Electronic Supplementary Information (ESI)

Intermediate snapshots of a 116-nuclear metallosupramolecular cage-of-cage in a homogeneous single-crystal-to-single-crystal transformation

Benny Wahyudianto, Kento Imanishi, Tatsuhiro Kojima, Nobuto Yoshinari & Takumi Konno*

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-

0043, Japan

E-mail: konno@chem.sci.osaka-u.ac.jp

Materials

Preparation of [Cd4Na4{Au6Cd3(tdme)2(D-pen)6}12](NO3)12 (1CdNa).

To a white suspension containing [Au₃(tdme)(D-Hpen)₃] · 5H₂O (250 mg, 0.145 mmol) in 25 mL of ethanol was added 0.1 M aqueous NaOH (4.3 mL, 0.43 mmol) and 0.1 M aqueous Cd(NO₃)₂ (4.3 mL, 0.43 mmol). The mixture was stirred at room temperature for 6 h to afford a smoky solution. After 4 days, colourless cubic crystals (1_{CdNa}) were collected by filtration. Yield: 142.1 mg (56.8%). Found: С, N, Calcd 32.17; H, 4.10; 2.43%. Anal. for $[Cd_4Na_4]Au_6Cd_3(tdme)_2(D$ $pen)_{6}_{12}(H_{2}O)_{16}](NO_{3})_{12}:262H_{2}O = C_{1344}H_{2140}Au_{72}Cd_{40}N_{84}Na_{4}O_{458}P_{72}S_{72}:C, 32.21; H, 4.30; N, 2.35\%.$ IR spectrum (cm⁻¹, KBr disk): 1436 (vPh), 745 (vPh), 1100 (vP–Ph), 1585 (vCOO), 1386 (vNO₃).

Preparation of [Cos{Au₆Co₃(tdme)₂(D-pen)₆}₁₂](NO₃)₁₆ (1_{Co}).

Single crystals of 1_{CdNa} (425 mg, 8.5 µmol) were soaked in 1 M aqueous $Co^{II}(NO_3)_2$ (3 mL, 3 mmol). After the mixture was allowed to stand at room temperature for 6 days, the colour of the crystals changed from colourless to blue (1_{Co}), and the crystal shape was retained. Yield: 83.8 mg (19.7%). Found: C, 31.42; H, 3.90; N, 3.14%. Anal. Calcd for $[Co_8 \{Au_6Co_3(tdme)_2(D-pen)_6\}_{12}(H_2O)_{16}](NO_3)_{16}\cdot18Co(NO_3)_2\cdot244H_2O = C_{1344}H_{2104}Au_{72}Co_{62}N_{124}O_{560}P_{72}S_{72}$: C, 31.45; H, 4.13; N, 3.38%. IR spectrum (cm⁻¹, KBr disk): 1433 (*v*Ph), 743 (*v*Ph), 1100 (*v*P–Ph), 1577 (*v*COO), 1382 (*v*NO_3).

Elemental analysis for 1^{1h}, 1^{6h}, 1^{1d}, 1^{2d}, and 1^{4d}

1th: Found: C, 30.99; H, 3.99; N, 2.97%. Anal. Calcd for $[Cd_4Co_4\{Au_6Cd_{2.97}Co_{0.03}(tdme)_2(D-pen)_6\}_{12}(H_2O)_{16}](NO_3)_{16}\cdot 18Co(NO_3)_2\cdot 193H_2O = C_{1344}H_{2002}Au_{72}Cd_{39.64}Co_{22.36}N_{124}O_{509}P_{72}S_{72}$: C, 30.73; H, 3.84; N, 3.31%.

1^{6h}: Found: C, 31.02; H, 3.80; N, 3.36%. Anal. Calcd for $[Cd_{2.92}Co_{5.08}{Au_6Cd_{2.19}Co_{0.81}(tdme)_2(D-pen)_6}_{12}(H_2O)_{16}](NO_3)_{16}\cdot 18Co(NO_3)_2\cdot 196H_2O = C_{1344}H_{2008}Au_{72}Cd_{29.2}Co_{32.8}N_{124}O_{512}P_{72}S_{72}$: C, 31.03; H, 3.89; N, 3.34%.

