Electronic supplementary information

Constructing Fused *N*-Heterocycles from Unprotected Mesoionic *N*-Heterocyclic Olefins and Organic Azides via Diazo Transfer

Qiuming Liang, Kasumi Hayashi, Yimin Zeng, Jose L. Jimenez-Santiago and Datong Song*

Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto 80 St. George Street, Toronto, Ontario, Canada, M5S 3H6 E-mail: <u>d.song@utoronto.ca</u>

1.	Experimental section	S2
2.	NMR spectra	
3.	NMR spectra of the reaction mixtures of 2a and different organic azides	
4.	Detecting 3 at low temperature	S79
5.	X-ray crystallography	
6.	Computation	
7.	References	

1. Experimental section

All reactions were carried out in a dinitrogen-filled glovebox or using the standard Schlenk techniques under dinitrogen. Glassware was dried in a 180 °C oven overnight. Diethyl ether, hexanes, and pentane solvents were dried by refluxing and distilling over sodium under dinitrogen. THF and toluene solvents were dried by refluxing and distilling over sodium benzophenone ketyl under dinitrogen. C₆D₆, CDCl₃, and THF-*d*₈ solvents were degassed through three consecutive freeze–pump–thaw cycles. All solvents were stored over 3 Å molecular sieves prior to use. Unless otherwise noted, all NMR spectra were recorded at 25 °C on an Agilent DD2 600 MHz or 500 MHz spectrometer with ¹³C-sensitive cryogenically cooled probe. Chemical shifts are referenced to the solvent signals. The NMR signal assignments were made based on ¹H-COSY, ¹H-¹³C-HSQC, and ¹H-¹³C-HMBC NMR experiments. Elemental analyses were carried out at the ANALEST at the University of Toronto. High-resolution mass spectrograms were recorded at the AIMS Mass Spectrometry Laboratory at the University of Toronto. Unless otherwise noted, all chemicals were purchased from commercial sources and used as received.

Notes: Although we have not experienced any problems, cautions should be exercised when handling azide reagents due to their potentially explosive nature, especially for large scale reactions.

Syntheses of triazoles:

Triazoles 4-benzyl-1-mesityl-1,2,3-triazole,¹ 4-benzyl-1-phenyl-1,2,3-triazole,² 4-benzyl-1-(4-fluorophenyl)-1,2,3-triazole² and 4-benzyl-1-(4-(trifluoromethyl)phenyl)-1,2,3-triazole³ were synthesized according to literatures.

Pyrrolidine (1.6 mL, 20 mmol), 3-phenylpropionaldehyde (3.0 g, 22 mmol), and 1-azido-4-(tertbutyl)benzene⁴ (3.5 g, 20 mmol) were dissolved in 50 mL of THF. The reaction mixture was stirred at 60 °C for 12 h. Solid *m*-CPBA (10.4 g, 50% active oxidant, 30 mmol) was added to the reaction mixture at 0 °C and the mixture was warmed up to room temperature and stirred for 1 h. The reaction mixture was then concentrated to dryness under reduced pressure. The crude product was dissolved in EtOAc, washed with sat. Na₂S₂O₃ solution, 2M NaOH solution and brine, sequentially. The organic layer was dried over MgSO₄, filtered, and concentrated to dryness under reduced pressure. The residue was purified by column chromatography on silica gel eluted with ethyl acetate (0-20% gradient by volume) in hexanes to afford 4-benzyl-1-(tert-butylphenyl)-1,2,3-triazole as a white solid. Yield: 4.8 g, 82%. ¹H NMR (500 MHz, CDCl₃): δ 7.61 – 7.58 (m, 2H, 'Bu-C₆H₄), 7.56 (m, 1H, Ph-H), 7.52 – 7.45 (m, 2H, 'Bu-C₆H₄), 7.35 – 7.31 (m, 4H, overlapping, triazole-H and Ph-H), 7.28 – 7.23 (m, 1H, Ph-H), 4.17 (s, 2H, CH₂), 1.34 (s, 9H, C(CH₃)₃). ¹³C NMR (126 MHz, CDCl₃): δ 152.00 ^{*t*}Bu-C₆H₄), 148.42 (triazole-C), 139.06 (Ph-C), 134.90 ('Bu-C₆H₄), 128.93 ('Bu-C₆H₄), 128.83 (Ph-C), 126.74 (Ph-C), 126.65 (Ph-C), 120.28 ('Bu-C₆H₄), 119.81 (triazole-C), 34.88 (C(CH₃)₃), 32.45 (CH₂), 31.40 (C(CH₃)₃). C₁₉H₂₂N₃ [M+H]⁺ 292.18082, found 292.18091.

. .

Pyrrolidine (1.6 mL, 20 mmol), 3-phenylpropionaldehyde (3.0 g, 22 mmol), and 1-azido-4-(pentyloxy)benzene (4.1 g, 20 mmol) were dissolved in 50 mL of THF. The reaction mixture was stirred at 60 °C for 12 h. Solid m-CPBA (10.4 g, 50% active oxidant, 30 mmol) was added to the reaction mixture at 0 °C and the mixture was warmed up to room temperature and stirred for 1 h. The reaction mixture was then concentrated to dryness under reduced pressure. The crude product was dissolved in EtOAc, washed with sat. Na₂S₂O₃ solution, 2M NaOH solution and brine, sequentially. The organic layer was dried over MgSO₄, filtered, and concentrated to dryness under reduced pressure. The residue was purified by column chromatography on silica gel eluted with ethyl acetate (0-20% gradient by volume) in hexanes to afford 4-benzyl-1-(4-pentoxyphenyl)-1,2,3-triazole as a white solid. Yield: 4.9 g, 76%. ¹H NMR (600 MHz, CDCl₃): δ 7.58 – 7.52 (m, 2H, pentoxy- C₆H₄), 7.51 (s, 1H, triazole-H), 7.34 – 7.31 (m, 4H, Ph-H), 7.28 -7.21 (m, 1H, Ph-H), 6.99 -6.93 (m, 2H, pentoxy-C₆H₄), 4.16 (s, 2H. CH₂), 3.98 (t, J = 6.6 Hz, 2H, $CH_2CH_2CH_2CH_2CH_3$), 1.80 (dt, J = 14.6, 6.6 Hz, 2H, $CH_2CH_2CH_2CH_2CH_3$), 1.49 - 1.41 (m, 2H, $CH_2CH_2CH_2CH_3$), 1.43 – 1.35 (m, 2H, $CH_2CH_2CH_2CH_3$), 0.94 (t, J = 7.2 Hz, 3H, CH₂CH₂CH₂CH₂CH₂CH₃). ¹³C NMR (126 MHz, CDCl₃): δ 159.32 (pentoxy-C₆H₄), 148.27 (triazole-C), 139.05 (pentoxy-C₆H₄), 130.54 (Ph-C), 128.87 (Ph-C), 128.77 (Ph-C), 126.67 (Ph-C), 122.07 (pentoxy-C6H4), 119.92 (triazole-C), 115.26 (pentoxy-C6H4), 68.50 (CH2CH2CH2CH2CH3), 32.41 (CH2), 28.94 $(CH_2CH_2CH_2CH_2CH_3),$ 28.23 $(CH_2CH_2CH_2CH_2CH_3),$ 22.53 $(CH_2CH_2CH_2CH_2CH_3),$ 14.10 (CH₂CH₂CH₂CH₂CH₃). HRMS (ESI): *m/z* calcd for C₂₀H₂₄N₃O [M+H]⁺ 322.1914, found 322.1912.

$$F \xrightarrow{N_3} F \xrightarrow{Ph} H \xrightarrow{O} H \xrightarrow{H} H \xrightarrow{(1) 60 \circ C, 12 h} F \xrightarrow{N=N} H \xrightarrow{N=N} F \xrightarrow{N} F \xrightarrow$$

Pyrrolidine (1.6 mL, 20 mmol), 3-phenylpropionaldehyde (3.0 g, 22 mmol), and 5-azido-1,2,3trifluorobenzene⁵ (3.5 g, 20 mmol) were dissolved in 50 mL of THF. The reaction mixture was stirred at 60 °C for 12 h. Solid m-CPBA (10.4 g, 50% active oxidant, 30 mmol) was added to the reaction mixture at 0 °C and the mixture was warmed up to room temperature and stirred for 1 h. The reaction mixture was then concentrated to dryness under reduced pressure. The crude product was dissolved in EtOAc, washed with sat. Na₂S₂O₃ solution, 2M NaOH solution and brine, sequentially. The organic layer was dried over MgSO₄, filtered, and concentrated to dryness under reduced pressure. The residue was purified by column chromatography on silica gel eluted with ethyl acetate (0-20% gradient by volume) in hexanes to afford 4-benzyl-1-(3,4,5-trifluorophenyl)-1,2,3-triazole as a white solid. Yield: 4.7 g, 81%. ¹H NMR (500 MHz, CDCl₃): δ 7.55 (s, 1H), 7.45 – 7.36 (m, 2H, C₆H₂F₃), 7.36 – 7.28 (m, 4H, Ph-H), 7.29 – 7.22 (m, 1H, Ph-*H*), 4.16 (s, 2H, C*H*₂). ¹³C NMR (126 MHz, CDCl₃): δ 151.57 (ddd, *J* = 252.3, 10.7, 4.8 Hz, C₆H₂F₃), 149.36 (triazole-C), 139.60 (dt, J = 254.4, 15.1 Hz, C₆H₂F₃), 138.28 (Ph-C), 132.32 (td, J = 10.7, 4.4 Hz, C₆H₂F₃), 128.82 (Ph-C), 128.74 (Ph-C), 126.83 (Ph-C), 119.46 (triazole-C), 106.25 – 104.26 (m, C₆H₂F₃), 32.19 (CH₂). ¹⁹F NMR (564 MHz, CDCl₃): δ -130.52 (dd, J = 20.6, 7.9 Hz), -159.37 (tt, J = 20.5, 6.4 Hz). HRMS (ESI): m/z calcd for C₁₅H₁₁N₃F₃ [M+H]⁺ 290.08996, found 290.09068.

An aqueous solution of Cu(OAc)₂ (2.5 mL, 0.4 M, 1 mmol) was added into a mixture of 3-phenyl-1propyne (1.25 mL, 10 mmol) and hexyl azide⁶ (12 mmol) in MeOH (50 mL). The reaction mixture was

stirred at room temperature for 24 h. All volatiles were removed under vacuum. The residue was purified by column chromatography on silica eluted with ethyl acetate (0–20% gradient by volume) in hexanes. The product was isolated as a colorless oil. Yield: 2.2 g, 90%. ¹H NMR (500 MHz, CDCl₃): δ 7.34 – 7.28 (m, 2H, Ph-H), 7.26 (ddd, J = 7.9, 1.7, 0.7 Hz, 2H, Ph-H), 7.24 – 7.19 (m, 1H, Ph-H), 7.13 (s, 1H, triazole-H), 4.31 - 4.23 (m, 2H, CH₂CH₂CH₂CH₂CH₂CH₃), 4.09 (s, 2H, CH₂), 1.90 - 1.79 (m, 2H, CH₂CH₂CH₂CH₂CH₂CH₃), 1.36 - 1.23 (m, 6H, CH₂CH₂CH₂CH₂CH₂CH₃), 0.95 - 0.78 (m, 3H, CH₂CH₂CH₂CH₂CH₂CH₂CH₃). ¹³C NMR (126 MHz, CDCl₃): δ 147.72 (triazole-C), 139.33 (Ph-C), 128.84 (Ph-C), 128.72 (Ph-C), 126.57 (Ph-C), 121.32 (triazole-C), 50.40 (CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 32.43 (*C*H₂), 31.24 $(CH_2CH_2CH_2CH_2CH_2CH_3),$ 30.37 $(CH_2CH_2CH_2CH_2CH_2CH_3),$ 26.26 (CH₂CH₂CH₂CH₂CH₂CH₃), 22.51 (CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 14.03 (CH₂CH₂CH₂CH₂CH₂CH₂CH₃). HRMS (ESI): *m/z* calcd for C₁₅H₂₂N₃ [M+H]⁺ 244.18082, found 244.18109.

