Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Table of Contents

1	Ge	neral	S2
2	Re	action set-up	S4
3	Sy	nthesis and characterization of starting materials	S5
4	Ну	droarylation of alkenes	S8
	4.1	Reaction optimization for hydroarylation of 2 with	
		methyl 4-bromobenzoate (1)	S8
	4.2	Reaction optimization for hydroarylation of 2 with	
		methyl 4-chlorobenzoate (22)	S10
	4.3	Experimental protocol	S11
	4.4	Characterization of products	S11
5	De	uterium labelling experiments	S36
	5.1	Deuterium labelling experiments with D2O	S36
	5.2	Deuterium labelling experiment using Hantzsch ester (3-d ₂)	S37
	5.3	Deuterium labelling experiment using Hantzsch ester (3-d2) and D2O	S38
	5.4	Deuterium labelling experiment using Hantzsch ester (3-d ₃) and D ₂ O	S39
	5.5	Deuterium labelling experiment using	
		Hantzsch ester (3-d ₃), D ₂ O and CD ₃ CN	S40
	5.6	Deuterium labelling experiments with CD ₃ CN	S41
	5.7	Deuterium labelling experiments using D ₂ O with different alkenes	S41
6	Re	ferences	S43
7	NN	AR spectra	S44

1 General

1.1 Nuclear magnetic resonance (NMR) spectroscopy

 1 H NMR (400 or 500 MHz) and 13 C NMR (100 or 125 MHz) spectra were recorded on Bruker Avance 400 or 500 spectrometers in CDCl₃ [using TMS (δ = 0.00) for 1 H and CDCl₃ (δ = 77.00) for 13 C as internal standard] and CD₃CN [CD₃CN (δ = 1.94) for 1 H as internal standard]. 11 B NMR (128 MHz) and 19 F NMR (376 MHz) spectra were recorded on Bruker Avance 400 spectrometers in CDCl₃. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, br = broad. 1 H NMR yields were measured using 1,1,2,2-tetrachloroethane (purchased from Sigma-Aldrich, product number: 185434) as an internal standard.

1.2 Mass spectroscopy

High-resolution mass (HRMS) spectra were obtained with a Waters Q-Tof Premier mass spectrometer.

1.3 Melting points

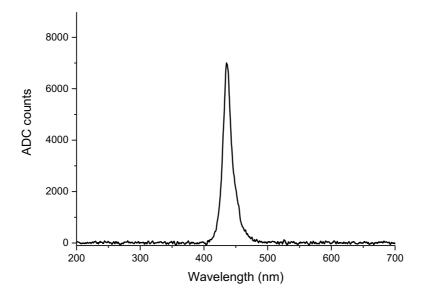
Melting points (MP) are uncorrected and were recorded on an MPA 100 OptiMelt Automated Melting Point System.

1.4 Purification methods

Flash chromatography was performed using Merck silica gel 60 with distilled solvents.

1.5 Catalysts, reagents, and solvents

Catalysts: Potassium polysulfide (K₂S_x) was purchased from Sigma-Aldrich (product number: 12665) and the composition of sulfur (S) in K₂S_x (36.3 wt%) was determined by inductively coupled prasma-optical emission spectrometry (ICP-OES) analysis with a Thermo Fischer iCAP6000 inductively coupled plasma – optical emission spectrometer. Lithium sulfide (Li₂S, product number: 213241) and triisopropylsilanethiol (*i*-Pr₃SiSH, product number: 429937) were purchased from Sigma-Aldrich and used as received.


Solvents: Acetonitrile (CH₃CN) was taken from a solvent purification system (PS-400-5, innovative technology Inc.). Dimethyl sulfoxide (DMSO, anhydrous, product number: 276855) was purchased from Sigma-Aldrich and used as received. Acetone (product number: MFCD00008765) was purchased from VWR and used as received.

Bases: Potassium carbonate (K₂CO₃, product number: 209619), potassium acetate (KOAc, product number 236497), 1,1,3,3-tetramethylguanidine (TMG, product number: 690953), and 1,4-diazabicyclo[2.2.2]octane (DABCO, product number: D27802) were purchased from Sigma-Aldrich. *N*,*N*-diisopropylethylamine (*i*-Pr₂NEt, product number: D1599) was purchased from Tokyo Chemical Industry (TCI). They were used as received.

Aryl halides, alkenes, and other reagents: Commercially available reagents were purchased from Sigma-Aldrich, Fluorochem, TCI, Cambridge Isotope Laboratories (CIL) or Leyan and were used as received unless otherwise noted.

1.6 Light sources

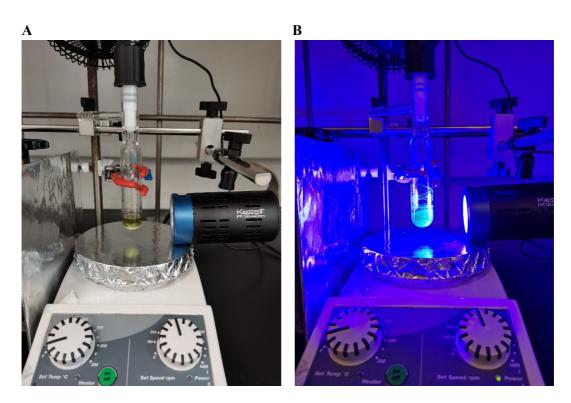

The Kessil PR160 lamp (λ_{max} = 440 nm) was used as the LED light source for the reactions (https://www.kessil.com/science/PR160L.php). The emission spectrum (Figure S1) was measured using an Avantes AvaSpec-ULS2048 detector.

Figure S1 Emission spectrum of Kessil lamp ($\lambda_{max} = 440 \text{ nm}$).

2 Reaction set-up

The reaction setup is displayed in Figure S2. The PR160 Kessil lamp (the light intensity was set 20 W) were used as the light source. All the reactions were run in a 25 mL sealed-tube equipped with an oval shaped stir bar. The distance between the lamp and the sealed tube was set 3.5 cm. All the reactions were stirred at the speed of 500 rpm with external fan cooling so that the ambient temperature of the reaction vessel did not exceed 30 °C.

Figure S2 Reaction set-up. (A) The reaction setup. (B) The reaction set up with light irradiation.

3. Synthesis and characterization of starting materials

3.1 Synthesis of (Z)-N-(prop-1-en-1-yl)acetamide (7)

To a 100 mL Schlenk flask with a magnetic stir bar was added acetamide (Sigma-Aldrich 00160) (1.49 g, 25.2 mmol), CuI (Sigma-Aldrich 03140) (238 mg, 1.25 mmol), K_2CO_3 (6.91 g, 50.0 mmol). A vacuum-refill cycle was performed thrice under an Ar atmosphere. The Schlenk flask was then charged with degassed anhydrous toluene (35 mL), N_1N_1 -dimethylethylenediamine (Sigma-Aldrich D157805) (269 μ L, 2.50 mmol), and (Z_1 -1-propenyl bromide (Sigma-Aldrich 368679) (4.3 mL, 50.6 mmol). The reaction mixture was stirred at 110 °C with an oil bath for 24 h. After being cooled to room temperature, the reaction mixture was filtered through a pad of celite and the filtrate was concentrated in vacuo. The resulting crude residue was purified by flash column chromatography (silica gel, hexane:ethyl acetate = 70:30) to give (Z_1 - Z_2 -1-en-1-yl)acetamide (7) (2.25 g, 19.9 mmol) in 79% yield as a white solid. The spectral data matched those reported in the literature.

¹H NMR (400 MHz, CDCl₃) (major rotamer) δ 7.21 (br, 1H), 6.78 – 6.62 (m, 1H), 4.86 – 4.69 (m, 1H), 2.08 (s, 3H), 1.62 (d, J = 7.1 Hz, 3H). (minor rotamer) δ 7.21 (br, 1H), 6.26 – 6.19 (m, 1H), 4.86 – 4.69 (m, 1H), 2.08 (s, 3H), 1.62 (d, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) (major rotamer) δ 167.3, 121.9, 105.0, 23.3, 10.8.

3.2 Synthesis of *tert*-butyl vinylcarbamate (8)

To a 250 mL Schlenk flask equipped with a stir bar was added *N*-vinyl formamide (Sigma-Aldrich 447331) (7.0 mL, 100 mmol), anhydrous THF (100 mL, 1 M), triethylamine (19.5 mL, 140 mmol, 1.4 equiv), di-*tert*-butyl dicarbonate (Sigma-Aldrich 205249) [(Boc)₂O, 28.4 g, 130 mmol, 1.3 equiv], and 4-dimethylaminopyridine (Sigma-Aldrich 107700) (DMAP, 1.22 g, 10.0 mmol) consecutively under an Ar atmosphere at 0 °C. The reaction was warmed to room temperature and stirred for 2 h. LiOH (5 M in 70 mL H₂O, 350 mmol, 3.5 equiv) was then added to the reaction mixture, and continuously stirred at 50 °C with an oil bath for 4 h. The mixture was cooled to room temperature and diluted with H₂O (100 mL). The aqueous layer was separated and

extracted with Et₂O (3 x 100 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. The resulting crude residue was purified by flash column chromatography (silica gel, hexane:ethyl acetate = 20:80) to give solid materials, recrystallization of which in pentane at -30 °C afforded *tert*-butyl vinylcarbamate (8) (11.7 g, 81.7 mmol) in 82% yield as a white solid. The spectral data matched those reported in the literature.²

¹H NMR (400 MHz, CDCl₃) δ 6.88 – 6.48 (m, 1H), 6.57 – 6.30 (m, 1H), 4.40 (d, J = 15.7 Hz, 1H), 4.30 – 3.95 (br d, J = 8.8 Hz, 1H), 1.47 (s, 9H).

¹³C NMR (125 MHz, CDCl₃) δ 145.7, 123.1, 84.9, 73.4, 21.2.

3.3 Synthesis of indomethacin methyl ester (39)

To a 100 mL round bottom flask equipped with a stir bar was added indomethacin (Sigma-Aldrich I7378) (3.57 g, 10.0 mmol) and K₂CO₃ (2.04 g, 14.8 mmol, 1.5 equiv), and acetone (20 mL). Iodomethane (TCI 10060) (1.3 mL, 20.8 mmol, 2 equiv) was then added at 0 °C. The reaction mixture was warmed at 60 °C with an oil bath and stirred for 5 h. After being cooled to room temperature, the reaction mixture was filtered through a pad of celite and the filtrate was concentrated *in vacuo*. The resulting crude residue was purified by flash column chromatography (silica gel, hexane:ethyl acetate = 80:20) to give **39** (3.43 g, 9.22 mmol) in 92% yield as a white solid. The spectral data matched those reported in the literature.³

¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, J = 8.6 Hz, 2H), 7.47 (d, J = 8.6 Hz, 2H), 6.96 (d, J = 2.5 Hz, 1H), 6.86 (d, J = 9.0 Hz, 1H), 6.67 (dd, J = 9.0, 2.5 Hz, 1H), 3.84 (s, 3H), 3.70 (s, 3H), 3.67 (s, 2H), 2.38 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.3, 168.3, 156.0, 139.2, 135.9, 133.9, 131.2, 130.8, 130.6, 129.1, 114.9, 112.5, 111.6, 101.3, 55.7, 52.1, 30.1, 13.3.

3.4 Synthesis of dimethyl 2-vinylcyclopropane-1,1-dicarboxylate (45)

To a 100 mL two-neck round bottom flask equipped with a condenser and a stir bar was added dimethyl malonate (1.2 mL, 10.5 mmol) (Sigma-Aldrich 136441), *trans*-1,4-dibromo-2-butene (1.2 mL, 10.7 mmol, 1 equiv) (Sigma-Aldrich D39207), Cs₂CO₃ (8.22 g, 25.2 mmol, 2.5 equiv)

and THF (50 mL). The reaction mixture was warmed at 60 °C with an oil bath and stirred for 16 h. After being cooled to room temperature, the reaction mixture was filtered through a pad of celite and the filtrate was concentrated *in vacuo*. The resulting crude residue was purified by flash column chromatography (silica gel, hexane:diethyl ether = 85:15) to give vinyl cyclopropane 45 (1.51 g, 8.20 mmol) in 78% yield as a colorless oil. The spectral data matched those reported in the literature.⁴

¹H NMR (500 MHz, CDCl₃): δ 5.50 – 5.38 (ddd, J = 17.0, 10.2, 8.3 Hz, 1H), 5.30 (dd, J = 17.0, 1.6 Hz, 1H), 5.15 (dd, J = 10.2, 1.6 Hz, 1H), 3.74 (s, 6H), 2.62 – 2.54 (ddd, J = 9.0, 8.3, 7.6 Hz, 1H), 1.72 (dd, J = 7.6, 5.0 Hz, 1H), 1.59 (dd, J = 9.0, 5.0 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃): δ 169.9, 167.7, 132.9, 118.6, 52.7, 52.5, 35.7, 31.4, 20.5.

3.5 Synthesis of diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate-4,4-d₂ (3-d₂)

To a 100 mL two-neck round bottom flask equipped with a stir bar was added paraformaldehyde- d_2 (CIL DLM-300-PK) (0.963 g, 30.1 mmol / DC(O)D, 1 equiv), ethyl acetoacetate (Sigma-Aldrich 537349) (15.2 mL, 120 mmol, 4 equiv), ammonium acetate (Sigma-Aldrich 238074) (4.64 g, 60.2 mmol, 2 equiv) and water (60 mL, 0.5 M). The reaction mixture was warmed at 86 °C with an oil bath and vigorously stirred for 3 h. The mixture was filtrated and washed with water and cold diethyl ether. The solid was dried under vacuum to afford the Hantzsch ester (3- d_2) (7.47g, 29.3mmol, 97%) as a yellow solid. The spectral data matched those reported in the literature.⁵

<u>1H NMR (400 MHz, CDCl3):</u> δ 5.18 (s, 1H), 4.17 (q, J = 7.1 Hz, 4H), 2.19 (s, 6H), 1.28 (t, J = 7.1 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 168.1, 144.9, 99.2, 59.6, 24.1 (t, J_{C-D} = 20.3 Hz), 19.0, 14.4.

3.6 Synthesis of diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate-1,4,4-d3 (3-d3)

EtO₂C
$$O_2$$
Et O_2 C O_2 Et O_3 C O_2 Et O_3 C O_3 C O_4 C O_4 C O_5 C O_4 C O_5

To a 50 mL Schlenk flask equipped with a stir bar was added Hantzsch ester (3-d₂) (1.02 g, 4.00 mmol, 1 equiv). A vacuum-refill cycle was performed thrice under an Ar atmosphere. The Schlenk flask was then charged with CD₃OD (CIL DLM-24-10) (10 mL, 0.4 M). The reaction mixture was stirred at 25 °C for 20 h. Then the reaction mixture was concentrated *in vacuo* to afford the

Hantzsch ester $(3-d_3)$ (1.02g, 3.98 mmol, 99%) as a yellow solid. The spectral data matched those reported in the literature.⁵

¹H NMR (500 MHz, CDCl₃): δ 4.17 (q, J = 7.1 Hz, 4H), 2.19 (s, 6H), 1.29 (t, J = 7.1 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 168.1, 144.8, 99.2, 59.6, 19.0, 14.4. (The deuterium-bounded carbon was not detected)

4 Hydroarylation of alkenes

4.1 Reaction optimization for hydroarylation of 2 with methyl 4-bromobenzoate (1)

The details on the reaction optimization for the hydroarylation of N-methyl-N-vinylacetamide (2) with methyl 4-bromobenzoate (1) were summarized in Table S1. Irradiation with visible light (Kessil lamp, $\lambda_{\text{max}} = 440 \text{ nm}$) to the mixture of 1, 2 (5 equiv) and the Hantzsch ester (3) (1.2 equiv) (TCI D3775) in the presence of K₂S_x (10 mol% per S atom), potassium carbonate (K₂CO₃, 1.5 equiv) and water (H₂O, 20 equiv) in acetonitrile (CH₃CN, 0.2 M) for 16 h gave arylethylacetamide 4 as the hydroarylation product in 76% yield along with the formation of methyl benzoate (5) via hydrodebromination in 16% yield (entry 1). The control experiments indicated that the presence of K₂S_x, irradiation with visible light, base (K₂CO₃), and H₂O are all essential for the process (entries 2-5), and the reaction was hampered under an air atmosphere (entry 6). The yield of 4 decreased approximately 10% when the amount of alkene (2) was reduced to 2.5 equiv (entry 7). The use of i-Pr₃SiSH or Li₂S, identified as the potential precatalysts for the polysulfide anions, performed comparably (entries 8 and 9). The yield of 4 was slightly reduced when the reaction was conducted in 0.1 M concentration (entry 10) or when acetone was the solvent (entry 11). It should be noted that the reaction in DMSO gave full conversion of 1 within 4 h, while the yield of 4 fallen down by about 10% (entry 12). Using other stoichiometric reductant like HCO₂Na or i-Pr₂NEt was detrimental (entries 13 and 14). Use of the Hantzsch ester (3) in 2 equivalents did not improve the yield (entry 15). Use of organic bases such as i-Pr₂NEt, 1,4diazabicyclo[2.2.2]octane (DABCO), tetramethylguanidine (TMG) were not optimal for the hydroarylation (entries 16-18).

 Table S1
 Reaction optimization^a

Entry	Variation from "the standard conditions"	Time (h)	Conversion of 1 (%)	Yield of 4 (%) ^b	Yield of 5 (%) ^b	Yield of 3' (%) ^b
1	none	16	>99	76 (75)	16	85
2	no K ₂ S _x	16	4	0	trace	13
3	no irradiation with light	16	0	0	0	0
4	no K ₂ CO ₃	16	2	trace	trace	22
5	no H ₂ O	16	60	38	8	51
6	under an air atmosphere	16	8	0	trace	72
7	alkene (2) (2.5 equiv)	16	87	62	20	77
8	i-Pr ₃ SiSH (10 mol%) instead of K ₂ S _x	16	>99	74	20	87
9	Li ₂ S (10 mol%) instead of K ₂ S _x	16	>99	73	21	86
10	CH ₃ CN (5 mL)	20	>99	69	16	87
11	acetone as a solvent instead of CH3CN	16	>99	72	25	88
12	DMSO as a solvent instead of CH ₃ CN	4	>99	64	21	77
13	HCOONa instead of Hantzsch ester (3)	16	0	0	0	0
14	<i>i</i> -Pr ₂ NEt instead of Hantzsch ester (3)	16	3	2	trace	0
15	Hantzsch ester (3) (2 equiv)	20	>99	71	17	51
16°	<i>i</i> -Pr ₂ NEt instead of K ₂ CO ₃	16	53	29	19	43
17°	DABCO instead of K ₂ CO ₃	16	18	13	5	23
18°	TMG instead of K ₂ CO ₃	14	>99	55	32	93

^a Standard conditions: **1** (0.5 mmol), **2** (5 equiv), **3** (1.2 equiv), K₂S_x (10 mol% per S), K₂CO₃ (1.5 equiv), H₂O (20 equiv), CH₃CN (2.5 mL, 0.2 M), 440 nm light (Kessil lamp), <30 °C. ^b Yields determined by ¹H NMR with 1,1,2,2-tetrachloroethane as an internal standard (isolated yield in parenthesis). ^c CH₃CN (5 mL) was used.

4.2 Reaction optimization for hydroarylation of 2 with methyl 4-chlorobenzoate (22)

We also conducted optimization of the reaction conditions for the hydroarylation of **2** with methyl 4-chlorobenzoate (**22**) (Table S2). The reactions in CH₃CN resulted in incomplete conversion of **22** (entries 1-3), whereas that in DMSO led full conversion within 6 h, affording **4** in 67% yield (entry 4).

Table S2 Reaction optimization for methyl 4-chlorobenzoate (22)^a

Entry	Precatalyst	Solvent	Time (h)	Conversion of 22 (%)	Yield of 4 (%) ^b	Yield of 5 (%) ^b
1	K_2S_x	CH ₃ CN	24	72	53	13
2	i-Pr ₃ SiSH	CH ₃ CN	24	77	61	14
3	$\mathrm{Li}_2\mathrm{S}$	CH ₃ CN	24	84	66	14
4	K_2S_x	DMSO	6	>99	71 (67) ^c	20

^a Reaction conditions: **22** (0.5 mmol), **2** (5 equiv), **3** (1.2 equiv), precatalyst (10 mol% per S), K₂CO₃ (1.5 equiv), H₂O (20 equiv), solvent (2.5 mL, 0.2 M), 440 nm light (Kessil lamp), <30 °C. ^b Yields determined by ¹H NMR with 1,1,2,2-tetrachloroethane as an internal standard. ^c Isolated yield.

4.3 Experimental protocol

To a 25 mL sealed tube with a magnetic stir bar was added methyl 4-bromobenzoate (1) (Sigma-Aldrich 407593) (107.7 mg, 0.501 mmol), *N*-methyl-*N*-vinylacetamide (2) (Sigma-Aldrich 255130) (258 μ L, 2.50 mmol, 5 equiv), K_2S_x (4.1 mg, 10 mol% per S), the Hantzsch ester (TCI D3775) (3) (152.2 mg, 0.601 mmol, 1.2 equiv), K_2CO_3 (103.7 mg, 0.750 mmol), H_2O (180 μ L, 10 mmol, 20 equiv) and CH₃CN (2.5 mL). The solution was degassed 3 times through freeze-pump-thaw (frozen at -78 °C and degassed via vacuum evacuation and backfilled with argon). The reaction mixture was stirred with irradiation of visible light (Kessil lamp, $\lambda_{max} = 440$ nm, 20 W) for 16 h. The reaction mixture was diluted with H₂O (20 mL) and ethyl acetate (50 mL). The aqueous layer was separated and extracted with ethyl acetate (3 x 50 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. The resulting crude residue was purified by flash column chromatography (silica gel, hexane:ethyl acetate = 50:50 to 20:80) to give the product 4 (88.7 mg, 0.377 mmol) in 75% yield as a colorless oil.

4.4 Characterization of products

4.4.1 Methyl 4-(2-(N-methylacetamido)ethyl)benzoate (4)

Prepared using methyl 4-bromobenzoate (1) (Sigma-Aldrich 407593) (107.7 mg, 0.501 mmol) and N-methyl-N-vinylacetamide (2) (Sigma-Aldrich 255130) (258 μ L, 5 equiv) with K₂S_x (4.1 mg, 10 mol% per S) as the precatalyst in CH₃CN (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 50:50 to 20:80)

Yield: 75% yield (88.7 mg, 0.377 mmol, 16 h) as a colorless oil.

Prepared using methyl 4-chlorobenzoate (22) (Sigma-Aldrich 216089) (85.7 mg, 0.502 mmol) and N-methyl-N-vinylacetamide (2) (258 μ L, 5 equiv) with K₂S_x (4.2 mg, 10 mol% per S) as the precatalyst in DMSO (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 50:50 to 20:80)

Yield: 67% yield (78.6 mg, 0.334 mmol, 6 h) as a colorless oil.

¹H NMR (500 MHz, CDCl₃) (major rotamer) δ 7.97 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.2 Hz, 2H), 3.90 (s, 3H), 3.60 (t, J = 7.4 Hz, 2H), 2.93 – 2.89 (m, 2H), 2.87 (s, 3H), 2.06 (s, 3H). (minor rotamer) δ 7.99 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 8.2 Hz, 2H), 3.91 (s, 3H), 3.54 (t, J = 7.2 Hz, 2H), 2.94 (s, 3H), 2.93 – 2.89 (m, 2H), 1.87 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) (mixture of rotamers) δ 170.4, 170.3, 166.9, 166.7, 144.6, 143.5, 130.0, 129.7, 128.7, 128.7, 128.7, 128.2, 52.1, 52.0, 51.9, 49.2, 36.8, 34.7, 33.7, 33.3, 21.8, 20.9.

ESIHRMS Found: m/z 258.1105; Calcd for $C_{13}H_{17}NO_3Na$ (M+Na)⁺ 258.1106. **IR** (neat, cm⁻¹) 2953, 1713 [v(C=O)], 1632, 1614, 1558, 1435, 1413, 1362, 1281, 1113.

Diethyl 2,6-dimethylpyridine-3,5-dicarboxylate (3')⁶

¹H NMR (500 MHz, CDCl₃) δ 8.67 (s, 1H), 4.40 (q, J = 7.1 Hz, 4H), 2.85 (s, 6H), 1.42 (t, J = 7.1 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 165.9, 162.2, 140.8, 123.0, 61.3, 24.9, 14.2.

Methyl benzoate (5)⁷

<u>**1H NMR (400 MHz, CDCl₃)**</u> δ 8.10 – 7.99 (m, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.44 (dd, J = 7.8, 7.4 Hz, 2H), 3.92 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.1, 132.9, 130.2, 129.6, 128.3, 52.1.

4.4.2 Methyl 4-(2-(2-oxopyrrolidin-1-yl)ethyl)benzoate

Prepared using methyl 4-bromobenzoate (1) (108.2 mg, 0.503 mmol) and 1-vinyl-2-pyrrolidinone (6) (Sigma-Aldrich V3409) (267 μ L, 2.50 mmol) with K₂S_x (4.2 mg, 10 mol% per S) as the precatalyst in CH₃CN (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 50:50 to 20:80) Yield: 72% yield (89.0 mg, 0.360 mmol, 20 h) as a colorless oil.

<u>1H NMR (400 MHz, CDCl3)</u> δ 7.97 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 3.91 (s, 3H), 3.55 (t, J = 7.4 Hz, 2H), 3.24 (t, J = 7.1 Hz, 2H), 2.91 (t, J = 7.4 Hz, 2H), 2.34 (t, J = 8.1 Hz, 2H), 2.02 – 1.87 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 174.9, 166.9, 144.2, 129.7, 128.6, 128.4, 51.9, 47.6, 43.5, 33.7, 30.8, 17.9.

ESIHRMS Found: m/z 248.1285; Calcd for C₁₄H₁₈NO₃ (M+H)⁺ 248.1287.

<u>IR (neat, cm⁻¹)</u> 2984, 2941, 1713 [ν (C=O)], 1680 [ν (C=O)], 1427, 1373, 1242, 1105, 1047.

4.4.3 Methyl 4-(1-acetamidopropan-2-yl)benzoate

Prepared using methyl 4-bromobenzoate (1) (107.2 mg, 0.499 mmol) and (Z)-N-(prop-1-en-1-yl)acetamide (7) (285.4, 2.52 mmol) with K_2S_x (4.3 mg, 10 mol% per S) as the precatalyst in CH₃CN (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 50:50 to 30:70) Yield: 53% yield (65.6 mg, 0.263 mmol, 20 h) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 8.3 Hz, 2H), 5.41 (br, 1H), 3.91 (s, 3H), 3.62 (ddd, J = 13.7, 6.6, 6.6 Hz, 1H), 3.27 (ddd, J = 13.7, 8.6, 5.3 Hz, 1H), 3.03 (ddq, J = 8.6, 6.6, 7.0 Hz, 1H), 1.89 (s, 3H), 1.29 (d, J = 7.0 Hz, 3H).

13C NMR (100 MHz, CDCl₃) δ 170.1, 166.9, 149.6, 129.9, 128.5, 127.2, 52.0, 45.9, 39.7, 23.1, 19.1.

ESIHRMS Found: m/z 236.1285; Calcd for C₁₃H₁₈NO₃ (M+H)⁺ 236.1287.

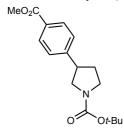
<u>IR (neat, cm⁻¹)</u> 3449, 3321, 3053, 2972, 1713 [v(C=O)], 1667 [v(C=O)], 1515, 1437, 1265, 1194, 1117.

4.4.4 Methyl 4-(2-((tert-butoxycarbonyl)amino)ethyl)benzoate

Prepared using methyl 4-bromobenzoate (1) (107.5 mg, 0.500 mmol) and *tert*-butyl vinylcarbamate (8) (359.2 mg, 2.51 mmol) with *i*-Pr₃SiSH (11 μ L, 0.0512 mmol, 10 mol%) as the precatalyst in CH₃CN (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 50:50 to 20:80) Yield: 80% yield (111.9 mg, 0.401 mmol, 16 h) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.2 Hz, 2H), 7.26 (d, J = 8.2 Hz, 2H), 4.54 (br, 1H), 3.90 (s, 3H), 3.39 (dt, J = 7.0, 6.8 Hz, 2H), 2.86 (t, J = 7.0 Hz, 2H), 1.43 (s, 9H).


13C NMR (100 MHz, CDCl₃) δ 166.9, 155.8, 144.5, 129.8, 128.8, 128.4, 79.3, 52.0, 41.4, 36.2, 28.3.

ESIHRMS Found: m/z 280.1547; Calcd for C₁₅H₂₂NO₄ (M+H)⁺ 280.1549.

<u>IR (neat, cm⁻¹)</u> 3447, 3053, 2982, 1709 [v(C=O)], 1697 [v(C=O)], 1611, 1503, 1437, 1367, 1265, 1169, 1113.

MP: 100-102 °C.

4.4.5 tert-Butyl 3-(4-(methoxycarbonyl)phenyl)pyrrolidine-1-carboxylate

Prepared using methyl 4-bromobenzoate (1) (108.0 mg, 0.502 mmol) and 1-(*tert*-butoxycarbonyl)-2,3-dihydro-1*H*-pyrrole (9) (Sigma-Aldrich 709972) (432 μ L, 2.50 mmol) with K₂S_x (4.2 mg, 10 mol% per S) as the precatalyst in DMSO (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 88:12)

Yield: 50% yield (83.8 mg, 0.274 mmol, 7 h) as a colorless oil.

The spectral data matched those reported in the literature.⁸

¹H NMR (500 MHz, CDCl₃) (mixture of rotamers) δ 7.99 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.3 Hz, 2H), 3.91 (s, 3H), 3.87 (dd, J = 8.9, 8.9 Hz, 0.5H), 3.80 (dd, J = 9.1, 9.1 Hz, 0.5H), 3.65 (dd, J = 9.5, 9.5 Hz, 0.5H), 3.56 (dd, J = 9.5, 9.5 Hz, 0.5H), 3.48 – 3.38 (m, 2H), 3.38 – 3.33 (m, 0.5H), 3.33 – 3.26 (m, 0.5H), 2.35 – 2.22 (m, 1H), 2.05 – 1.92 (m, 1H), 1.48 (s, 9H).

13C NMR (125 MHz, CDCl₃) (mixture of rotamers) δ 166.9 (overlapped with 2C), 154.4 (overlapped with 2C), 146.9, 146.8, 129.9 (overlapped with 2C), 128.7 (overlapped with 2C), 127.1 (overlapped with 2C), 79.4 (overlapped with 2C), 52.2, 52.0 (overlapped with 2C), 51.5, 45.8, 45.5, 44.2, 43.3, 33.2, 32.3, 28.5 (overlapped with 2C).

4.4.6 Methyl 4-(2-butoxyethyl)benzoate

Prepared using methyl 4-bromobenzoate (1) (107.9 mg, 0.502 mmol) and butyl vinyl ether (10) (Sigma-Aldrich 110299) (324 μ L, 2.50 mmol) with K_2S_x (4.1 mg, 10 mol% per S) as the precatalyst in DMSO (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 97:3)

Yield: 56% yield (66.5 mg, 0.281 mmol, 5 h) as a colorless oil.

H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.3 Hz, 2H), 3.90 (s, 3H), 3.64 (t, J = 6.9 Hz, 2H), 3.43 (t, J = 6.6 Hz, 2H), 2.93 (t, J = 6.9 Hz, 2H), 1.59 – 1.48 (m, 2H), 1.43 – 1.27 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H).

13C NMR (100 MHz, CDCl₃) δ 167.1, 144.8, 129.6, 128.9, 128.1, 71.1, 70.8, 51.9, 36.4, 31.7, 19.3, 13.8.

ESIHRMS Found: m/z 237.1494; Calcd for C₁₄H₂₁O₃ (M+H)⁺ 237.1491.

IR (neat, cm⁻¹) 2957, 2868, 1713 [v(C=O)], 1612, 1435, 1282, 1180, 1111.

4.4.7 Methyl 4-(2-methoxypropyl)benzoate

Prepared using methyl 4-bromobenzoate (1) (107.3 mg, 0.499 mmol) and 2-methoxypropene (11) (Sigma-Aldrich 174645) (239 μ L, 2.50 mmol) with K_2S_x (4.3 mg, 10 mol% per S) as the precatalyst in CH₃CN (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 92:8)

Yield: 63% yield (65.1 mg, 0.313 mmol, 24 h) as a colorless oil.

¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 8.3 Hz, 2H), 3.90 (s, 3H), 3.55 (ddq, J = 6.4, 6.2, 6.1 Hz, 1H), 3.32 (s, 3H), 2.93 (dd, J = 13.6, 6.4 Hz, 1H), 2.70 (dd, J = 13.6, 6.2 Hz, 1H), 1.13 (d, J = 6.1 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 197.8, 144.8, 135.2, 129.6, 128.3, 77.5, 56.3, 42.7, 26.5, 18.9.