1^{1d}: Found: C, 31.12; H, 3.95; N, 3.41%. Anal. Calcd for $[Cd_{2.66}Co_{5.34}{Au_6Cd_{1.46}Co_{1.54}(tdme)_2(D-pen)_6}_{12}(H_2O)_{16}](NO_3)_{16}\cdot 18Co(NO_3)_2\cdot 204H_2O = C_{1344}H_{2024}Au_{72}Cd_{20.18}Co_{41.82}N_{124}O_{520}P_{72}S_{72}$: C, 31.23; H, 3.95; N, 3.36%.

1^{2d}: Found: C, 31.72; H, 4.00; N, 3.26%. Anal. Calcd for $[Cd_{1.53}Co_{6.47}{Au_6Cd_{0.59}Co_{2.41}(tdme)_2(D-pen)_6}_{12}(H_2O)_{16}](NO_3)_{16}\cdot 18Co(NO_3)_2\cdot 181H_2O = C_{1344}H_{1978}Au_{72}Cd_{8.61}Co_{53.36}N_{124}O_{497}P_{72}S_{72}$: C, 31.87; H, 3.94; N, 3.43%.

1^{4d}: Found: C, 30.97; H, 3.84; N, 3.37%. Anal. Calcd for $[Co_8 \{Au_6Cd_{0.05}Co_{2.95}(tdme)_2(D-pen)_6\}_{12}(H_2O)_{16}](NO_3)_{16}\cdot 18Co(NO_3)_2\cdot 264H_2O = C_{1344}H_{2144}Au_{72}Cd_{0.6}Co_{61.4}N_{124}O_{580}P_{72}S_{72}$: C, 31.21; H, 4.18; N, 3.36%.

Physical measurements

The IR spectra in the range of 4000-400 cm⁻¹ were measured on a JASCO FT/IR-4100 spectrometer by using KBr pellets. Elemental analyses (C, H, N) were performed at Osaka University using YANACO MT-5 or MT-6. X-ray fluorescence spectrometry was performed on a SHIMADZU EXD-7000 spectrometer. Diffuse reflectance spectra in the range of 900–300 nm were measured on a JASCO V-670 spectrophotometer. CD spectra in the range of 900–300 nm were measured on a JASCO J-820 spectropolarimeter. Powder X-ray diffraction patterns were recorded under a controlled temperature in transmission mode [synchrotron radiation λ =1.0 Å; 2 θ range=2–78°; step width=0.018; data collection time=1 min] on a diffractometer equipped with a MYTHEN microstrip X-ray detector (Dectris Ltd.) at the SPring-8 BL02B2 beamline. To prevent the loss of crystallinity, microcrystals of each compound were loaded into a glass capillary tube (diameter=0.3 mm), together with the mother liquor.

Single-crystal X-ray analysis

The diffraction data for 1_{CdNa}, 1_{Co}, 1^{1h}, 1^{6h}, 1^{1d}, 1^{2d} and 1^{4d} were recorded at 100 K with a Rayonix MX225HS CCD area detector with synchrotron radiation ($\lambda = 0.6500$ Å) at the 2D beamline at the Pohang Accelerator Laboratory. The intensity data were processed using the HKL3000 program and collected by using the ω -scan technique. The empirical absorption correction was performed using HKL3000. The diffraction data for 1_{CdZn} and 1_{CdMn} were recorded at 100 K with Hybrid Pixel Array Detector. The intensity data were processed using the CrysAlisPro (1.171.40.75a) program and collected by using the ω -scan technique. The Numerical absorption correction was performed using CrysAlisPro (1.171.40.75a). The structures were solved by direct methods using SHELXS-2014. Structure refinements were carried out using full-matrix least-squares (SHELXL-2018/3). ISOR, DELU and SIMU restraints were applied for coordinated water molecules. Global SIMU were applied. All nonhydrogen atoms were refined anisotropically. Considering the elemental and X-ray fluorescence analytical results, the porous spaces in 1_{CdNa} are considered to contain a large number of water molecules of crystallization, while those in 1th, 1^{6h}, 1^{1d}, 1^{2d} and 1^{4d} contain not only water molecules but also aqua Co^{II} species and nitrate anions, although they were not found in the X-ray structures. The contributions of aqueous Co^{II} species, NO₃⁻ ions, and solvated water molecules were excluded using the SQUEEZE program in the PLATON package (ver. 20221). Some diffractions were omitted to improve the data quality. For 1^{1h} , 1^{6h} , 1^{1d} , 1^{2d} , and 1^{4d} , each metal centre at M₁, M₂, M₃, M₄, and M₅ was refined as two positionally disordered metal ions (Na^I/Co^{II} or Cd^{II}/Co^{II}) with variable site occupancies. EADP and EXYZ constraints were applied for these positionally disordered two metal centres.

