound 4ga ($68 \mathrm{mg}, 36 \%$). One pot synthesis of 4ga has been carried out by following the general procedure 2.4 from antipyrine, $\mathbf{1 g}(94 \mathrm{mg}, 0.5 \mathrm{mmol})$ and alkyne $\mathbf{2 a}(138 \mathrm{mg}, 1.0 \mathrm{mmol})$ which was then purified by column chromatography using 5% EtOAc in hexane to afford brown gummy of $\mathbf{4 g a}(140 \mathrm{mg}, 25 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.16-7.07(\mathrm{~m}, 12 \mathrm{H}), 6.900-6.92(\mathrm{~m}, 8 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.9,159.4,149.4,138.8,136.4,134.3,133.5$, $130.6,130.0,128.9,128.6,128.0,127.8,127.6,120.6,78.6,14.1$. HRMS (+ESI) Calcd for $\mathrm{C}_{38} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{OCl}[\mathrm{M}+\mathrm{H}]^{+}: 563.1885$; found 563.1707.

3aa

-166.7174
$\int_{1}^{150.2543}$
-147.5612
-145.9509
145.0403
135.0687
-135.0150
-133.5939
-130.3587
1300.0425
128.1328
127.8436
127.3895
127.1429
127.1100
123.5691
-89.2695

Spectum - SC-63,26102018,215,3826]
 园

-89.3757
-74.2058

3ga

3ka

1	1	,			1	1	1	1	1	1	1	1	1	,	1	1	1	\top
180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0

-167.5562

-147.6212
-146.9397
-143.1337
142.0561
-136.0472
135.8665
-135.3625
-135.0378
-134.9810
-130.6907
-130.1660
-130.1059
-130.0569
-128.3593
-128.1790
-127.5309
-127.4294
-127.2761
-127.0719
-126.6728
-126.6427
-126.5673
-126.1868

$$
\begin{aligned}
& -76.6813 \\
& -74.1760 \\
& -66.0897
\end{aligned}
$$

1	1	-	-	,	I	-	-	1		1	1	1	1	1	1	1	
170	160	150	140	130	120	110	100	$f_{f 1} 9$		70	60	50	40	30	20	10	0

4b

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (ppm)										

NOE of compound 3ha

Expanded form of NOE of 3ha:

NOE of 3ag:

NOE of 3ag (Expanded form):

HMBC of 3ah:

Significant interaction in HMBC spectrum of compound 3ah

HMQC of 3ah:

X-Ray crystallographic data of compound 3aa: Empirical Formula- $\mathrm{C}_{39} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}, \mathrm{M}=$ 542.65, triclinic, Space group P-1, $\mathrm{a}=10.9996(6) \AA, \mathrm{b}=12.1270(6) \AA, \mathrm{c}=23.4345(12) \AA, \mathrm{V}$ $=3028.0(3) \AA^{3}, \mathrm{Z}=4, \mathrm{~T}=100 \mathrm{~K}, \rho \mathrm{calcd}=1.190 \mathrm{~g} / \mathrm{cm}^{3}, 2$-max. $=28.819^{\circ}$, Refinement of 759 parameters on 7364 independent reflections with $\mathrm{wR}_{2}=0.1920$ and $\mathrm{S}=0.937$. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC 1944638). The data can be obtained free of charge via the Internet at www.ccdc.cam.ac.uk/data_request.

Fig. S2 X-Ray Structure of Compound 3aa

X-Ray crystallographic data of compound 4aa: Empirical Formula- $\mathrm{C}_{38} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}$, $\mathrm{M}=$ 528.62, orthorhombic, Space group P-21, $\mathrm{a}=10.6306$ (8) $\AA, \mathrm{b}=15.1263(11) \AA, \mathrm{c}=$ $17.9884(14) \AA, \mathrm{V}=2892.6(4) \AA^{3}, \mathrm{Z}=4, \mathrm{~T}=296(2) \mathrm{K}, \rho \mathrm{calcd}=1.214 \mathrm{~g} / \mathrm{cm}^{3}, 2 \Theta \max .=$ 25.000°, Refinement of 371 parameters on 5081 independent reflections with $w R_{2}=0.1127$ and $S=1.024$. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC-2079413). The data can be obtained free of charge via the Internet at www.ccdc.cam.ac.uk/data_request.

Fig. S1 X-Ray Structure of Compound 4aa
3276
PPS_D2O_2ND

$(H: D=1.9: 1)$