Pyrrolidine (1.6 mL, 20 mmol), 3,3-diphenylpropanal⁷ (4.9 g, 22 mmol), and 2-azido-1,3,5trimethylbenzene⁸ (3.5 g, 20 mmol) were dissolved in 50 mL of THF. The reaction mixture was stirred at 60 °C for 12 h. Solid *m*-CPBA (10.4 g, 50% active oxidant, 30 mmol) was added to the reaction mixture at 0 °C and the mixture was warmed up to room temperature and stirred for 1 h. The reaction mixture was then concentrated to dryness under reduced pressure. The crude product was dissolved in EtOAc, washed with sat. Na₂S₂O₃ solution, 2M NaOH solution and brine, sequentially. The organic layer was dried over MgSO₄, filtered, and concentrated to dryness under reduced pressure. The residue was purified by column chromatography on silica gel eluted with ethyl acetate (0–20% gradient by volume) in hexanes to afford 4-benzhydryl-1-mesityl-1H-1,2,3-triazole as a white solid. Yield: 5.1 g, 72%. ¹H NMR (600 MHz, CDCl₃): δ 7.31 (td, *J* = 7.2, 1.4 Hz, 4H, Ph-*H*), 7.26 – 7.21 (m, 6H, Ph-*H*), 7.17 (d, *J* = 0.7 Hz, 1H, triazole-*H*), 7.00 – 6.89 (m, 2H, Mes-*H*), 5.76 (s, 1H, C*H*Ph₂), 2.33 (s, 3H, Mes-C*H*₃), 1.97 (s, 6H, Mes-C*H*₃). ¹³C NMR (151 MHz, CDCl₃): δ 150.77 (triazole-*C*), 142.85 (Ph-*C*), 140.02 (Mes-*C*), 135.17 (Mes-*C*), 133.73 (Mes-*C*), 129.13 (Mes-*C*), 128.86 (Ph-*C*), 128.71 (Ph-*C*), 126.85 (Ph-*C*), 124.73 (triazole-*C*), 48.85 (*C*HPh₂), 21.24 (Mes-*C*H₃), 17.44 (Mes-*C*H₃). HRMS (ESI): *m*/*z* calcd for C₂₄H₂₃N₃ [M+H]⁺ 354.1961, found 354.1961.

Syntheses of triazolium salts:

4-Benzyl-1-mesityl-1,2,3-triazole¹ (2.8 g, 10 mmol) and iodomethane (6.2 mL, 100 mmol, 10 equiv.) were mixed in 20 mL of acetonitrile. The mixture was stirred at 120 °C overnight. All volatiles were removed under vacuum. The oily residue was stirred with 50 mL of diethyl ether affording a white suspension. The solid that formed was collected by filtration, washed with diethyl ether (3 × 5 mL) and pentane (3 × 5 mL), and dried under vacuum. White solid. Yield: 3.5 g, 83%. ¹H NMR (500 MHz, CDCl₃): δ 8.34 (s, 1H, triazolium-*H*), 7.47 (dt, *J* = 6.2, 1.3 Hz, 2H, Ph-*H*), 7.35 – 7.30 (m, 2H, Ph-*H*), 7.30 – 7.24 (m, 1H, Ph-*H*), 6.98 (s, 2H, Mes-*H*) 4.76 (s, 2H, CH₂), 4.47 (s, 3H, N-CH₃), 2.32 (s, 3H, Mes-CH₃), 2.07 (s, 6H, Mes-CH₃). ¹³C NMR (126 MHz, CDCl₃): δ 145.91 (triazolium-*C*), 142.54 (Mes-*C*), 134.42 (Mes-*C*), 133.28 (Ph-*C*), 131.20 (Mes-*C*), 131.00 (triazolium-*C*), 129.88 (Mes-*C*), 129.49 (Ph-*C*), 129.36 (Ph-*C*), 128.11 (Ph-*C*), 40.42 (N-CH₃), 30.63 (CH₂), 21.26 (Mes-CH₃), 18.12 (Mes-CH₃). HRMS (ESI): *m/z* calcd for C₁₉H₂₂N₃ [M–I]⁺ 292.1808, found 292.1810.

4-Benzyl-1-phenyl-1,2,3-triazole² (2.4 g, 10 mmol) and iodomethane (6.2 mL, 100 mmol, 10 equiv.) were mixed in 20 mL of acetonitrile. The mixture was stirred at 120 °C overnight. All volatiles were removed under vacuum. The oily residue was stirred with 50 mL of diethyl ether affording a white suspension. The solid that formed was collected by filtration, washed with diethyl ether (3×5 mL) and pentane (3×5 mL), and dried under vacuum. White solid. Yield: 2.6 g, 69%. ¹H NMR (600 MHz, CDCl₃): δ 9.27 (s, 1H, triazolium-*H*), 7.91 – 7.79 (m, 2H, Ph-*H*), 7.52 – 7.46 (m, 3H, Ph-*H*), 7.46 – 7.41 (m, 2H, Ph-*H*), 7.27 – 7.21 (m, 2H, Ph-*H*), 7.22 – 7.17 (m, 1H, Ph-*H*), 4.59 (s, 2H, C*H*₂), 4.34 (s, 3H, N-C*H*₃). ¹³C NMR (151 MHz, CDCl₃): δ 145.18 (triazolium-*C*), 134.45 (Ph-*C*), 132.85 (Ph-*C*), 131.84 (Ph-*C*), 130.31 (Ph-*C*), 129.28 (Ph-*C*), 129.26 (Ph-*C*), 127.95 (Ph-*C*), 127.62 (triazolium-*C*), 121.34 (Ph-*C*), 40.03 (N-CH₃), 29.88 (CH₂). HRMS (ESI): *m*/*z* calcd for C₁₆H₁₆N₃ [M–I]⁺ 250.1339, found 250.1339.

4-benzyl-1-(4-(*tert*-butyl)phenyl)-1,2,3-triazole (2.9 g, 10 mmol) and iodomethane (6.2 mL, 100 mmol, 10 equiv.) were mixed in 20 mL of acetonitrile. The mixture was stirred at 120 °C overnight. All volatiles were removed under vacuum. The oily residue was stirred with 50 mL of diethyl ether affording a white suspension. The solid that formed was collected by filtration, washed with diethyl ether (3×5 mL) and pentane (3×5 mL), and dried under vacuum. White solid. Yield: 3.3 g, 76%. ¹H NMR (500 MHz, CDCl₃): δ 9.36 (s, 1H, triazolium-*H*), 7.86 – 7.77 (m, 2H, 'Bu-C₆H₄-), 7.55 – 7.51 (m, 2H, 'Bu-C₆H₄-), 7.47 – 7.43 (m, 2H, Ph-*H*), 7.30 – 7.26 (m, 2H, Ph-*H*), 7.25 – 7.21 (m, 1H, Ph-*H*), 4.65 (s, 2H, CH₂), 4.37 (s, 3H, N-

*CH*₃), 1.29 (s, 9H, C(*CH*₃)₃). ¹³C NMR (126 MHz, CDCl₃): δ 155.76 (^{*i*}Bu-*C*₆H₄-), 145.18 (triazolium-*C*), 133.07 (Ph-*C*), 132.18 (^{*i*}Bu-*C*₆H₄-), 129.40 (Ph-*C*), 129.38 (Ph-*C*), 128.06 (Ph-*C*), 127.68 (triazolium-*C*), 127.39 (^{*i*}Bu-*C*₆H₄-), 121.08 (^{*i*}Bu-*C*₆H₄-), 39.98 (N-*C*H₃), 35.15 (*C*(CH₃)₃), 31.10 (C(*C*H₃)₃), 30.04 (*C*H₂). HRMS (ESI): *m/z* calcd for C₂₀H₂₄N₃ [M–I]⁺ 306.1965, found 306.1965.

Trimethyloxonium tetrafluoroborate (887.5 mg, 6 mmol, 1.2 equiv.) was added as solid to a stirring solution of 4-benzyl-1-(4-(pentyloxy)phenyl)-1,2,3-triazole (1.6 g, 5 mmol) in DCM (20 mL). The mixture was stirred at room temperature overnight. It was then filtered, concentrated under vacuum to ~ 10 mL and dropwise added into rapid stirring diethyl ether (50 mL). The white precipitate that formed was collected by filtration, washed with diethyl ether $(3 \times 5 \text{ mL})$ and pentane $(3 \times 5 \text{ mL})$, and dried under vacuum. White solid. Yield: 1.6 g, 79%. ¹H NMR (500 MHz, CDCl₃): δ 8.48 (s, 1H, triazolium-H), 7.74 -7.61 (m, 2H, pentoxy-C₆H₄-), 7.34 - 7.27 (m, 4H, Ph-H), 7.28 - 7.21 (m, 1H, Ph-H), 7.00 - 6.90 (m, 2H, pentoxy-C₆ H_4 -), 4.28 (s, 2H, C H_2), 4.17 (s, 3H, N-C H_3), 3.95 (t, J = 6.5 Hz, 2H, C H_2 CH₂CH₂CH₂CH₃), 1.78 (dq, J = 8.2, 6.5 Hz, 2H, CH₂CH₂CH₂CH₂CH₃), 1.49 – 1.30 (m, 4H, CH₂CH₂CH₂CH₂CH₃), 0.93 (t, J = 7.1 Hz, 3H, CH₂CH₂CH₂CH₂CH₂CH₃). ¹³C NMR (126 MHz, CDCl₃): δ 161.70 (pentoxy-C₆H₄-), 145.02 (triazolium-C), 133.41 (Ph-C), 129.48 (Ph-C), 129.26 (Ph-C), 128.03 (Ph-C), 127.69 (pentoxy-C₆H₄-), 126.44 (triazolium-C), 123.05 (pentoxy-C₆H₄-), 115.83 (pentoxy-C₆H₄-), 68.78 (CH₂CH₂CH₂CH₂CH₃), 38.17 (N-CH₃), 29.16 (CH₂), 28.82 (CH₂CH₂CH₂CH₂CH₃), 28.19 (CH₂CH₂CH₂CH₂CH₃), 22.53 (CH₂CH₂CH₂CH₂CH₃), 14.11 (CH₂CH₂CH₂CH₂CH₃). HRMS (ESI): *m/z* calcd for C₂₁H₂₆N₃O [M-BF₄]⁺ 336.2070, found 330.2071.

4-Benzyl-1-(4-fluorophenyl)-1,2,3-triazole² (2.5 g, 10 mmol) and iodomethane (6.2 mL, 100 mmol, 10 equiv.) were mixed in 20 mL of acetonitrile. The mixture was stirred at 120 °C overnight. All volatiles were removed under vacuum. The oily residue was stirred with 50 mL of diethyl ether affording a white suspension. The solid that formed was collected by filtration, washed with diethyl ether (3 × 5 mL) and pentane (3 × 5 mL), and dried under vacuum. Off-white solid. Yield: 2.9 g, 73%. ¹H NMR (500 MHz, CDCl₃): δ 9.40 (s, 1H, triazolium-*H*), 7.99 (ddd, *J* = 9.1, 5.0, 2.5 Hz, 2H, F-C₆H₄-), 7.50 – 7.40 (m, 2H, Ph-*H*), 7.34 – 7.29 (m, 2H, Ph-*H*), 7.27 (dd, *J* = 6.9, 1.8 Hz, 1H, Ph-*H*), 7.26 – 7.20 (m, 2H, F-C₆H₄-), 4.59 (s, 2H, CH₂), 4.35 (s, 3H, N-CH₃). ¹³C NMR (126 MHz, CDCl₃): δ 164.21 (d, *J* = 254.6 Hz, F-C₆H₄-), 145.38 (triazolium-*C*), 132.83 (Ph-*C*), 130.82 (d, *J* = 3.3 Hz, F-C₆H₄-), 129.54 (Ph-*C*), 129.39 (Ph-*C*), 128.29 (triazolium-*C*), 128.25 (Ph-*C*), 124.18 (d, *J* = 9.1 Hz, F-C₆H₄-), 117.67 (d, *J* = 23.7 Hz, F-C₆H₄-), 40.03 (N-CH₃), 30.17 (CH₂). ¹⁹F NMR (470 MHz, CDCl₃): δ -106.14 (tt, *J* = 8.0, 4.3 Hz). HRMS (ESI): *m*/z calcd for C₁₆H₁₅N₃F [M–I]⁺ 268.1245, found 268.1247.