ESIHRMS Found: m/z 209.1178; Calcd for $C_{12}H_{17}O_3$ $(M+H)^+$ 209.1178.

IR (neat, cm⁻¹) 2976, 2942, 1713 [v(C=O)], 1612, 1435, 1281, 1180, 1109.

4.4.8 Methyl 4-(tetrahydrofuran-3-yl)benzoate

Prepared using methyl 4-bromobenzoate (1) (107.4 mg, 0.500 mmol) and 2,3-dihydrofuran (12) (Sigma-Aldrich 200018) (189 μ L, 2.50 mmol) with K_2S_x (4.0 mg, 10 mol% per S) as the precatalyst in DMSO (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 92:8)

Yield: 43% yield (44.2 mg, 0.214 mmol, 4 h) as a colorless oil.

The spectral data matched those reported in the literature.⁸

¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.3 Hz, 2H), 4.14 (dd, J = 8.6, 7.6 Hz, 1H), 4.09 (ddd, J = 8.4, 8.4, 4.6 Hz, 1H), 3.92 (ddd, J = 8.4, 7.6, 7.6 Hz, 1H), 3.91 (s, 3H), 3.76 (dd, J = 8.6, 7.0 Hz, 1H), 3.46 (dddd, J = 7.6, 7.6, 7.6, 7.0 Hz, 1H), 2.40 (dddd, J = 12.4, 7.6, 7.6, 4.6 Hz, 1H), 2.00 (dddd, J = 12.4, 8.4, 7.6, 7.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 166.9, 148.4, 129.9, 128.4, 127.2, 74.4, 68.4, 52.0, 44.9, 34.6.

4.4.9 Methyl 4-(2-(phenylthio)ethyl)benzoate

Prepared using methyl 4-bromobenzoate (1) (107.6 mg, 0.500 mmol) and phenyl vinyl sulfide (13) (TCI P1287) (327 μ L, 2.50 mmol) with K₂S_x (4.3 mg, 10 mol% per S) as the precatalyst in CH₃CN (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 98:2)

Yield: 73% yield (99.5 mg, 0.365 mmol, 20 h) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.3 Hz, 2H), 7.40 – 7.33 (m, 2H), 7.33 – 7.28 (m, 2H), 7.26 (d, J = 8.3 Hz, 2H), 7.23 – 7.17 (m, 1H), 3.91 (s, 3H), 3.18 (t, J = 8.4 Hz, 2H), 2.97 (t, J = 8.4 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 166.9, 145.4, 135.9, 129.8, 129.5, 128.9, 128.5, 128.4, 126.2, 52.0, 35.5, 34.7.

ESIHRMS Found: m/z 273.0948; Calcd for C₁₆H₁₇O₂S (M+H)⁺ 273.0949.

<u>IR (neat, cm⁻¹)</u> 3059, 3001, 2843, 1932, 1712 [v(C=O)], 1610, 1583, 1481, 1435, 1280, 1179, 1111, 1020.

4.4.10 Methyl 4-(2-(dimethyl(phenyl)silyl)ethyl)benzoate

We found that use of 10 equivalents of alkenylsilane **14** is required to achieve the full conversion of **1** (Table S3).

Table S3 Optimization of the reaction conditions for hydroarylation of 14

Entry	Variation from "the standard conditions"	Time (h)	Conversion of 1 (%)	Yield of TP (%) ^a	Yield of 5 (%) ^a
1	none	6	>99	59 (55)	17
2	alkene (14) (5 equiv)	4	97	48	31
3	alkene (14) (5 equiv), CH ₃ CN as the solvent	20	54	28	13

^a ¹H NMR yields were given (isolated yield in parenthesis).

Prepared using methyl 4-bromobenzoate (1) (107.6 mg, 0.500 mmol) and dimethylphenylvinylsilane (14) (Sigma-Aldrich 483435) (910 μ L, 5.00 mmol) with K_2S_x (4.2 mg, 10 mol% per S) as the precatalyst in DMSO (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 99:1)

Yield: 55% yield (81.6 mg, 0.273 mmol, 6 h) as a colorless oil.

<u>**1H NMR (500 MHz, CDCl3)**</u> δ 7.92 (d, J = 8.3 Hz, 2H), 7.54 – 7.49 (m, 2H), 7.42 – 7.34 (m, 3H), 7.22 (d, J = 8.3 Hz, 2H), 3.89 (s, 3H), 2.67 (ddd, J = 14.7, 12.4, 5.0 Hz, 2H), 1.12 (ddd, J = 14.7, 12.4, 5.0 Hz, 2H), 0.29 (s, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 167.1, 150.5, 138.6, 133.5, 129.7, 129.0, 127.8, 127.8, 127.5, 51.9, 30.1, 17.5, -3.2.

ESIHRMS Found: m/z 299.1466; Calcd for C₁₈H₂₃O₂Si (M+H)⁺ 299.1467.

<u>IR (neat, cm⁻¹)</u> 3069, 2999, 2951, 2843, 1721 [ν(C=O)], 1608, 1423, 1278, 1179, 1111.

Interpretation of AA'BB' couplings on the methylene protons

The assignment indicates that all 4 protons are not magnetically equivalent (AA'BB' coupling). The set of peaks at 2.67 ppm and 1.12 ppm are mirror image of each other. Figure S3 showed interpretation of AA'BB' coupling of the methylene protons at 2.67 ppm.

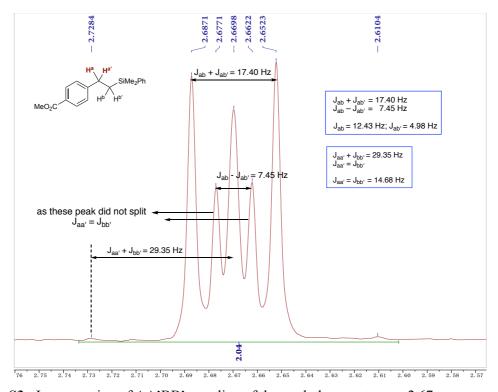


Figure S3 Interpretation of AA'BB' coupling of the methylene protons at 2.67 ppm.

4.4.11 Methyl 4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)benzoate

Prepared using methyl 4-bromobenzoate (1) (107.7 mg, 0.501 mmol) and 4,4,5,5-tetramethyl-2-(prop-1-en-2-yl)-1,3,2-dioxaborolane (15) (Leyan 1019073) (470 μ L, 2.50 mmol) with K₂S_x (4.1 mg, 10 mol% per S) as the precatalyst in DMSO (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 96:4)

Yield: 27% yield (41.3 mg, 0.136 mmol, 6 h) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.3 Hz, 2H), 7.26 (d, J = 8.3 Hz, 2H), 3.89 (s, 3H), 2.85 (dd, J = 13.6, 7.7 Hz, 1H), 2.60 (dd, J = 13.6, 8.1 Hz, 1H), 1.38 (ddq, J = 8.1, 7.7, 7.4 Hz, 1H), 1.18 (s, 12H), 0.97 (d, J = 7.4 Hz, 3H).

13C NMR (100 MHz, CDCl₃) δ 167.3, 148.1, 129.4, 128.9, 127.6, 83.1, 51.9, 39.0, 24.7, 15.2. (The boron-bound carbon was not detected)

<u>11B NMR (128 MHz, CDCl₃)</u> δ 34.84.

ESIHRMS Found: m/z 305.1927; Calcd for C₁₇H₂₆O₄B (M+H)⁺ 305.1924.

IR (neat, cm⁻¹) 2980, 1719 [v(C=O)], 1647, 1564, 1437, 1319, 1283, 1142, 1111.

4.4.12 Methyl 4-octylbenzoate

$$\text{MeO}_2\text{C}$$

Prepared using methyl 4-bromobenzoate (1) (107.8 mg, 0.501 mmol) and 1-octene (16) (Sigma-Aldrich O4806) (392 μ L, 2.50 mmol) with *i*-Pr₃SiSH (11 μ L, 0.0512 mmol, 10 mol%) as the precatalyst in CH₃CN (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 99:1)

Yield: 42% yield (51.9 mg, 0.209 mmol, 24 h) as a colorless oil.

The spectral data matched those reported in the literature.⁹

¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 8.2 Hz, 2H), 3.90 (s, 3H), 2.65 (t, J = 7.7 Hz, 2H), 1.64 – 1.55 (m, 2H), 1.35 – 1.21 (m, 10H), 0.88 (t, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 148.5, 129.6, 128.4, 127.6, 51.9, 36.0, 31.8, 31.1, 29.4, 29.2, 29.2, 22.6, 14.1.

4.4.13 Methyl 4-(3-hydroxy-3-methylbutyl)benzoate

Prepared using methyl 4-bromobenzoate (1) (107.6 mg, 0.500 mmol) and 2-methyl-3-buten-2-ol (17) (Sigma-Aldrich 136816) (261 μ L, 2.50 mmol) with K₂S_x (4.0 mg, 10 mol% per S) as the precatalyst in DMSO (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 85:15)

Yield: 55% yield (60.8 mg, 0.274 mmol, 4 h) as a colorless oil.

<u>1H NMR (400 MHz, CDCl3)</u> δ 7.95 (d, J = 8.3 Hz, 2H), 7.26 (d, J = 8.3 Hz, 2H), 3.90 (s, 3H), 2.77 (ddd, J = 13.8, 12.5, 5.0 Hz, 2H), 1.79 (ddd, J = 13.8, 12.5, 5.0 Hz, 2H), 1.30 (s, 6H), 1.28 (s, 1H).

 13 C NMR (100 MHz, CDCl₃) δ 167.1, 148.2, 129.7, 128.3, 127.7, 70.7, 51.9, 45.2, 30.8, 29.3. **ESIHRMS** Found: m/z 223.1336; Calcd for C₁₃H₁₉O₃ (M+H)⁺ 223.1334.

IR (neat, cm⁻¹) 3053, 2974, 1713 [v(C=O)], 1611, 1437, 1275, 1180, 1113.

Interpretation of AA'BB' couplings on the methylene protons

The assignment indicates that all 4 protons are not magnetically equivalent (AA'BB' coupling). The set of peaks at 2.77 ppm and 1.79 ppm are mirror image of each other. Figure S4 showed interpretation of AA'BB' coupling of the methylene protons at 2.77 ppm.

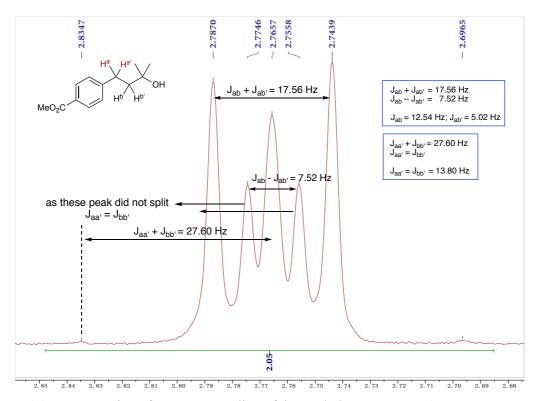


Figure S4 Interpretation of AA'BB' coupling of the methylene protons at 2.77 ppm.

4.4.14 Methyl 4-(2-ethylbutyl)benzoate

Prepared using methyl 4-bromobenzoate (1) (107.6 mg, 0.500 mmol) and 2-ethyl-1-butene (18) (Sigma-Aldrich E14705) (305 μ L, 2.50 mmol) with K₂S_x (4.1 mg, 10 mol% per S) as the precatalyst in DMSO (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 99:1)

Yield: 40% yield (44.5 mg, 0.202 mmol, 4 h) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.3 Hz, 2H), 7.22 (d, J = 8.3 Hz, 2H), 3.90 (s, 3H), 2.58 (d, J = 7.1 Hz, 2H), 1.62 – 1.44 (m, 1H), 1.29 (qd, J = 7.4, 6.0 Hz, 4H), 0.87 (t, J = 7.4 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 167.2, 147.6, 129.4, 129.1, 127.6, 51.9, 42.5, 39.8, 25.0, 10.8.

ESIHRMS Found: m/z 221.1540; Calcd for C₁₄H₂₁O₂ (M+H)⁺ 221.1542.

IR (neat, cm⁻¹) 2964, 2875, 1716 [v(C=O)], 1611, 1437, 1284, 1180, 1113.

4.4.15 Methyl 4-(cyclobutylmethyl)benzoate

Prepared using methyl 4-bromobenzoate (1) (107.8 mg, 0.501 mmol) and methylenecyclobutane (19) (Sigma-Aldrich M45008) (231 μ L, 2.50 mmol) with *i*-Pr₃SiSH (11 μ L, 0.0512 mmol, 10 mol%) as the precatalyst in CH₃CN (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 99:1)

Yield: 54% yield (55.2 mg, 0.270 mmol, 24 h) as a colorless oil.

H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.3 Hz, 2H), 7.19 (d, J = 8.3 Hz, 2H), 3.89 (s, 3H), 2.74 (d, J = 7.6 Hz, 2H), 2.64 – 2.47 (m, 1H), 2.22 – 1.95 (m, 2H), 1.95 – 1.77 (m, 2H), 1.77 – 1.64 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 167.2, 146.8, 129.5, 128.5, 127.6, 51.9, 42.9, 36.9, 28.2, 18.3.

ESIHRMS Found: m/z 205.1228; Calcd for C₁₃H₁₇O₂ (M+H)⁺ 205.1229.

IR (neat, cm⁻¹) 2953, 1715 [v(C=O)], 1611, 1435, 1280, 1178, 1111.

4.4.16 The reactions with styrene (20) and ethyl acrylate (21)

We have tested hydroarylation of styrene (20) and ethyl acrylate (21), both of which did not give any desired hydroarylation products. In these reactions, majority of methyl 4-bromobenzoate (1) was recovered along with formation of methyl benzoate (5) in 4-6% yields, indicating that redox catalysis did not function for

the desired hydroarylation. We reasoned that in the case of the reaction with styrene (20), its polymerization hampers HAT, while ethyl acrylate (21) likely quenches the redox properties of polysulfide ions by working as a Michael acceptor.

4.4.17 N-(4-Acetylphenethyl)-N-methylacetamide

We found that use of *i*-Pr₂NEt as the stoichiometric reductant provided better yield of the hydroarylation product (Table S4, entry 2).

Table S4 Optimization of the reaction conditions for the hydroarylation with 23

$$\begin{array}{c} \text{Me} \\ \text{Me} \\ \text{O} \\$$

Entry	Variation from "the standard conditions"	Time (h)	Conversion of 23 (%)	Yield of TP (%) ^a	Yield of SP (%) ^a
1	none	3	>99	66 (61)	13
2	<i>i</i> -Pr ₂ NEt (2 equiv) instead of 3 in CH ₃ CN (5 mL)	3	>99	80 (72)	15

^a ¹H NMR yields were given (isolated yield in parenthesis).

Procedure in entry 1: Prepared using methyl 4'-bromoacetophenone (23) (Sigma-Aldrich B56404) (99.1 mg, 0.498 mmol) and N-methyl-N-vinylacetamide (2) (258 μ L, 5 equiv) with K₂S_x (4.0 mg, 10 mol% per S) as the precatalyst in CH₃CN (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 50:50 to 20:80)

Yield: 61% yield (66.6 mg, 0.304 mmol, 3 h) as a colorless oil.

Procedure in entry 2: N-(4-Acetylphenethyl)-N-methylacetamide can also be synthesized by the following protocol to obtain higher yield. Prepared using methyl 4'-bromoacetophenone (23) (99.7 mg, 0.501 mmol), N-methyl-N-vinylacetamide (2) (258 μ L, 5 equiv), i-Pr₂NEt (174 μ L, 1.00 mmol), 2 equiv), and H₂O (180 μ L, 20 equiv) with K_2S_x (4.1 mg, 10 mol% per S) as the precatalyst in CH₃CN (5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 50:50 to 20:80) Yield: 72% yield (78.9 mg, 0.360 mmol, 3 h) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) (major rotamer) δ 7.90 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 3.61 (t, J = 7.5 Hz, 2H), 2.94 – 2.90 (m, 2H), 2.90 (s, 3H), 2.58 (s, 3H), 2.06 (s, 3H).

(minor rotamer) δ 7.92 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 3.55 (t, J = 7.1 Hz, 2H), 2.95 (s, 3H), 2.94 – 2.90 (m, 2H), 2.59 (s, 3H), 1.86 (s, 3H).

13C NMR (100 MHz, CDCl₃) (mixture of rotamers) δ 197.7, 197.5, 170.4, 170.4, 144.9, 143.7, 135.7, 135.4, 129.0 (overlapped with 2C), 128.8, 128.5, 52.0, 49.1, 36.8, 34.7, 33.7, 33.3, 26.5 (overlapped with 2C), 21.8, 20.9.

ESIHRMS Found: m/z 220.1335; Calcd for C₁₃H₁₈NO₂(M+H)⁺ 220.1338.

<u>IR (neat, cm⁻¹)</u> 2934, 1686 [ν (C=O)], 1645 [ν (C=O)], 1489, 1413, 1360, 1269, 1184, 1109.

4.4.18 N-Methyl-N-(2-(1-oxo-2,3-dihydro-1H-inden-5-yl)ethyl)acetamide

Prepared using 5-bromo-1-indanone (24) (Sigma-Aldrich 433098) (105.6 mg, 0.500 mmol) and N-methyl-N-vinylacetamide (2) (258 μ L, 5 equiv) with K_2S_x (4.1 mg, 10 mol% per S) as the precatalyst in CH₃CN (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 50:50 to 10:90) Yield: 82% yield (94.3 mg, 0.408 mmol, 8 h) as a white solid.

Prepared using 5-chloro-1-indanone (25) (Sigma-Aldrich 433071) (85.7 mg, 0.502 mmol) and N-methyl-N-vinylacetamide (2) (258 μ L, 5 equiv) with K_2S_x (4.3 mg, 10 mol% per S) as the precatalyst in CH₃CN (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 50:50 to 10:90) Yield: 65% yield (75.2 mg, 0.325 mmol, 10 h) as a white solid.

<u>1H NMR (400 MHz, CDCl₃)</u> (major rotamer) δ 7.69 (d, J = 7.8 Hz, 1H), 7.35 (s, 1H), 7.22 (d, J = 7.8 Hz, 1H), 3.61 (t, J = 7.6 Hz, 2H), 3.16 – 3.08 (m, 2H), 2.98 – 2.89 (m, 2H), 2.94 (s, 3H), 2.73 – 2.65 (m, 2H), 2.08 (s, 3H).

(minor rotamer) δ 7.72 (d, J = 7.8 Hz, 1H), 7.27 (s, 1H), 7.20 (d, J = 7.8 Hz, 1H), 3.56 (t, J = 7.2 Hz, 2H), 3.16 – 3.08 (m, 2H), 2.98 – 2.89 (m, 2H), 2.96 (s, 3H), 2.73 – 2.65 (m, 2H), 1.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (mixture of rotamers) δ 206.4, 206.2, 170.4, 170.3, 155.8, 155.7, 146.7, 145.6, 135.9, 135.5, 128.2, 128.0, 126.9, 126.9, 124.0, 123.7, 52.1, 49.3, 36.7, 36.3, 36.3, 35.2, 34.1, 33.3, 25.6 (overlapped with 2C), 21.8, 21.0.

ESIHRMS Found: m/z 232.1336; Calcd for C₁₄H₁₈NO₂ (M+H)⁺ 232.1338.

<u>IR (neat, cm⁻¹)</u> 2930, 1703 [v(C=O)], 1637 [v(C=O)], 1485, 1435, 1402, 1285, 1103, 1034, 1011. <u>MP:</u> 133-135 °C.

4.4.19 N-(4-Cyanophenethyl)-N-methylacetamide

Prepared using 4-bromobezonitrile (26) (Sigma-Aldrich B58407) (91.4 mg, 0.502 mmol) and N-methyl-N-vinylacetamide (2) (258 μ L, 5 equiv) with K_2S_x (4.3 mg, 10 mol% per S) as the precatalyst in CH₃CN (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 50:50 to 20:80)

Yield: 73% yield (73.5 mg, 0.363 mmol, 12 h) as a colorless oil.

<u>**1H NMR (500 MHz, CDCl3)</u>** (major rotamer) δ 7.59 (d, J = 8.1 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 3.60 (t, J = 7.5 Hz, 2H), 2.93 – 2.88 (m, 2H), 2.91 (s, 3H), 2.06 (s, 3H).</u>

(minor rotamer) δ 7.62 (d, J = 8.1 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 3.54 (t, J = 7.2 Hz, 2H), 2.94 (s, 3H), 2.93 – 2.88 (m, 2H), 1.88 (s, 3H).

13C NMR (125 MHz, CDCl₃) (mixture of rotamers) δ 170.5, 170.2, 144.8, 143.7, 132.5, 132.2, 129.5 (overlapped with 2C), 118.8, 118.5, 110.8, 110.2, 51.7, 48.9, 36.7, 34.8, 33.8, 33.3, 21.8, 20.9.

ESIHRMS Found: m/z 225.1006; Calcd for C₁₂H₁₄N₂ONa (M+Na)⁺ 225.1004.

IR (neat, cm⁻¹) 2936, 2228 [ν (C=N)], 1630 [ν (C=O)], 1502, 1411, 1362, 1261, 1036, 1009.

4.4.20 N-(3-Cyanophenethyl)-N-methylacetamide

Prepared using 3-bromobezonitrile (27) (Sigma-Aldrich B58202) (91.1 mg, 0.500 mmol) and N-methyl-N-vinylacetamide (2) (258 μ L, 5 equiv) with K_2S_x (4.2 mg, 10 mol% per S) as the precatalyst in CH₃CN (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 50:50 to 20:80)

Yield: 79% yield (80.1 mg, 0.396 mmol, 16 h) as a colorless oil.

¹H NMR (500 MHz, CDCl₃) (major rotamer) δ 7.59 – 7.39 (m, 4H), 3.58 (t, J = 7.5 Hz, 2H), 2.93 (s, 3H), 2.93 – 2.86 (m, 2H), 2.07 (s, 3H).

(minor rotamer) δ 7.59 – 7.39 (m, 4H), 3.54 (t, J = 7.3 Hz, 2H), 2.95 (s, 3H), 2.93 – 2.86 (m, 2H), 1.91 (s, 3H).

13C NMR (125 MHz, CDCl₃) (mixture of rotamers) δ 170.5, 170.2, 140.5, 139.6, 133.3, 133.2, 132.2, 132.1, 130.5, 130.1, 129.5, 129.2, 118.7, 118.4, 112.8, 112.4, 51.9, 49.0, 36.7, 34.3, 33.3, 33.2, 21.8, 20.9.

ESIHRMS Found: m/z 225.1004; Calcd for C₁₂H₁₄N₂ONa (M+Na)⁺ 225.1004.

<u>IR (neat, cm⁻¹)</u> 2936, 2230 [ν (C \equiv N)], 1632 [ν (C \equiv O)], 1483, 1406, 1364, 1311, 1203, 1037, 1009.

4.4.21 N-Methyl-N-(4-(methylsulfonyl)phenethyl)acetamide

We observed that *i*-Pr₃SiSH serves as the best precatalyst for the hydroarylation with **28** (Table S5).

Table S5 Optimization of the reaction conditions for the hydroarylation with 28

$$\begin{array}{c} \text{MeO}_2 \text{S} \\ \text{The target product (TP)} \\ \\ \text{He} \\$$

Entry	Variation from "the standard conditions"	Time (h)	Conversion of 28 (%)	Yield of TP (%) ^a	Yield of SP (%) ^a
1	none	8	>99	86 (81)	11
2	K ₂ S _x (10 mol% per S) instead of <i>i</i> -Pr ₃ SiSH	16	73	53	10
3	K ₂ S _x (10 mol% per S) instead of <i>i</i> -Pr ₃ SiSH and DMSO as the solvent	4	>99	55	19

^a ¹H NMR yields were given (isolated yield in parenthesis).

Prepared using 4-bromophenyl methyl sulfone (**28**) (Sigma-Aldrich 556327) (117.1 mg, 0.498 mmol) and *N*-methyl-*N*-vinylacetamide (**2**) (258 μ L, 5 equiv) with *i*-Pr₃SiSH (11 μ L, 0.0512 mmol, 10 mol%) as the precatalyst in CH₃CN (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 50:50 to 10:90) Yield: 81% yield (103.0 mg, 0.403 mmol, 8 h) as a colorless oil.

¹H NMR (500 MHz, CDCl₃) (major rotamer) δ 7.87 (d, J = 8.3 Hz, 2H), 7.44 (d, J = 8.3 Hz, 2H), 3.61 (t, J = 7.5 Hz, 2H), 3.05 (s, 3H), 3.00 – 2.90 (m, 2H), 2.93 (s, 3H), 2.07 (s, 3H). (minor rotamer) δ 7.90 (d, J = 8.2 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 3.57 (t, J = 7.2 Hz, 2H), 3.06 (s, 3H), 3.00 – 2.90 (m, 2H), 2.95 (s, 3H), 1.90 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) (mixture of rotamers) δ 170.5, 170.2, 145.7, 144.6, 139.1, 138.5, 129.7 (overlapped with 2C), 127.8, 127.5, 51.8, 48.9, 44.5, 44.4, 36.7, 34.6, 33.5, 33.3, 21.8, 20.9. **ESIHRMS** Found: m/z 256.1006; Calcd for $C_{12}H_{18}NO_3S$ (M+H)⁺ 256.1007.

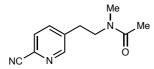
IR (neat, cm⁻¹) 2928, 1616 [ν (C=O)], 1491, 1410, 1296, 1148, 1090, 1009.

4.4.22 N-(2-(5-Cyanothiophen-2-yl)ethyl)-N-methylacetamide

Prepared using 5-bromo-2-thiophenecarbonitrile (29) (Fluorochem 049323) (94.4 mg, 0.502 mmol) and N-methyl-N-vinylacetamide (2) (258 μ L, 5 equiv) with K₂S_x (4.3 mg, 10 mol% per S) as the precatalyst in CH₃CN (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 50:50 to 10:90) Yield: 41% yield (42.7 mg, 0.205 mmol, 14 h) as a colorless oil.

¹H NMR (500 MHz, CDCl₃) (major rotamer) δ 7.48 (d, J = 3.7 Hz, 1H), 6.89 (d, J = 3.7 Hz, 1H), 3.63 (t, J = 7.2 Hz, 2H), 3.15 – 3.08 (m, 2H), 2.95 (s, 3H), 2.09 (s, 3H).


(minor rotamer) δ 7.50 (d, J = 3.8 Hz, 1H), 6.86 (d, J = 3.8 Hz, 1H), 3.59 (t, J = 7.0 Hz, 2H), 3.15 – 3.08 (m, 2H), 2.96 (s, 3H), 1.93 (s, 3H).

13C NMR (125 MHz, CDCl₃) (mixture of rotamers) δ 170.7, 170.4, 149.8, 148.2, 137.8, 137.7, 126.4, 126.0, 114.3, 113.9, 108.5, 107.8, 51.6, 49.1, 36.9, 33.1, 28.8, 27.9, 21.9, 21.0.

ESIHRMS Found: m/z 231.0566; Calcd for C₁₀H₁₂N₂OSNa (M+Na)⁺ 231.0568.

<u>IR (neat, cm⁻¹)</u> 2934, 2220 [ν (C \equiv N)], 1631 [ν (C \equiv O)], 1449, 1406, 1034, 1001.

4.4.23 N-(2-(6-Cyanopyridin-3-yl)ethyl)-N-methylacetamide

Prepared using 2-cyano-5-bromopyridine (30) (Fluorochem 045207) (91.5 mg, 0.500 mmol) and N-methyl-N-vinylacetamide (2) (258 μ L, 5 equiv) with K₂S_x (4.2 mg, 10 mol% per S) as the precatalyst in CH₃CN (2.5 mL).

Purification: flash column chromatography (silica gel, MeOH:EtOAc = 0:100 to 10:90) Yield: 51% yield (51.6 mg, 0.254 mmol, 3 h) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) (major rotamer) δ 8.57 (s, 1H), 7.75 (dd, J = 8.0, 2.2 Hz, 1H), 7.65 (d, J = 8.0 Hz, 1H), 3.63 (t, J = 7.4 Hz, 2H), 3.01 – 2.91 (m, 2H), 2.97 (s, 3H), 2.07 (s, 3H). (minor rotamer) δ 8.60 (s, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.65 (d, J = 8.0 Hz, 1H), 3.58 (t, J = 7.2 Hz, 2H), 3.01 – 2.91 (m, 2H), 2.97 (s, 3H), 1.93 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) (mixture of rotamers) δ 170.7, 170.1, 151.5, 151.4, 138.8, 137.9, 137.1, 137.1, 132.4, 131.9, 128.3, 128.2, 117.2, 117.0, 51.3, 48.4, 36.7, 33.4, 32.1, 30.9, 21.8, 21.0. **ESIHRMS** Found: m/z 204.1135; Calcd for $C_{11}H_{14}N_3O$ (M+H)⁺ 204.1137.

<u>IR (neat, cm⁻¹)</u> 2936, 2236 [$v(C\equiv N)$], 1628 [v(C=O)], 1568, 1471, 1409, 1362, 1261, 1028, 1009.

4.4.24 N-methyl-N-(2-(quinolin-3-yl)ethyl)acetamide

Prepared using 3-bromoquinoline (31) (Sigma-Aldrich 124133) (105.0 mg, 0.505 mmol) and N-methyl-N-vinylacetamide (2) (258 μ L, 5 equiv) with K_2S_x (4.0 mg, 10 mol% per S) as the precatalyst in DMSO (2.5 mL).

Purification: flash column chromatography (silica gel, MeOH:EtOAc = 0:100 to 10:90)

Yield: 40% yield (45.8 mg, 0.201 mmol, 3 h) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) (major rotamer) δ 8.79 (s, 1H), 8.20 – 8.05 (m, 1H), 8.01 (d, J = 2.3 Hz, 1H), 7.79 (d, J = 8.1 Hz, 1H), 7.75 – 7.64 (m, 1H), 7.59 – 7.51 (m, 1H), 3.69 (t, J = 7.4 Hz, 2H), 3.12 – 3.03 (m, 2H), 2.93 (s, 3H), 2.09 (s, 3H).

(minor rotamer) δ 8.79 (s, 1H), 8.20 – 8.05 (m, 1H), 7.93 (d, J = 2.3 Hz, 1H), 7.79 (d, J = 8.1 Hz, 1H), 7.75 – 7.64 (m, 1H), 7.59 – 7.51 (m, 1H), 3.63 (t, J = 7.4 Hz, 2H), 3.12 – 3.03 (m, 2H), 2.99 (s, 3H), 1.95 (s, 3H).

13C NMR (100 MHz, CDCl₃) (mixture of rotamers) δ 170.6, 170.3, 151.7, 151.3, 147.2, 147.0, 135.1, 135.0, 131.8, 130.7, 129.3, 129.2, 129.1, 128.9, 128.0, 127.8, 127.4, 127.4, 127.0, 126.7, 52.1, 49.3, 37.0, 33.5, 32.2, 31.0, 21.9, 21.1.

ESIHRMS Found: m/z 229.1340; Calcd for C₁₄H₁₇N₂O (M+H)⁺ 229.1341.

IR (neat, cm⁻¹) 3055, 2936, 1622 [v(C=O)], 1495, 1404, 1308, 1269, 1128, 1037, 1015.

4.4.25 N-Methyl-N-(2-(pyrimidin-5-yl)ethyl)acetamide

Prepared using 5-bromopyrimidine (32) (Sigma-Aldrich 219142) (78.8 mg, 0.496 mmol) and N-methyl-N-vinylacetamide (2) (258 μ L, 5 equiv) with K₂S_x (4.2 mg, 10 mol% per S) as the precatalyst in CH₃CN (2.5 mL).

Purification: flash column chromatography (silica gel, MeOH:EtOAc = 0:100 to 10:90)

Yield: 70% yield (62.2 mg, 0.347 mmol, 6 h) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) (major rotamer) δ 9.10 (s, 1H), 8.63 (s, 2H), 3.61 (t, J = 7.1 Hz, 2H), 2.97 (s, 3H), 2.87 (t, J = 7.1 Hz, 2H), 2.08 (s, 3H).

(minor rotamer) δ 9.15 (s, 1H), 8.62 (s, 2H), 3.57 (t, J = 7.5 Hz, 2H), 2.97 (s, 3H), 2.90 (t, J = 7.5 Hz, 2H), 1.98 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) (mixture of rotamers) δ 170.5, 170.0, 157.4, 157.0, 156.8, 156.7, 132.2, 131.3, 51.3, 48.5, 36.7, 33.2, 29.4, 28.2, 21.7, 21.0.

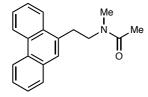
ESIHRMS Found: m/z 202.0956; Calcd for C₉H₁₃N₃ONa (M+Na)⁺ 202.0956.

IR (neat, cm⁻¹) 2938, 1609 [ν (C=O)], 1570, 1414, 1364, 1140, 1013.