Fig. S1. The PXRDs that were measured in capillaries containing the mother liquor ($\lambda = 1.000$ Å) (a) 1_{CdNa} and (c) 1_{Co} . The PXRDs that were simulated from single-crystal X-ray data collected at 100 K ($\lambda = 1.000$ Å) (b) 1_{CdNa} and (d) 1_{Co} .

Fig. S2. IR spectra (KBr disk) of (a) 1_{CdNa} and (b) 1_{Co} .

Fig. S3. Diffuse reflectance (top) and CD (bottom) spectra of $\mathbf{1}_{C0}$ (black) and $[Co^{II}_{3}(L^{Au3})_{2}]$ (red) in the solid state.

Fig. S4. Expanded illustration of Fig. 1. Crystal structures of 1_{C_0} . Top (a) and side (b) views of the $[Co^{II_3}(L^{Au3})_2]$ molecule with linking Co^{II} atoms. (c) The entire $Au^{I_{72}}Co^{II_{44}}$ cage-of-cage with NO_3^{-1} anions. (d) The packing of the cage-of-cage molecules (cream and pink). Colour codes: red, Au; violet, Co; orange, P; yellow, S; pink, O; pale blue, N; grey, C.

Fig. S5. Crystal structures of 1_{CdNa} . (a) Top and (b) side views of the $[Cd^{II}_3(L^{Au3})_2]$ molecule linking Cd^{II} and Na^I atoms. (c) The entire $Au^{I}_{72}Cd^{II}_{40}Na^{I}_4$ cage-of-cage molecule with NO_3^- anions. (d) The packing of the cage-of-cage molecules (cream and pink). Colour codes: red, Au; cream, Cd; purple, Na; orange, P; yellow, S; pink, O; pale blue, N; grey, C.

Fig. S6. (a) A perspective view of a $Au_{72}^{I}Co_{44}^{I}$ cage-of-cage cation in $\mathbf{1}_{C0}$. (b) A nitrate anion attached to the surface via CH···O interactions. (c) A Co^{II} centre (M1 site) linking three $[Co_3(L^{Au3})_2]$ molecules. (d) A Co^{II} centre (M5 site) linking three $[Co_3(L^{Au3})_2]$ molecules. Colour codes: red, Au; violet, Co; orange, P; yellow, S; pink, O; pale blue, N; grey, C.

Fig. S7. (a) A perspective view of a $Au_{72}^{I}Cd_{40}^{II}Na_{4}^{I}$ cage-of-cage cation in 1_{CdNa} . (b) A nitrate anion attached to the surface via CH···O interactions. (c) A Na^I centre (M1 site) linking three $[Cd_3(L^{Au3})_2]$ molecules. (d) A Cd^{II} centre (M5 site) linking three $[Cd_3(L^{Au3})_2]$ molecules. Colour codes: red, Au; cream, Cd; purple, Na; orange, P; yellow, S; pink, O; pale blue, N; grey, C.

Fig. S8. Time-dependent changes in the numbers of Co^{II} atoms per cage-of-cage molecule determined by X-ray fluorescence analysis (blue) and single-crystal X-ray diffraction analysis (red). The difference in the numbers of Co^{II} atoms between these methods corresponds to aqua Co^{II} species existing in the crystal interstices, which could not be located in the X-ray structure.

Fig. S9. Diffuse reflection spectra of 1_{CdNa} , 1^{1h} , 1^{12h} , 1^{1d} , 1^{4d} , and 1_{Co} .

Fig. S10. The entire Au^I₇₂Cd^{II}₄₀Na^I₄ cage-of-cage molecule. Colour codes: red, Au; cream, Cd; purple, Na; orange, P; yellow, S; pink, O; pale blue, N; grey, C.