4-benzyl-1-(4-(trifluoromethyl)phenyl)-1,2,3-triazole³ (3.0 g, 10 mmol) and iodomethane (6.2 mL, 100 mmol, 10 equiv.) were mixed in 20 mL of acetonitrile. The mixture was stirred at 120 °C overnight. All volatiles were removed under vacuum. The oily residue was stirred with 50 mL of diethyl ether affording an off-white suspension. The solid that formed was collected by filtration, washed with diethyl ether (3 × 5 mL) and pentane (3 × 5 mL), and dried under vacuum. Off-white solid. Yield: 3.8 g, 85%. ¹H NMR

(500 MHz, CDCl₃): δ 9.70 (s, 1H, triazolium-*H*), 8.30 – 8.09 (m, 2H, CF₃-C₆*H*₄), 7.89 – 7.74 (m, 2H, CF₃-C₆*H*₄), 7.46 – 7.41 (m, 2H, Ph-*H*), 7.31 (ddt, *J* = 8.0, 6.4, 1.2 Hz, 2H, Ph-*H*), 7.28 – 7.24 (m, 1H, Ph-*H*), 4.61 (s, 2H, CH₂), 4.38 (s, 3H, N-C*H*₃). ¹³C NMR (126 MHz, CDCl₃): δ 145.68 (triazolium-*C*), 136.99 (m, CF₃-C₆H₄), 133.84 (q, *J* = 33.6 Hz, CF₃-C₆H₄), 132.66 (Ph-*C*), 129.58 (Ph-*C*), 129.35 (Ph-*C*), 128.61 (triazolium-*C*), 128.32 (Ph-*C*), 127.75 (q, *J* = 3.7 Hz, CF₃-C₆H₄), 123.00 (q, *J* = 273.0 Hz, CF₃), 122.34 (CF₃-C₆H₄), 40.28 (*C*H₂), 30.21 (N-CH₃). ¹⁹F NMR (564 MHz, CDCl₃): δ –63.06. HRMS (ESI): *m/z* calcd for C₁₇H₁₅N₃F₃ [M–I]⁺ 318.1213, found 318.1211.

4-Benzyl-1-(3,4,5-trifluorophenyl)-1,2,3-triazole (2.9 g, 10 mmol) and iodomethane (6.2 mL, 100 mmol, 10 equiv.) were mixed in 20 mL of acetonitrile. The mixture was stirred at 120 °C overnight. All volatiles were removed under vacuum. The oily residue was stirred with 50 mL of diethyl ether affording an off-white suspension. The solid that formed was collected by filtration, washed with diethyl ether (3 × 5 mL) and pentane (3 × 5 mL), and dried under vacuum. White solid. Yield: 4.0 g, 93%. ¹H NMR (500 MHz, CDCl₃): δ 9.61 (s, 1H, triazolium-*H*), 7.93 – 7.83 (m, 2H, C₆*H*₂F₃), 7.47 – 7.41 (m, 2H, Ph-*H*), 7.36 – 7.25 (m, 3H, Ph-*H*), 4.57 (s, 2H, C*H*₂), 4.35 (s, 3H, N-C*H*₃). ¹³C NMR (126 MHz, CDCl₃): δ 151.69 (ddd, *J* = 256.0, 10.9, 4.5 Hz, C₆H₂F₃), 145.79 (triazolium-*C*), 142.05 (dt, *J* = 260.4, 14.8 Hz, C₆H₂F₃), 132.53 (Ph-C), 129.72 (dd, *J* = 10.7, 4.8 Hz, C₆H₂F₃), 129.59 (Ph-C), 129.37 (Ph-C), 129.06 (triazolium-*C*), 128.35 (Ph-C), 108.17 – 107.77 (m, C₆H₂F₃), 40.26 (N-CH₃), 30.23 (CH₂). ¹⁹F NMR (470 MHz, CDCl₃): δ -127.69 (dt, *J* = 20.2, 6.5 Hz), -152.63 (tt, *J* = 20.5, 5.8 Hz). HRMS (ESI): *m/z* calcd for C₁₆H₁₃N₃F₃ [M–I]⁺ 304.1056, found 304.1056.

Trimethyloxonium tetrafluoroborate (700 mg, 4.7 mmol, 1.05 equiv.) was added as solid to a stirring solution of 4-benzyl-1-hexyl-1,2,3-triazole (1.1 g, 4.5 mmol) in DCM (20 mL). The mixture was stirred at room temperature overnight. It was then filtered, concentrated under vacuum to dryness leaving a pale yellow oil. Yield: 1.4 g, 90%. ¹H NMR (500 MHz, CDCl₃) δ 8.17 (s, 1H, triazolium-H), 7.36 – 7.31 (m, 2H, Ph-H), 7.29 – 7.25 (td, J = 6.0, 1.4 Hz, 3H, Ph-H), 4.52 – 4.37 (m, 2H, CH₂CH₂CH₂CH₂CH₂CH₃), 4.22 (s, 2H, CH₂), 4.10 (s, 3H, N-CH₃), 2.00 – 1.90 (m, 2H, CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 1.38 – 1.20 (m, 6H, CH₂CH₂CH₂CH₂CH₂CH₃), 0.90 – 0.79 (m, 3H, CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃). ¹³C NMR (126 MHz, CDCl₃) δ 144.11 (triazolium-C), 133.35 (Ph-H), 129.54 (Ph-H), 129.09 (Ph-H), 128.92 (triazolium-C), 128.11 (Ph-H), 54.12 (CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 37.89 (N-CH₃), 31.01 (CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 29.20, 29.18, 25.86 $(CH_2CH_2CH_2CH_2CH_3),$ 22.40 $(CH_2CH_2CH_2CH_2CH_3),$ 13.99 (CH₂CH₂CH₂CH₂CH₂CH₃). HRMS (ESI): *m/z* calcd for C₁₆H₂₄N₃ [M–BF₄]⁺ 258.1965, found 258.1961.

4-Benzyl-1-mesityl-1,2,3-triazole¹ (2.5 g, 8.9 mmol) and bromoethane (6.6mL, 89 mmol, 10 equiv.) were mixed in 20 mL of acetonitrile. The mixture was stirred at 120 °C overnight. All volatiles were removed under vacuum. The oily residue was stirred with 50 mL of diethyl ether affording an off-white suspension. The solid that formed was collected by filtration, washed with diethyl ether (3×5 mL) and pentane (3×5 mL), and dried under vacuum. Off-white solid. Yield: 2.6 g, 76%. ¹H NMR (500 MHz, CDCl₃): δ 8.99 (s, 1H, triazolium-*H*), 7.50 – 7.37 (m, 2H, Ph-*H*), 7.33 – 7.27 (m, 2H, Ph-*H*), 7.26 – 7.21 (m, 1H, Ph-*H*),

6.98 (s, 2H, Mes-*H*), 4.82 (s, 2H, C*H*₂), 4.77 (q, *J* = 7.3 Hz, 2H, C*H*₂CH₃), 2.32 (s, 3H, Mes-C*H*₃), 2.03 (s, 6H, Mes-C*H*₃), 1.47 (t, *J* = 7.2 Hz, 3H, CH₂C*H*₃). ¹³C NMR (126 MHz, CDCl₃): δ 145.02 (triazolium-*C*), 142.45 (Mes-*C*), 134.28 (Ph-*C*), 133.97 (Mes-*C*), 131.70 (triazolium-*C*), 131.40 (Mes-*C*), 129.87 (Mes-*C*), 129.41 (Ph-*C*), 129.17 (Ph-*C*), 127.89 (Ph-*C*), 48.41 (*C*H₂CH₃), 29.83 (*C*H₂), 21.24 (Mes-*C*H₃), 17.67 (Mes-*C*H₃), 13.58 (CH₂CH₃). HRMS (ESI): *m*/*z* calcd for C₂₀H₂₄N₃ [M–Br]⁺ 306.1965, found 306.1964.

4-Benzyl-1-mesityl-1,2,3-triazole¹ (1.8 g, 6.5 mmol) and benzyl bromide (7.7 mL, 65 mmol, 10 equiv.) were mixed in 20 mL of acetonitrile. The mixture was stirred at 120 °C overnight. All volatiles were removed under vacuum. The oily residue was stirred with 50 mL of diethyl ether affording an off-white suspension. The solid that formed was collected by filtration, washed with diethyl ether (3 × 5 mL) and pentane (3 × 5 mL), and dried under vacuum. Off-white solid. Yield: 2.1 g, 72%. ¹H NMR (500 MHz, CDCl₃): δ 8.68 (s, 1H, triazolium-*H*), 7.34 – 7.27 (m, 5H, Ph-*H*), 7.25 – 7.18 (m, 5H, Ph-*H*), 6.96 (s, 2H, Mes-*H*), 6.03 (s, 2H, C*H*₂), 4.67 (s, 2H, C*H*₂), 2.30 (s, 3H, Mes-C*H*₃), 2.02 (s, 6H, Mes-C*H*₃). ¹³C NMR (126 MHz, CDCl₃): δ 145.64 (triazolium-*C*), 142.54 (Mes-C), 134.19 (Mes-C), 133.64 (Ph-C), 131.79 (Ph-C), 131.24 (triazolium-C), 131.03 (Mes-C), 129.85 (Ph-C), 129.60 (Mes-C), 129.43 (Ph-C), 129.35 (Ph-C), 129.16 (Ph-C), 128.43 (Ph-C), 127.91 (Ph-C), 56.39 (CH₂), 30.18 (CH₂), 21.21 (Mes-CH₃), 17.67 (Mes-CH₃). HRMS (ESI): *m/z* calcd for C₁₆H₁₅N₃ [M–Br–C9H₁₁+H]⁺ 250.1339, found 250.1340.

4-Benzyl-1-mesityl-1,2,3-triazole¹ (1.2 g, 4.3 mmol), diphenyliodonium triflate⁹ (2.8 g, 6.5 mmol, 1.5 equiv.), Cu(OTf)₂ (311 mg, 0.86 mmol) and toluene (20 mL) were mixed in a Schlenk tube. The tube was sealed and the mixture was stirred at 140 °C overnight. All volatiles were removed under vacuum. The residue was purified by chromatography eluted with acetone (0–20% gradient by volume) in DCM to afford a pale brown sticky foam. Yield: 1.1 g, 51%. ¹H NMR (500 MHz, CDCl₃): δ 8.38 (s, 1H, triazolium-*H*), 7.72 – 7.66 (m, 3H, Ph-*H*), 7.62 (ddt, *J* = 8.5, 7.6, 1.4 Hz, 2H, Ph-*H*), 7.29 – 7.18 (m, 3H, Ph-*H*), 7.18 – 7.09 (m, 2H, Ph-*H*), 7.03 (s, 2H, Mes-*H*), 4.42 (s, 2H, CH₂), 2.35 (s, 3H, Mes-CH₃), 2.14 (s, 6H, Mes-CH₃). ¹³C NMR (126 MHz, CDCl₃): δ 146.50 (triazolium-*C*), 142.77 (Mes-*C*), 134.46 (Mes-*C*), 134.01, 133.36, 132.62 (Ph-*C*), 131.66 (triazolium-*C*), 131.36 (Mes-*C*), 130.43 (Ph-*C*), 130.04 (Mes-*C*), 129.38 (Ph-*C*), 129.01 (Ph-*C*), 127.96 (Ph-*C*), 126.04 (Ph-*C*), 120.87 (q, *J* = 320.5 Hz, CF₃SO₃), 30.35 (CH₂), 21.31 (Mes-CH₃), 17.44 (Mes-CH₃). HRMS (ESI): *m/z* calcd for C₂₄H₂₄N₃ [M–OTf]⁺ 354.1965, found 354.1957.