4.4.26 N-Methyl-N-(2-(naphthalen-2-yl)ethyl)acetamide

Prepared using 2-bromonaphthalene (33) (Sigma-Aldrich 183644) (103.3 mg, 0.499 mmol) and N-methyl-N-vinylacetamide (2) (258 μ L, 5 equiv) with K_2S_x (4.3 mg, 10 mol% per S) as the precatalyst in DMSO (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 60:40 to 40:60) Yield: 52% yield (59.3 mg, 0.261 mmol, 8 h) as a colorless oil.


¹H NMR (400 MHz, CDCl₃) (mixture of rotamers) δ 7.87 – 7.76 (m, 3H), 7.66 (s, 0.5H), 7.61 (s, 0.5H), 7.52 – 7.40 (m, 2H), 7.37 (dd, J = 8.4, 1.8 Hz, 0.5H), 7.28 (dd, J = 8.4, 1.8 Hz, 0.5H), 3.67 (t, J = 7.3 Hz, 1H), 3.59 (t, J = 7.3 Hz, 1H), 3.01 (t, J = 7.3 Hz, 2H), 2.97 (s, 1.5H), 2.87 (s, 1.5H), 2.07 (s, 1.5H), 1.90 (s, 1.5H).

13C NMR (100 MHz, CDCl₃) (mixture of rotamers) δ 170.5, 170.4, 136.7, 135.6, 133.6, 133.5, 132.2, 132.1, 128.4, 128.0, 127.6, 127.6, 127.4, 127.4, 127.3, 127.2, 127.1, 126.9, 126.3, 126.0, 125.7, 125.3, 52.5, 49.6, 36.9, 35.0, 33.9, 33.4, 21.9, 21.0.

ESIHRMS Found: m/z 250.1209; Calcd for C₁₅H₁₇NONa (M+Na)⁺ 250.1208.

IR (neat, cm⁻¹) 3053, 2984, 2936, 1632 [v(C=O)], 1400, 1362, 1265, 1009.

4.4.27 N-Methyl-N-(2-(phenanthren-9-yl)ethyl)acetamide

Prepared using 9-bromophenanthrene (34) (Sigma-Aldrich B75409) (128.0 mg, 0.498 mmol) and N-methyl-N-vinylacetamide (2) (258 μ L, 5 equiv) with K_2S_x (4.0 mg, 10 mol% per S) as the precatalyst in DMSO (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 60:40 to 40:60) Yield: 55% yield (76.6 mg, 0.276 mmol, 10 h) as a colorless oil.

H NMR (500 MHz, CDCl₃) (major rotamer) δ 8.72 – 8.69 (m, 1H), 8.64 (d, J = 8.5 Hz, 1H), 8.32 – 8.26 (m, 1H), 7.81 (d, J = 7.6, 1H), 7.71 – 7.50 (m, 5H), 3.73 (t, J = 7.4 Hz, 2H), 3.38 – 3.28 (m, 2H), 2.85 (s, 3H), 2.08 (s, 3H).

(minor rotamer) δ 8.77 – 8.72 (m, 1H), 8.64 (d, J = 8.5 Hz, 1H), 8.04 – 7.98 (m, 1H), 7.81 (d, J = 7.6, 1H), 7.71 – 7.50 (m, 5H), 3.67 (t, J = 7.4 Hz, 2H), 3.38 – 3.28 (m, 2H), 3.00 (s, 3H), 1.87 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) (mixture of rotamers) δ 170.6, 170.4, 133.6, 132.2, 131.7, 131.4, 131.2, 130.8, 130.6 (overlapped with 2C), 129.8 (overlapped with 2C), 128.1, 128.0, 127.5, 127.1,

126.8, 126.8, 126.6, 126.5, 126.5, 126.3, 126.2 (overlapped with 2C), 124.5, 123.6, 123.4, 123.1, 122.4 (overlapped with 2C), 51.2, 49.4, 37.1, 33.5, 32.3, 31.3, 21.9, 21.0.

ESIHRMS Found: m/z 278.1543; Calcd for $C_{19}H_{20}NO~(M+H)^+$ 278.1545.

IR (neat, cm⁻¹) 3062, 3019, 2936, 1636 [v(C=O)], 1486, 1485, 1402, 1359, 1267, 1007.

4.4.28 N-(2-([1,1'-Biphenyl]-4-yl)ethyl)-N-methylacetamide

Prepared using 4-bromobiphenyl (35) (Sigma-Aldrich 281999) (116.0 mg, 0.498 mmol) and N-methyl-N-vinylacetamide (2) (258 μ L, 5 equiv) with K_2S_x (8.2 mg, 20 mol% per S) as the precatalyst in DMSO (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 60:40 to 40:60)

Yield: 44% yield (55.9 mg, 0.221 mmol, 16 h) as a colorless oil.

<u>1H NMR (400 MHz, CDCl₃)</u> (mixture of rotamers) δ 7.64 – 7.50 (m, 4H), 7.47 – 7.38 (m, 2H), 7.37 – 7.27 (m, 2H), 7.25 – 7.19 (m, 1H), 3.61 (t, J = 7.6 Hz, 1H), 3.53 (t, J = 7.2 Hz, 1H), 2.97 (s, 1.5H), 2.90 (s, 1.5H), 2.88 (t, J = 7.2 Hz, 2H), 2.07 (s, 1.5H), 1.90 (s, 1.5H).

13C NMR (100 MHz, CDCl₃) (mixture of rotamers) δ 170.5, 170.4, 140.8, 140.6, 139.7, 139.2, 138.3, 137.2, 129.2, 129.1, 128.8, 128.7, 127.4, 127.2, 127.1, 127.0, 126.9 (overlapped with 2C), 52.5, 49.6, 36.8, 34.4, 33.3 (overlapped with 2C), 21.9, 21.0.

ESIHRMS Found: m/z 254.1542; Calcd for C₁₇H₂₀NO (M+H)⁺ 254.1545.

IR (neat, cm⁻¹) 3053, 3028, 2932, 1632 [v(C=O)], 1485, 1410, 1265, 1009.

4.4.29 ((6aR,9R,10aS)-10a-Methoxy-4,7-dimethyl-4,6,6a,7,8,9,10,10a-octahydroindolo[4,3-fg]quinolin-9-yl)methyl 5-(2-(*N*-methylacetamido)ethyl)nicotinate

Prepared using nicergoline (36) (TCI N0904) (243.1 mg, 0.502 mmol) and *N*-methyl-*N*-vinylacetamide (2) (258 μ L, 5 equiv) with K_2S_x (4.1 mg, 10 mol% per S) as the precatalyst in CH₃CN (2.5 mL).

Purification: flash column chromatography (silica gel, MeOH:EtOAc = 0:100 to 30:70)

Yield: 53% yield (127.3 mg, 0.252 mmol, 6 h) as a green oil.

<u>1H NMR (500 MHz, CDCl₃)</u> (major rotamer) δ 9.10 (s, 1H), 8.65 (s, 1H), 8.17 (s, 1H), 7.27 – 7.17 (m, 2H), 7.06 (d, J = 6.9 Hz, 1H), 6.80 (s, 1H), 4.48 – 4.36 (m, 1H), 4.36 – 4.26 (m, 1H), 3.78 (s, 3H), 3.62 (t, J = 14.9 Hz, 2H), 3.30 – 3.16 (m, 2H), 3.10 – 3.01 (m, 2H), 3.00 (s, 3H), 2.96 – 2.90 (m, 2H), 2.93 (s, 3H), 2.73 – 2.62 (m, 1H), 2.52 (s, 3H), 2.47 – 2.35 (m, 1H), 2.24 – 2.11 (m, 1H), 2.06 (s, 3H), 1.40 (dd, J = 13.3, 13.3 Hz, 1H).

(minor rotamer) δ 9.13 (s, 1H), 8.65 (s, 1H), 8.12 (s, 1H), 7.27 – 7.17 (m, 2H), 7.06 (d, J = 6.9 Hz, 1H), 6.80 (s, 1H), 4.48 – 4.36 (m, 1H), 4.36 – 4.26 (m, 1H), 3.78 (s, 3H), 3.56 (t, J = 14.9 Hz, 2H), 3.30 – 3.16 (m, 2H), 3.10 – 3.01 (m, 2H), 3.00 (s, 3H), 2.97 (s, 3H), 2.96 – 2.90 (m, 2H), 2.73 – 2.62 (m, 1H), 2.52 (s, 3H), 2.47 – 2.35 (m, 1H), 2.24 – 2.11 (m, 1H), 1.97 (s, 3H), 1.40 (dd, J = 13.3, 13.3 Hz, 1H).

13C NMR (125 MHz, CDCl₃) (mixture of rotamers) δ 170.6, 170.1, 165.2, 164.9, 153.9, 153.7, 149.3, 148.9, 137.1 (overlapped with 2C), 137.0, 135.1, 134.5, 133.5, 129.4 (overlapped with 2C), 126.2, 126.0, 125.8, 125.4, 123.3 (overlapped with 2C), 121.4 (overlapped with 2C), 114.9, 114.9, 110.0 (overlapped with 2C), 109.0, 109.0, 73.5 (overlapped with 2C), 69.8 (overlapped with 2C), 68.1, 67.9, 60.4 (overlapped with 2C), 51.7, 49.5 (overlapped with 2C), 48.9, 43.0 (overlapped with 2C), 36.8 (overlapped with 2C), 33.3, 32.7, 31.7, 31.3, 30.6 (overlapped with 2C), 30.2, 30.1, 22.2, 21.8 (overlapped with 2C), 21.1.

ESIHRMS Found: m/z 505.2816; Calcd for $C_{29}H_{37}N_4O_4$ (M+H)⁺ 505.2815.

<u>IR (neat, cm⁻¹)</u> 3053, 2941, 2787, 1717 [v(C=O)], 1638 [v(C=O)], 1465, 1421, 1304, 1206, 1115, 1070.

4.4.30 Ethyl 5-methyl-8-(2-(*N*-methylacetamido)ethyl)-6-oxo-5,6-dihydro-4*H*-benzo[*f*]imidazo[1,5-*a*][1,4]diazepine-3-carboxylate

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Prepared using ethyl 8-bromo-5-methyl-6-oxo-5,6-dihydro-4H-benzo[f]imidazo[1,5-a][1,4]diazepine-3-carboxylate (37) (Sigma-Aldrich 901778) (72.9 mg, 0.200 mmol), N-methyl-N-vinylacetamide (2) (103 μ L, 1.00 mmol), Hantzsch ester (3) (61.3 mg, 0.242 mmol), K_2CO_3 (41.7 mg, 0.302 mmol), and H_2O (72 μ L, 4.00 mmol) with K_2S_x (1.6 mg, 10 mol% per S) as the precatalyst in CH₃CN (1 mL).

Purification: flash column chromatography (silica gel, MeOH:EtOAc = 0:100 to 20:80) Yield: 81% yield (62.1 mg, 0.162 mmol, 11 h) as a colorless oil.

<u>1H NMR (400 MHz, CDCl₃)</u> (major rotamer) δ 7.93 – 7.89 (m, 2H), 7.58 – 7.52 (m, 1H), 7.44 – 7.37 (m, 1H), 5.34 – 4.98 (m, 1H), 4.49 – 4.17 (m, 3H), 3.64 (t, J = 7.3 Hz, 2H), 3.25 (s, 3H), 3.04 – 2.92 (m, 2H), 2.99 (s, 3H), 2.08 (s, 3H), 1.45 (t, J = 7.2 Hz, 3H).

(minor rotamer) δ 7.89 – 7.87 (m, 2H), 7.49 – 7.44 (m, 1H), 7.44 – 7.37 (m, 1H), 5.34 – 4.98 (m, 1H), 4.49 – 4.17 (m, 3H), 3.60 (t, J = 7.3 Hz, 2H), 3.26 (s, 3H), 3.04 – 2.92 (m, 2H), 2.98 (s, 3H), 1.96 (s, 3H), 1.45 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) (mixture of rotamers) δ 170.4, 170.1, 166.4, 166.1, 162.9, 162.8, 139.9, 138.8, 135.3, 135.2, 134.8, 134.8, 133.1, 132.9, 132.5, 132.5, 130.6, 130.2, 129.2, 128.8, 128.6, 128.5, 122.1, 121.9, 60.8, 60.8, 51.7, 48.7, 42.2 (overlapped with 2C), 36.5, 35.7, 35.7, 34.0, 33.2, 32.8, 21.8, 21.0, 14.2 (overlapped with 2C).

ESIHRMS Found: m/z 385.1877; Calcd for $C_{20}H_{25}N_4O_4$ (M+H)⁺ 385.1876.

<u>IR (neat, cm⁻¹)</u> 3054, 2984,, 2928, 1726 [v(C=O)], 1707 [v(C=O)], 1643 [v(C=O)], 1503, 1377, 1265, 1065.

MP: 156-158 °C.

4.4.31 4-(2-(N-Methylacetamido)ethyl)-N-(2-morpholinoethyl)benzamide

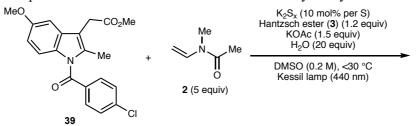
Prepared using moclobemide (38) (Sigma-Aldrich M3071) (53.9 mg, 0.201 mmol), *N*-methyl-*N*-vinylacetamide (2) (103 μ L, 1.00 mmol), Hantzsch ester (3) (60.9 mg, 0.240 mmol), K₂CO₃ (41.6 mg, 0.301 mmol), and H₂O (72 μ L, 4.00 mmol) with K₂S_x (1.7 mg, 10 mol% per S) as the precatalyst in DMSO (1 mL).

Purification: flash column chromatography (silica gel, MeOH:EtOAc = 0:100 to 20:80) Yield: 36% yield (24.1 mg, 0.0723 mmol, 11 h) as a colorless oil.

<u>1H NMR (400 MHz, CDCl₃)</u> (major rotamer) δ 7.71 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.2 Hz, 2H), 6.78 (br, 1H), 3.84 – 3.67 (m, 4H), 3.66 – 3.49 (m, 4H), 2.94 – 2.85 (m, 2H), 2.90 (s, 3H), 2.65 – 2.56 (m, 2H), 2.56 – 2.46 (m, 4H), 2.06 (s, 3H).

(minor rotamer) δ 7.74 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 8.2 Hz, 2H), 6.78 (br, 1H), 3.84 – 3.67 (m, 4H), 3.66 – 3.49 (m, 4H), 2.95 (s, 3H), 2.94 – 2.85 (m, 2H), 2.65 – 2.56 (m, 2H), 2.56 – 2.46 (m, 4H), 1.84 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) (mixture of rotamers) δ170.5 (overlapped with 2C), 167.2, 166.8, 142.9, 141.8, 133.1, 132.7, 129.0 (overlapped with 2C), 127.4, 127.1, 66.9 (overlapped with 2C), 56.9, 56.8, 53.3 (overlapped with 2C), 52.1, 49.2, 36.8, 36.0, 34.6, 33.6, 33.3, 30.3, 21.9, 21.0. **ESIHRMS** Found: m/z 334.2132; Calcd for $C_{18}H_{28}N_3O_3$ (M+H)⁺ 334.2131.


IR (neat, cm⁻¹) 3053, 2963, 2860, 2820, 1700 [ν (C=O)], 1636 [ν (C=O)], 1521, 1493, 1265, 1117.

$4.4.32\ \text{Methyl}\ 2\text{-}(5\text{-methoxy-2-methyl-1-}(4\text{-}(2\text{-}(N\text{-methylacetamido})\text{ethyl})\text{benzoyl})\text{-}1H\text{-indol-3-yl})\text{acetate}$

We found that hydrolysis of the amide bond is the major side reaction, that is associated with the desired hydroarylation reaction even under milder basic reaction conditions. The reaction in the

presence of KOAc provided the best yield (44% yield) of the hydroarylation product (Table S6, entry 1).

Table S6 Optimization of the reaction conditions for the hydroarylation with 39

Entry	Variation from "the standard conditions"	Time (h)	Conversion of 39 (%)	Yield of TP (%) ^a	Yield of SP (%) ^a
1	none	6	>99	48 (44)	49
2	K ₂ CO ₃ instead of KOAc	5	>99	26	64
3	K ₂ HPO ₄ instead of KOAc	6	>99	28	52
4	KH ₂ PO ₄ instead of KOAc	24	72	32	21

^a ¹H NMR yields were given (isolated yield in parenthesis).

Prepared using indomethacin methyl ester (39) (185.7 mg, 0.499 mmol) and *N*-methyl-*N*-vinylacetamide (2) (258 μ L, 5 equiv), and KOAc (74.5 mg, 0.759 mmol) with K₂S_x (4.3 mg, 10 mol% per S) as the precatalyst in DMSO (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 50:50 to 10:90) Yield: 44% yield (96.3 mg, 0.221 mmol, 6 h) as a colorless oil.

<u>1H NMR (400 MHz, CDCl₃):</u> (major rotamer) δ 7.65 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.2 Hz, 2H), 6.96 (d, J = 2.5 Hz, 1H), 6.86 (d, J = 9.0 Hz, 1H), 6.64 (dd, J = 9.0, 2.5 Hz, 1H), 3.83 (s, 3H), 3.70 (s, 3H), 3.67 (s, 2H), 3.64 (t, J = 7.1 Hz, 2H), 3.00 – 2.93 (m, 2H), 2.92 (s, 3H), 2.37 (s, 3H), 2.07 (s, 3H).

(minor rotamer) δ 7.67 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.2 Hz, 2H), 6.96 (d, J = 2.5 Hz, 1H), 6.86 (d, J = 9.0 Hz, 1H), 6.64 (dd, J = 9.0, 2.5 Hz, 1H), 3.83 (s, 3H), 3.70 (s, 3H), 3.67 (s, 2H), 3.58 (t, J = 7.1 Hz, 2H), 2.99 – 2.93 (m, 2H), 2.96 (s, 3H), 2.37 (s, 3H), 1.93 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): (mixture of rotamers) δ 171.4, 171.3, 170.5, 170.3, 169.2, 169.0, 155.9, 155.8, 144.8, 143.5, 136.0, 135.9, 134.2, 133.6, 130.9, 130.9, 130.5, 130.4, 130.2, 130.0, 129.1, 129.1, 114.9, 114.9, 112.2, 112.0, 111.5, 111.4, 101.1, 101.0, 55.6, 52.1, 52.0, 49.2, 36.9, 34.8, 33.8, 33.4, 30.1, 30.0, 29.6, 29.5, 21.9, 21.1, 13.3, 13.2.

ESIHRMS Found: m/z 437.2074; Calcd for C₂₅H₂₉N₂O₅ (M+H)⁺ 437.2076.

<u>IR (neat, cm⁻¹)</u> 3053, 2930, 1738 [ν (C=O)], 1681 [ν (C=O)], 1636 [ν (C=O)], 1479, 1358, 1315, 1265, 1225, 1069, 1036.

4.4.33 N-(4-Cyano-3-fluorophenethyl)-N-methylacetamide

Prepared using 4-bromo-2-fluorobenzonitrile (40) (Fluorochem 009059) (100.3 mg, 0.501 mmol) and N-methyl-N-vinylacetamide (2) (258 μ L, 5 equiv) with K₂S_x (4.3 mg, 10 mol% per S) as the precatalyst in CH₃CN (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 50:50 to 20:80) Yield: 53% yield (58.8 mg, 0.267 mmol, 8 h) as a colorless oil.

<u>1H NMR (400 MHz, CDCl₃)</u> (major rotamer) δ 7.57 – 7.52 (m, 1H), 7.17 – 7.05 (m, 2H), 3.65 – 3.58 (m, 2H), 2.98 – 2.88 (m, 2H), 2.95 (s, 3H), 2.07 (s, 3H).

(minor rotamer) δ 7.61 – 7.57 (m, 1H), 7.17 – 7.05 (m, 2H), 3.58 – 3.53 (m, 2H), 2.98 – 2.88 (m, 2H), 2.94 (s, 3H), 1.93 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) (mixture of rotamers) δ 170.6, 170.1, 163.1 (d, ${}^{1}J_{\text{C-F}} = 260.2 \text{ Hz}$), 163.2 (d, ${}^{1}J_{\text{C-F}} = 260.0 \text{ Hz}$), 148.0 (d, ${}^{3}J_{\text{C-F}} = 8.1 \text{ Hz}$), 146.9 (d, ${}^{3}J_{\text{C-F}} = 6.1 \text{ Hz}$), 133.7, 133.3, 125.3 (d, ${}^{3}J_{\text{C-F}} = 3.0 \text{ Hz}$), 125.2 (d, ${}^{3}J_{\text{C-F}} = 3.0 \text{ Hz}$), 116.8 (d, ${}^{2}J_{\text{C-F}} = 19.3 \text{ Hz}$), 116.6 (d, ${}^{2}J_{\text{C-F}} = 19.3 \text{ Hz}$), 114.0, 113.6, 99.7 (d, ${}^{2}J_{\text{C-F}} = 15.7 \text{ Hz}$), 99.3 (d, ${}^{2}J_{\text{C-F}} = 15.4 \text{ Hz}$), 51.4, 48.6, 36.7, 34.8, 33.7, 33.3, 21.8, 21.0.

¹⁹F NMR (376 MHz, CDCl₃) (major rotamer) δ -106.72.

(minor rotamer) δ -105.88,

ESIHRMS Found: m/z 243.0910; Calcd for C₁₂H₁₃N₂OFNa (M+Na)⁺ 243.0910.

<u>IR (neat, cm⁻¹)</u> 3052, 2936, 2237 [ν (C \equiv N)], 1634 [ν (C=O)], 1570, 1431, 1410, 1364, 1265, 1113, 1011.

4.4.34 Methyl 3-bromo-5-(2-(N-methylacetamido)ethyl)benzoate

Prepared using methyl 3-bromo-5-iodobenzoate (41) (Fluorochem 222436) (170.7 mg, 0.501 mmol) and N-methyl-N-vinylacetamide (2) (258 μ L, 5 equiv) with K₂S_x (4.4 mg, 10 mol% per S) as the precatalyst in CH₃CN (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 50:50 to 20:80) Yield: 66% yield (103.2 mg, 0.328 mmol, 8 h) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): (major rotamer) δ 8.02 (s, 1H), 7.83 (s, 1H), 7.57 (s, 1H), 3.92 (s, 3H), 3.61 - 3.55 (m, 2H), 2.93 (s, 3H), 2.92 - 2.78 (m, 2H), 2.08 (s, 3H).

(minor rotamer) δ 8.06 (s, 1H), 7.79 (s, 1H), 7.52 (s, 1H), 3.93 (s, 3H), 3.61 – 3.55 (m, 2H), 2.95 (s, 3H), 2.92 – 2.78 (m, 2H), 1.98 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): (mixture of rotamers) δ 170.5, 170.2, 165.6, 165.4, 141.6, 140.5, 136.1, 135.9, 132.2, 131.9, 130.9, 130.5, 128.5, 128.3, 122.6, 122.3, 52.4, 52.3, 51.9, 49.2, 36.8, 34.2, 33.3, 33.0, 21.8, 21.0.

ESIHRMS Found: m/z 336.0213; Calcd for C₁₃H₁₆NO₃BrNa (M+Na)⁺ 336.0211.

<u>IR (neat, cm⁻¹)</u> 3057, 2951, 1714 [v(C=O)], 1630 [v(C=O)], 1487, 1438, 1406, 1360, 1281, 1206, 1113, 1011, 683 [v(C-Br)].

4.4.35 N-(4-Bromophenethyl)-N-methylacetamide

Prepared using 1-bromo-4-iodobenzene (42) (Fluorochem 005440) (142.2 mg, 0.503 mmol) and N-methyl-N-vinylacetamide (2) (258 μ L, 5 equiv) with K_2S_x (4.0 mg, 10 mol% per S) as the precatalyst in DMSO (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 40:60 to 60:40) Yield: 58% yield (75.0 mg, 0.293 mmol, 3 h) as a colorless oil.

¹H NMR (500 MHz, CDCl₃) (major rotamer) δ 7.41 (d, J = 8.3 Hz, 2H), 7.10 (d, J = 8.3 Hz, 2H), 3.55 (t, J = 7.5 Hz, 2H), 2.88 (s, 3H), 2.80 (m, 2H), 2.06 (s, 3H).

(minor rotamer) δ 7.44 (d, J = 8.3 Hz, 2H), 7.04 (d, J = 8.3 Hz, 2H), 3.49 (t, J = 7.2 Hz, 2H), 2.93 (s, 3H), 2.80 (m, 2H), 1.87 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) (mixture of rotamers) δ 170.4, 170.3, 138.1, 137.1, 131.8, 131.5, 130.5, 130.4, 120.6, 120.1, 52.2, 49.3, 36.8, 34.1, 33.3, 33.1, 21.9, 20.9.

ESIHRMS Found: m/z 278.0158; Calcd for C₁₁H₁₄NOBrNa (M+Na)⁺ 278.0156.

<u>IR (neat, cm⁻¹)</u> 3052, 2932, 1632 [ν (C=O)], 1489, 1406, 1265, 1072, 1013, 650 [ν (C-Br)].

4.4.36 N-(3-Bromo-5-cyanophenethyl)-N-methylacetamide

Prepared using methyl 3,5-dibromobenzonitrile (43) (Fluorochem 024164) (131.1 mg, 0.502 mmol) and N-methyl-N-vinylacetamide (2) (258 μ L, 5 equiv) with K₂S_x (4.1 mg, 10 mol% per S) as the precatalyst in CH₃CN (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 50:50 to 20:80) Yield: 67% yield (94.7 mg, 0.337 mmol, 6 h) as a colorless oil.

¹H NMR (500 MHz, CDCl₃) (major rotamer) δ 7.64 (s, 1H), 7.63 (s, 1H), 7.46 (s, 1H), 3.57 (t, J = 7.5 Hz, 2H), 2.97 (s, 3H), 2.87 (t, J = 7.5 Hz, 2H), 2.08 (s, 3H).

(minor rotamer) δ 7.70 (s, 1H), 7.59 (s, 1H), 7.44 (s, 1H), 3.54 (t, J = 7.5 Hz, 2H), 2.95 (s, 3H), 2.90 (d, J = 7.5 Hz, 2H), 1.99 (s, 3H).

13C NMR (125 MHz, CDCl₃) (mixture of rotamers) δ 170.5, 170.0, 142.6, 141.6, 136.5, 136.3, 133.0, 132.6, 130.9, 130.8, 123.1, 122.8, 117.2, 116.9, 114.4, 114.0, 51.6, 48.8, 36.7, 34.1, 33.3, 32.9, 21.7, 21.0.

ESIHRMS Found: m/z 303.0113; Calcd for C₁₂H₁₃N₂OBrNa (M+Na)⁺ 303.0109.

<u>IR (neat, cm⁻¹)</u> 3061, 2934, 2231 [ν (C \equiv N)], 1630 [ν (C \equiv O)], 1568, 1485, 1404, 1360, 1240, 1038, 1011, 685 [ν (C \equiv Br)].

4.4.37 N-(2-(5-Bromopyridin-3-yl)ethyl)-N-methylacetamide

Prepared using methyl 3,5-dibromopyridine (44) (Sigma-Aldrich 120162) (118.3 mg, 0.499 mmol) and N-methyl-N-vinylacetamide (2) (258 μ L, 5 equiv) with *i*-Pr₃SiSH (11 μ L, 0.0512 mmol, 10 mol%) as the precatalyst in CH₃CN (2.5 mL).

Purification: flash column chromatography (silica gel, MeOH:EtOAc = 0:100 to 10:90) Yield: 61% yield (78.3 mg, 0.305 mmol, 5 h) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) (major rotamer) δ 8.54 (s, 1H), 8.39 (s, 1H), 7.74 (s, 1H), 3.58 (t, J = 7.3 Hz, 2H), 2.95 (s, 3H), 2.90 – 2.79 (m, 2H), 2.08 (s, 3H).

(minor rotamer) δ 8.59 (s, 1H), 8.39 (s, 1H), 7.67 (s, 1H), 3.54 (t, J = 7.6 Hz, 2H), 2.96 (s, 3H), 2.90 – 2.79 (m, 2H), 1.98 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) (mixture of rotamers) δ 170.6, 170.1, 149.4, 148.9, 148.1, 148.0, 138.8, 138.7, 136.3, 135.2, 120.8, 120.6, 51.7, 49.0, 36.8, 33.4, 31.6, 30.4, 21.8, 21.1.

ESIHRMS Found: m/z 279.0105; Calcd for C₁₀H₁₃N₂OBrNa (M+Na)⁺ 279.0109.

<u>IR (neat, cm⁻¹)</u> 3040, 2934, 1626 [ν (C=O)], 1491, 1423, 1364, 1308, 1196, 1098, 1022, 706 [ν (C-Br)].

4.4.38 Dimethyl 2-(4-(4-(methoxycarbonyl)phenyl)but-2-en-1-yl)malonate (46)

Prepared using methyl 4-bromobenzoate (1) (107.5 mg, 0.500 mmol) and dimethyl 2-vinylcyclopropane-1,1-dicarboxylate (45) (460.6 mg, 2.50 mmol) with K_2S_x (4.2 mg, 10 mol% per S) as the precatalyst in DMSO (2.5 mL).

Purification: flash column chromatography (silica gel, Hexane:EtOAc = 90:10)

Yield: 58% yield (E:Z=9:1, 92.4 mg, 0.288 mmol, 6 h) as a colorless oil.

¹H NMR (500 MHz, CDCl₃): (for the *E*-isomer) δ 7.95 (d, J = 8.3 Hz, 2H), 7.21 (d, J = 8.3 Hz, 2H), 5.67 (dt, J = 15.3, 6.8 Hz, 1H), 5.50 (dt, J = 15.3, 7.3 Hz, 1H), 3.90 (s, 3H), 3.70 (s, 6H), 3.45 (t, J = 7.6 Hz, 1H), 3.37 (d, J = 6.8 Hz, 2H), 2.64 (dd, J = 7.6, 7.3 Hz, 2H). (Z) δ 7.95 (d, J = 8.3 Hz, 2H), 7.25 (d, J = 8.3 Hz, 2H), 5.85 – 5.66 (m, 1H), 5.57 – 5.50 (m, 1H),

(2.7) (3.7) (4.7

¹³C NMR (125 MHz, CDCl₃): (for the *E*-isomer) δ 169.2, 167.0, 145.7, 131.4, 129.7, 128.4, 128.0, 127.6, 52.4, 51.9, 51.6, 38.8, 31.7.

ESIHRMS Found: m/z 321.1337; Calcd for $C_{17}H_{21}O_6$ $(M+H)^+$ 321.1338.

<u>IR (neat, cm⁻¹)</u> 3001, 2953, 2845, 1741 [v(C=O)], 1712 [v(C=O)], 1611, 1558, 1435, 1278, 1193, 1178, 1153, 1111, 1020.

5 Deuterium labelling experiments

5.1 Deuterium labelling experiments using D₂O

Figure S5 Deuterium labelling experiments with D₂O

The deuterium labelling experiments of the coupling reaction between methyl 4-bromobenzoate (1) and *N*-methyl-*N*-vinylacetamide (2) with Hantzsch ester (3) followed the general procedure of the hydroarylation reaction (Figure S5). To a 25 mL sealed tube with a magnetic stir bar was added methyl 4-bromobenzoate (1) (107.3 mg, 0.499 mmol), *N*-methyl-*N*-vinylacetamide (2) (258 μ L, 2.50 mmol, 5 equiv), K_2S_x (4.2 mg, 10 mol% per S), Hantzsch ester (3) (152.7 mg, 0.603 mmol, 1.2 equiv), K_2CO_3 (103. 4 mg, 0.748 mmol), D_2O (200 μ L, 10 mmol, 20 equiv) and CH_3CN (2.5 mL). The solution was degassed 3 times through freeze-pump-thaw (frozen at -78 °C and degassed via vacuum evacuation and backfilled with argon). The reaction mixture was stirred with irradiation of blue light (Kessil lamp, $\lambda_{max} = 440$ nm) for 20 h. The reaction mixture was diluted with H_2O (20 mL) and ethyl acetate (50 mL). The aqueous layer was separated and extracted with ethyl acetate (3 x 50 mL). The resulting residue was purified by flash column chromatography (silica gel, hexane:ethyl acetate = 50:50 to 20:80) to give the product 4 (59.5 mg, 0.253 mmol) in 51% yield as a colorless oil. The deuterium incorporation rate (D/H = 43:57) was determined by integration of the 1 H NMR spectrum.