Fig. S11. Expanded illustration of Fig. 4. Crystal structures of (a-d) the asymmetric units and (e-h) the cage-of-cage molecules in 1_{NaCd} , 1^{1h} , 1^{1d} , and $1_{Co.}$ (a) $1_{NaCd.}$ (b) 1^{1h} : Cd^{II} and Co^{II} atoms are disordered at the M₂ metal centre with site occupancies of 0.97 and 0.03, respectively. (c) 1^{1d} : Co^{II} and Cd^{II} atoms are disordered at M₂, M₃, M₄, and M₅ metal centres with site occupancies of 0.71/0.29 for M₂, 0.57/0.43 for M₃, 0.25/0.75 for M₄, and 0.33/0.67 for M₅, respectively. (d) $1_{Co.}$ Colour codes: red, Au; cream, Cd; purple, Na; violet, Co; orange, P; yellow, S; pink, O; pale blue, N; grey, C.

Fig. S12. Crystal structures of 1_{CdNa} . Perspective views that show (a) the large interstices (diameters of ~3.1 nm) and (b) the pore window with the shortest diameter of 5.0 Å.

Fig. S13. A perspective view that shows the contact between the two cage-of-cage molecules through CH--- π and π --- π interactions. Colour codes: red, Au; cream, Cd; purple, Na; orange, P; yellow, S; pink, O; pale blue, N; grey, C.

Fig. S14. Crystal structures of the asymmetric units of 1_{CdZn} and 1_{CdMn} , which were obtained by soaking crystals of 1_{CdNa} in 1M aqueous Zn(NO₃)₂ and Mn(NO₃)₂, respectively, for 2 weeks. (a) 1_{CdZn} : Zn^{II} and Cd^{II} atoms were disordered at M₂, M₃, M₄ and M₅ metal centres with site occupancies of Zn/Cd = 0.68/0.32, 0.33/0.67, 0.59/0.41 and 0.83/0.17 for M₂, M₃, M₄ and M₅, respectively, while M₁ site was refined as a Zn atom. Crystallographic data, Cubic *F*432, *a* = *b* = *c* = 77.1192(5) Å, *V* = 458,656(9) Å³, *R*₁ (I>2 σ (I)) = 0.0640, *Rw*₂ (all data) = 0.2074 (CCDC 2080059). (b) 1_{CdMn} : M₁ and M₅ metal centres were refined as a Mn atom, while M₂, M₃ and M₄ centres were refined as a Cd atom, indicative of the replacement of Cd^{II} in 1_{CdNa} by Mn^{II} at only linking metal sites of M₁ and M₅. Crystallographic data, Cubic *F*432, *a* = *b* = *c* = 77.5594(4) Å, *V* = 466,556(7) Å³, *R*₁ (I>2 σ (I)) = 0.0572, *Rw*₂ (all data) = 0.1827 (CCDC 2080060). Colour codes: red, Au; cream, Cd; pale purple, Zn; light purple, Mn; orange, P; yellow, S; pink, O; pale blue, N; grey, C.

	1 _{CdNa}	1 ^{1h}	1 ^{6h}	1 ^{1d}
CCDC No.	2054688	2054689	2056446	2054592
Formula	$C_{1344}H_{2140}Au_{72}Cd_{40} \\$	$C_{1344}H_{2002}Au_{72}Cd_{39.64}$	$C_{1344}H_{2008}Au_{72}Cd_{29,20}$	$C_{1344}H_{2024}Au_{72}Cd_{20.18}$
Tormana	$N_{84}Na_4O_{458}P_{72}S_{72}$	$Co_{22.46}N_{124}O_{509}P_{72}S_{72}$	$Co_{32.80}N_{124}O_{512}P_{72}S_{72}$	$Co_{41.82}N_{124}O_{520}P_{72}S_{72}$
Colour, form	Colourless, cubic	Pale purple, block	Pale purple, block	Purple, cubic
Crystal size/ mm ³	0.11×0.11×0.11	0.14×0.14×0.11	0.14×0.14×0.14	0.19×0.19×0.19
Wavelength/ Å		0.6	5500	
Crystal system	Cubic	Cubic	Cubic	Cubic
Space group	F432	F432	F432	F432
$a = b = c / \text{\AA}$	77.714(9)	77.522(9)	77.518(9)	77.485(9)
$\alpha = \beta = \gamma / \circ$	90	90	90	90
$V/\text{\AA}^3$	469,342(159)	465,879(159)	465,809(159)	465,209(160)
Z	8	8	8	8
<i>T</i> / K	100(2)	100(2)	100(2)	100(2)
Flack parameter	0.013(1)	0.006(1)	0.001(1)	0.001(1)
$R_1(I>2\sigma(I))$	0.0403	0.0451	0.0470	0.0508
Rw2 (all data)	0.1139	0.1477	0.1580	0.1875
GOF	1.054	1.038	1.064	1.023

Table S1. Crystallographic data for 1_{CdNa} , 1^{1h} , 1^{6h} , 1^{1d} , 1^{2d} , 1^{4d} , and 1_{Co} .