Methyl triflate (1.3 mL, 12 mmol, 1.2 equiv.) was added to a stirring solution of 4-benzhydryl-1-mesityl-1,2,3-triazole (3.5 g, 10 mmol) in DCM (20 mL). The mixture was stirred at room temperature overnight. It was then filtered, concentrated under vacuum to ~10 mL and dropwise added into rapid stirring diethyl ether (50 mL). The white precipitate that formed was collected by filtration, washed with diethyl ether (3 × 5 mL) and pentane (3 × 5 mL), and dried under vacuum. White solid. Yield: 4.4 g, 85%. ¹H NMR (500

MHz, CDCl₃): δ 7.43 – 7.37 (m, 5H, Ph-*H*, triazolium-*H*, overlap), 7.35 – 7.31 (m, 2H, Ph-*H*), 7.31 – 7.28 (m, 4H, Ph-*H*), 7.02 (q, *J* = 0.7 Hz, 2H, Mes-*H*), 6.24 (s, 1H, C*H*Ph₂), 4.16 (s, 3H, N-C*H*₃), 2.34 (s, 3H, Mes-C*H*₃), 2.09 (s, 6H, Mes-C*H*₃). ¹³C NMR (126 MHz, CDCl₃): δ 149.23 (triazolium-*C*), 142.83 (Mes-*C*), 137.33 (Ph-*C*), 134.57 (Mes-*C*), 131.25 (triazolium-*C*), 130.93 (Mes-*C*), 129.98 (Mes-*C*), 129.79 (Ph-*C*), 128.74 (Ph-*C*), 128.56 (Ph-*C*), 124.77 – 117.12 (q, *J* = 320.4 Hz, CF₃SO₃), 46.08 (CHPh₂), 39.61 (N-CH₃), 21.31 (Mes-CH₃), 17.35 (Mes-CH₃). HRMS (ESI): *m/z* calcd for C₂₅H₂₆N₃ [M–OTf]⁺ 368.2121, found 368.2120.

Syntheses of mNHOs:

mNHO $1a^1$ was synthesized according to literature. mNHO 1f and 1g were prepared in *situ* at low temperatures due to their thermal instabilities.

To a mixture of triazolium salt (2 mmol) and KHMDS (399.0 mg, 2 mmol) was added diethyl ether (10 mL). The reaction mixture instantaneously turned dark color. The reaction mixture was stirred for 1 h at room temperature and then filtered through Celite. All volatiles were removed under reduced pressure to afford a crystalline solid of **1b–e** and **1h–l**. The solid was washed with *n*-pentane (3×5 mL) and dried under vacuum.

Blue purple crystalline solid. Yield: 395.2 mg, 79%. Crystals suitable for X-ray crystallography were obtained by cooling a concentrated diethyl ether solution to -35 °C. ¹H NMR (500 MHz, C₆D₆): δ 7.50 – 7.41 (m, 2H, Ph-*H*), 7.27 – 7.22 (m, 2H,

Ph-*H*), 7.17 (s, 1H, triazole-*H*), 7.07 (dt, *J* = 6.7, 1.7 Hz, 2H, Ph-*H*), 6.97 – 6.84 (m, 4H, Ph-*H*), 4.29 (s, 1H, C*H*), 2.89 (s, 3H, N-C*H*₃). ¹³C NMR (126 MHz, C₆D₆): δ 143.68, 143.57, 136.64 (Ph-*C*), 129.52 (Ph-*C*), 129.51 (Ph-*C*), 129.05 (Ph-*C*), 121.42 (Ph-*C*), 120.44 (Ph-*C*), 117.06 (Ph-*C*), 105.76 (triazole-*C*), 65.62 (*C*H), 33.61 (N-*C*H₃). Anal. Calcd for C₁₆H₁₅N₃: C, 77.08; H, 6.06; N, 16.85. Found: C, 76.83; H, 6.27; N, 16.75.

Blue purple crystalline solid. Yield: 517.2 mg, 85%. Crystals suitable for X-ray crystallography were obtained by cooling a concentrated diethyl ether solution to -35 °C. ¹H NMR (500 MHz, C₆D₆): δ 7.47 (t, *J* = 7.6 Hz, 2H, Ph-*H*), 7.33 – 7.25

(m, 3H, overlapping, , Ph-*H* and triazole-*H*), 7.15 (d, *J* = 8.4 Hz, 2H, 'Bu-C₆*H*₄), 7.08 (d, *J* = 8.7 Hz, 2H, 'Bu-C₆*H*₄), 6.93 (t, *J* = 7.2 Hz, 1H, Ph-*H*), 4.34 (s, 1H, C*H*), 2.93 (s, 3H, N-C*H*₃), 1.11 (s, 9H, C(C*H*₃)₃). ¹³C NMR (126 MHz, C₆D₆): δ 153.00 ('Bu-C₆H₄), 143.75 (triazole-*C*), 143.65 (Ph-*C*), 134.48 ('Bu-C₆H₄), 129.07, 126.55 ('Bu-C₆H₄), 121.46 (Ph-*C*), 120.48 ('Bu-C₆H₄), 117.08 (Ph-*C*), 106.05 (triazole-*C*), 65.65 (CH), 34.66 (*C*(CH₃)₃), 33.61 (N-CH₃), 31.13 (C(CH₃)₃). Anal. Calcd for C₂₀H₂₃N₃: C, 78.65; H, 7.59; N, 13.76. Found: C, 78.20; H, 7.69; N, 13.88.

Blue purple crystalline solid. Yield: 472.3 mg, 70%. Crystals suitable for Xray crystallography were obtained by slow evaporation of a concentrated diethyl ether solution at room temperature. ¹H NMR (500 MHz, C₆D₆): δ 7.46

(t, J = 7.5 Hz, 2H, Ph-H), 7.32 – 7.25 (m, 2H, Ph-H), 7.22 (s, 1H, triazole-H), 7.10 (d, J = 9.1 Hz, 2H, pentoxy-C₆ H_4 -), 6.93 (tt, J = 7.2, 1.2 Hz, 1H), 6.64 – 6.57 (m, 2H, pentoxy-C₆ H_4 -), 4.34 (s, 1H, CH), 3.51 (t, J = 6.5 Hz, 2H, CH₂CH₂CH₂CH₂CH₃), 2.95 (s, 3H, N-CH₃), 1.64 – 1.46 (m, 2H, CH₂CH₂CH₂CH₂CH₂CH₃), 1.34 – 1.14 (m, 4H, CH₂CH₂CH₂CH₂CH₃), 0.87 (t, J = 7.1 Hz, 3H, CH₂CH₂CH₂CH₂CH₃). ¹³C NMR (126

MHz, C₆D₆): δ 160.35 (pentoxy-C₆H₄-), 143.74, 143.69, 129.92 (pentoxy-C₆H₄-), 129.06 (Ph-C), 122.03 (Ph-C), 121.41 (pentoxy-C₆H₄-), 116.98 (Ph-C), 115.14 (pentoxy-C₆H₄-), 105.96 (triazole-C), 68.35 (CH), 65.56 (CH₂CH₂CH₂CH₂CH₂CH₃), 33.57 (N-CH₃), 29.12 (CH₂CH₂CH₂CH₂CH₂CH₃), 28.42 (CH₂CH₂CH₂CH₂CH₃), 22.76 (CH₂CH₂CH₂CH₂CH₃), 14.20 (CH₂CH₂CH₂CH₂CH₂CH₃). Anal. Calcd. for C₂₁H₂₅N₃O•0.1C₄H₁₀O: C, 74.94; H, 7.64; N, 12.26. Found: C, 74.40; H, 8.19; N, 12.77.

Blue purple crystalline solid. Yield: 469.5 mg, 88%. Crystals suitable for X-ray crystallography were obtained by top-layering a concentrated THF solution with pentane and cooled to -35 °C. ¹H NMR (500 MHz, C₆D₆): δ 7.52 – 7.42 (m, 2H,

Ph-*H*), 7.30 – 7.22 (m, 2H, Ph-*H*), 7.05 (s, 1H, triazole-*H*), 6.94 (tt, J = 7.2, 1.2 Hz, 1H, Ph-*H*), 6.82 (dd, J = 9.0, 4.5 Hz, 2H, F-C₆*H*₄-), 6.58 – 6.46 (m, 2H, 2H, F-C₆*H*₄-), 4.31 (s, 1H, C*H*), 2.88 (s, 3H, N-C*H*₃). ¹³C NMR (126 MHz, C₆D₆): δ 162.92 (d, J = 249.7 Hz, F-C₆H₄-), 143.62 (triazole-C), 143.40 (Ph-C), 132.77 (d, J = 3.0 Hz, F-C₆H₄-), 129.07 (Ph-C), 122.40 (d, J = 8.7 Hz, F-C₆H₄-), 121.54 (Ph-C), 117.44 (Ph-C), 116.35 (d, J = 23.2 Hz, F-C₆H₄-), 105.92 (triazole-C), 65.87 (CH), 33.55 (N-CH₃). ¹⁹F NMR (470 MHz, C₆D₆): δ –110.86 (tt, J = 8.2, 4.4 Hz). Anal. Calcd for C₁₆H₁₄N₃F: C, 71.89; H, 5.28; N, 15.72. Found: C, 70.49; H, 5.64; N, 15.59.

 0.94 – 0.83 (m, 2H, CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 0.80 (t, *J* = 7.3 Hz, 3H, CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃). ¹³C NMR (126 MHz, C₆D₆): δ 143.95, 143.63, 129.02 (Ph-*C*), 121.14 (Ph-*C*), 116.52 (Ph-*C*), 108.06 (triazole-*C*), 65.04 (*C*H), 51.72 (*C*H₂CH₂CH₂CH₂CH₂CH₂CH₃), 33.34 (N-*C*H₃), 31.30 (CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 29.29 (CH₂CH₂CH₂CH₂CH₂CH₃), 26.13 (CH₂CH₂CH₂CH₂CH₂CH₃), 22.66 (CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 14.13 (CH₂CH₂CH₂CH₂CH₂CH₃). Anal. Calcd. for C₁₆H₂₃N₃: C, 74.67; H, 9.01; N, 16.33. Found: C, 74.30; H, 8.51; N, 15.90.

Purple crystalline solid. Yield: 550.7 mg, 90%. Crystals suitable for X-ray crystallography were obtained by cooling a concentrated diethyl ether solution to -35 °C. ¹H NMR (500 MHz, C₆D₆): δ 7.44 – 7.36 (m, 2H, Ph-*H*), 7.18 – 7.12 (m,

2H, Ph-*H*), 6.90 (tt, J = 7.2, 1.2 Hz, 1H, Ph-*H*), 6.83 (s, 1H, triazole-*H*), 6.54 (s, 2H, Mes-*H*), 4.47 (s, 1H, C*H*), 3.52 (q, J = 7.2 Hz, 2H, C*H*₂CH₃), 1.99 (s, 3H, Mes-C*H*₃), 1.85 (s, 6H, Mes-C*H*₃), 1.10 (t, J = 7.2 Hz, 3H, CH₂CH₃). ¹³C NMR (126 MHz, C₆D₆): δ 143.70 (Ph-*C*), 142.57 (triazole-*C*), 140.25 (Mes-*C*), 134.93 (Mes-*C*), 133.91 (Mes-*C*), 129.27 (Mes-*C*), 128.99 (Ph-*C*), 121.40 (Ph-*C*), 116.77 (Ph-*C*), 110.73 (triazole-*C*), 65.52 (*C*H), 42.08 (*C*H₂CH₃), 20.93 (Mes-*C*H₃), 16.65 (Mes-*C*H₃), 12.20 (CH₂*C*H₃). Anal. Calcd for C₂₀H₂₃N₃: C, 78.65; H, 7.59; N, 13.76. Found: C, 78.11; H, 7.83; N, 13.95.