5.2 Deuterium labelling experiment using deuterated Hantzsch ester $(3-d_2)$

Figure S6 Deuterium labelling experiments with deuterated Hantzsch ester $(3-d_2)$

The deuterium labelling experiments of the coupling reaction between methyl 4-bromobenzoate (1) and *N*-methyl-*N*-vinylacetamide (2) with Hantzsch ester (3-*d*₂) followed the general procedure of the hydroarylation reaction (Figure S6). To a 25 mL sealed tube with a magnetic stir bar was added methyl 4-bromobenzoate (1) (107.7 mg, 0.501 mmol), *N*-methyl-*N*-vinylacetamide (2) (258 μ L, 2.50 mmol, 5 equiv), K₂S_x (4.3 mg, 10 mol% per S), Hantzsch ester (3-*d*₂) (153.5 mg, 0.601 mmol, 1.2 equiv), K₂CO₃ (103.8 mg, 0.751 mmol), H₂O (180 μ L, 10 mmol, 20 equiv) and CH₃CN (2.5 mL). The solution was degassed 3 times through freeze-pump-thaw (frozen at –78 °C and degassed via vacuum evacuation and backfilled with argon). The reaction mixture was stirred with irradiation of blue light (Kessil lamp, λ_{max} = 440 nm) for 20 h. The reaction mixture was diluted with H₂O (20 mL) and ethyl acetate (50 mL). The aqueous layer was separated and extracted with ethyl acetate (3 x 50 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo to afford the crude residue. The resulting residue was purified by flash column chromatography (silica gel, hexane:ethyl acetate = 50:50 to 20:80) to give the product 4 (74.8 mg, 0.318 mmol) in 63% yield as a colorless oil. The deuterium incorporation rate (D/H < 1:99) was determined by integration of the ¹H NMR spectrum.

5.3 Deuterium labelling experiment using deuterated Hantzsch ester (3-d2) and D2O

Br + Me
$$_{0}$$
 Hantzsch ester- $_{0}$ (3- $_{0}$)

 $K_{2}S_{x}$ (10 mol% per S)
 $K_{2}CO_{3}$ (1.5 equiv)

 $CH_{3}CN$ (0.2 M), <30 °C
Kessil lamp (440 nm)
 20 h
 $4 \text{ 48}\%$
 $D/H = 56:44$
 $(Ar = 4-MeO_{2}C-C_{6}H_{4})$

Figure S7 Deuterium labelling experiments with deuterated Hantzsch ester $(3-d_2)$ and D_2O

The deuterium labelling experiments of the coupling reaction between methyl 4-bromobenzoate (1) and *N*-methyl-*N*-vinylacetamide (2) with Hantzsch ester (3-d₂) and D₂O followed the general procedure of the hydroarylation reaction (Figure S7). To a 25 mL sealed tube with a magnetic stir bar was added methyl 4-bromobenzoate (1) (107.5 mg, 0.500 mmol), *N*-methyl-*N*-vinylacetamide (2) (258 µL, 2.50 mmol, 5 equiv), K_2S_x (4.3 mg, 10 mol% per S), Hantzsch ester (3-d₂) (153.0 mg, 0.599 mmol, 1.2 equiv), K_2CO_3 (103.3 mg, 0.747 mmol), D₂O (200 µL, 10 mmol, 20 equiv) and CH₃CN (2.5 mL). The solution was degassed 3 times through freeze-pump-thaw (frozen at –78 °C and degassed via vacuum evacuation and backfilled with argon). The reaction mixture was stirred with irradiation of blue light (Kessil lamp, λ_{max} = 440 nm) for 20 h. The reaction mixture was diluted with H₂O (20 mL) and ethyl acetate (50 mL). The aqueous layer was separated and extracted with ethyl acetate (3 x 50 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo to afford the crude residue. The resulting residue was purified by flash column chromatography (silica gel, hexane:ethyl acetate = 50:50 to 20:80) to give the product 4 (56.1 mg, 0.238 mmol) in 48% yield as a colorless oil. The deuterium incorporation rate (D/H = 56:44) was determined by integration of the ¹H NMR spectrum.

5.4 Deuterium labelling experiment using deuterated Hantzsch ester (3-d₃) and D₂O

Br
$$MeO_2C$$
 MeO_2C $MeoO_2C$ M

Figure S8 Deuterium labelling experiments with deuterated Hantzsch ester $(3-d_3)$ and D₂O

The deuterium labelling experiments of the coupling reaction between methyl 4-bromobenzoate (1) and *N*-methyl-*N*-vinylacetamide (2) with Hantzsch ester (3-d₃) and D₂O followed the general procedure of the hydroarylation reaction (Figure S8). To a 25 mL sealed tube with a magnetic stir bar was added methyl 4-bromobenzoate (1) (107.6 mg, 0.500 mmol), *N*-methyl-*N*-vinylacetamide (2) (258 µL, 2.50 mmol, 5 equiv), K_2S_x (4.2 mg, 10 mol% per S), Hantzsch ester (3-d₃) (154.4 mg, 0.602 mmol, 1.2 equiv), K_2CO_3 (103.4 mg, 0.748 mmol), D₂O (200 µL, 10 mmol, 20 equiv) and CH₃CN (2.5 mL). The solution was degassed 3 times through freeze-pump-thaw (frozen at –78 °C and degassed via vacuum evacuation and backfilled with argon). The reaction mixture was stirred with irradiation of blue light (Kessil lamp, λ_{max} = 440 nm) for 20 h. The reaction mixture was diluted with H₂O (20 mL) and ethyl acetate (50 mL). The aqueous layer was separated and extracted with ethyl acetate (3 x 50 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo to afford the crude residue. The resulting residue was purified by flash column chromatography (silica gel, hexane:ethyl acetate = 50:50 to 20:80) to give the product 4 (40.1 mg, 0.170 mmol) in 34% yield as a colorless oil. The deuterium incorporation rate (D/H = 72:28) was determined by integration of the ¹H NMR spectrum.

5.5 Deuterium labelling experiment using deuterated Hantzsch ester (3-d₃), D₂O and CD₃CN

Figure S9 Deuterium labelling experiments with deuterated Hantzsch ester (**3-***d*₃), D2O and CD₃CN

The deuterium labelling experiments of the coupling reaction between methyl 4-bromobenzoate (1) and N-methyl-N-vinylacetamide (2) with Hantzsch ester (3-d₃), D₂O and CD₃CN followed the general procedure of the hydroarylation reaction (Figure S9). To a 25 mL sealed tube with a magnetic stir bar was added methyl 4-bromobenzoate (1) (107.2 mg, 0.499 mmol), N-methyl-Nvinylacetamide (2) (258 μL, 2.50 mmol, 5 equiv), K₂S_x (4.1 mg, 10 mol% per S), Hantzsch ester (3-d₃) (154.1 mg, 0.601 mmol, 1.2 equiv), K₂CO₃ (103.7 mg, 0.750 mmol), D₂O (200 μL, 10 mmol, 20 equiv) and CD₃CN (2.5 mL). The solution was degassed 3 times through freeze-pump-thaw (frozen at -78 °C and degassed via vacuum evacuation and backfilled with argon). The reaction mixture was stirred with irradiation of blue light (Kessil lamp, $\lambda_{max} = 440$ nm) for 20 h. The reaction mixture was diluted with H₂O (20 mL) and ethyl acetate (50 mL). The aqueous layer was separated and extracted with ethyl acetate (3 x 50 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo to afford the crude residue. The resulting residue was purified by flash column chromatography (silica gel, hexane:ethyl acetate = 50:50 to 20:80) to give the product 4 (42.1 mg, 0.179 mmol) in 36% yield as a colorless oil. The deuterium incorporation rate (D/H = 70:30) was determined by integration of the ¹H NMR spectrum. This result and those in sections 5.3 and 5.4 suggest that allylic methyl groups of the Hantzsch ester (3) could also function as a hydrogen donor in these cases.

5.6 Deuterium labelling experiment in CD₃CN

Br
$$\frac{1}{99\% \text{ conv.}}$$
 $\frac{1}{2 \text{ (5 equiv)}}$ $\frac{1}{1 \text{ Hantzsch ester (3)}}$ $\frac{1}{1 \text{ (1.2 equiv)}}$ $\frac{1}{1 \text{ Hantzsch ester (3)}}$ $\frac{1}{1 \text{ (1.2 equiv)}}$ $\frac{1}{$

Figure S10 Deuterium labelling experiments with CD₃CN

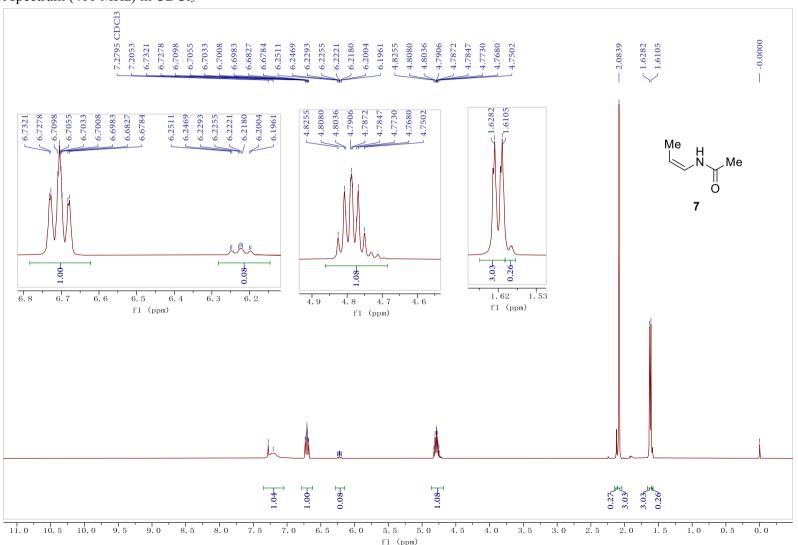
The deuterium labelling experiments of the coupling reaction between methyl 4-bromobenzoate (1) and *N*-methyl-*N*-vinylacetamide (2) with Hantzsch ester (3) followed the general procedure of the hydroarylation reaction (Figure S10). To a 25 mL sealed tube with a magnetic stir bar was added methyl 4-bromobenzoate (1) (107.0 mg, 0.498 mmol), *N*-methyl-*N*-vinylacetamide (2) (258 μ L, 2.50 mmol, 5 equiv), K_2S_x (4.2 mg, 10 mol% per S), Hantzsch ester (3) (152.5 mg, 0.601 mmol, 1.2 equiv), K_2CO_3 (103.6 mg, 0.750 mmol), H_2O (180 μ L, 10 mmol, 20 equiv) and CD_3CN (2.5 mL). The solution was degassed 3 times through freeze-pump-thaw (frozen at -78 °C and degassed via vacuum evacuation and backfilled with argon). The reaction mixture was stirred with irradiation of blue light (Kessil lamp, λ_{max} = 440 nm) for 16 h. The reaction mixture was diluted with H_2O (20 mL) and ethyl acetate (50 mL). The aqueous layer was separated and extracted with ethyl acetate (3 x 50 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated *in vacuo* to afford the crude residue, which was analyzed by the 1 H NMR measurement with 1,1,2,2-tetrachloroethane (21 μ L, 0.20 mmol) as an internal standard. The yield of 4 was 79% and the deuterium incorporation rate was D/H < 1:99.

5.7 Deuterium labelling experiments using D₂O with different alkenes

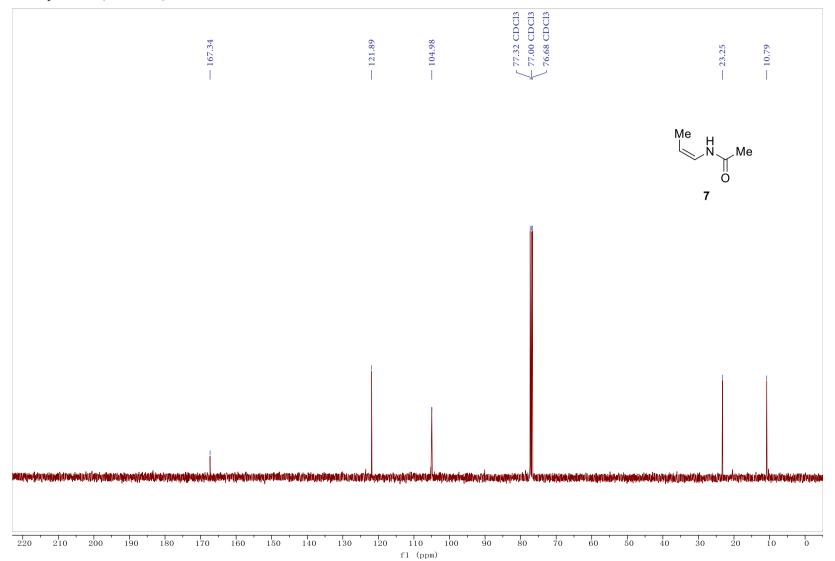
The deuterium labelling experiments for the hydroarylation between methyl 4-bromobenzoate (1) and selected alkenes (2, 10, 12, and 16) in the presence of D₂O were conducted (Table S7). The experiments protocol followed the general procedure: to a 25 mL sealed tube with a magnetic stir bar was added methyl 4-bromobenzoate (1) (0.50 mmol), alkene (5 equiv), K_2S_x (4.1-4.3 mg, 10 mol% per S), Hantzsch ester (3) (1.2 equiv), K_2CO_3 (1.5 equiv), D₂O (200 μ L, 20 equiv) and CH₃CN (2.5 mL). The solution was degassed 3 times through freeze-pump-thaw (frozen at –78 °C and degassed via vacuum evacuation and backfilled with argon). The reaction mixture was stirred under irradiation with visible light (Kessil lamp, λ_{max} = 440 nm, 20 W) for 20-24 h. The reaction mixture was diluted with H₂O (20 mL) and ethyl acetate (50 mL). The aqueous layer was separated

and extracted with ethyl acetate (3 x 50 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo to afford the crude residue. The resulting residue was purified by flash column chromatography to give the product. The percent of deuterium incorporation (D/H) was determined by the integration of ¹H NMR spectrum.

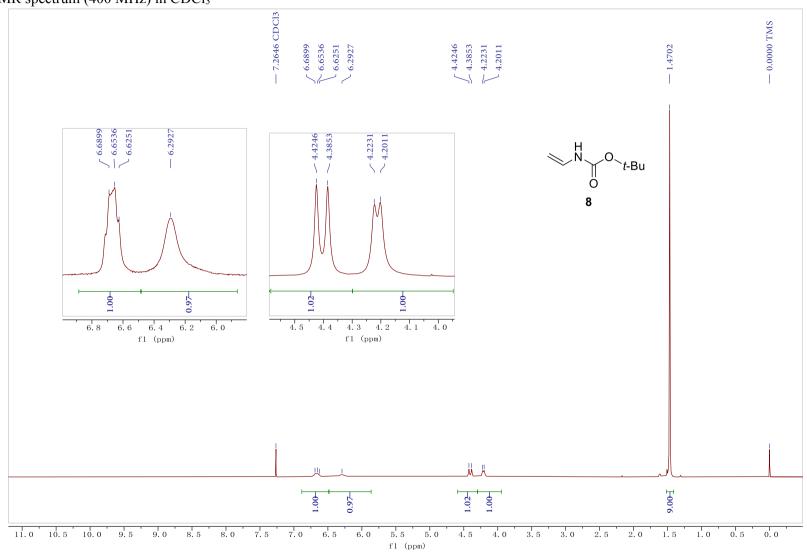
Table S7 Deuterium labelling experiments with D₂O using different alkenes

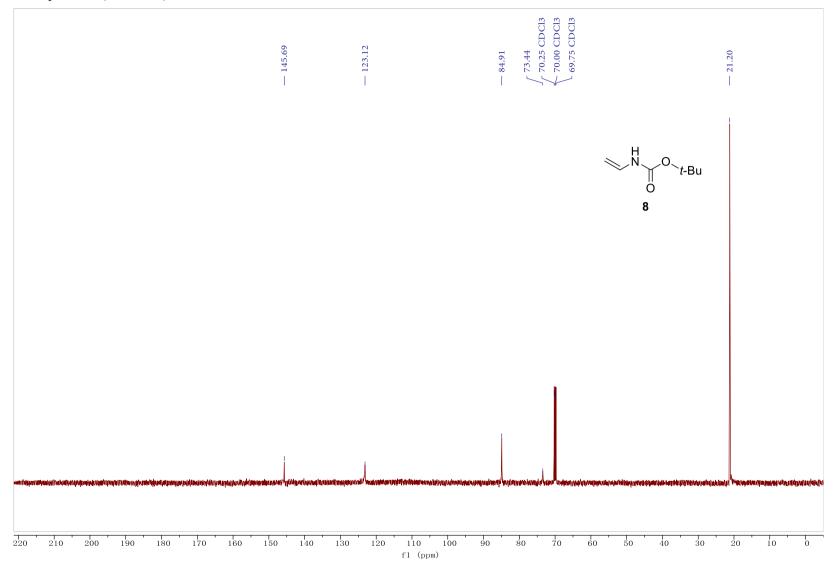

Alkenes	Radical intermediates	Conversion of 1 (%)	Products	D/H ratio	reference BDE ¹⁰ (kcal/mol)
Me N Me 2	Me N Me N Me	78%	Ar N Me 51%	43:57	105 (CH₃)₂NCHO 93 (CH₃)₂C H NHAc
OMe 11	OMe Me	77%	Ar OMe 58%	61:39	93-94 Me H O <i>i</i> -Pr
SPh 13	SPh)	92%	Ar SPh 67%	54:46	93 CH₃SPh 92 CH₃CH₂SEt
OH 17	(22 OH)	>99%	Ar OH 56%	43:57	98-99 H

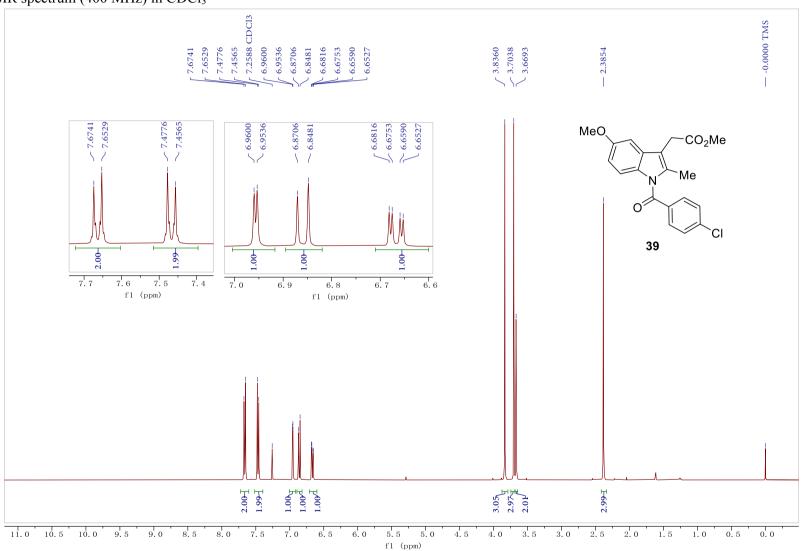
6 References

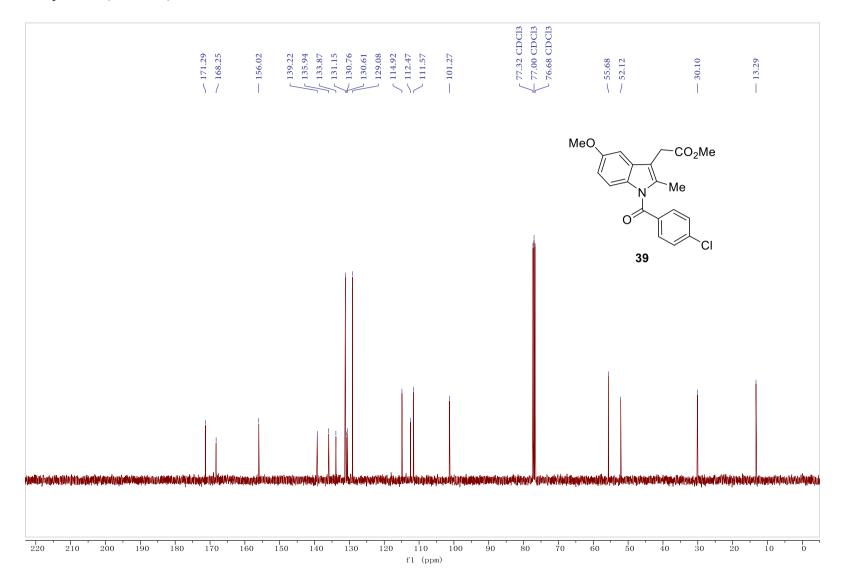

- 1 Z.-F. Yang, C. Xu, X. Zheng and X. Zhang, Chem. Commun., 2020, 56, 2642
- 2 A. J. Boyington, C. P. Seath, A. M. Zearfoss, Z. Xu and N. T. Jui, *J. Am. Chem. Soc.*, 2019, **141**, 4147.
- 3 D. Zhao, P. Xu and T. Ritter, Chem, 2019, 5, 97.
- 4 A. P. Dieskau, M. S. Holzwarth and B. Plietker, J. Am. Chem. Soc., 2012, 134, 5048
- 5 M. Das, M. D. Vu, Q. Zhang and X.-W. Liu, Chem. Sci., 2019, 10, 1687.
- 6 C. R. Shugrue and S. J. Miller, *Angew. Chem. Int. Ed.*, 2015, **54**, 11173.
- 7 Q. Xia, X. Liu, Y. Zhang, C. Chen and W. Chen, *Org. Lett.*, 2013, **15**, 3326.
- 8 X. Zhang and D. W. C. MacMillan, J. Am. Chem. Soc., 2016, 138, 13862.
- 9 S. Kim, M. J. Goldfogel, M. M. Gilbert and D. J. Weix, *J. Am. Chem. Soc.*, 2020, **142**, 9902-9907.
- 10 Luo, Y.-R. *Comprehensive Handbook of Chemical Bond Energies*, 1st ed.; CRC Press: Boca Raton, 2007.

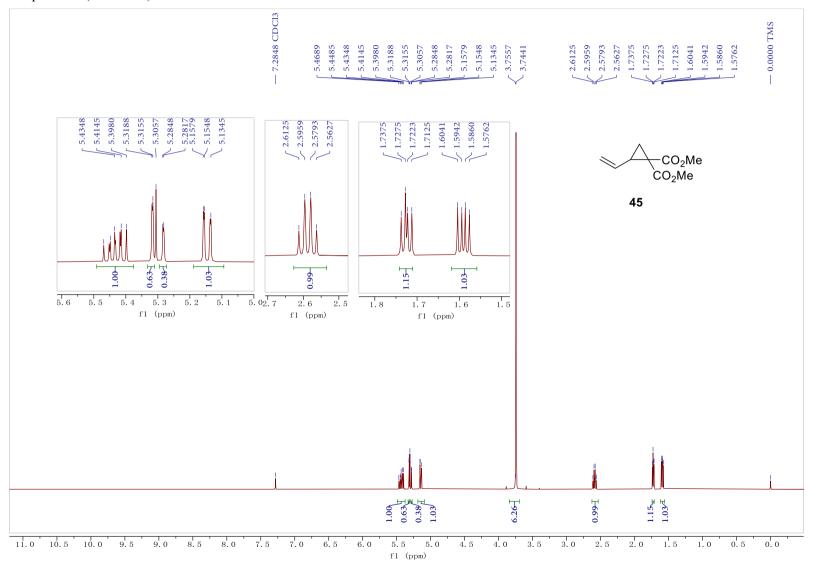
7 NMR spectra

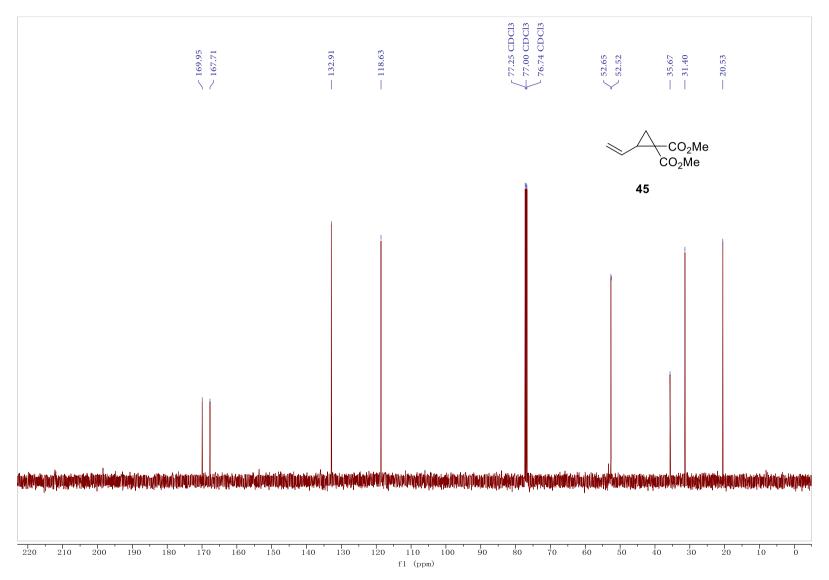

7.1. (*Z*)-*N*-(Prop-1-en-1-yl)acetamide (7)


¹³C NMR spectrum (100 MHz) in CDCl₃

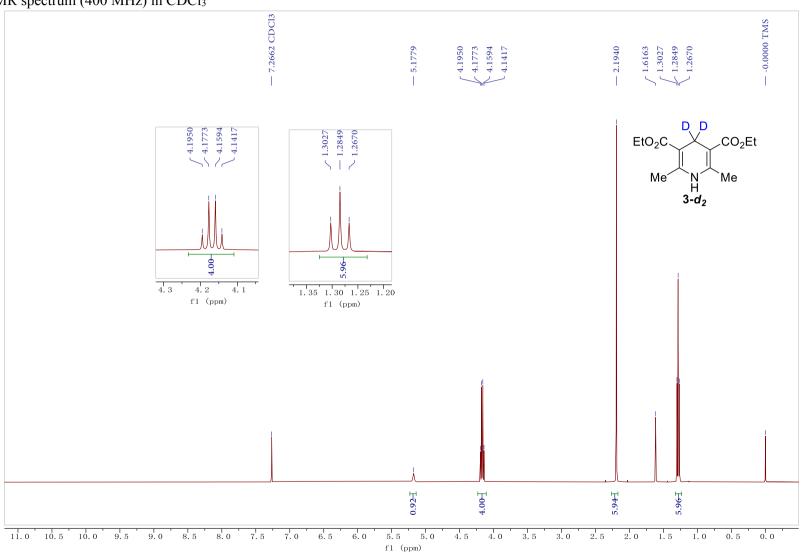

7.2. tert-Butyl vinylcarbamate (8)

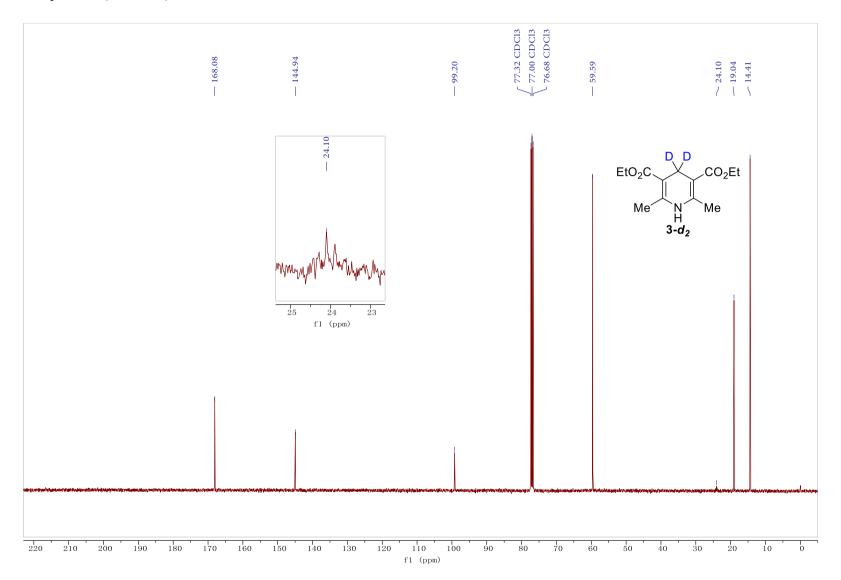

¹³C NMR spectrum (125 MHz) in CDCl₃

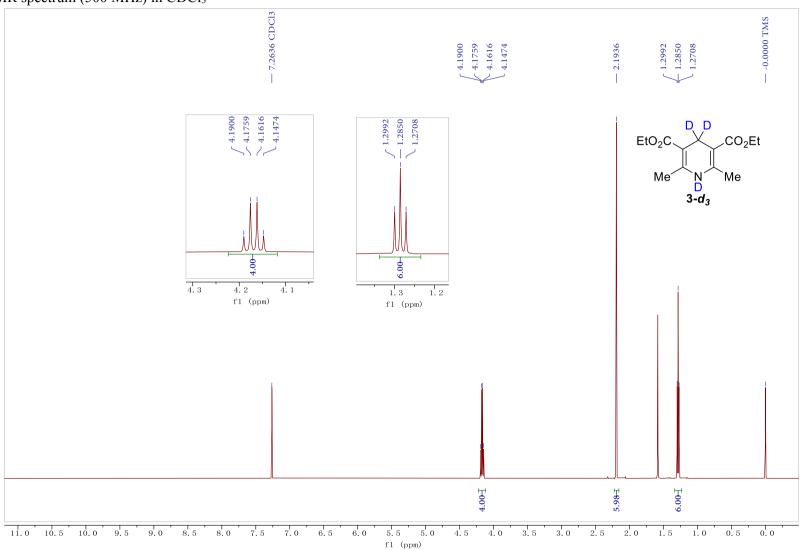

7.3. Indomethacin methyl ester (39)



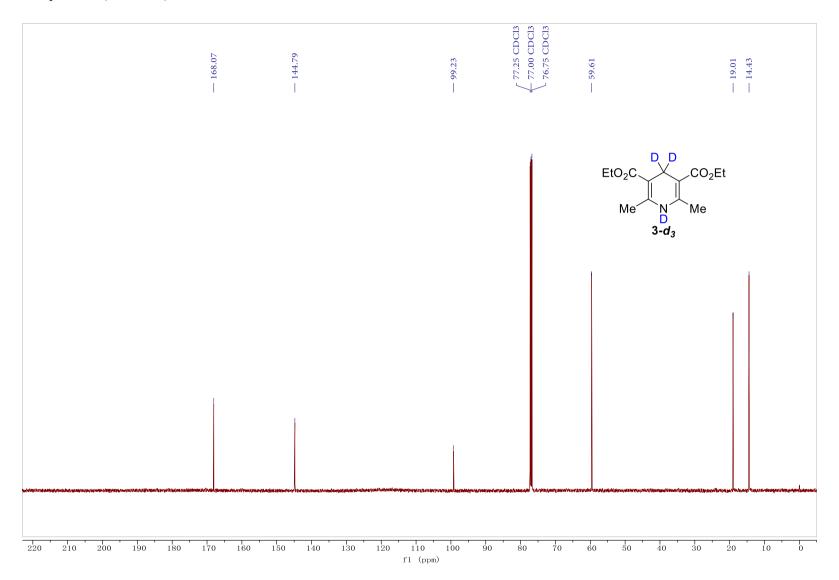
¹³C NMR spectrum (100 MHz) in CDCl₃

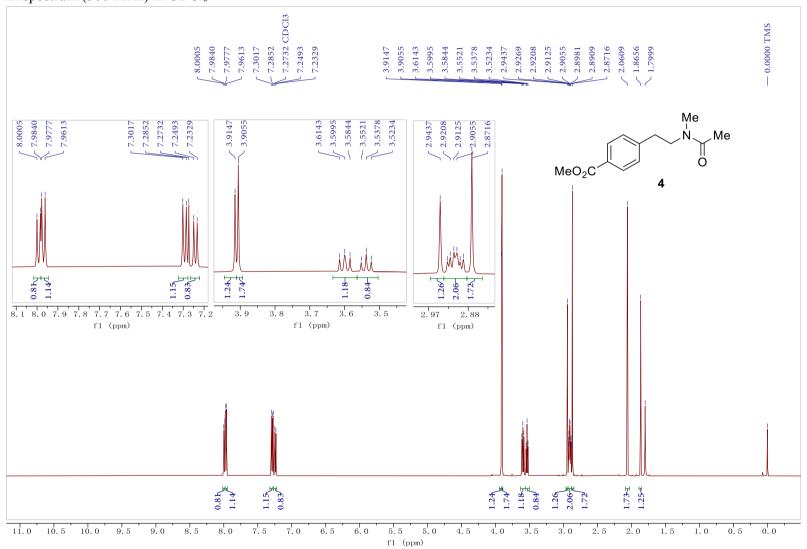


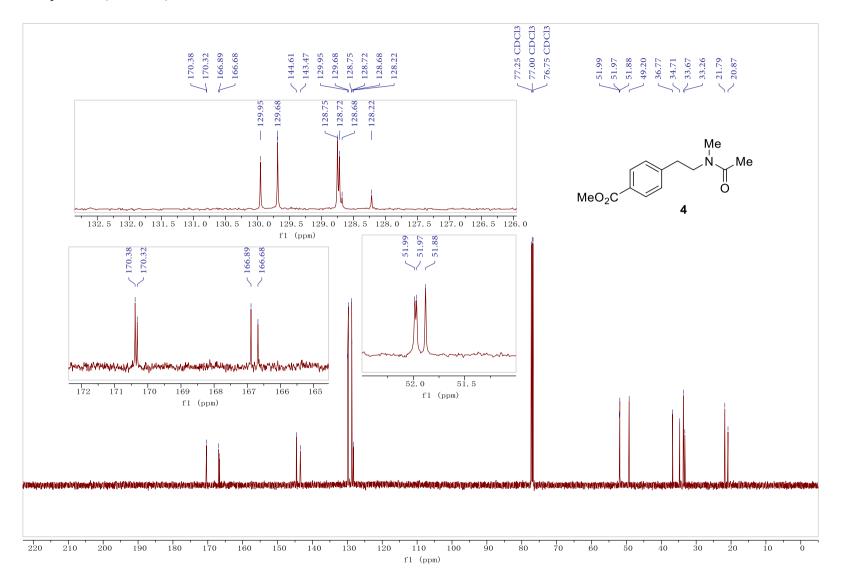

7.4. Dimethyl 2-vinylcyclopropane-1,1-dicarboxylate (45)

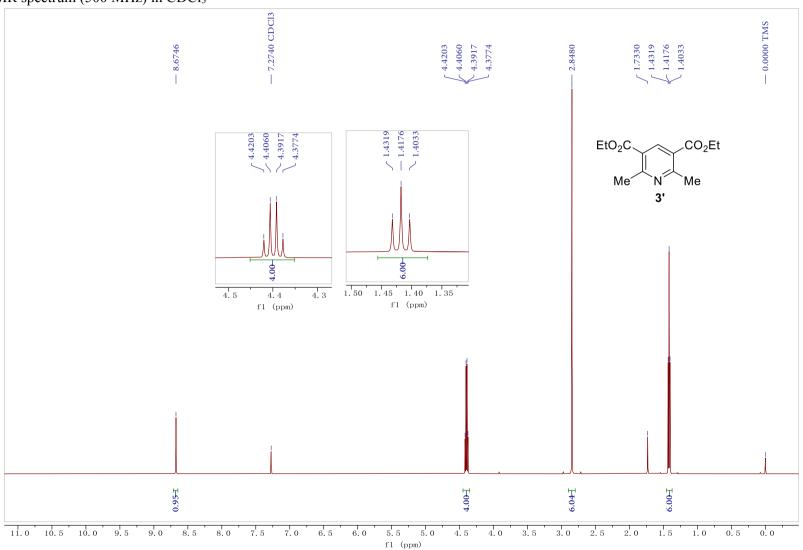


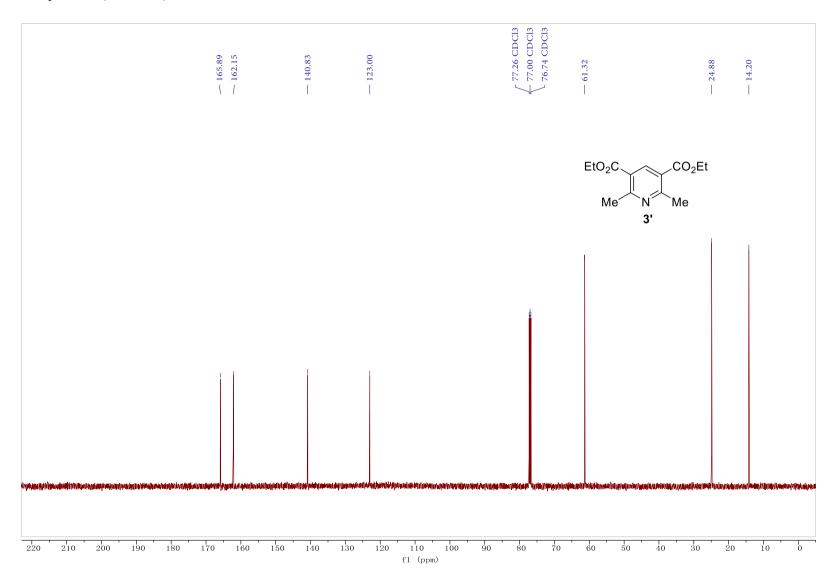
7.5. Diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate-4,4-d2 (3-d2)