Table S1. (Continued)

	1 ^{2d}	1 ^{4d}	1co
CCDC No.	2054593	2054594	2054595
Formula	$C_{1344}H_{1978}Au_{72}Cd_{8.61}$	$C_{1344}H_{2144}Au_{72}Cd_{0.60}$	$C_{1344}H_{2104}Au_{72}Co_{62}N_{124}$
	$Co_{53.39}N_{124}O_{497}P_{72}S_{72}$	$Co_{61.40}N_{124}O_{580}P_{72}S_{72}$	$O_{560}P_{72}S_{72}$
Colour, form	Purple, cubic	Purple, cubic	Purple, cubic
Crystal size/ mm ³	0.12×0.12×0.12	0.10×0.10×0.10	0.09×0.08×0.06
Wavelength/ Å		0.6500	
Crystal system	Cubic	Cubic	Cubic
Space group	F432	F432	F432
a = b = c / Å	77.370(9)	76.326(9)	76.541(9)
$\alpha = \beta = \gamma / \circ$	90	90	90
$V/\text{\AA}^3$	463,149(160)	444,649(154)	448,417(155)
Z	8	8	8
<i>T</i> / K	100(2)	100(2)	100(2)
Flack parameter	0.001(1)	0.012(2)	0.003(3)
R ₁ (I>2σ(I))	0.0505	0.0510	0.0540
Rw ₂ (all data)	0.1827	0.1824	0.1945
GOF	1.032	0.920	0.983

	Bond length /Å			
	1 _{CdNa}	1 ^{1h}	1 ^{6h}	1 ^{1d}
M1-O10	2.234(6)	2.042(10)	2.067(14)	2.054(17)
MC	ave. 2.646	ave. 2.649	ave.2.598	ave. 2.538
$M_2 - S_1 / S_4$	2.636(2)/2.656(2)	2.647(3)/2.651(4)	2.596(4)/2.600(4)	2.537(4)/2.539(5)
	ave. 2.353	ave. 2.338	ave. 2.249	ave. 2.176
$M_2 - O_1 / O_7$	2.364(8)/2.342(8)	2.345(11)/2.331(9)	2.255(13)/2.243(10)	2.191(15)/2.162(12)
	ave. 2.335	ave. 2.310	ave. 2.286	ave. 2.211
M2-N1/N4	2.324(9)/2.346(9)	2.314(13)/2.306(11)	2.302(14)/2.271(14)	2.197(17)/2.226(15)
MCC	ave. 2.637	ave. 2.627	ave. 2.614	ave. 2.536
M_3-S_2/S_5	2.630(2)/2.644(2)	2.623(3)/2.631(3)	2.592(7)/2.636(8)	2.530(5)/2.542(4)
M3-O3/O9	ave. 2.366	ave. 2.363	ave. 2.286	ave. 2.207
	2.380(6)/2.351(5)	2.319(10)/2.408(8)	2.252(15)/2.320(11)	2.136(17)/2.279(11)
M3-N2/N5	ave. 2.338	ave. 2.325	ave. 2.277	ave. 2.228
M3-IN2/IN5	2.355(8)/2.321(6)	2.311(10)/2.340(10)	2.272(15)/2.282(14)	2.217(14)/2.240(15)
M4-S3/S6	ave. 2.645	ave. 2.648	ave. 2.636	ave. 2.614
	2.658(2)/2.633(17)	2.658(3)/2.638(3)	2.644(4)/2.629(3)	2.610(5)/2.618(4)
M 0 /0	ave. 2.384	ave. 2.368	ave. 2.357	ave. 2.321
M4-O5/O11	2.395(7)/2.372(5)	2.386(10)/2.360(6)	2.358(12)/2.357(7)	2.316(15)/2.337(8)
	ave. 2.328	ave. 2.323	ave. 2.335	ave. 2.302
M4-N3/N6	2.302(8)/2.354(6)	2.306(12)/2.340(10)	2.325(15)/2.346(11)	2.266(19)/2.339(14)
M5-O12	2.243(5)	2.221(6)	2.206(7)	2.209(9)

Table S2. Selected bond length (Å) for 1_{CdNa} , 1^{1h} , 1^{6h} , 1^{1d} , 1^{2d} , 1^{4d} , and 1_{Co} .