Purple crystalline solid. Yield: 620.5 mg, 84%. Crystals suitable for X-ray crystallography were obtained by cooling a concentrated diethyl ether solution to $-35 \,^{\circ}$ C. ¹H NMR (500 MHz, C₆D₆): δ 7.37 – 7.32 (m, 2H, Ph-*H*), 7.21 – 7.17 (m, 2H, Ph-*H*), 7.11 (t, *J* = 7.6 Hz, 2H, Ph-*H*), 7.09 – 7.06 (m, 2H, Ph-*H*), 7.05 – 7.00 (m, 1H, Ph-*H*), 6.91 – 6.85 (m, 1H, Ph-*H*), 6.84 (s, 1H, triazole-*H*), 6.52 (s, 2H, Mes-*H*), 4.81 (s, 2H, C*H*₂), 4.58 (s, 1H, C*H*), 1.98 (s, 3H, Mes-C*H*₃), 1.87 (s, 6H, Mes-C*H*₃). ¹³C NMR (126 MHz, C₆D₆): δ 143.29, 143.05, 140.29

(Mes-*C*), 135.78 (Ph-*C*), 134.90 (Mes-*C*), 133.84 (Mes-*C*), 129.28 (Mes-*C*), 128.96 (Ph-*C*), 128.91 (Ph-*C*), 127.91 (Ph-*C*), 127.78 (Ph-*C*), 121.70 (Ph-*C*), 117.26 (Ph-*C*), 111.12 (triazole-*C*), 66.71 (*C*H), 50.37 (*C*H₂), 20.92 (Mes-*C*H₃), 16.69 (Mes-*C*H₃). Anal. Calcd. for C₂₅H₂₅N₃: C, 81.71; H, 6.86; N, 11.43. Found: C, 81.33; H, 7.59; N, 12.07.

From 1.1 g (2.2 mmol) of 4-benzyl-1-mesityl-3-phenyl-1,2,3-triazolium triflate and 438.9 mg, 2.2 mmol of KHMDS. Blue green crystalline solid. Yield: 551.0 mg, 71%. Crystals suitable for X-ray crystallography were obtained by cooling a

concentrated diethyl ether solution to -35 °C. ¹H NMR (500 MHz, C₆D₆): δ 7.79 – 7.74 (m, 2H, Ph-*H*), 7.38 – 7.31 (m, 2H, Ph-*H*), 7.15 – 7.12 (m, 2H, Ph-*H*), 7.11 – 7.06 (m, 2H, Ph-*H*), 6.97 (d, *J* = 0.7 Hz, 1H, triazole-*H*), 6.92 (tq, *J* = 7.2, 1.3 Hz, 2H, Ph-*H*), 6.54 (q, *J* = 0.8 Hz, 1H, Mes-*H*), 5.45 (s, 1H, C*H*), 1.98 (s, 3H, Mes-C*H*₃), 1.93 (s, 6H, Mes-C*H*₃). ¹³C NMR (126 MHz, C₆D₆): δ 142.71, 142.69, 140.33 (Mes-C), 138.63 (Ph-C), 134.89 (Mes-C), 133.82 (Mes-C), 129.63 (Ph-C), 129.32 (Mes-C), 128.98 (Ph-C), 127.11 (Ph-C), 123.83 (Ph-C), 122.54 (Ph-C), 118.53 (Ph-C), 111.25 (triazole-*C*), 70.21 (*C*H), 20.92 (Mes-*C*H₃), 16.71 (Mes-*C*H₃). Anal. Calcd. for C₂₄H₂₃N₃•0.2C₄H₁₀O: C, 80.88; H, 6.84; N, 11.41. Found: C, 80.82; H, 6.64; N, 11.64.

Dark green crystalline solid. Yield: 541.2 mg, 74%. Crystals suitable for X-ray crystallography were obtained by cooling a concentrated diethyl ether solution to -35 °C. ¹H NMR (500 MHz, C₆D₆): δ 7.55 (dq, J = 8.6, 1.8 Hz, 4H, Ph-*H*), 7.29

- 7.20 (m, 4H, Ph-*H*), 6.97 (s, 1H, triazole-*H*), 6.92 (tt, *J* = 7.2, 1.2 Hz, 2H, Ph-*H*), 6.51 – 6.44 (m, 2H, Mes-*H*), 2.94 (s, 3H, N-C*H*₃), 1.96 (s, 3H, Mes-C*H*₃), 1.86 (s, 6H, Mes-C*H*₃). ¹³C NMR (126 MHz, C₆D₆): δ 146.66 (triazole-*C*), 146.07 (Ph-*C*), 140.21 (Mes-*C*), 134.56 (Mes-*C*), 133.44 (Mes-*C*), 129.29 (Mes-*C*),

128.87 (Ph-C), 127.44 (Ph-C), 121.07 (Ph-C), 118.91 (triazole-C), 79.04 (CPh₂), 38.40 (N-CH₃), 20.89 (Mes-CH₃), 16.70 (Mes-CH₃). Anal. Calcd. for C₂₅H₂₅N₃•0.1C₅H₁₂: C, 81.74; H, 7.05; N, 11.21. Found: C, 82.39; H, 6.76; N, 10.83.

Syntheses of pyrazolo[3,4-d][1,2,3]triazoles:

From isolated mNHO 1a-e and 1h-k:

To a stirring solution of mNHO (0.5 mmol) in THF (5 mL) was added 1-azido-4-(trifluoromethyl)benzene (93.6 mg, 0.5 mmol) in THF (2 mL). The reaction mixture instantaneously turned from dark color to orange brown color. The reaction mixture was stirred for 3 h at room temperature. All volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel eluted with DCM with 1% Et₃N to afford desired pyrazolo[3,4-d][1,2,3]triazoles.

From *in situ* generated mNHO 1f/1g:

To a cold (-80° C) mixture of triazolium salt (0.5 mmol) and KHMDS (99.7 mg, 0.5 mmol) was added pre-cooled (-80° C) THF (5 mL). The reaction mixture was stirred at -80° C for 30 min. A pre-cooled (-80° C) solution of 1-azido-4-(trifluoromethyl)benzene (93.6 mg, 0.5 mmol) in THF (5 mL) was then added to the mixture. The reaction mixture was slowly warmed to room temperature and stirred for 3 h. All volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel eluted with DCM with 1% Et₃N to afford desired pyrazolo[3,4-d][1,2,3]triazoles.

Yellow solid. 136.7 mg, 86%. Crystals suitable for X-ray crystallography were obtained by vapor diffusion of *n*-pentane into a DCM solution at room temperature. ¹H NMR (500 MHz, CDCl₃): δ 7.93 – 7.85 (m, 2H, Ph-*H*), 7.54 –

7.40 (m, 2H, Ph-*H*), 7.36 – 7.29 (m, 1H, Ph-*H*), 7.04 (s, 2H, Mes-*H*), 4.49 (s, 3H, N-C*H*₃), 2.37 (s, 3H, Mes-C*H*₃), 2.11 (s, 6H, Mes-C*H*₃). ¹³C NMR (126 MHz, CDCl₃): δ 158.82 (N-C-N), 141.38 (Mes-C), 135.53 (Mes-C), 133.93 (triazole-*C*(N)-Ph), 133.07 (Ph-*C*), 130.32 (N-C-C), 129.80 (Mes-*C*), 129.69 (Mes-*C*), 129.04 (Ph-*C*), 127.22 (Ph-*C*), 126.65 (Ph-*C*), 40.07 (N-CH₃), 21.33 (Mes-CH₃), 17.86 (Mes-CH₃). HRMS (ESI): *m/z* calcd for C₁₉H₂₀N₅ [M+H]⁺ 318.1713, found 318.1727. The reaction at 5 mmol scale (1.46 g of **1a**, 0.94 g of 1-azido-4-(trifluoromethyl)benzene) afforded 1.29 g of **2a** (81% yield).

Yellow solid. 125.6 mg, 91%. Crystals suitable for X-ray crystallography were obtained by vapor diffusion of *n*-pentane into a DCM solution at room temperature.
¹H NMR (500 MHz, CDCl₃): δ 8.32 (dd, *J* = 7.5, 1.3 Hz, 2H, Ph-*H*), 7.85 – 7.73 (m, 2H, Ph-*H*), 7.63 – 7.52 (m, 2H, Ph-*H*), 7.50 – 7.43 (m, 1H, Ph-*H*), 7.38 (dd, *J* = 8.4, 7.1 Hz, 2H, Ph-*H*), 7.31 – 7.18 (m, 1H, Ph-*H*), 4.45 (s, 3H, N-CH₃). ¹³C NMR (126 MHz, CDCl₃): δ 156.77 (N-C-N), 135.63 (Ph-C), 133.84 (Ph-C), 132.44 (triazole-C(N)-Ph), 130.60 (N-C-C), 129.98 (Ph-C), 129.31 (Ph-C), 129.00 (Ph-C), 127.37 (Ph-C), 126.59 (Ph-C), 119.75 (Ph-C), 40.23 (N-CH₃). HRMS (ESI): *m/z* calcd for C₁₆H₁₄N₅ [M+H]⁺ 276.12437, found 276.12444.

Yellow solid. 146.5 mg, 88%. Crystals suitable for X-ray crystallography were obtained by vapor diffusion of *n*-pentane into a DCM solution at room temperature. ¹H NMR (500 MHz, CDCl₃): δ 8.24 – 8.19 (m, 2H, ^{*i*}Bu-C₆H₄-),

7.80 - 7.77 (m, 2H, Ph-H), 7.62 - 7.55 (m, 2H, 'Bu-C₆H₄-), 7.42 - 7.34 (m, 2H, Ph-H), 7.25 - 7.21 (m,

1H, Ph-*H*), 4.44 (s, 3H, N-C*H*₃), 1.38 (s, 9H, C(C*H*₃)₃). ¹³C NMR (126 MHz, CDCl₃): δ 156.77 (N-C-N), 152.81 ('Bu-C₆H₄-), 133.71 (Ph-C), 133.15 ('Bu-C₆H₄-), 132.55 (triazole-C(N)-Ph), 130.48 (N-C-C), 128.96 (Ph-C), 127.27 (Ph-C), 126.88 (Ph-C), 126.55 ('Bu-C₆H₄-), 119.48 ('Bu-C₆H₄-), 40.13 (N-CH₃), 35.05 (*C*(CH₃)₃), 31.37 (C(*C*H₃)₃). HRMS (ESI): *m*/*z* calcd for C₂₀H₂₂N₅ [M+H]⁺ 332.18697, found 332.18755.

Yellow solid. 174.9 mg, 97%. Crystals suitable for X-ray crystallography were obtained by vapor diffusion of *n*-pentane into a DCM solution at room temperature. ¹H NMR (600 MHz, CDCl₃): δ 8.15 – 8.05 (m, 2H, pentoxy-

C₆*H*₄-), 7.73 – 7.61 (m, 2H, Ph-*H*), 7.27 (t, J = 7.6 Hz, 2H, Ph-*H*), 7.19 – 7.09 (m, 1H, Ph-*H*), 7.03 – 6.88 (m, 2H, pentoxy-C₆*H*₄-), 4.28 (s, 3H, N-C*H*₃), 3.95 (t, J = 6.6 Hz, 2H, C*H*₂CH₂CH₂CH₂CH₂CH₃), 1.92 – 1.71 (m, 2H, CH₂CH₂CH₂CH₂CH₂CH₃), 1.57 – 1.28 (m, 4H, CH₂CH₂CH₂CH₂CH₃), 0.94 (t, J = 7.1 Hz, 3H, CH₂CH₂CH₂CH₂CH₂CH₃). ¹³C NMR (151 MHz, CDCl₃): δ 159.55 (pentoxy-C₆H₄-), 156.55 (N-C-N), 133.45 (triazole-*C*(N)-Ph), 132.60 (Ph-*C*), 130.23 (N-*C*-C), 128.76 (Ph-*C*), 128.62 (pentoxy-C₆H₄-), 126.87 (Ph-*C*), 126.06 (Ph-*C*), 120.95 (pentoxy-C₆H₄-), 115.26 (pentoxy-C₆H₄-), 68.50 (*C*H₂CH₂CH₂CH₂CH₂CH₃), 39.97 (N-CH₃), 28.92 (CH₂CH₂CH₂CH₂CH₃), 28.21 (CH₂CH₂CH₂CH₂CH₃), 22.53 (CH₂CH₂CH₂CH₂CH₃), 14.09 (CH₂CH₂CH₂CH₂CH₃). HRMS (ESI): *m/z* calcd for C₂1H₂4N₅O [M+H]⁺ 362.1975, found 362.1978.