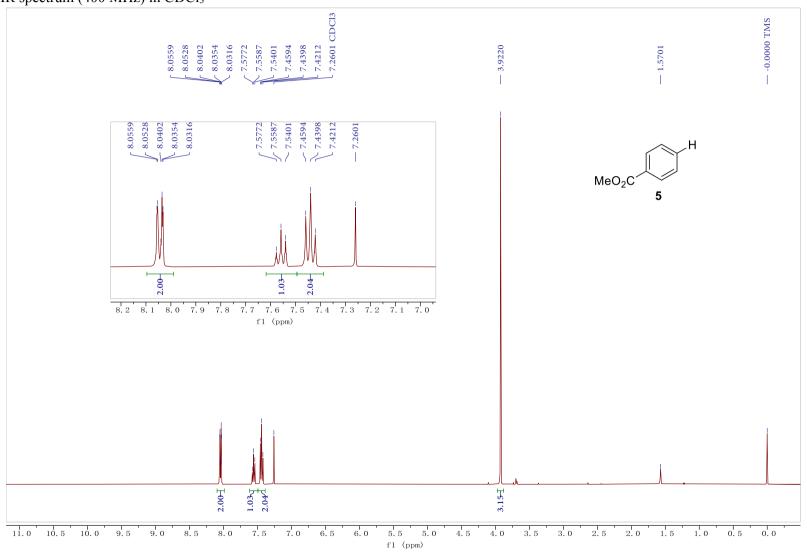


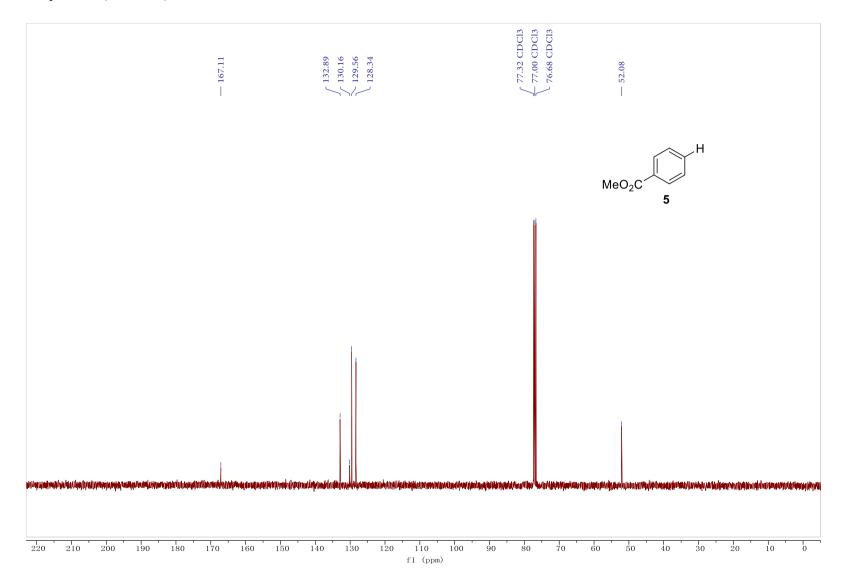

7.6. Diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate-1,4,4-d3 (3-d3)


¹³C NMR spectrum (125 MHz) in CDCl₃

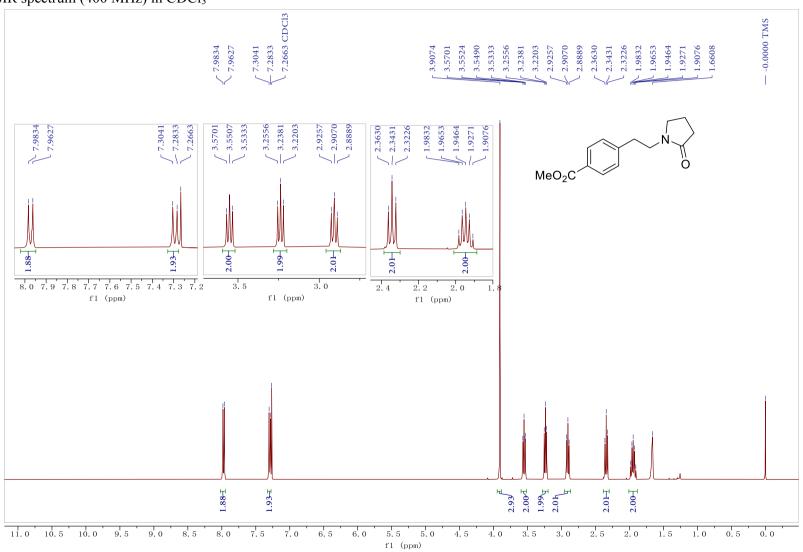

7.7. Methyl 4-(2-(N-methylacetamido)ethyl)benzoate (4)


¹³C NMR spectrum (125 MHz) in CDCl₃

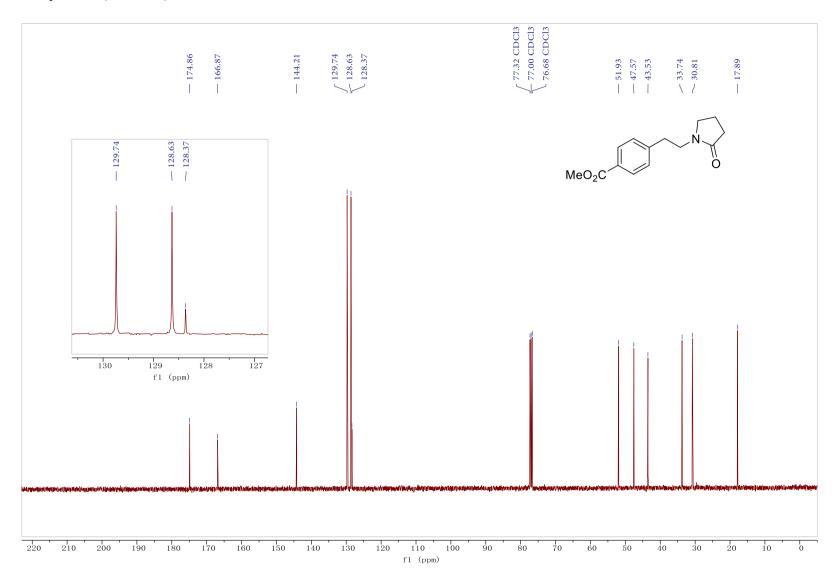

7.8. Diethyl 2,6-dimethylpyridine-3,5-dicarboxylate (3')

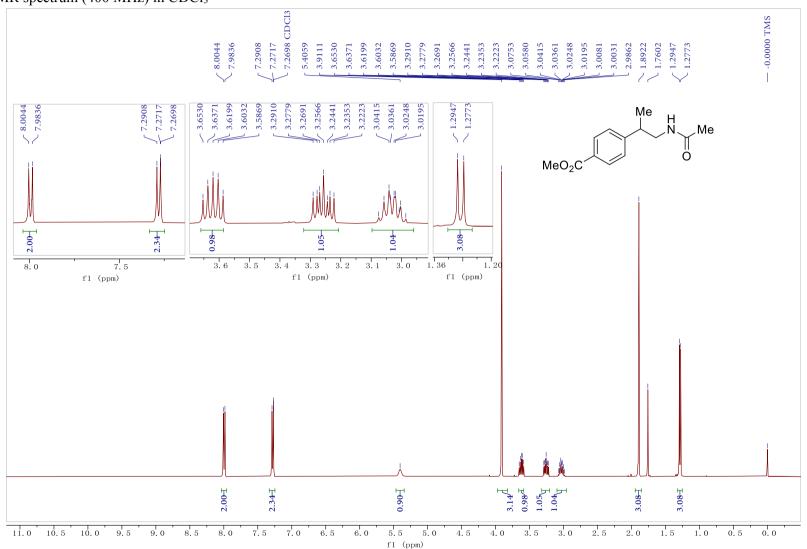


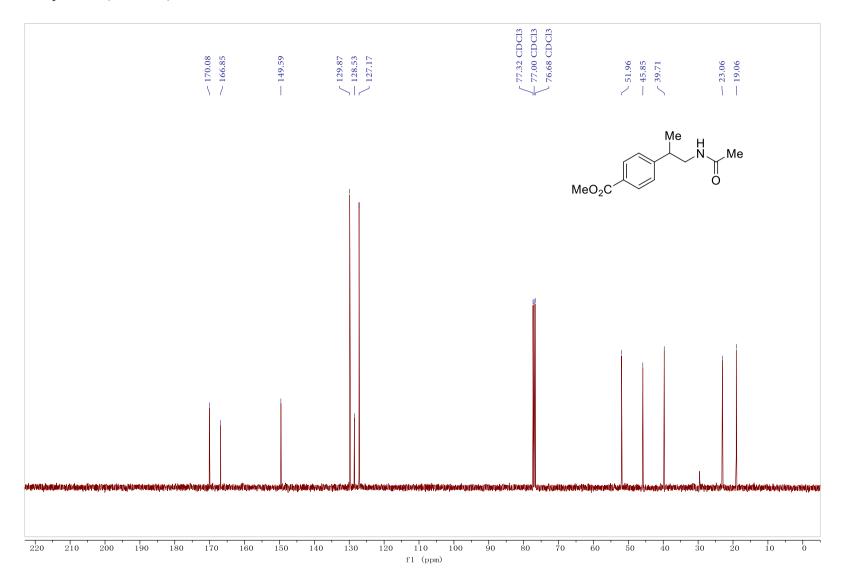
¹³C NMR spectrum (125 MHz) in CDCl₃

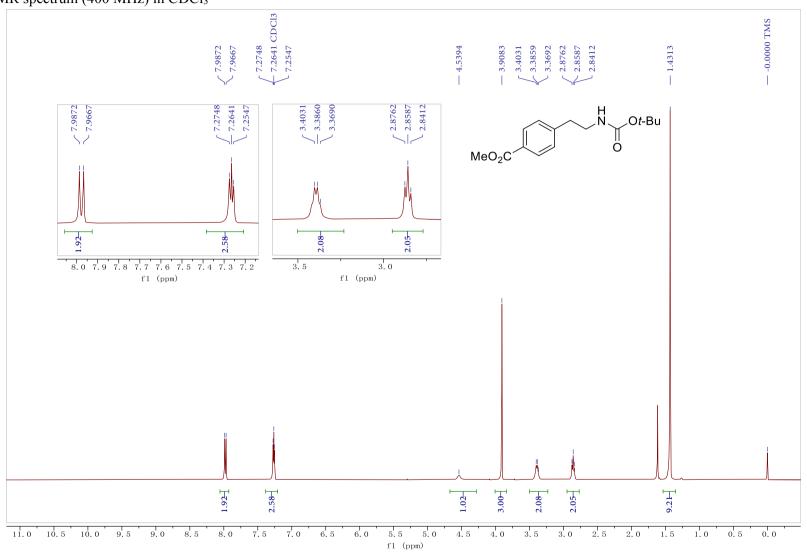


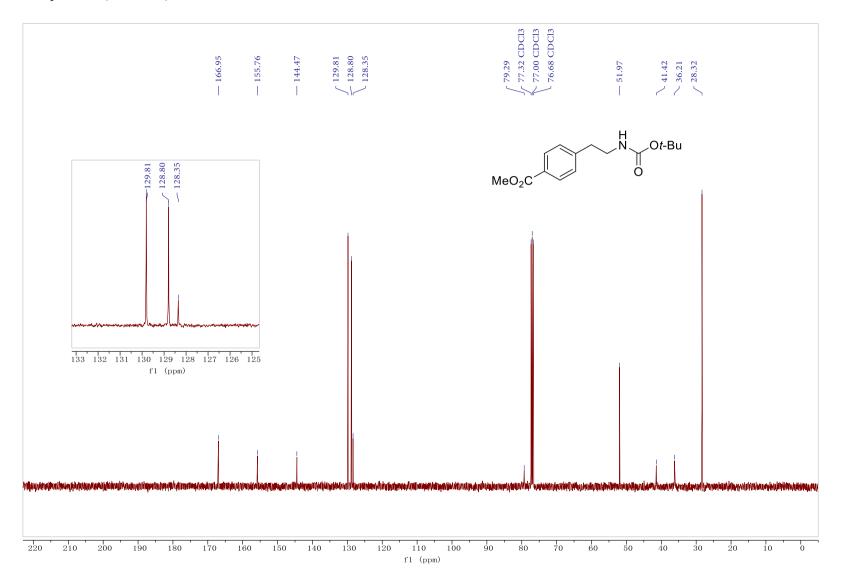
7.9. Methyl benzoate (5)

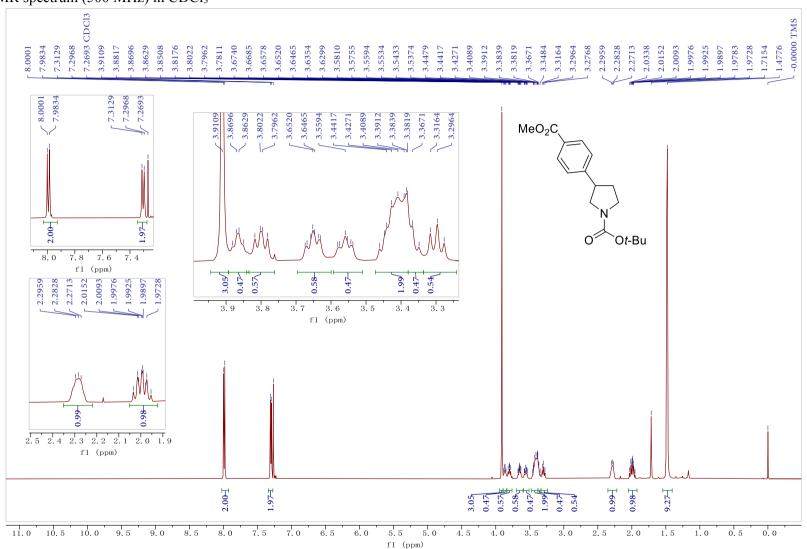


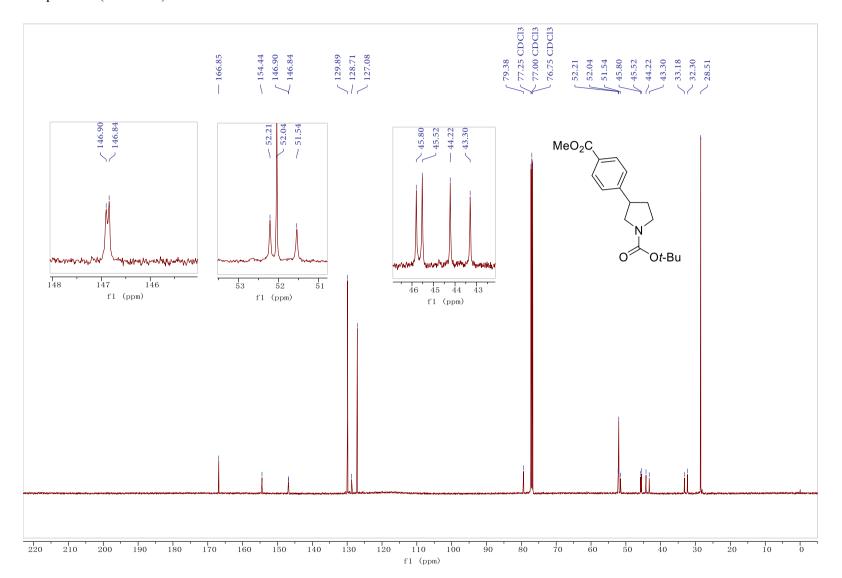

7.10. Methyl 4-(2-(2-oxopyrrolidin-1-yl)ethyl)benzoate


¹³C NMR spectrum (100 MHz) in CDCl₃

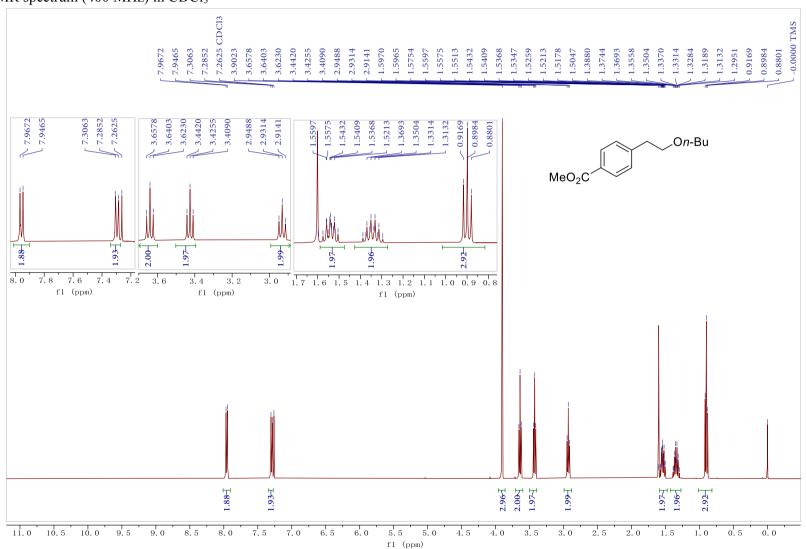

7.11. Methyl 4-(1-acetamidopropan-2-yl)benzoate


¹³C NMR spectrum (100 MHz) in CDCl₃

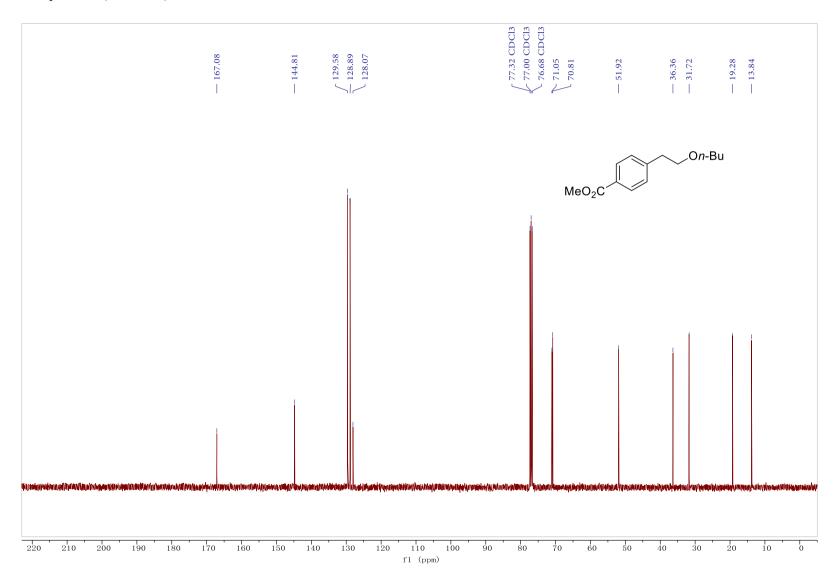

7.12. Methyl 4-(2-((tert-butoxycarbonyl)amino)ethyl)benzoate

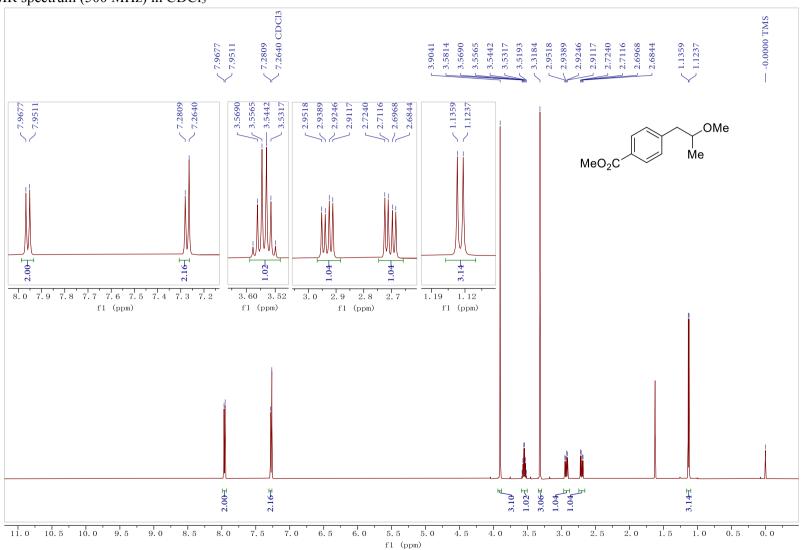


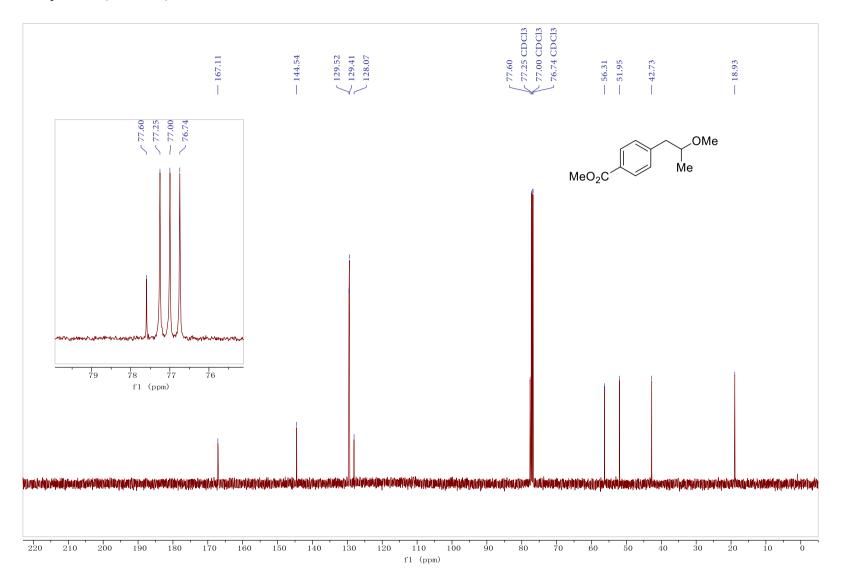
¹³C NMR spectrum (100 MHz) in CDCl₃



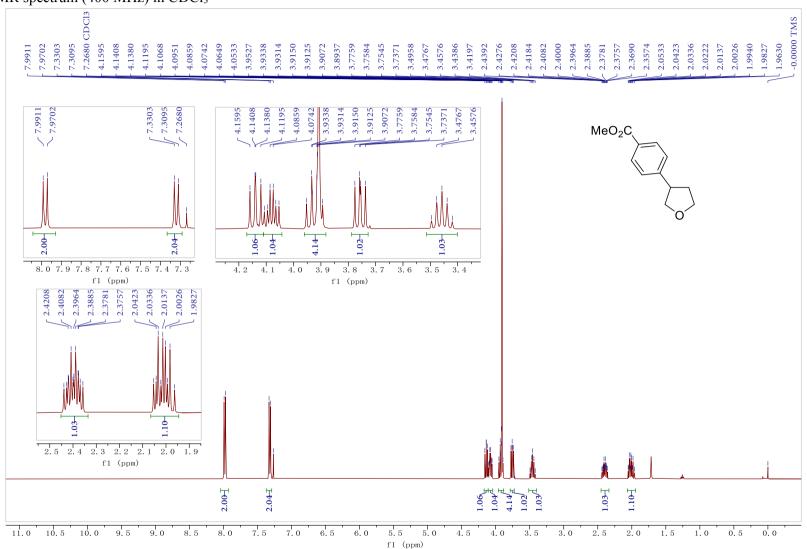
7.13. tert-Butyl 3-(4-(methoxycarbonyl)phenyl)pyrrolidine-1-carboxylate