Table S2. (Continued)

	Bond length /Å		
	1 ^{2d}	1 ^{4d}	1 _{C0}
M1-O10	2.058(14)	2.102(13)	2.079(16)
M C /C	ave. 2.503	ave. 2.458	ave. 2.472
$M_2 - S_1 / S_4$	2.508(4)/2.496(5)	2.451(6)/2.465(5)	2.460(7)/2.485(7)
M 0 /0	ave. 2.125	ave. 2.094	ave. 2.119
M2-O1/O7	2.146(12)/2.113(11)	2.087(15)/2.108(13)	2.117(19)/2.122(16)
M NI/NI	ave. 2.191	ave. 2.189	ave. 2.119
M2-N1/N4	2.201(14)/2.186(13)	2.147(15)/2.231(13)	2.125(19)/2.213(16)
MC	ave. 2.498	ave. 2.414	ave. 2.417
M3-82/85	A_3-S_2/S_5 2.499(4)/2.496(4) 2.407(6)/2.	2.407(6)/2.423(5)	2.413(8)/2.421(7)
	ave. 2.110	ave. 2.049	ave. 2.044
M3-O3/O9	2.021(14)/2.203(10)	2.039(15)/2.062(12)	2.011(19)/2.077(15)
M NT /NT	ave. 2.150	ave. 2.135	ave. 2.114
M ₃ -N ₂ /N ₅	2.152(13)/2.159(13)	2.130(16)/2.127(16)	2.14(2)/2.089(19)
	ave. 2.544	ave. 2.447	ave. 2.446
M4-S3/S6	2.528(5)/2.560(4)	2.445(5)/2.450(5)	2.449(7)/2.444(6)
	ave. 2.243	ave. 2.124	ave. 2.130
M4-O5/O11	2.220(15)/2.274(9)	2.097(12)/2.141(10)	2.115(15)/2.146(12)
	ave. 2.222	ave. 2.142	ave. 2.168
M4-N3/N6	2.197(18)/2.255(14)	2.132(17)/2.144(15)	2.16(2)/2.176(19)
M5-O12	2.165(9)	2.125(11)	2.132(15)

Table S3. Site occupancies of metal centres $(M_1, M_2, M_3, M_4, M_5)$ for 1_{CdNa} , 1^{1h} , 1^{6h} , 1^{1d} , 1^{2d} , 1^{4d} , and 1_{Co} .

	Site occupancy			
	1CdNa	1 ^{1h}	1 ^{6h}	1 ^{1d}
Co ₁ /Na ₁ (M ₁)	0.0/1.0	1.0/0.0	1.0/0.0	1.0/0.0
$Co_2/Cd_2(M_2)$	0.0/1.0	0.03(1)/0.97(1)	0.38(1)/0.62(1)	0.71(1)/0.29(1)
Co ₃ /Cd ₃ (M ₃)	0.0/1.0	0.0/1.0	0.29(1)/0.71(1)	0.57(1)/0.43(1)
C04/Cd4 (M4)	0.0/1.0	0.0/1.0	0.14(1)/0.86(1)	0.26(1)/0.74(1)
Co5/Cd5 (M5)	0.0/1.0	0.0/1.0	0.27(2)/0.73(2)	0.33(2)/0.67(2)
Total Co atoms per cage-of-cage ^a	0.0	4.4	14.8	23.8

	Site occupancy		
	1 ^{2d}	1 ^{4d}	1 _{C0}
Co ₁ /Na ₁ (M ₁)	1.0/0.0	1.0/0.0	1.0/0.0
$Co_2/Cd_2(M_2)$	0.98(1)/0.02(1)	1.0/0.0	1.0/0.0
Co ₃ /Cd ₃ (M ₃)	0.85(1)/0.15(1)	1.0/0.0	1.0/0.0
Co ₄ /Cd ₄ (M ₄)	0.58(1)/0.42(1)	0.96(1)/0.04(1)	1.0/0.0
Co5/Cd5 (M5)	0.62(1)/0.38(1)	1.0/0.0	1.0/0.0
Total Co atoms	25.4	12.5	11.0
per cage-of-cage ^a	35.4	43.5	44.0

a: Calculated from 4×Co₁+12×Co₂+12×Co₃+12×Co₄+4×Co₅