Yellow solid. 108.7 mg, 74%. Crystals suitable for X-ray crystallography were obtained by vapor diffusion of *n*-pentane into a DCM solution at room temperature. ¹H NMR (500 MHz, CDCl₃): δ 8.38 – 8.29 (m, 2H, F-C₆H₄-), 7.85

- 7.76 (m, 2H, Ph-*H*), 7.48 – 7.36 (m, 2H, Ph-*H*), 7.32 – 7.24 (m, 3H, overlapping, F-C₆H₄- and Ph-*H*),
4.46 (s, 3H, N-CH₃). ¹³C NMR (126 MHz, CDCl₃) δ 162.65 (d, *J* = 250.6 Hz, F-C₆H₄-), 156.66 (N-C-N),

134.06 (triazole-C(N)-Ph), 132.44 (Ph-C), 131.84 (d, J = 3.1 Hz, F- C_6H_4 -), 130.69 (N-C-C), 129.05 (Ph-C), 127.47 (Ph-C), 126.65 (Ph-C), 121.76 (d, J = 8.7 Hz, F-C₆H₄-), 117.08 (d, J = 23.4 Hz, F-C₆H₄-), 40.22 (N-CH₃). ¹⁹F NMR (470 MHz, CDCl₃): δ –110.72 (tt, J = 8.2, 5.3 Hz). HRMS (ESI): m/z calcd for C₁₆H₁₃N₅F [M+H]⁺ 294.1150, found 294.1162.

⊖ ⊕ N−N Yellow solid. 119.8 mg, 70%. Crystals suitable for X-ray crystallography were obtained by vapor diffusion of *n*-pentane into a DCM solution at room 2f temperature. ¹H NMR (500 MHz, CDCl₃): δ 8.48 (dd, J = 8.7, 2.3 Hz, 2H, CF₃- C_6H_{4-}), 7.85 (ddt, J = 8.4, 1.5, 0.8 Hz, 2H, CF₃-C₆H₄₋), 7.81 - 7.75 (m, 2H, Ph-H), 7.39 (td, J = 8.0, 2.4Hz, 2H, Ph-*H*), 7.30 - 7.23 (m, 1H, Ph-*H*), 4.49 (d, J = 1.0 Hz, 3H, N-CH₃). ¹³C NMR (126 MHz, CDCl₃): δ 156.81 (N-C-N), 138.05 (m, CF₃-C₆H₄-), 134.33 (triazole-C(N)-Ph), 132.23 (Ph-C), 131.06 (q, J = 33.3) Hz, CF₃-C₆H₄-), 130.83 (N-C-C), 129.04 (Ph-C), 127.55 (Ph-C), 127.25 (q, J = 3.8 Hz, CF₃-C₆H₄-), 126.54 (Ph-*C*), 123.61 (q, *J* = 272.3 Hz, *C*F₃), 119.91 (CF₃-*C*₆H₄-), 40.49 (N-CH₃). ¹⁹F NMR (470 MHz, CDCl₃): δ –62.68. HRMS (ESI): *m/z* calcd for C₁₇H₁₃N₅F₃ [M+H]⁺ 344.11176, found 344.11185.

Yellow solid. 79.6 mg, 48%. Crystals suitable for X-ray crystallography were obtained by vapor diffusion of n-pentane into a DCM solution at room temperature. ¹H NMR (500 MHz, CDCl₃): δ 8.19 – 8.03 (m, 2H, C₆H₂F₃), 7.86 – 7.75 (m, 2H, Ph-H), 7.50 – 7.40 (m, 2H, Ph-H), 7.36 – 7.28 (m, 1H, Ph-H), 4.50 (s, 3H, N-CH₃). ¹³C NMR $(126 \text{ MHz}, \text{CDCl}_3): \delta 156.55 \text{ (N-C-N)}, 153.43 - 150.30 \text{ (m, } C_6\text{H}_2\text{F}_3), 140.22 \text{ (d, } J = 255.9 \text{ Hz}, C_6\text{H}_2\text{F}_3),$ 134.69 (triazole-C(N)-Ph), 132.20 (Ph-C), 131.03 (N-C-C), 130.69 (m, C₆H₂F₃), 129.14 (Ph-C), 127.76 (Ph-C), 126.73 (Ph-C), 105.36 – 104.80 (m, C₆H₂F₃), 40.46 (N-CH₃). ¹⁹F NMR (564 MHz, CDCl₃): δ -129.43 (dd, J = 20.5, 7.7 Hz), -157.58 (t, J = 20.7 Hz). HRMS (ESI): m/z calcd for C₁₆H₁₁N₅F₃ [M+H]⁺ 330.09611, found 330.09652.

Pale yellow solid. 131.7 mg, 79%. Crystals suitable for X-ray crystallography were obtained by vapor diffusion of *n*-pentane into a DCM solution at room temperature. ¹H NMR (500 MHz, CDCl₃): δ 7.87 – 7.81 (m, 2H, Ph-*H*), 7.48 –

7.41 (m, 2H, Ph-*H*), 7.35 – 7.28 (m, 1H, Ph-*H*), 7.02 (s, 2H, Mes-*H*), 4.78 (q, *J* = 7.3 Hz, 2H, CH₂CH₃), 2.36 (s, 3H, Mes-CH₃), 2.10 (s, 6H, Mes-CH₃), 1.65 (t, *J* = 7.3 Hz, 3H, CH₂CH₃). ¹³C NMR (126 MHz, CDCl₃): δ 158.75 (N-C-N), 141.25 (Mes-C), 135.46 (Mes-C), 133.74 (Ph-C), 133.23 (triazole-*C*(N)-Ph), 130.42 (Mes-*C*), 129.60 (Mes-*C*), 128.91 (Ph-*C*), 128.70 (N-*C*-C), 127.14 (Ph-*C*), 126.72 (Ph-*C*), 48.72 (CH₂CH₃), 21.26 (Mes-*C*H₃), 17.80 (Mes-*C*H₃), 15.32 (CH₂CH₃). HRMS (ESI): *m/z* calcd for C₂₀H_{22N5} [M+H]⁺ 332.18697, found 332.18716.

N-2j Pale yellow solid. 163.1 mg, 83%. Crystals suitable for X-ray crystallography were obtained by vapor diffusion of *n*-pentane into a DCM solution at room temperature. ¹H NMR (500 MHz, CDCl₃): δ 7.77 – 7.69 (m, 2H, Ph-H), 7.41 (t, J

= 7.7 Hz, 2H, Ph-H), 7.35 – 7.27 (m, 4H, Ph-H), 7.24 – 7.18 (m, 2H, Ph-H), 7.04 (s, 2H, Mes-H), 5.85 (s, 2H, CH₂), 2.37 (s, 3H, Mes-CH₃), 2.10 (s, 6H, Mes-CH₃). ¹³C NMR (126 MHz, CDCl₃): δ 158.83 (N-C-N), 141.41 (Mes-C), 135.48 (Mes-C), 134.06, 133.04, 133.02, 130.40 (Mes-C), 129.68 (Mes-C), 129.40 (Ph-C), 129.39 (Ph-C), 129.25, 128.81 (Ph-C), 127.57 (Ph-C), 127.28 (Ph-C), 127.26 (Ph-C), 56.59 (CH₂), 21.32 (Mes-CH₃), 17.87 (Mes-CH₃). HRMS (ESI): m/z calcd for C₂₅H₂₄N₅ [M+H]⁺ 394.20262, found 394.20204.

Yellow solid. 165.4 mg, 87%. Crystals suitable for X-ray crystallography were obtained by vapor diffusion of n-pentane into a DCM solution at room temperature. ¹H NMR (500 MHz, CDCl₃): δ 7.69 – 7.64 (m, 2H, Ph-H), 7.63 – 2k 7.59 (m, 1H, Ph-H), 7.58 – 7.51 (m, 4H, Ph-H), 7.37 – 7.26 (m, 3H, Ph-H), 7.09 (s, 2H, Mes-H), 2.40 (s, 3H, Mes-CH₃), 2.21 (s, 6H, Mes-CH₃). ¹³C NMR (126 MHz, CDCl₃): δ 158.58 (N-C-N), 141.60 (Mes-C), 135.99 (Ph-C), 135.51 (Mes-C), 134.10 (triazole-C(N)-Ph), 132.54 (N-C-C), 130.90 (Ph-C), 130.42 (Mes-C), 129.80 (Ph-C), 129.74 (Mes-C), 128.56 (Ph-C), 128.22 (Ph-C), 127.58 (Ph-C), 127.28 (Ph-C), 123.92 (Ph-C), 21.36 (Mes-CH₃), 18.02 (Mes-CH₃). HRMS (ESI): *m/z* calcd for C₂₄H₂₂N₅ [M+H]⁺ 380.18697, found 380.18694.

To a cold (-35 °C) solution of **1a** (183.7 mg, 0.5 mmol) in toluene (2 mL) was added a cold (-35 °C) solution of 1-azido-4-(trifluoromethyl)benzene (93.6 mg, 0.5 mmol) in *n*-pentane (2 mL). The reaction mixture was stirred for 3 h at -35 °C, affording an off-white suspension. The solid that formed was collected by filtration, washed with cold pentane (3×5 mL), and dried under vacuum. Off-white solid. Yield: 294.3 g, 62%. Crystals suitable for X-ray crystallography were obtained by top-layering a cold (-35 °C) solution of 1-azido-4-(trifluoromethyl)benzene in *n*-pentane onto a cold (-35 °C) solution of **1**azido-4-(trifluoromethyl)benzene in *n*-pentane onto a cold (-35 °C) solution of **1**azido-4-(trifluoromethyl)benzene in *n*-pentane onto a cold (-35 °C) solution. It can be detected by NMR at low temperatures (See section 4). Anal. Calcd. for C₂₆H₂₅N₆F₃•0.2C₇H₈: C, 66.22; H, 5.40; N, 16.91. Found: C, 66.19; H, 5.49; N, 16.74.

To a stirring solution of **11** (183.7 mg, 0.5 mmol) in THF (5 mL) was added 1-azido-4-(trifluoromethyl)benzene (93.6 mg, 0.5 mmol) in THF (2 mL). The reaction mixture instantaneously turned for dark green to yellow. The reaction mixture was stirred for 3 h at room temperature, then filtered. The filtrate was concentrated to ~2 mL. Top-layering with 5 mL of *n*-pentane and cooling to -35 °C afforded crystals of **4** that are suitable for X-ray crystallography. The supernatant was decanted off, and the solid was washed with *n*-pentane (3 × 5 mL) and dried under vacuum (230.4 mg, 83%). ¹H NMR (400 MHz, CDCl₃): δ 7.42 – 7.36 (m, 4H, Ph-*H*), 7.35 – 7.30 (m, 2H, Ph-*H*), 7.30 – 7.25 (m, 2H, CF₃-C₆H₄-), 7.19 (ddd, *J* = 8.2, 1.5, 0.8 Hz, 4H, Ph-*H*), 7.02 (s, 2H, Mes-*H*), 6.87 (d, *J* = 8.0 Hz, 2H, CF₃-C₆H₄-), 6.83 (s, 1H, C*H*), 3.59 (s, 3H, N-C*H*₃), 2.38 (s, 3H, Mes-C*H*₃), 2.09 (s, 6H, Mes-C*H*₃). ¹³C NMR (126 MHz, CDCl₃): δ 155.16 (m, CF₃-C₆H₄-), 152.73 (triazole-*C*), 140.37 (Mes-*C*), 138.53 (Ph-*C*), 134.63 (Mes-*C*), 133.01 (Mes-*C*), 129.41 (Mes-C), 129.16 (Ph-*C*), 128.84 (Ph-*C*), 127.73 (Ph-*C*), 126.71 (triazole-*C*), 125.52 (q, *J* = 32.0 Hz, CF₃-C₆H₄-) 125.31 (q, *J* = 3.8 Hz, CF₃-C₆H₄-), 124.80 (q, *J* = 271.3 Hz, CF₃), 120.63 (CF₃-C₆H₄-), 44.96 (CH), 40.07 (N-CH₃), 21.21 (Mes-CH₃), 17.77 (Mes-CH₃). ¹⁹F NMR (470 MHz, CDCl₃): δ -61.67. HRMS (ESI): *m*/z calcd for C₃₂H₃₀N₆F₃ [M+H]⁺ 555.2479, found 555.2475.