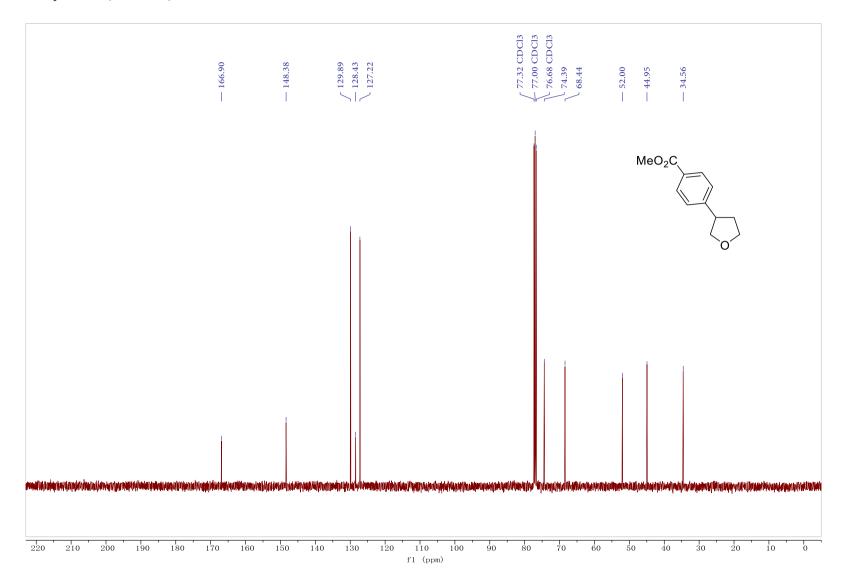


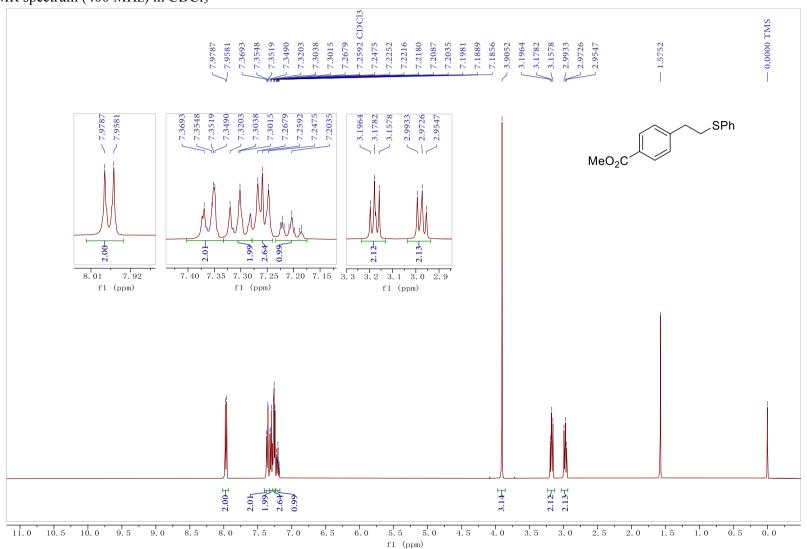

7.14. Methyl 4-(2-butoxyethyl)benzoate

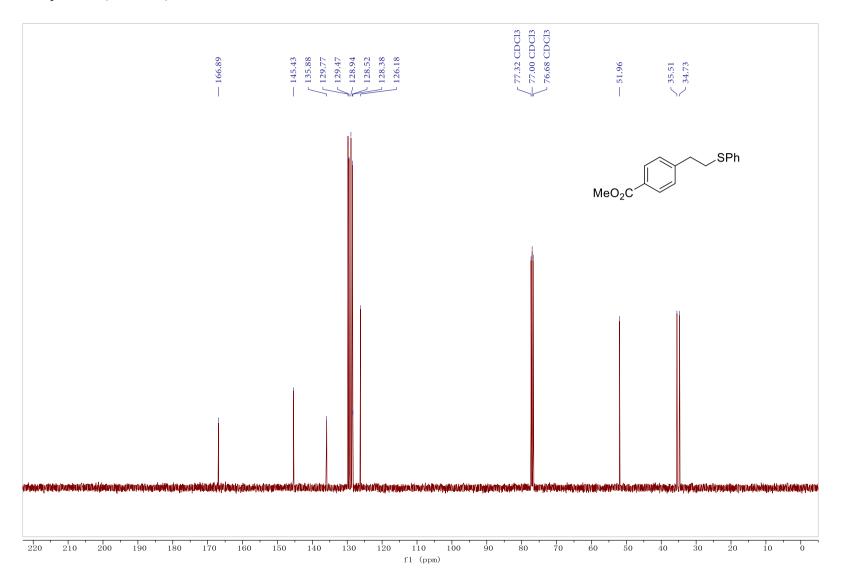


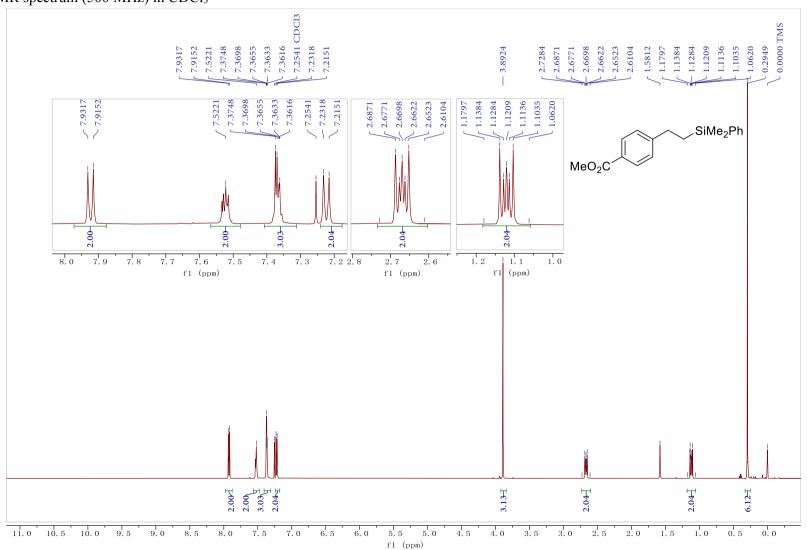
¹³C NMR spectrum (100 MHz) in CDCl₃



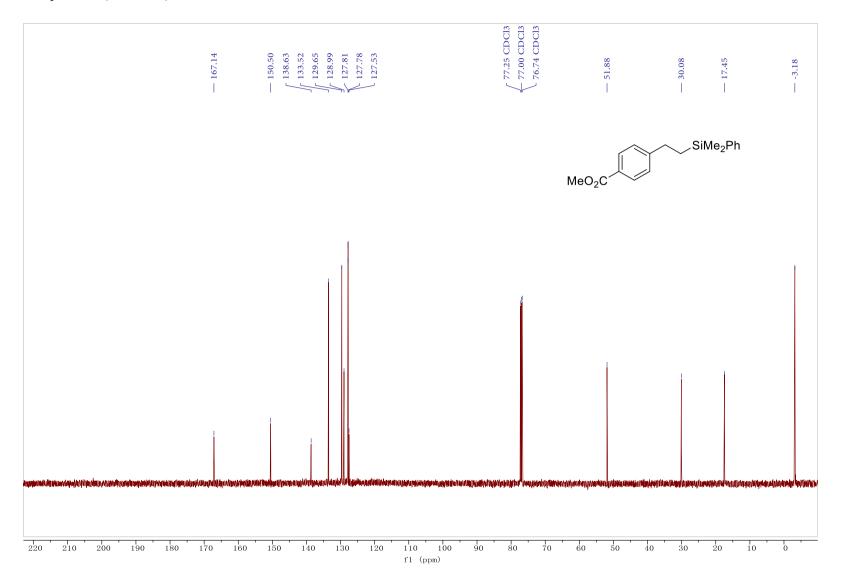

7.15. Methyl 4-(2-methoxypropyl)benzoate

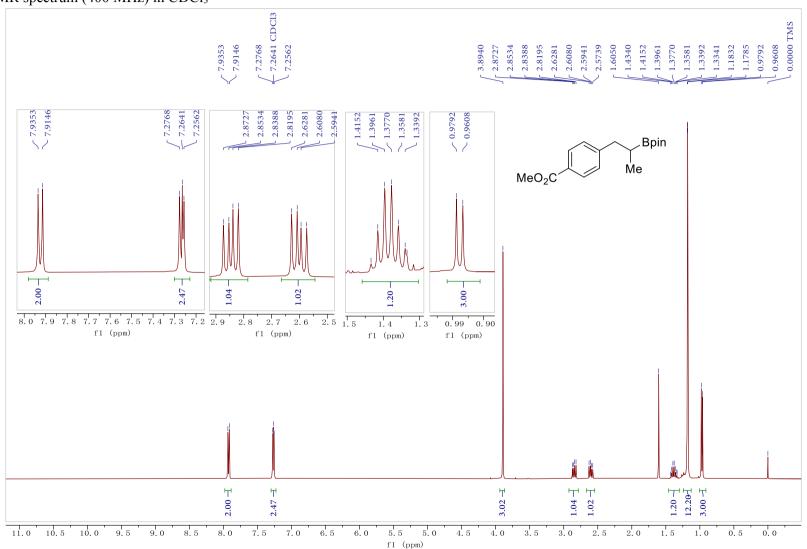


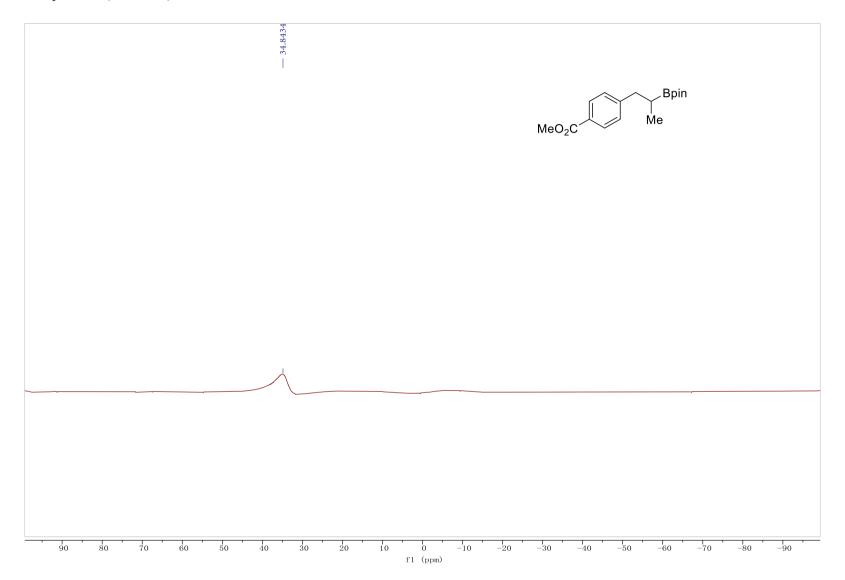

7.16. Methyl 4-(tetrahydrofuran-3-yl)benzoate

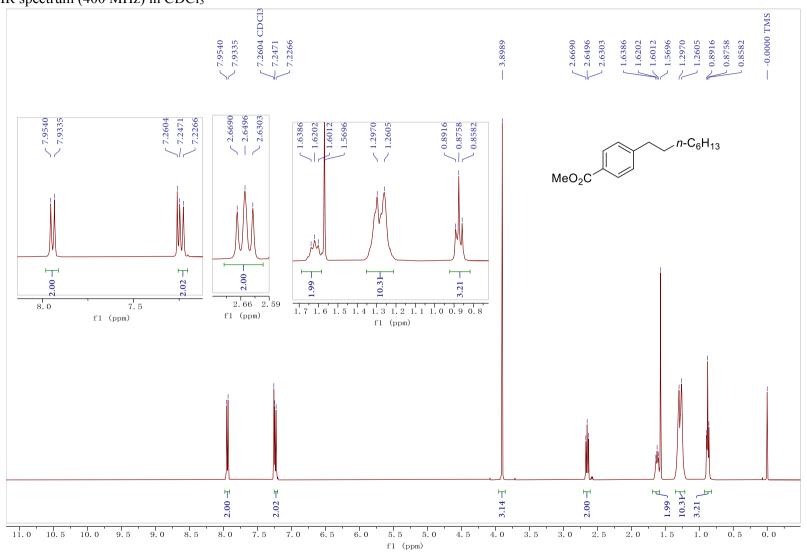


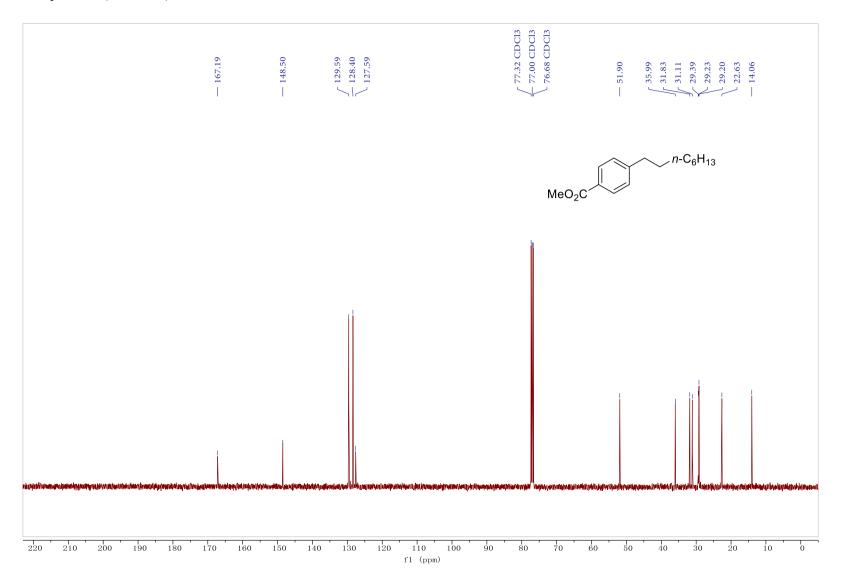
7.17. Methyl 4-(2-(phenylthio)ethyl)benzoate

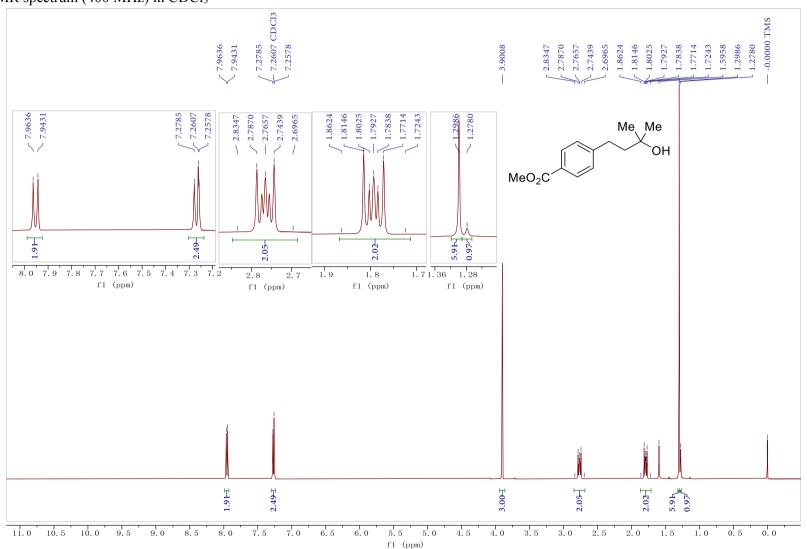


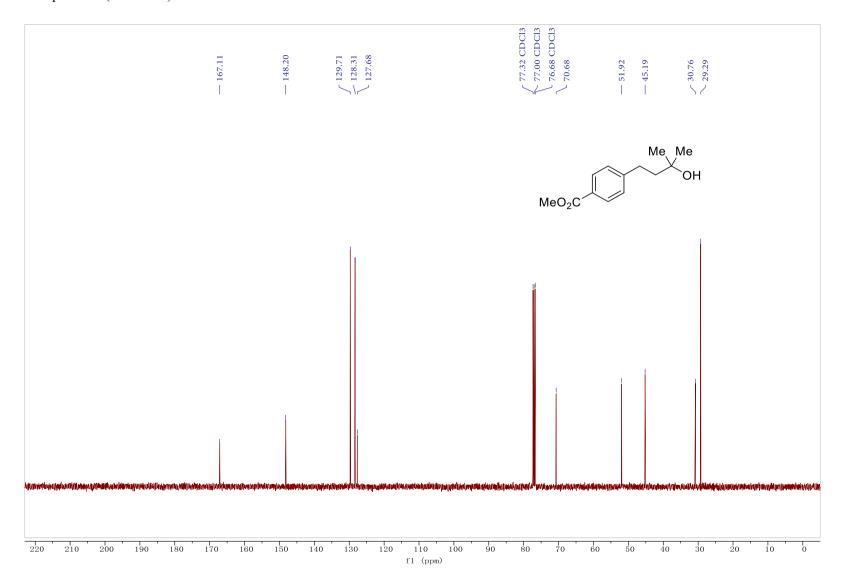

7.18. Methyl 4-(2-(dimethyl(phenyl)silyl)ethyl)benzoate

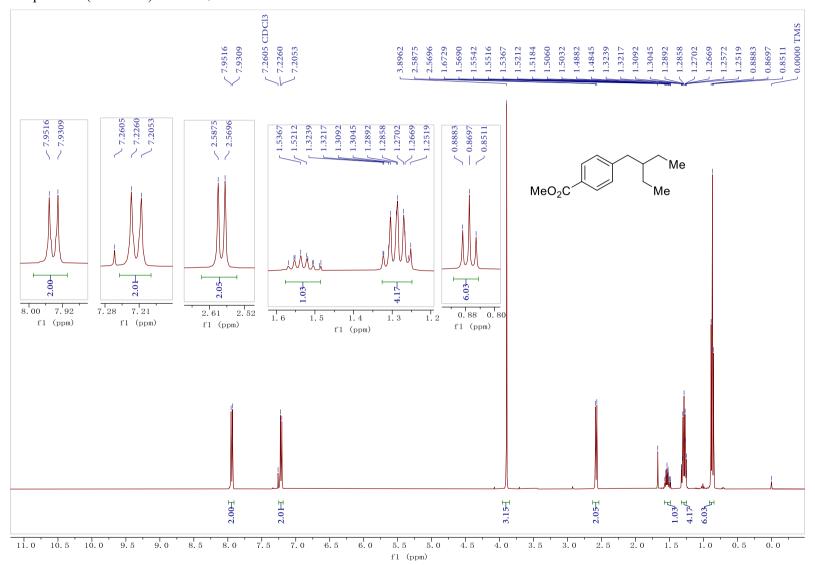

¹³C NMR spectrum (125 MHz) in CDCl₃

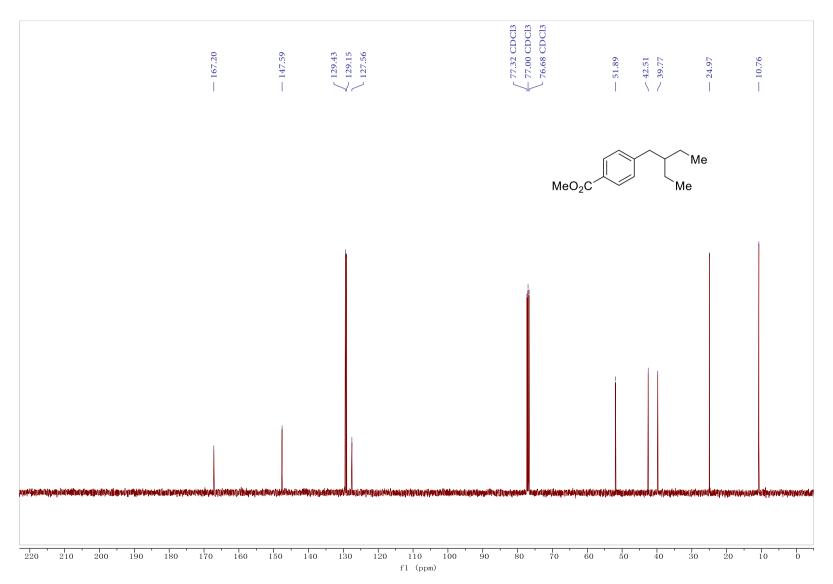

7.19. Methyl 4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)benzoate

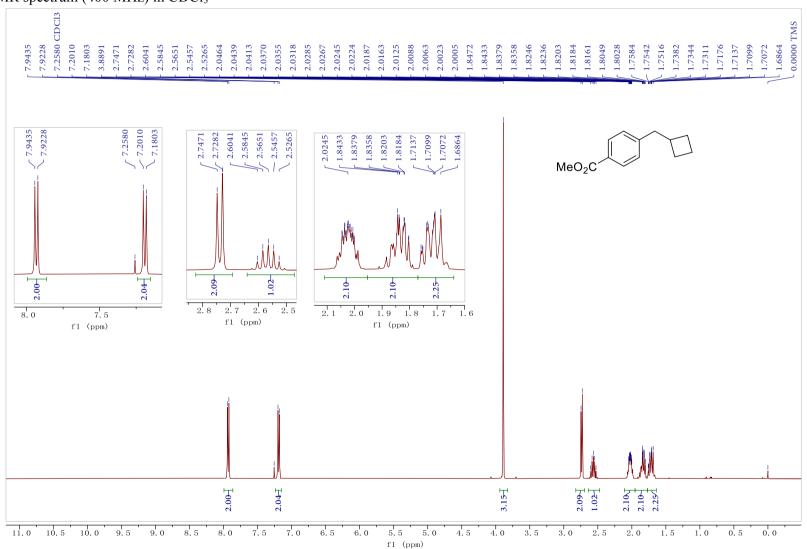




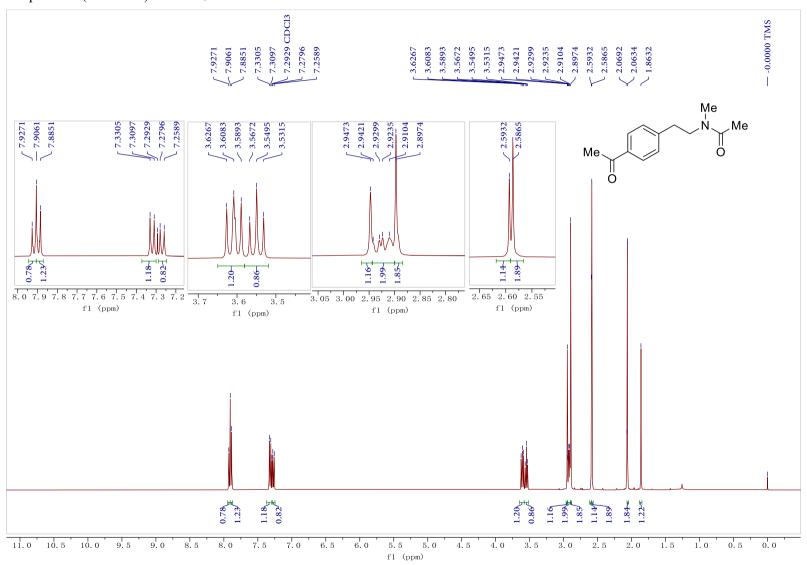

7.20. Methyl 4-octylbenzoate

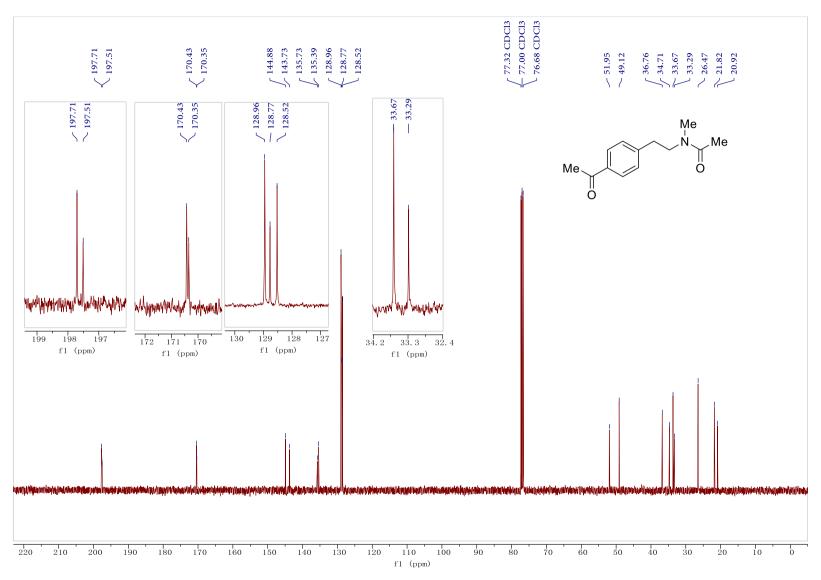


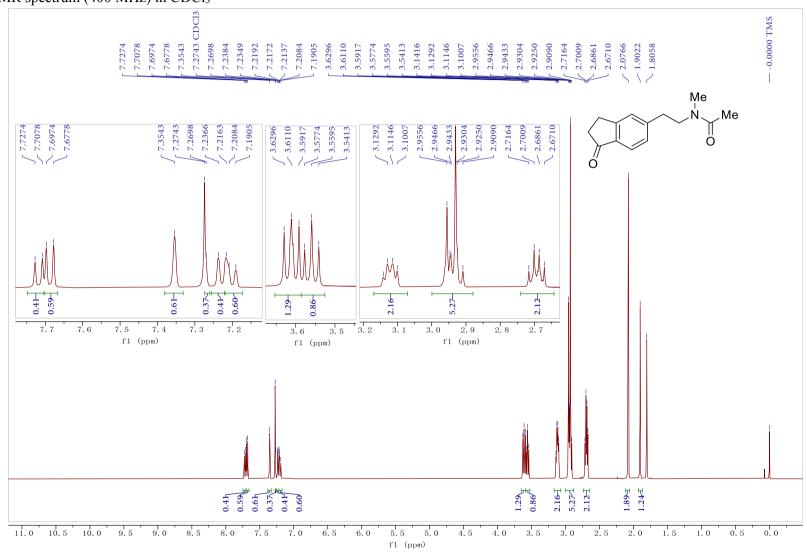

7.21. Methyl 4-(3-hydroxy-3-methylbutyl)benzoate



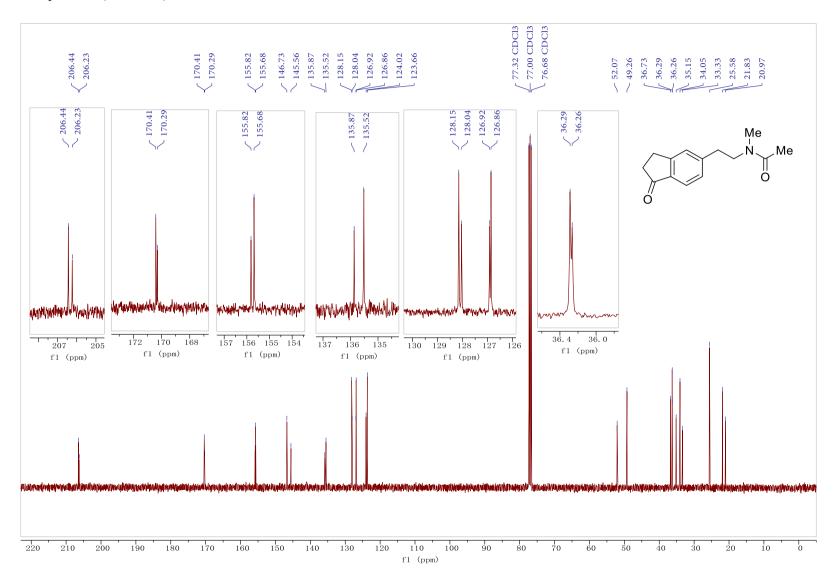

7.22. Methyl 4-(2-ethylbutyl)benzoate

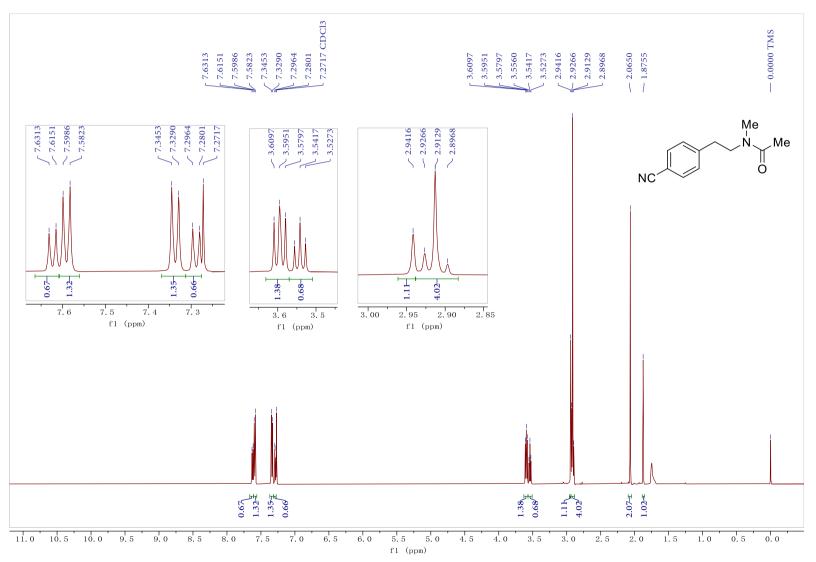


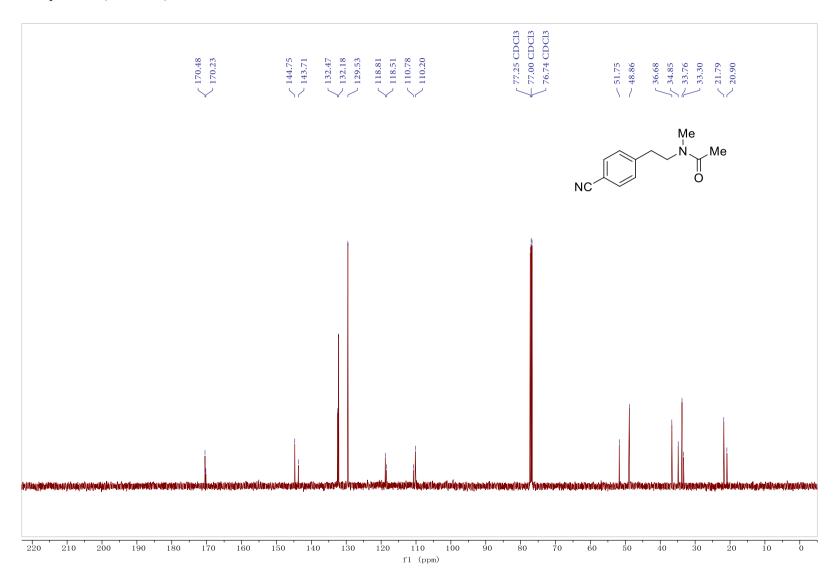

7.23. Methyl 4-(cyclobutylmethyl)benzoate

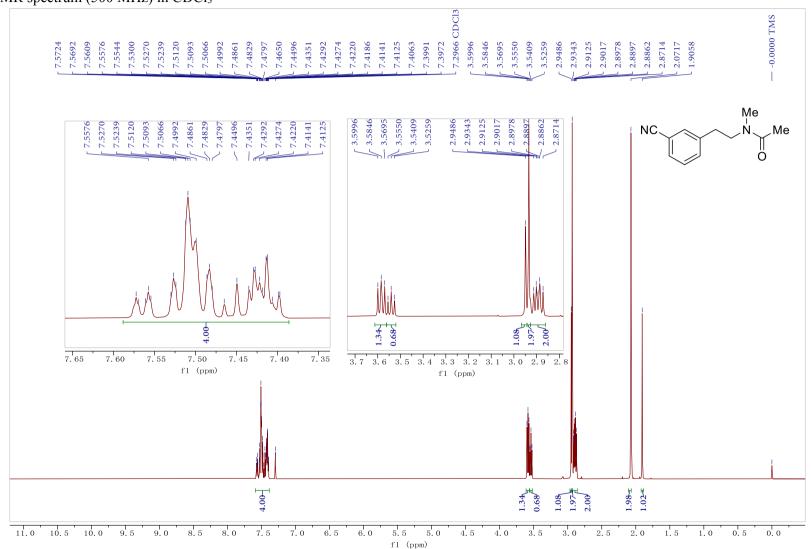


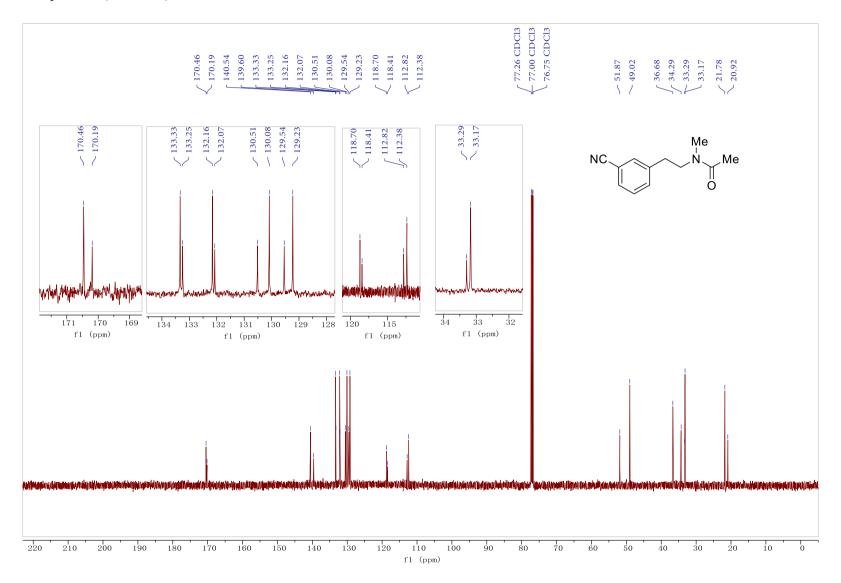
7.24. N-(4-Acetylphenethyl)-N-methylacetamide



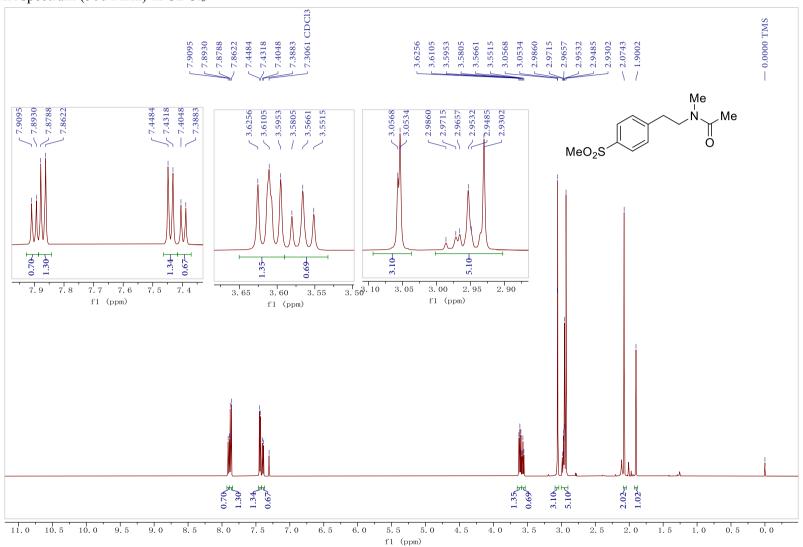

7.25. N-Methyl-N-(2-(1-oxo-2,3-dihydro-1*H*-inden-5-yl)ethyl)acetamide

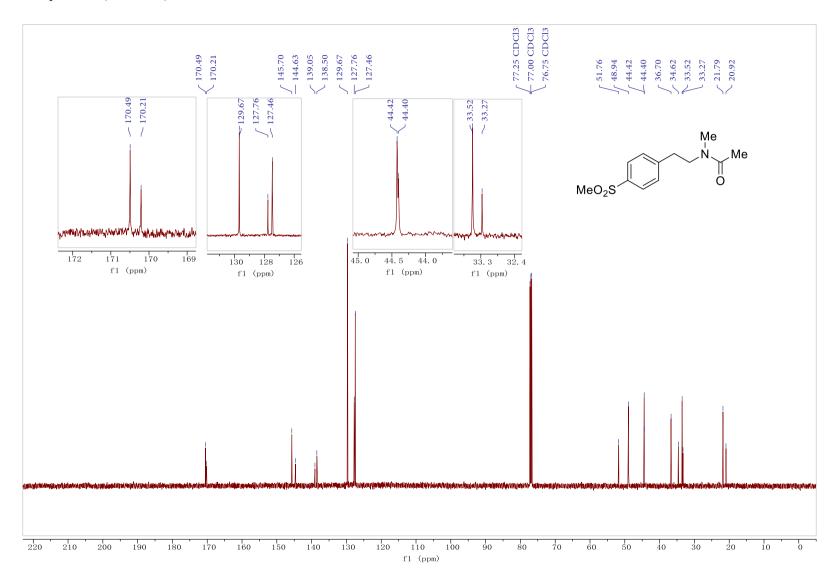

¹³C NMR spectrum (100 MHz) in CDCl₃

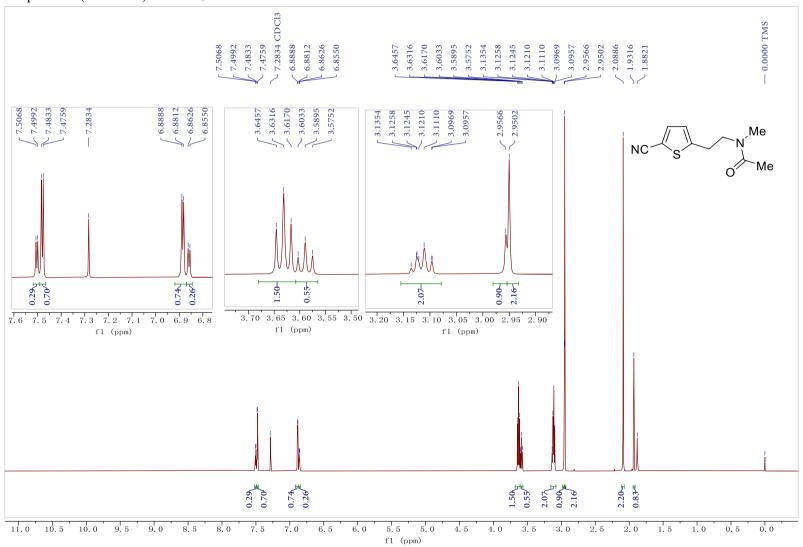

7.26. N-(4-Cyanophenethyl)-N-methylacetamide

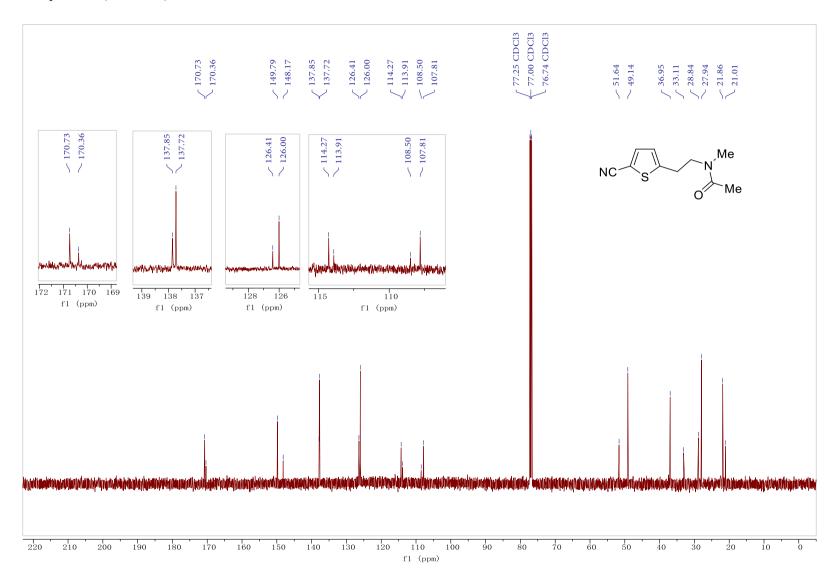


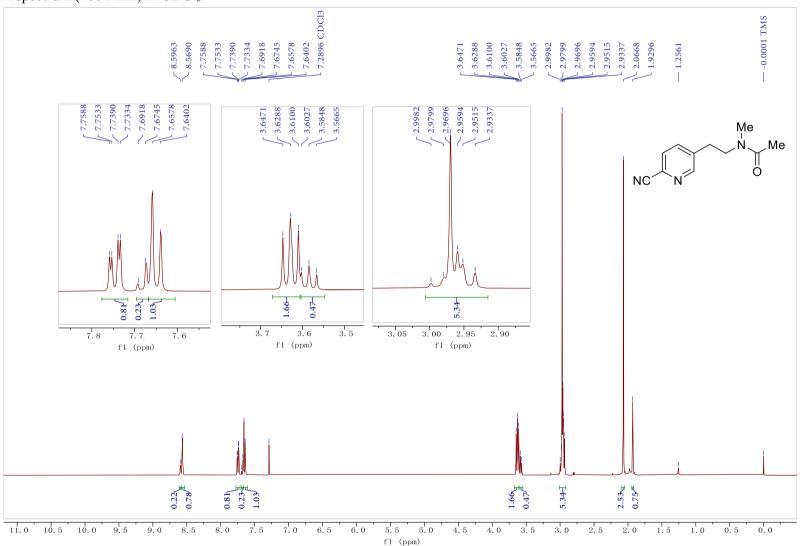
¹³C NMR spectrum (125 MHz) in CDCl₃

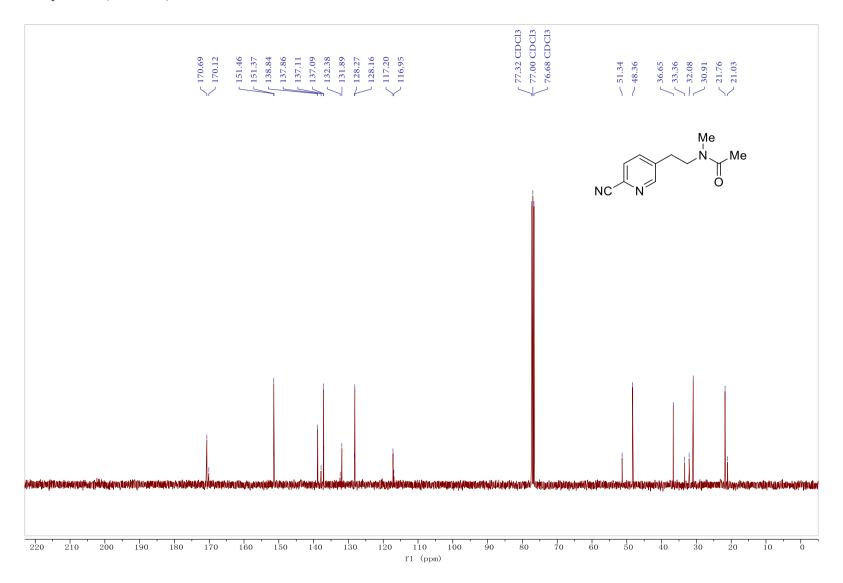


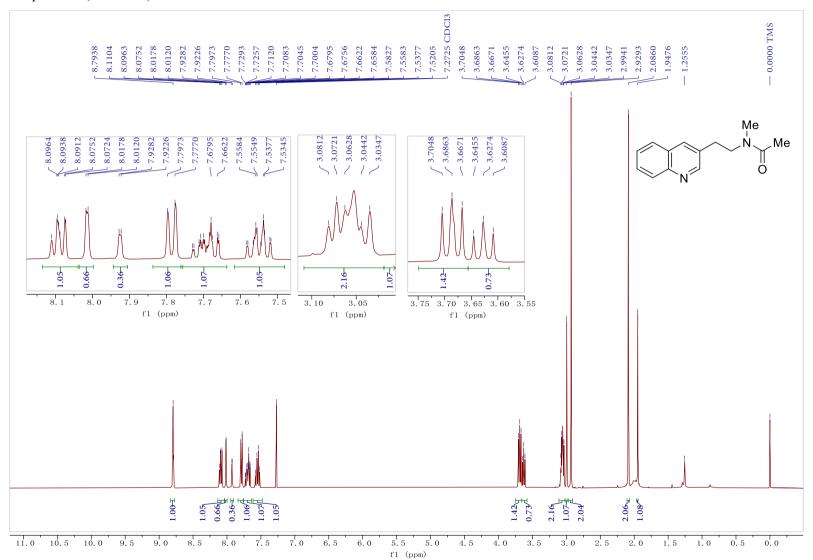

7.27. N-(3-Cyanophenethyl)-N-methylacetamide

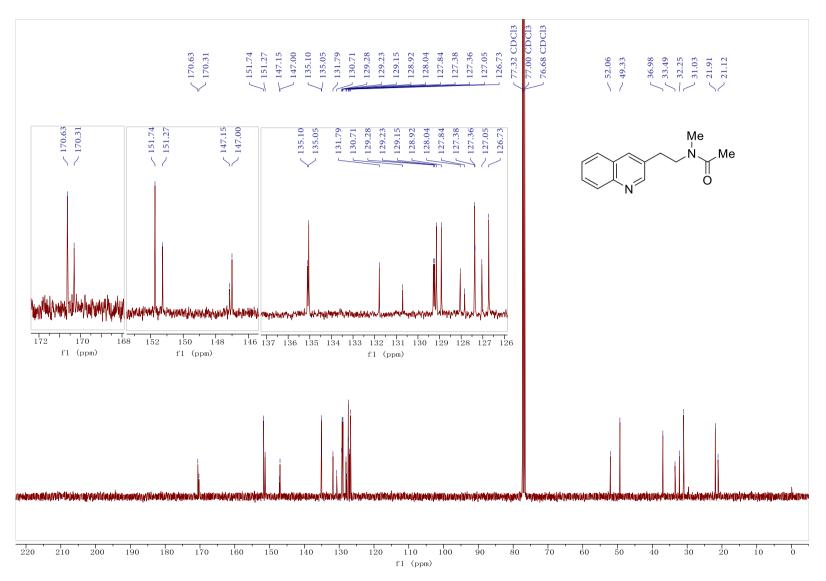


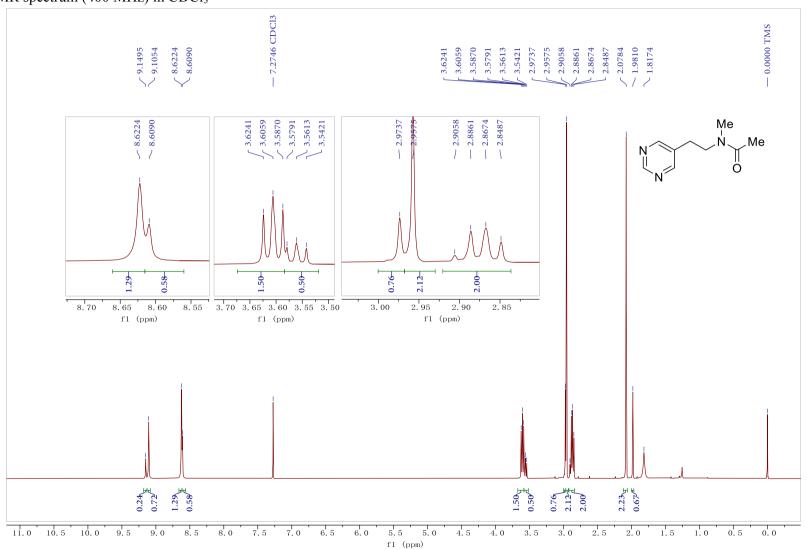

7.28. N-Methyl-N-(4-(methylsulfonyl)phenethyl)acetamide

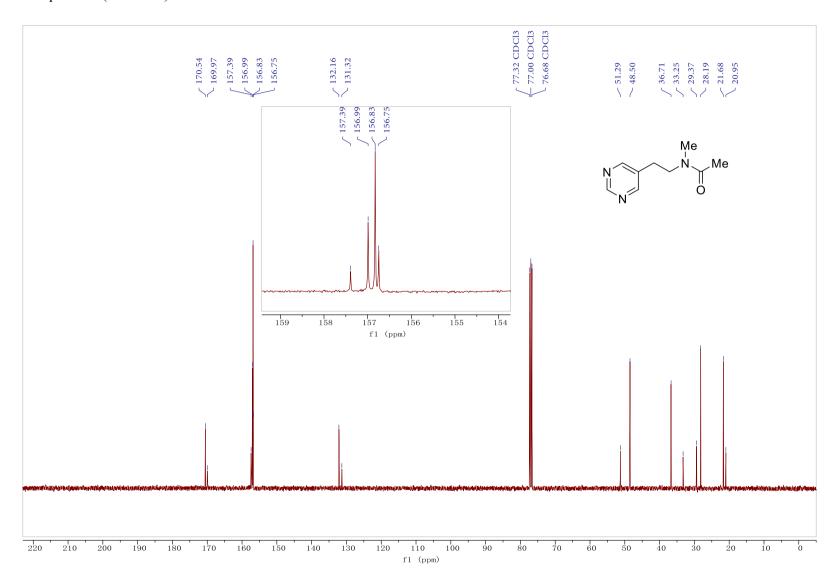


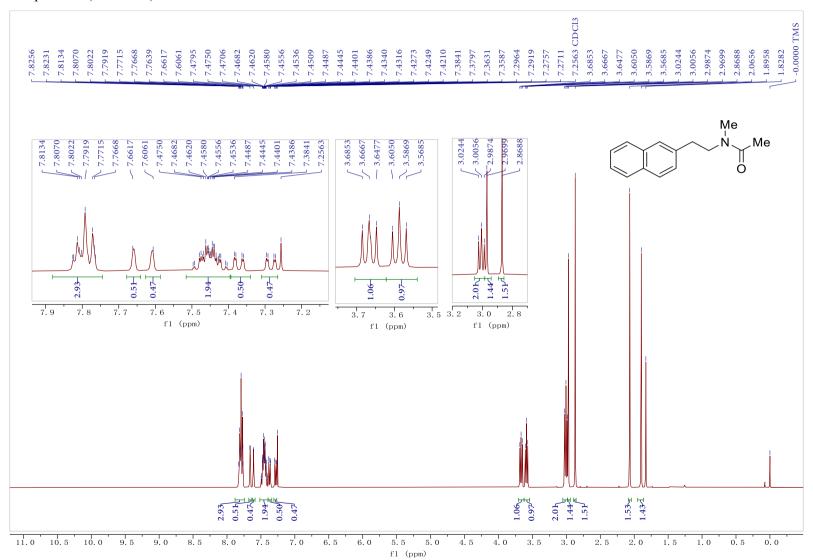

7.29. N-(2-(5-Cyanothiophen-2-yl)ethyl)-N-methylacetamide

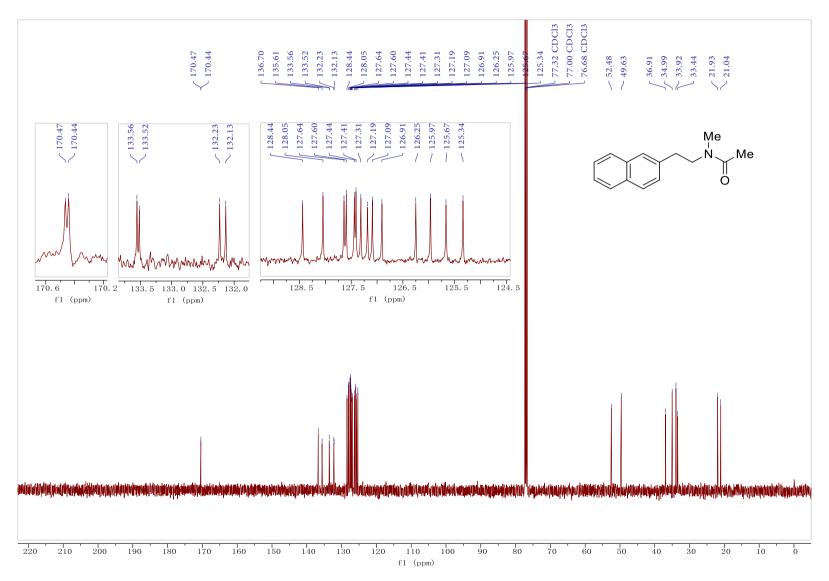


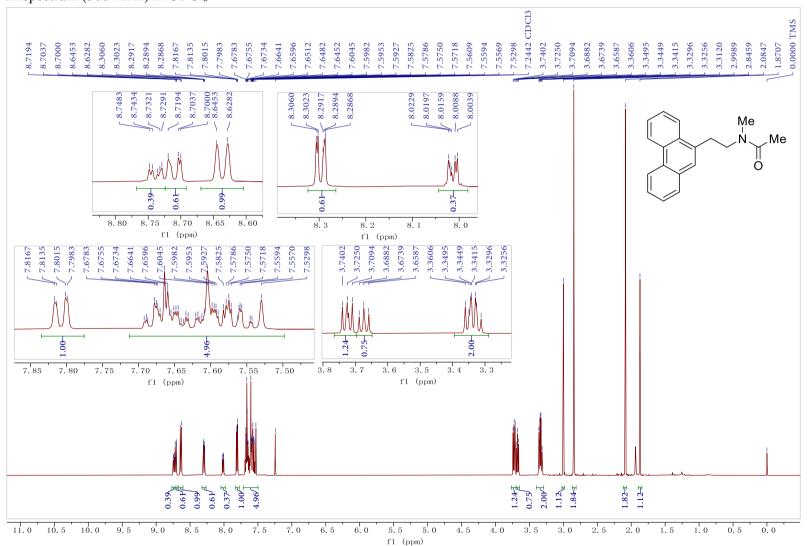

7.30. N-(2-(6-Cyanopyridin-3-yl)ethyl)-N-methylacetamide

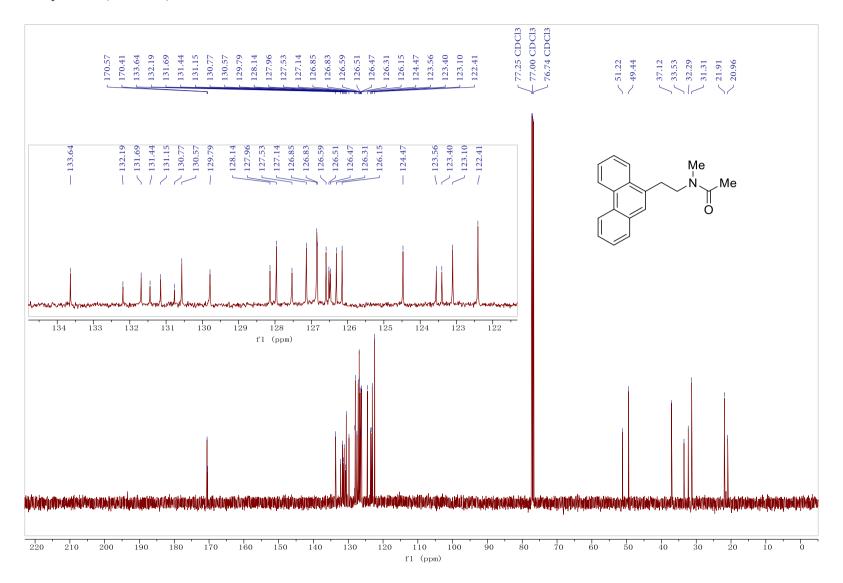


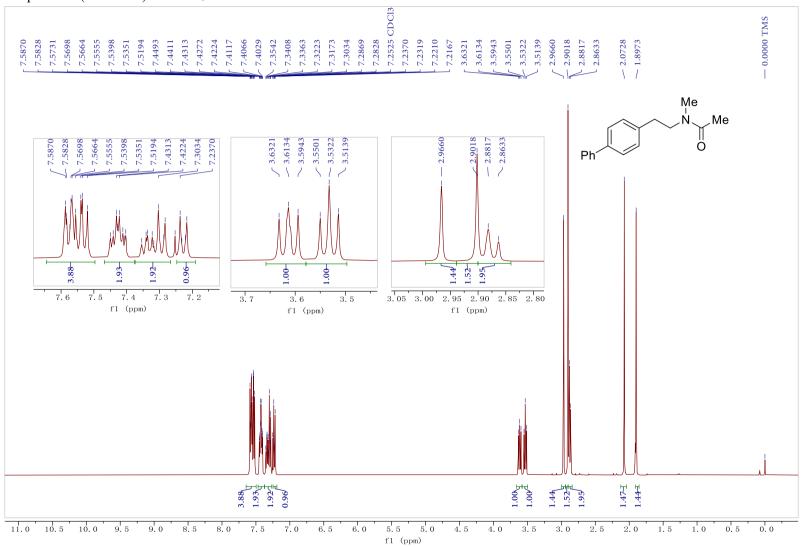

7.31. N-Methyl-N-(2-(quinolin-3-yl)ethyl)acetamide

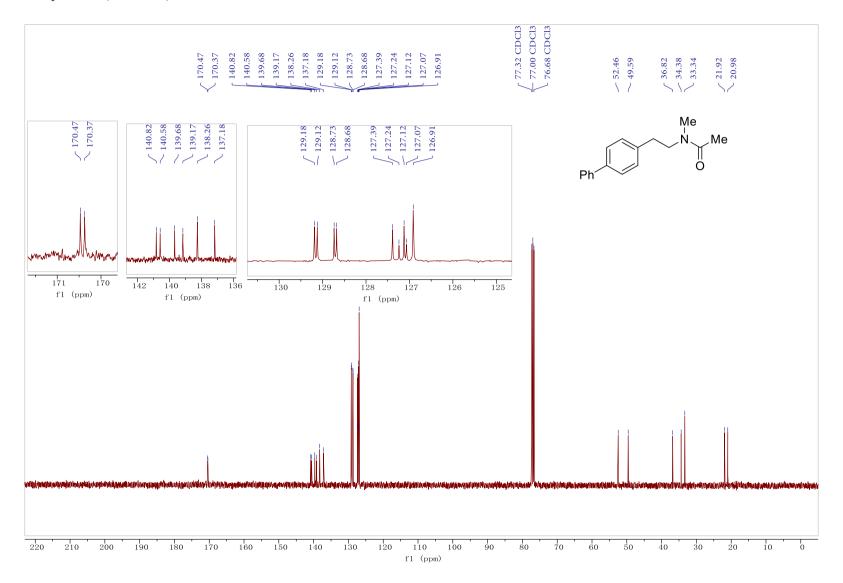


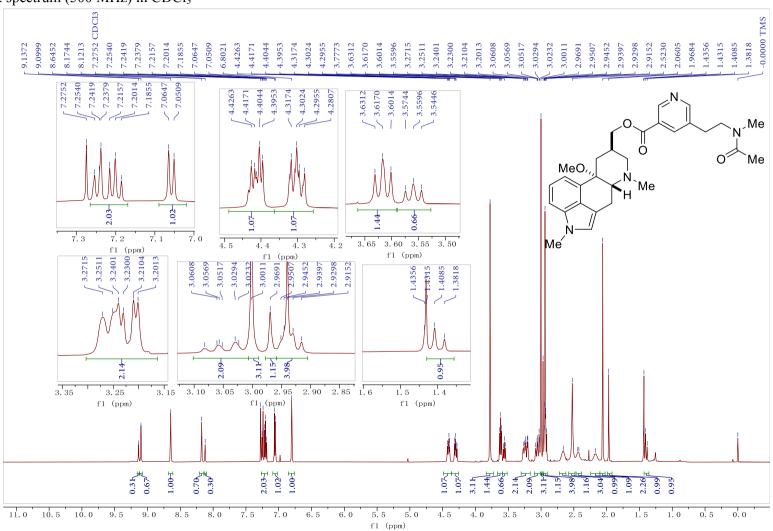

7.32. N-Methyl-N-(2-(pyrimidin-5-yl)ethyl)acetamide

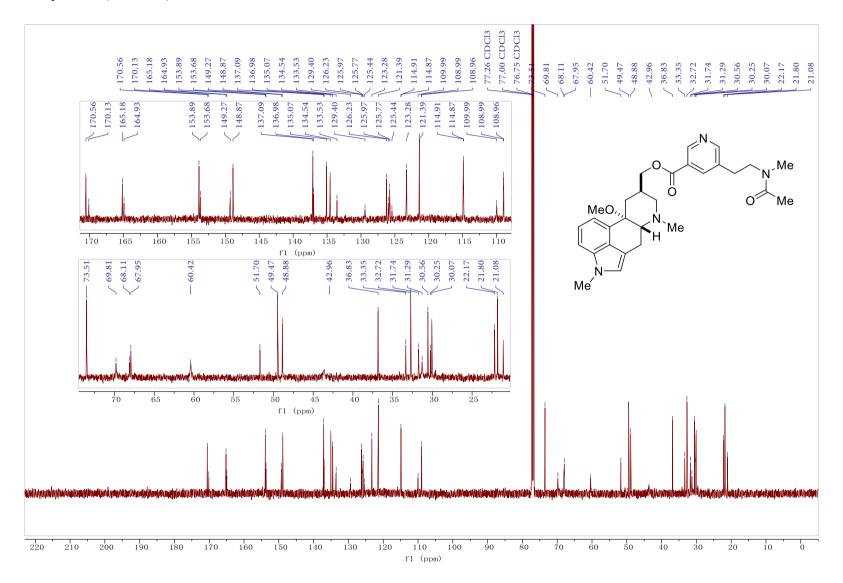


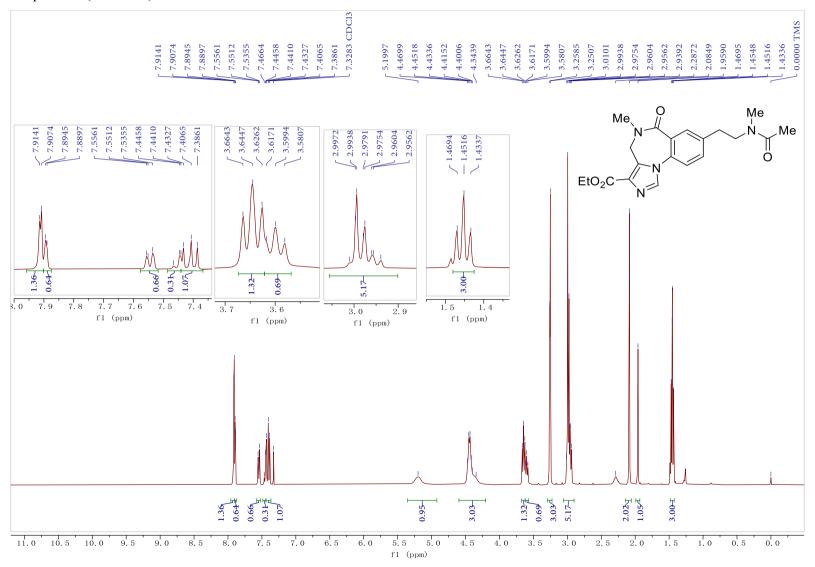

7.33. N-Methyl-N-(2-(naphthalen-2-yl)ethyl)acetamide

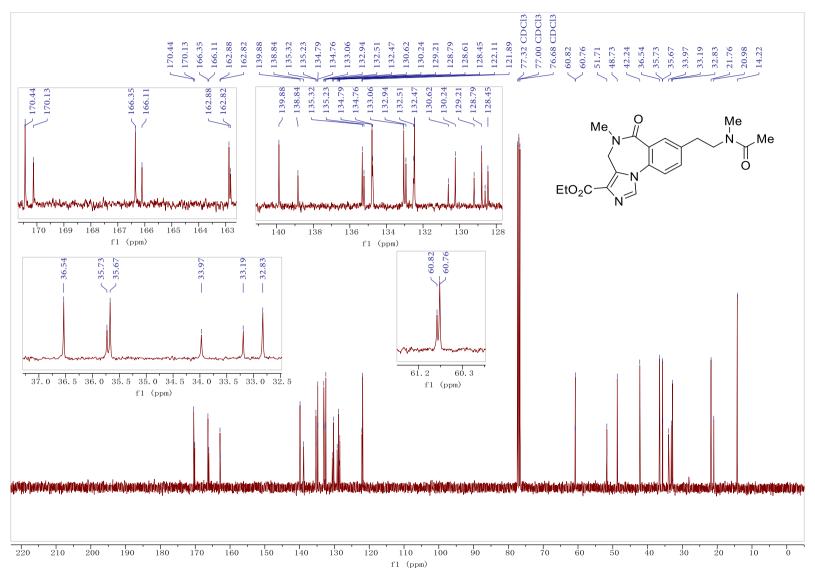


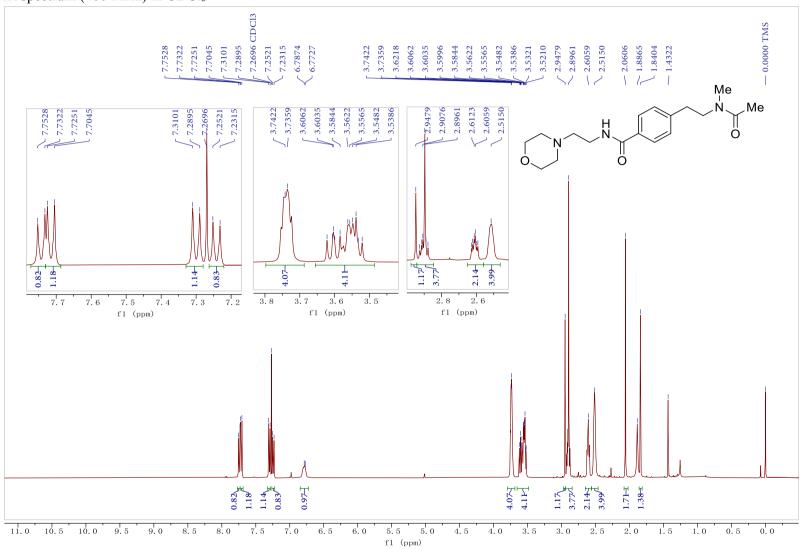

7.34. N-Methyl-N-(2-(phenanthren-9-yl)ethyl)acetamide

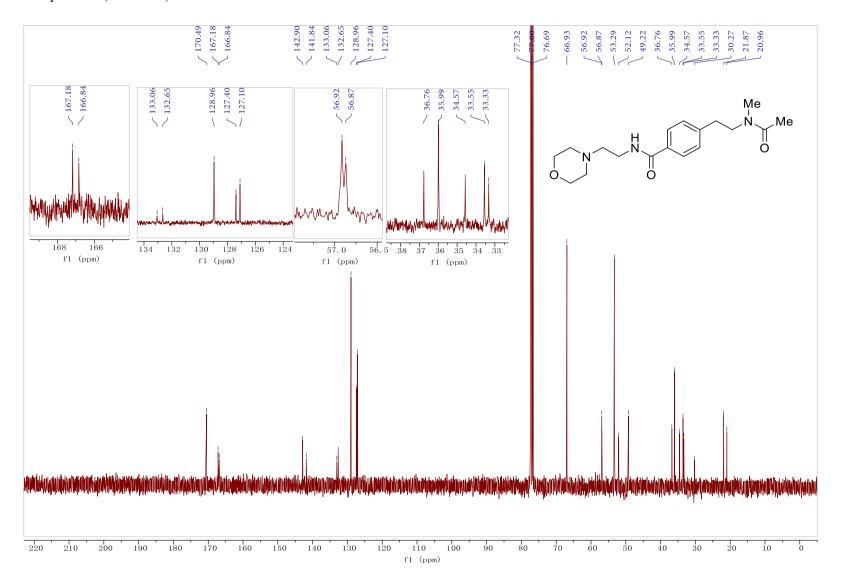


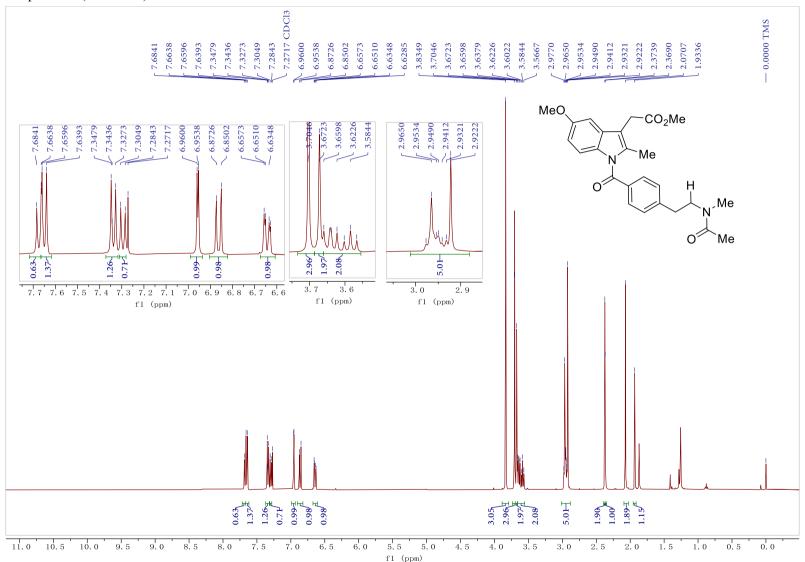

7.35. N-(2-([1,1'-Biphenyl]-4-yl)ethyl)-N-methylacetamide

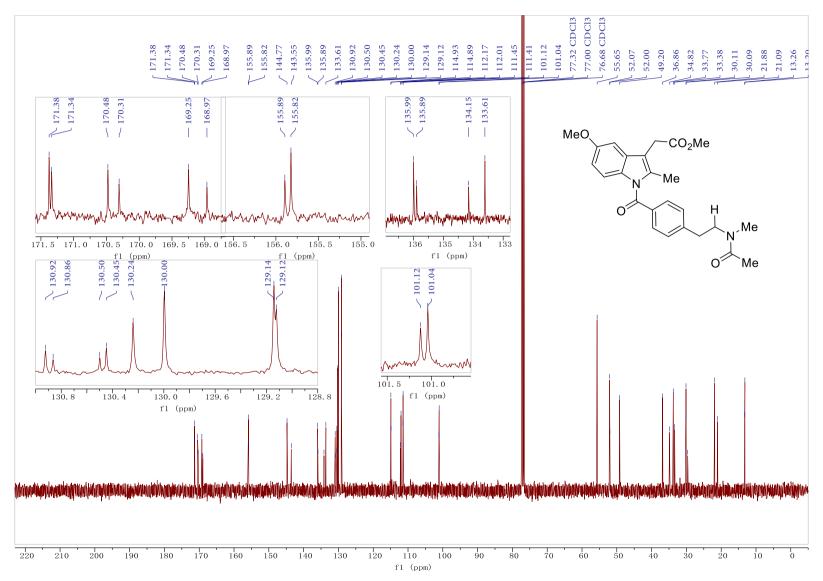


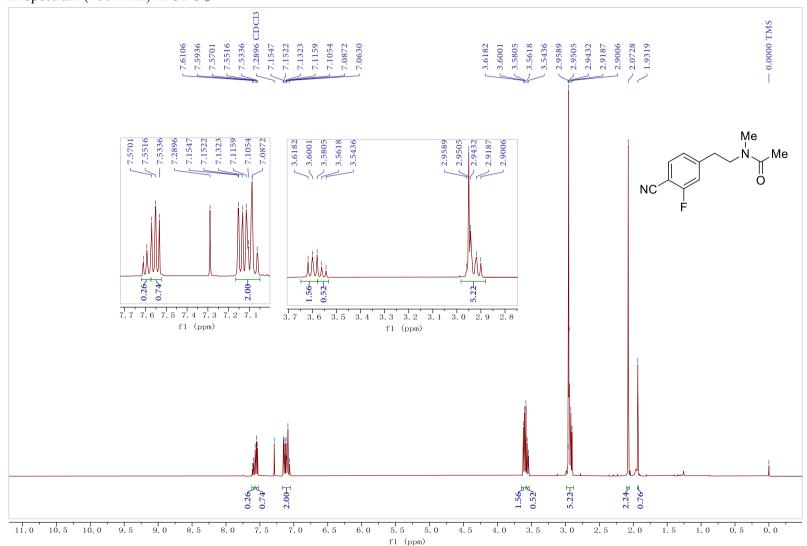

 $7.36. \ ((6aR,9R,10aS)-10a-Methoxy-4,7-dimethyl-4,6,6a,7,8,9,10,10a-octahydroindolo[4,3-fg] quinolin-9-yl) methyl \\ 5-(2-(N-methylacetamido)ethyl) nicotinate$