To a stirring suspension of 4-benzyl-3-methyl-1-phenyl-1,2,3-triazolium iodide (430.7 mg, 1.03 mmol) in THF (3 mL) was added DBU (155 μ L, 1.03 mmol) then 1-azido-4-(trifluoromethyl)benzene (210.6 mg, 1.13 mmol) in THF (2 mL). The reaction mixture was stirred overnight resulting a yellow suspension. The solid was collected by filtration and washed with diethyl ether (3 × 1 mL) and *n*-pentane (3 × 1 mL), then filtered. The solid was recrystallized by vapor diffusion of *n*-pentane into its DCM solution. The crystals were washed with cold DCM (-35 °C, 1 mL) and *n*-pentane (3 × 1 mL) and dried under vacuum. (262.2 mg, 61%). ¹H NMR (500 MHz, DMSO-*d*₆): δ 9.67 (s, 1H, triazolium-*H*), 7.87 – 7.82 (m, 2H, Ph-*H*), 7.75 (ddt, *J* = 8.7, 7.1, 1.2 Hz, 1H, Ph-*H*), 7.67 – 7.55 (m, 2H, Ph-*H*), 7.31 – 7.22 (m, 2H, Mes-*H*), 4.35 (s, 3H, N-C*H*₃), 2.39 (s, 3H, Mes-C*H*₃), 2.18 (s, 6H, Mes-C*H*₃). ¹³C NMR (126 MHz, DMSO-*d*₆): δ 154.18 (Ph-*C*(N)-triazolium), 142.30 (Mes-*C*), 135.62 (triazolium-*C*), 134.37 (Mes-*C*), 134.26 (Ph-*C*), 133.95 (triazolium-*C*), 132.29 (Ph-*C*), 131.03 (Mes-*C*), 129.64 (Mes-*C*), 129.41 (Ph-*C*), 128.93 (Ph-*C*), 40.45 (N-CH₃), 20.74 (Mes-*C*H₃), 16.71 (Mes-*C*H₃). HRMS (ESI): *m/z* calcd for ½(C₃₈H₄₀N₈) ½[M–2I]²⁺ 304.1682, found 304.1687.

2. NMR spectra

Figure S2. ¹³C NMR (126 MHz, CDCl₃) spectrum of 4-benzyl-1-(*tert*-butylphenyl)-1,2,3-triazole.

Figure S4. ¹³C NMR (126 MHz, CDCl₃) spectrum of 4-benzyl-1-(4-pentoxyphenyl)-1,2,3-triazole.

Figure S6. ¹³C NMR (126 MHz, CDCl₃) spectrum of 4-benzyl-1-(3,4,5-trifluorophenyl)-1,2,3-triazole.

Figure S8. ¹H NMR (500 MHz, CDCl₃) spectrum of 4-benzyl-1-hexyl-1,2,3-triazole.

Figure S10. ¹H NMR (600 MHz, CDCl₃) spectrum of 4-benzhydryl-1-mesityl-1,2,3-triazole.

Figure S12. ¹H NMR (500 MHz, CDCl₃) spectrum of 4-benzyl-3-methyl-1-phenyl-1,2,3-triazolium iodide.

iodide.

Figure S14. ¹H NMR (600 MHz, CDCl₃) spectrum of 4-benzyl-3-methyl-1-phenyl-1,2,3-triazolium iodide.

Figure S15. ¹³C NMR (151 MHz, CDCl₃) spectrum of 4-benzyl-3-methyl-1-phenyl-1,2,3-triazolium iodide.

Figure S16. ¹H NMR (500 MHz, CDCl₃) spectrum of 4-benzyl-1-(4-(*tert*-butyl)phenyl)-3-methyl-1,2,3-triazolium iodide.

Figure S17. ¹³C NMR (126 MHz, CDCl₃) spectrum of 4-benzyl-1-(4-(*tert*-butyl)phenyl)-3-methyl-1,2,3-triazolium iodide.

Figure S18. ¹H NMR (500 MHz, CDCl₃) spectrum of 4-benzyl-3-methyl-1-(4-(pentyloxy)phenyl)-1,2,3-triazolium tetrafluoroborate.

Figure S20. ¹H NMR (500 MHz, CDCl₃) spectrum of 4-benzyl-1-(4-fluorophenyl)-3-methyl-1,2,3triazolium iodide.

Figure S21. ¹³C NMR (126 MHz, CDCl₃) spectrum of 4-benzyl-1-(4-fluorophenyl)-3-methyl-1,2,3-triazolium iodide.

<u> </u>	\sim	c	4	S	ø	\sim
<u> </u>						
ര്	сċ.	ര്	ര്	сċ.	ι C	сi
õ	õ	õ	õ	õ	õ	õ
₩,	ž	ž	ž	Ξ	ž	÷
- i -	÷1.	÷н.	÷н.	÷г.	÷1.	1 I.
_		_	_	_		

Figure S22. ¹⁹F NMR (470 MHz, CDCl₃) spectrum of 4-benzyl-1-(4-fluorophenyl)-3-methyl-1,2,3-triazolium iodide.

Figure S23. ¹H NMR (500 MHz, CDCl₃) spectrum of 4-benzyl-3-methyl-1-(4-(trifluoromethyl)phenyl)-1,2,3-triazolium iodide.

Figure S24. ¹³C NMR (126 MHz, CDCl₃) spectrum of 4-benzyl-3-methyl-1-(4-(trifluoromethyl)phenyl)-1,2,3-triazolium iodide.

Figure S26. ¹H NMR (500 MHz, CDCl₃) spectrum of 4-benzyl-3-methyl-1-(3,4,5-trifluorophenyl)-1,2,3-triazolium iodide.

Figure S28. ¹⁹F NMR (470 MHz, CDCl₃) spectrum of 4-benzyl-3-methyl-1-(3,4,5-trifluorophenyl)-1,2,3-triazolium iodide.

-50

-100

-150

50

0

Figure S29. ¹H NMR (500 MHz, CDCl₃) spectrum of 4-benzyl-1-hexyl-3-methyl-1,2,3-triazolium tetrafluoroborate.

Figure S30 ¹³C NMR (126 MHz, CDCl₃) spectrum of 4-benzyl-1-hexyl-3-methyl-1,2,3-triazolium tetrafluoroborate.

Figure S31. ¹H NMR (500 MHz, CDCl₃) spectrum of 4-benzyl-3-ethyl-1-mesityl-1,2,3-triazolium bromide.

Figure S32. ¹³C NMR (126 MHz, CDCl₃) spectrum of 4-benzyl-3-ethyl-1-mesityl-1,2,3-triazolium bromide.

Figure S34. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3,4-dibenzyl-1-mesityl-1,2,3-triazolium bromide.

Figure S35. ¹H NMR (500 MHz, CDCl₃) spectrum of 4-benzyl-1-mesityl-3-phenyl-1,2,3-triazolium triflate.

146.50 142.77 134.61 134.01 133.36 133.36 133.36 133.36 133.36 132.62 133.36 132.62 133.36 132.62 132.62 122.96 112.96 112.96 112.796 112.796 112.796 112.796 112.759	77.42 cdcl3 77.16 cdcl3 76.91 cdcl3	<pre><30.35 </pre>
---	---	-----------------------

Figure S36. ¹³C NMR (126 MHz, CDCl₃) spectrum of 4-benzyl-1-mesityl-3-phenyl-1,2,3-triazolium triflate.

Figure S37. ¹H NMR (500 MHz, CDCl₃) spectrum of 4-benzhydryl-1-mesityl-3-methyl-1,2,3-triazolium triflate.

Figure S38. ¹³C NMR (126 MHz, CDCl₃) spectrum of 4-benzhydryl-1-mesityl-3-methyl-1,2,3-triazolium triflate.

Figure S39. ¹H NMR (500 MHz, C₆D₆) spectrum of 1b.

Figure S40. ¹³C NMR (126 MHz, C₆D₆) spectrum of 1b.

Figure S41. ¹H NMR (500 MHz, C_6D_6) spectrum of 1c.

Figure S42. ¹³C NMR (126 MHz, C₆D₆) spectrum of 1c.

Figure S43. ¹H NMR (500 MHz, C₆D₆) spectrum of 1d.

Figure S44. ¹³C NMR (126 MHz, C₆D₆) spectrum of 1d.

Figure S45. ¹H NMR (500 MHz, C₆D₆) spectrum of 1e.

Figure S46. ¹³C NMR (126 MHz, C₆D₆) spectrum of 1e.

Figure S47. ¹⁹F NMR (470 MHz, C₆D₆) spectrum of 1e.

Figure S48. ¹H NMR (500 MHz, C₆D₆) spectrum of 1h.

Figure S49. ¹³C NMR (126 MHz, C₆D₆) spectrum of 1h.

Figure S50. ¹H NMR (500 MHz, C₆D₆) spectrum of 1i.

Figure S51. ¹³C NMR (126 MHz, C₆D₆) spectrum of 1i.

Figure S52. ¹H NMR (500 MHz, C₆D₆) spectrum of 1j.

Figure S53. ¹³C NMR (126 MHz, C₆D₆) spectrum of 1j.

Figure S54. ¹H NMR (500 MHz, C₆D₆) spectrum of 1k.

Figure S55. ¹³C NMR (126 MHz, C₆D₆) spectrum of 1k.

Figure S56. ¹H NMR (500 MHz, C₆D₆) spectrum of 11.

Figure S57. ¹³C NMR (126 MHz, C₆D₆) spectrum of 11.

Figure S58. ¹H NMR (500 MHz, CDCl₃) spectrum of 2a.

Figure S59. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2a.

Figure S60. ¹H NMR (500 MHz, CDCl₃) spectrum of 2b.

Figure S61. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2b.

Figure S62. ¹H NMR (500 MHz, CDCl₃) spectrum of 2c.

Figure S63. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2c.

Figure S64. ¹H NMR (600 MHz, CDCl₃) spectrum of 2d.

Figure S65. ¹³C NMR (151 MHz, CDCl₃) spectrum of 2d.

Figure S66. ¹H NMR (500 MHz, CDCl₃) spectrum of 2e.

Figure S67. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2e.

Figure S68. ¹⁹F NMR (470 MHz, CDCl₃) spectrum of 2e.

Figure S69. ¹H NMR (500 MHz, CDCl₃) spectrum of 2f.

Figure S70. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2f.

Figure S71. ¹⁹F NMR (470 MHz, CDCl₃) spectrum of 2f.

Figure S72. ¹H NMR (500 MHz, CDCl₃) spectrum of 2g.

Figure S73. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2g.

Figure S74. ¹⁹F NMR (564 MHz, CDCl₃) spectrum of 2g.

Figure S75. ¹H NMR (500 MHz, CDCl₃) spectrum of 2h.

Figure S76. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2h

Figure S77. ¹H NMR (500 MHz, CDCl₃) spectrum of 2i.

Figure S78. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2i.

Figure S79. ¹H NMR (500 MHz, CDCl₃) spectrum of 2j.

Figure S80. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2j.

Figure S81. ¹H NMR (500 MHz, CDCl₃) spectrum of 2k.

Figure S82. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2k.

Figure S83. ¹H NMR (500 MHz, CDCl₃) spectrum of 4.

Figure S84. ¹³C NMR (126 MHz, CDCl₃) spectrum of 4.

Figure S85. ¹⁹F NMR (470 MHz, CDCl₃) spectrum of 4.

Figure S86. ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of 6.

Figure S87. ¹³C NMR (126 MHz, DMSO-*d*₆) spectrum of 6.

3. NMR spectra of the reaction mixtures of 2a and different organic azides

To a THF- d_8 solution of **1a** (74.2 μ M, 500 μ L, 37.1 μ mol) in was added a THF- d_8 solution of azide (291.8 mM, 117 μ L, 34.0 μ mol) at room temperature. The solution was transferred to an NMR tube and NMR spectra were collected.