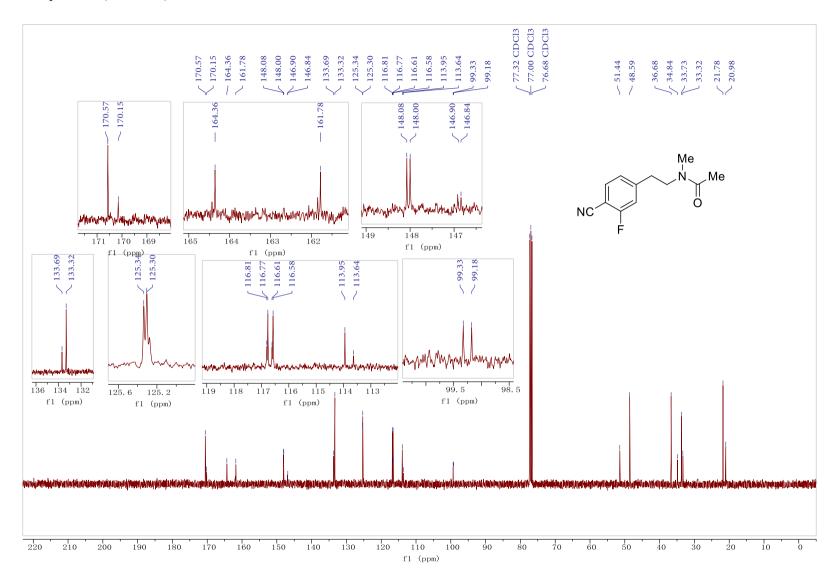

7.37. Ethyl 5-methyl-8-(2-(*N*-methylacetamido)ethyl)-6-oxo-5,6-dihydro-4*H*-benzo[*f*]imidazo[1,5-*a*][1,4]diazepine-3-carboxylate ¹H NMR spectrum (400 MHz) in CDCl₃

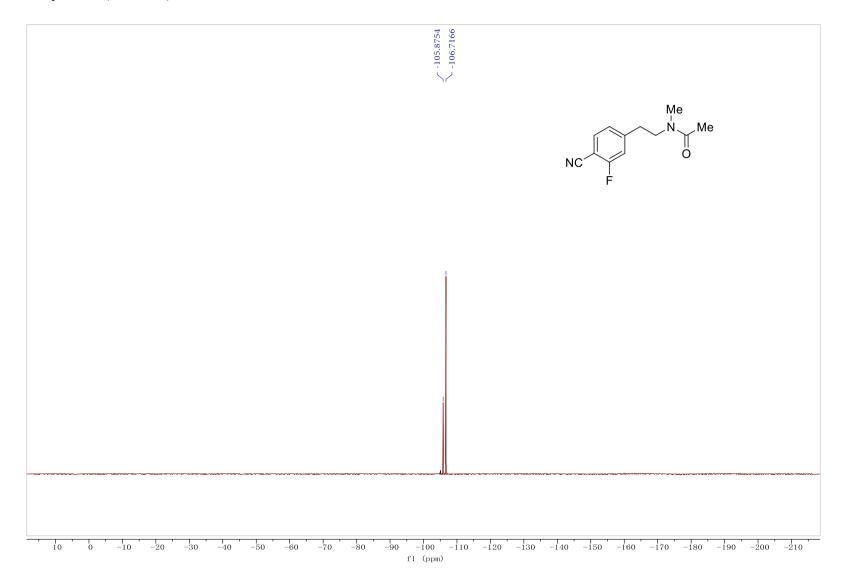



S118

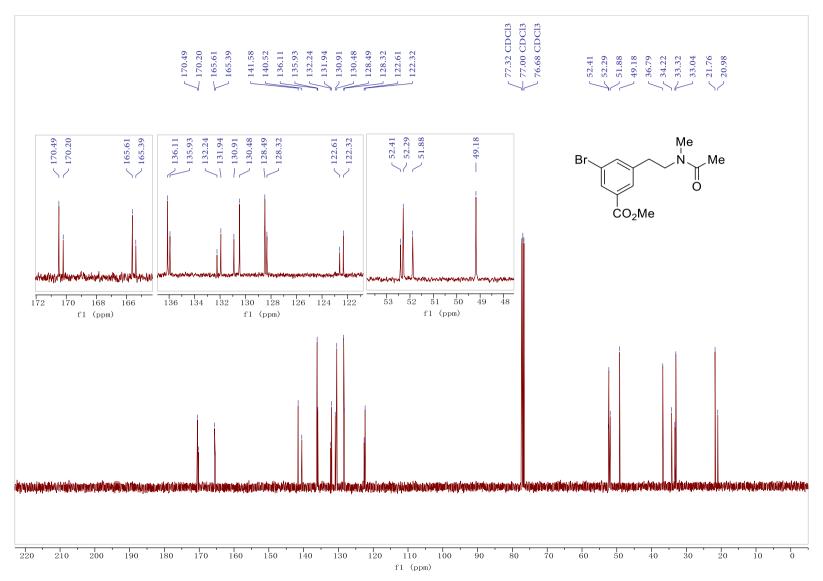

7.38. 4-(2-(N-Methylacetamido)ethyl)-N-(2-morpholinoethyl)benzamide


7.39. Methyl 2-(5-methoxy-2-methyl-1-(4-(2-(N-methylacetamido)ethyl)benzoyl)-1H-indol-3-yl)acetate

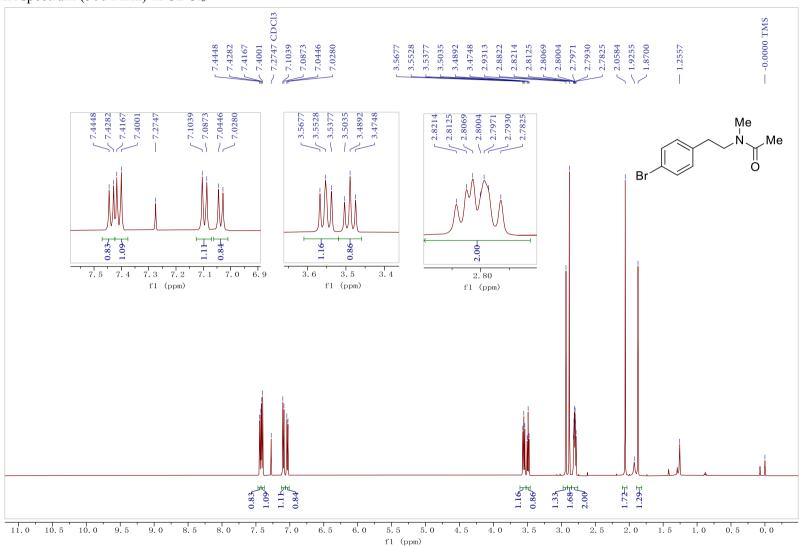


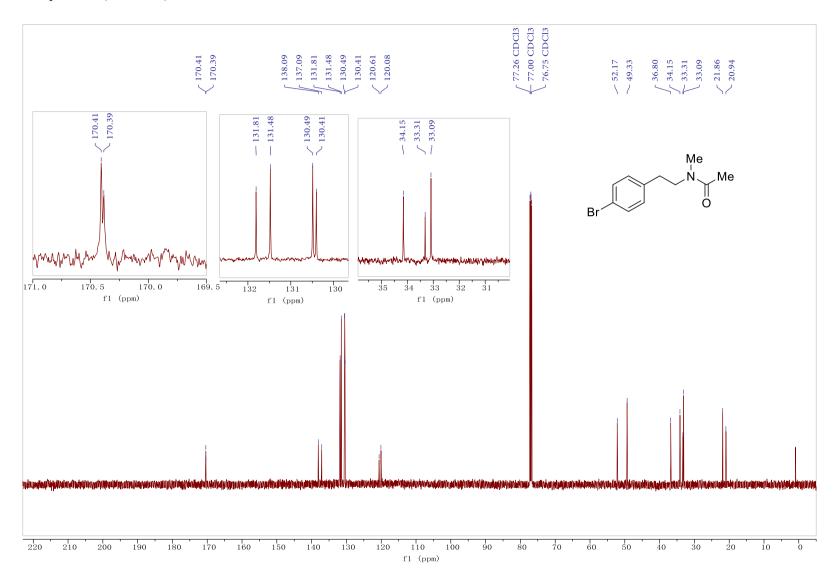

S122

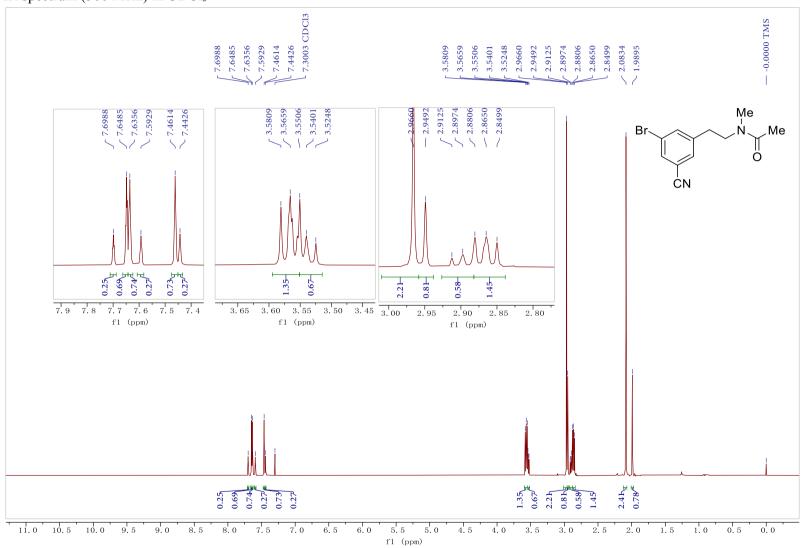
7.40. N-(4-Cyano-3-fluorophenethyl)-N-methylacetamide

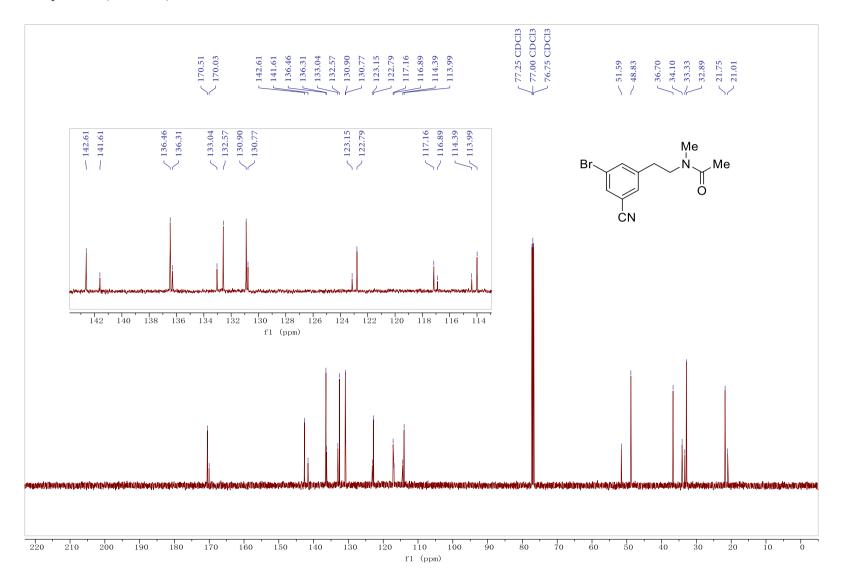


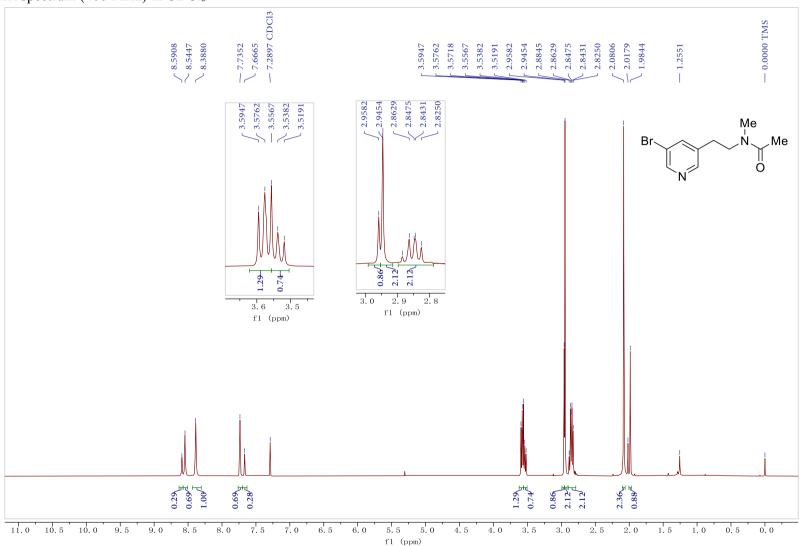
¹⁹F NMR spectrum (376 MHz) in CDCl₃

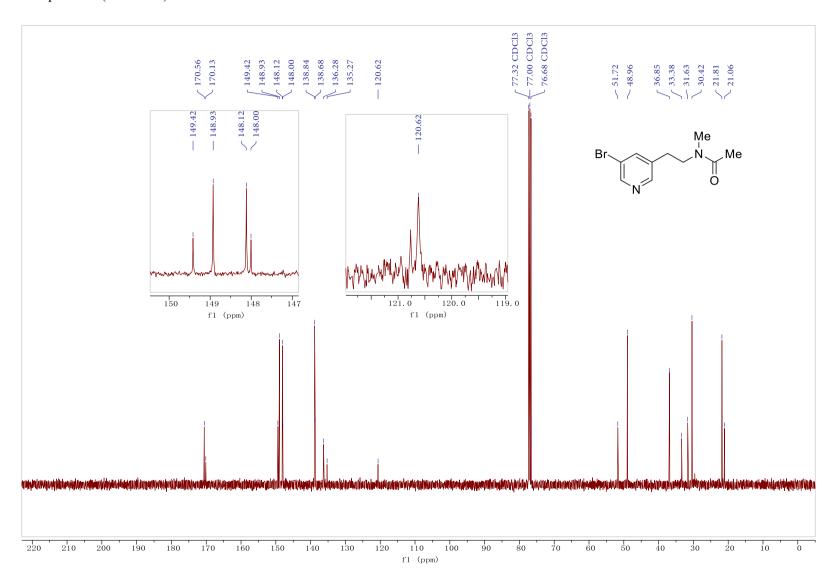

7.41. Methyl 3-bromo-5-(2-(N-methylacetamido)ethyl)benzoate

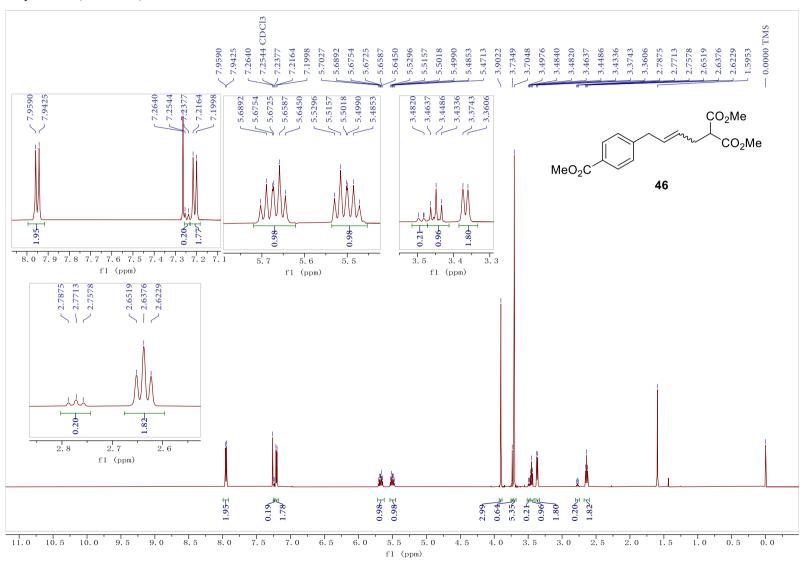


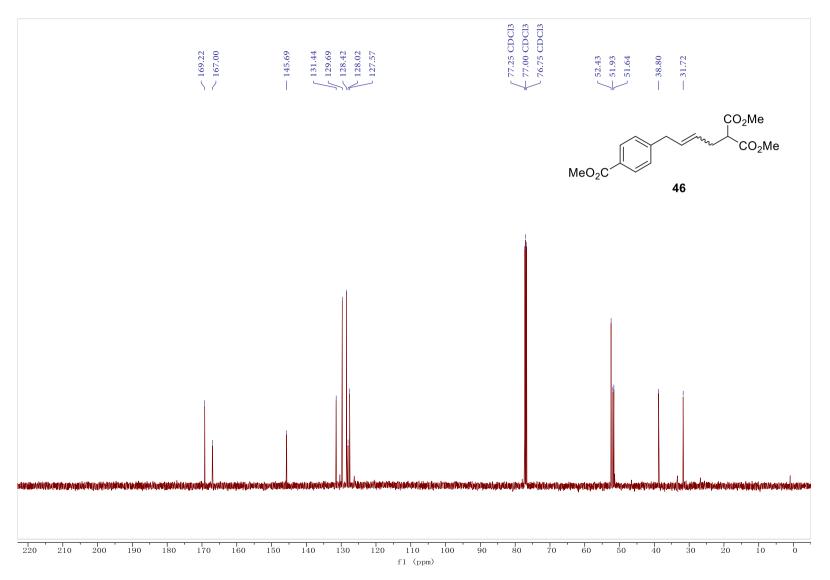

S127

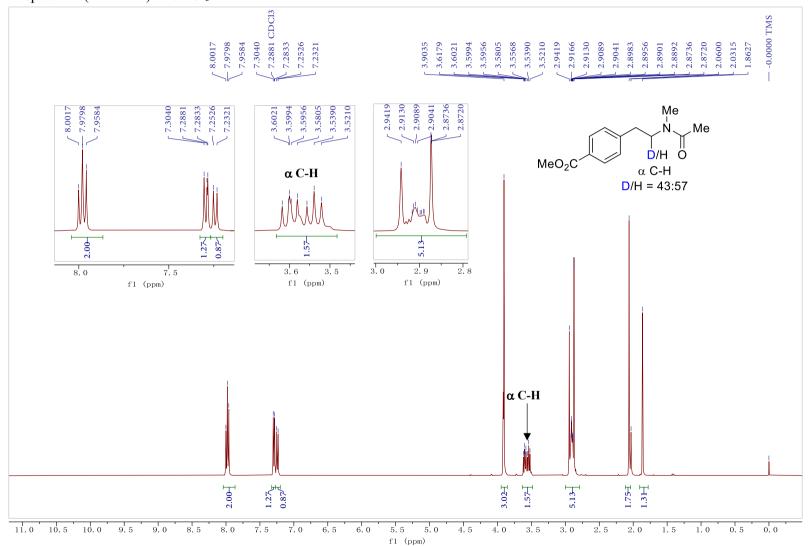

7.42. N-(4-Bromophenethyl)-N-methylacetamide



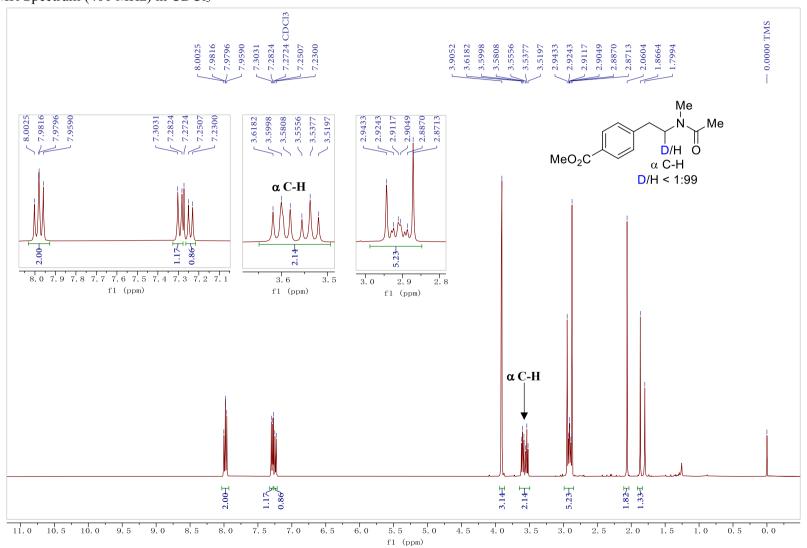

7.43. N-(3-Bromo-5-cyanophenethyl)-N-methylacetamide



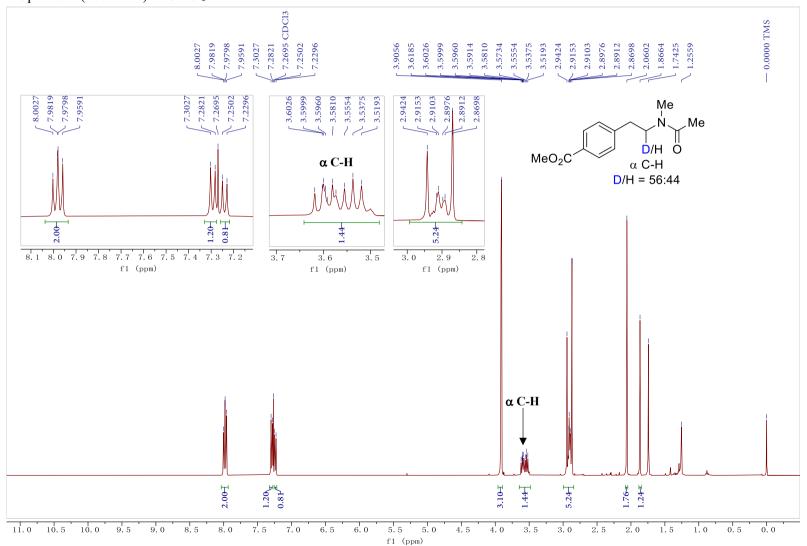

7.44. N-(2-(5-Bromopyridin-3-yl)ethyl)-N-methylacetamide



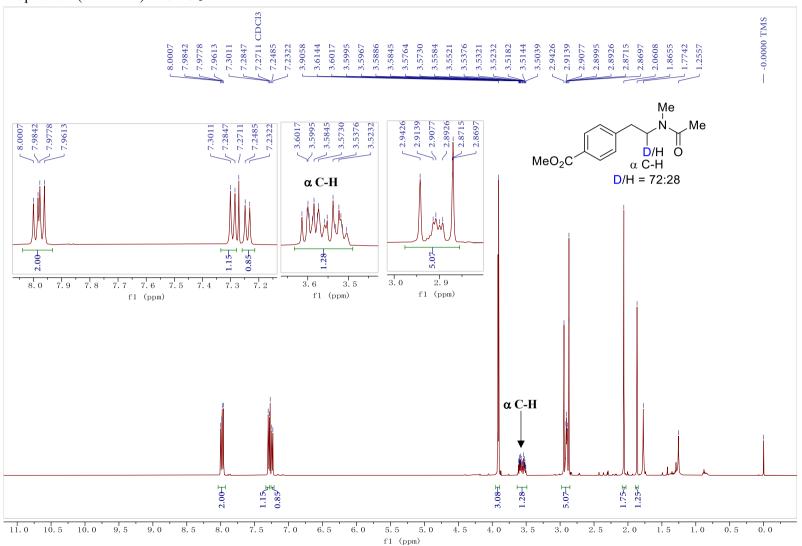
7.45. Dimethyl 2-(4-(4-(methoxycarbonyl)phenyl)but-2-en-1-yl)malonate (46)

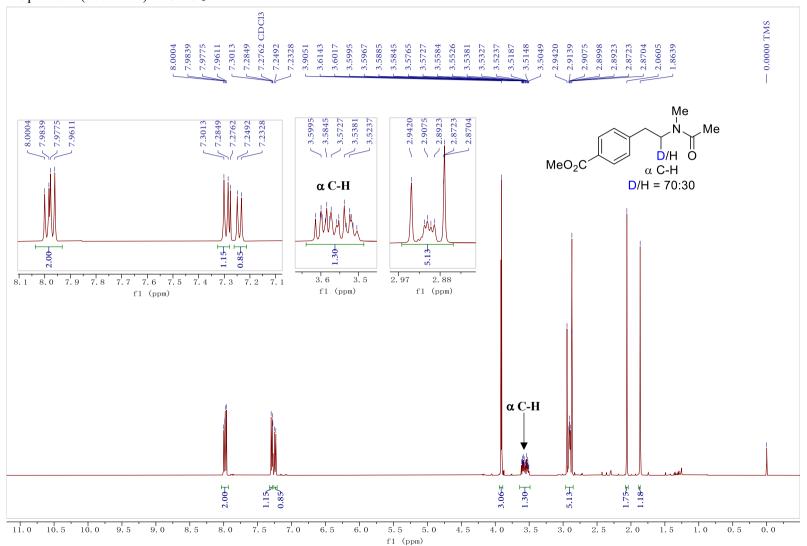


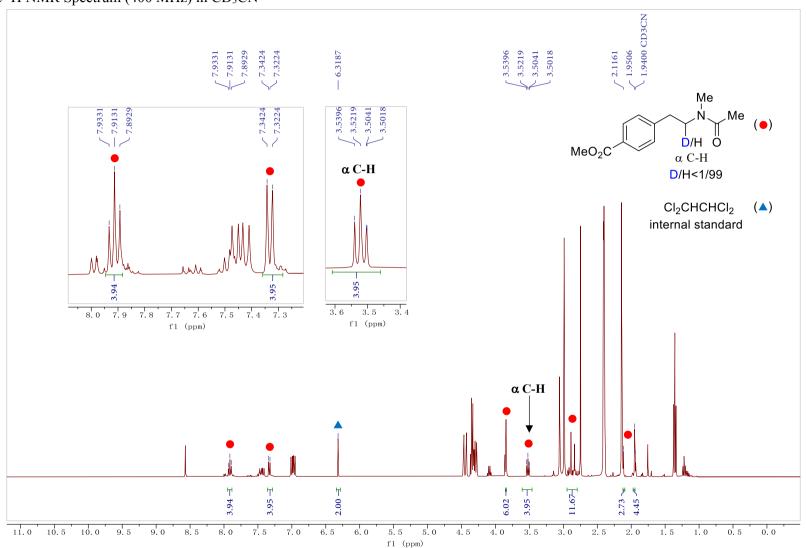
7.46. Deuterium labelling experiments with D₂O Methyl 4-(2-(*N*-methylacetamido)ethyl)benzoate (4)

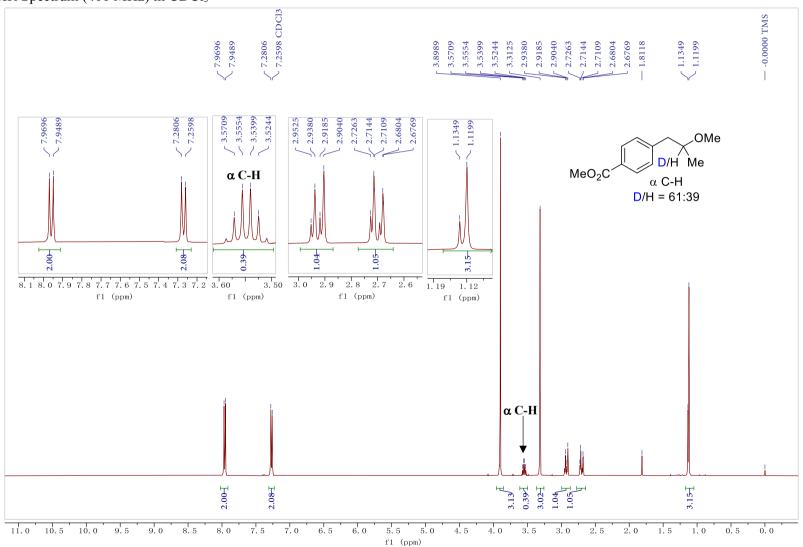


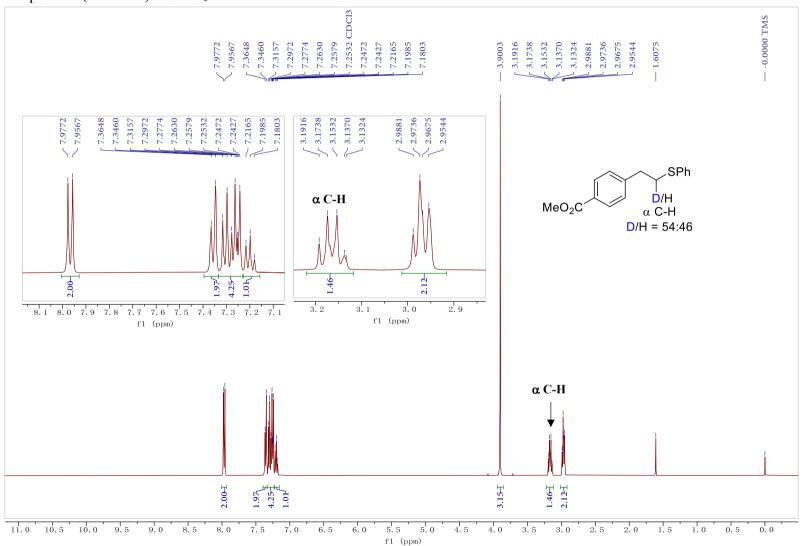
7.47. Deuterium labelling experiments using Hantzsch ester $(3-d_2)$

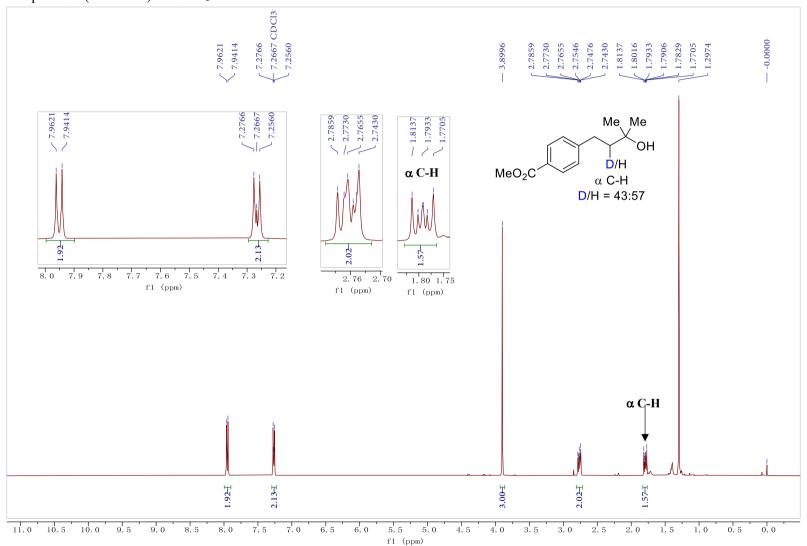

Methyl 4-(2-(N-methylacetamido)ethyl)benzoate (4)


7.48. Deuterium labelling experiments using Hantzsch ester $(3-d_2)$ and D₂O Methyl 4-(2-(N-methylacetamido)ethyl)benzoate (4)


7.49. Deuterium labelling experiments using Hantzsch ester $(3-d_3)$ and D₂O Methyl 4-(2-(N-methylacetamido)ethyl)benzoate (4)


7.50. Deuterium labelling experiments using Hantzsch ester $(3-d_3)$, D₂O and CD₃CN Methyl 4-(2-(N-methylacetamido)ethyl)benzoate (4)


7.51. Deuterium labelling experiments with CD₃CN


7.52. Deuterium labelling experiments using D₂O with 2-methoxypropene (11) Methyl 4-(2-methoxypropyl)benzoate

7.53. Deuterium labelling experiments using D_2O with phenyl vinyl sulfide (13) Methyl 4-(2-(phenylthio)ethyl)benzoate

7.54. Deuterium labelling experiments using D_2O with 2-methyl-3-buten-2-ol (17) Methyl 4-(3-hydroxy-3-methylbutyl)benzoate