Figure S88. ¹H NMR spectrum (600 MHz, THF- d_8) of the reaction mixture of 1a and 1-azido-4-(trifluoromethyl)benzene at room temperature in THF- d_8 .

Figure S89. ¹⁹F NMR spectrum (564 MHz, THF- d_8) of the reaction mixture of **1a** and 1-azido-4-(trifluoromethyl)benzene at room temperature in THF- d_8 .

Figure S90. ¹H NMR spectrum (600 MHz, THF- d_8) of the reaction mixture of **1a** and azidobenzene at room temperature in THF- d_8 .

Figure S91. ¹H NMR spectrum (600 MHz, THF-*d*₈) of the reaction mixture of **1a** and diphenylphosphoryl azide at room temperature in THF-*d*₈.

Figure S92. ³¹H NMR spectrum (243 MHz, THF- d_8) of the reaction mixture of **1a** and diphenylphosphoryl azide at room temperature in THF- d_8 .

Figure S93. ¹H NMR spectrum (600 MHz, THF- d_8) of the reaction mixture of **1a** and tosyl azide at room temperature in THF- d_8 .

4. Detecting 3 at low temperature

A THF- d_8 solution of **1a** (74.2 μ M, 500 μ L, 37.1 μ mol) in was transferred to an NMR tube. The NMR tube was then sealed with septum, immersed into a dry ice / isopropanol bath (-78 °C). To the sample was added a THF- d_8 solution of 1-azido-4-(trifluoromethyl)benzene (291.8 mM, 117 μ L, 34.0 μ mol). The sample was then inserted into a 600 MHz NMR spectrometer which had been pre-cooled to -30 °C and calibrated. ¹H and ¹⁹F NMR spectra were collected at -30 °C.

¹H NMR (600 MHz, THF-*d*₈, 223 K): δ 10.28 (s, 1H, triazolium-*H*), 7.63 – 7.61 (m, 2H, CF₃-C₆*H*₄-), 7.21 (d, J = 8.4 Hz, 2H, CF₃-C₆*H*₄-), 7.13 – 7.01 (m, 5H, Ph-*H*), 7.01 (s, 1H, Mes-*H*), 6.90 (s, 1H, Mes-*H*), 6.27 (s, 1H, C*H*), 4.53 (s, 3H, N-C*H*₃), 2.26 (s, 3H, Mes-C*H*₃), 2.04 (s, 3H, Mes-C*H*₃), 1.60 (s, 3H, Mes-C*H*₃). ¹⁹F NMR (564 MHz, THF-*d*₈, 223 K): δ –62.70.

Figure S94. ¹H NMR (600 MHz, THF- d_8) of the reaction mixture of **1a** and 1-azido-4-(trifluoromethyl)benzene in THF- d_8 at -30 °C. Peaks with integrations are from compound **3**.

Figure S95. ¹⁹F NMR (564 MHz, THF-*d*₈) spectrum of the reaction mixture of **1a** and 1-azido-4- (trifluoromethyl)-benzene in THF-*d*₈ at -30 °C.

5. X-ray crystallography

The X-ray diffraction data were collected on a Bruker Kappa Apex II / Photon II diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at 150 K or 220 K (for **2d**) controlled by an Oxford Cryostream 700 series low-temperature system and processed with the Bruker Apex 3 software package.¹⁰ The structures were solved by direct methods and refined using SHELX-2016 software package.^{11,12} All non-hydrogen atoms were refined anisotropically except for some of the atoms of the disordered phenyl group in **1b**. The diffuse residual electron density, Solvent Accessible Volume = 211 Å³, # Electrons Found in S.A.V. = 82 in the lattice of **2k**, Solvent Accessible Volume = 1489 Å³, # Electrons Found in S.A.V. = 546 in the lattice of **3**, Solvent Accessible Volume = 397 Å³, # Electrons Found in S.A.V. = 546 in the lattice of **3**, Solvent Accessible Volume = 397 Å³, # Electrons Found in S.A.V. = 546 in the lattice of **3**, Solvent Accessible Volume = 397 Å³, # Electrons Found in S.A.V. = 546 in the lattice of **3**, Solvent Accessible Volume = 397 Å³, # Electrons Found in S.A.V. = 546 in the lattice of **3**, Solvent Accessible Volume = 397 Å³, # Electrons Found in S.A.V. = 546 in the lattice of **3**, Solvent Accessible Volume = 397 Å³, # Electrons Found in S.A.V. = 546 in the lattice of **3** were removed with the SQUEEZE function of PLATON¹³ and was not included in the formula or the refinement. Selected crystallographic data are summarized in Tables S1–S5.

Figure S96. X-ray structure of **1b**. Thermal ellipsoids are shown at 50% probability level. All hydrogen atoms are omitted for clarity. Only one orientation of the disordered molecule is shown.

Figure S97. X-ray structure of **1c**. Thermal ellipsoids are shown at 50% probability level. All hydrogen atoms are omitted for clarity.

Figure S98. X-ray structure of **1d**. Thermal ellipsoids are shown at 50% probability level. All hydrogen atoms are omitted for clarity.

Figure S99. X-ray structure of **1e**. Thermal ellipsoids are shown at 50% probability level. All hydrogen atoms are omitted for clarity.

Figure S100. X-ray structure of **1h**. Thermal ellipsoids are shown at 50% probability level. All hydrogen atoms are omitted for clarity.

Figure S101. X-ray structure of **1i**. Thermal ellipsoids are shown at 50% probability level. All hydrogen atoms are omitted for clarity.

Figure S102. X-ray structure of **1j**. Thermal ellipsoids are shown at 50% probability level. All hydrogen atoms are omitted for clarity.

Figure S103. X-ray structure of **1k**. Thermal ellipsoids are shown at 50% probability level. All hydrogen atoms are omitted for clarity.

Figure S104. X-ray structure of **11**. Thermal ellipsoids are shown at 50% probability level. All hydrogen atoms are omitted for clarity.

	1b	1c	1d	1e	1h
Empirical formula	C ₁₆ H ₁₅ N ₃	$C_{20}H_{23}N_3$	C ₂₁ H ₂₅ N ₃ O	$C_{16}H_{14}N_3F$	$C_{16}H_{26}N_3$
FW (g·mol ⁻¹)	249.31	305.41	335.44	267.30	257.37
Crystal system	Orthorhombic	Monoclinic	Monoclinic	Orthorhombic	Monoclinic
Space Group	Fdd2	$P2_1/n$	$P2_1/c$	P212121	$P2_1/c$
Ζ	16	4	8	8	4
<i>a</i> (Å)	23.99(2)	12.944(4)	8.327(7)	11.0959(5)	13.300(7)
<i>b</i> (Å)	38.69(4)	9.040(4)	14.46(1)	15.0897(7)	7.486(4)
<i>c</i> (Å)	5.573(6)	14.465(5)	29.68(2)	16.0556(6)	14.731(7)
α (deg)	90	90	90	90	90
β (deg)	90	100.393(12)	93.26(3)	90	93.762(17)
γ (deg)	90	90	90	90	90
$V(Å^3)$	5172(9)	1664.8(10)	3568(5)	2688.2(2)	1463.5(13)
$D_{\text{calcd}}, (g \cdot \text{cm}^{-3})$	1.281	1.218	1.249	1.321	1.168
μ (mm ⁻¹)	0.078	0.073	0.078	0.090	0.070
<i>F</i> (000)	2112	656	1440	1120	560
no. of obsd reflns	1510	3647	3804	5227	2039
no. of params refnd	176	212	456	363	175
goodness of fit	1.047	1.100	1.152	1.033	1.008
R_1 (I>2 σ)	0.0710	0.0462	0.1096	0.0335	0.0603
wR ₂	0.1794	0.1448	0.2983	0.0805	0.1515

 Table S1. Selected crystallographic data for compounds 1a, 1c, 1d, 1e, and 1h.

	1i	1j	1k	11
Empirical formula	C ₂₀ H ₂₃ N ₃	C ₂₅ H ₂₅ N3	C ₂₄ H ₂₃ N ₃	C ₂₅ H ₂₅ N ₃
FW (g·mol ⁻¹)	305.41	367.48	353.45	367.48
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic
Space Group	P21	C2/c	P-1	$P2_1/c$
Ζ	2	16	4	4
<i>a</i> (Å)	9.464(3)	22.126(7)	11.110(7)	7.9028(7)
<i>b</i> (Å)	7.518(2)	22.131(6)	12.493(9)	12.5696(8)
<i>c</i> (Å)	12.116(3)	17.067(5)	14.899(12)	20.7598(18)
α (deg)	90	90	75.149(18)	90
β (deg)	92.972(13)	91.565(13)	73.50(2)	95.571(3)
γ (deg)	90	90	87.94(4)	90
$V(\text{\AA}^3)$	860.9(4)	8354(4)	1915(2)	2052.4(3)
$D_{\text{calcd}}, (g \cdot \text{cm}^{-3})$	1.178	1.169	1.226	1.189
$\mu (\mathrm{mm}^{-1})$	0.070	0.069	0.073	0.071
F(000)	328	3136	752	784
no. of obsd reflns	2861	5312	3711	3740
no. of params refnd	213	512	495	257
goodness of fit	0.967	1.054	0.895	1.052
R ₁ (Ι>2σ)	0.0369	0.0840	0.0704	0.0452
wR ₂	0.0822	0.2441	0.1326	0.1291

Table S2. Selected crystallographic data for compounds 1i, 1j, 1k and 1l.

	2a	2b•(CH ₂ Cl ₂)	2c	2d	2e
Empirical formula	$C_{19}H_{19}N_5$	$C_{17}H_{15}N_5Cl_2$	$C_{20}H_{21}N_5$	C ₂₁ H ₂₃ N ₅ O	$C_{16}H_{12}N_5F$
FW (g·mol ⁻¹)	317.39	360.24	331.42	361.44	293.31
Crystal system	Monoclinic	Triclinic	Triclinic	Monoclinic	Monoclinic
Space Group	P21/c	P-1	P-1	$P2_1/c$	P21
Ζ	4	2	4	4	4
<i>a</i> (Å)	8.704(3)	6.907(3)	6.858(2)	14.645(5)	7.2146(14)
<i>b</i> (Å)	15.441(5)	10.401(4)	15.868(5)	12.306(3)	11.816(2)
<i>c</i> (Å)	12.626(4)	12.709(4)	17.842(5)	10.398(3)	16.161(4)
α (deg)	90	102.837(12)	66.888(9)	90	90
β (deg)	91.212(17)	102.334(13)	89.896(10)	96.185(10)	102.558(7)
γ (deg)	90	99.423(14)	82.855(10)	90	90
$V(Å^3)$	1696.5(10)	848.0(5)	1769.5(9)	1862.9(10)	1344.7(5)
$D_{\text{calcd}}, (g \cdot \text{cm}^{-3})$	1.243	1.411	1.244	1.289	1.449
μ (mm ⁻¹)	0.077	0.391	0.077	0.083	0.101
<i>F</i> (000)	672	372	704	768	608
no. of obsd reflns	2386	2807	4582	2237	6835
no. of params refnd	222	218	454	254	399
goodness of fit	1.038	1.079	1.043	1.012	0.988
R_1 (I>2 σ)	0.0574	0.0452	0.0726	0.0636	0.0348
wR ₂	0.1509	0.1261	0.1983	0.1867	0.0827

Table S3. Selected crystallographic data for compounds 2a, 2b•(CH₂Cl₂), 2c, 2d and 2e.

	2f	2g	2h	2i	2j
Empirical formula	$C_{17}H_{12}N_5F_3$	$C_{16}H_{10}N_5F_3$	C16H21N5	$C_{20}H_{21}N_5$	C ₂₅ H ₂₃ N ₅
FW (g·mol ⁻¹)	343.32	329.29	283.38	331.42	393.48
Crystal system	Triclinic	Triclinic	Monoclinic	Monoclinic	Orthorhombic
Space Group	P-1	P-1	$P2_1/c$	$P2_1/c$	Pbca
Ζ	4	2	4	4	8
<i>a</i> (Å)	11.812(6)	7.229(2)	13.043(4)	8.6431(16)	19.342(7)
<i>b</i> (Å)	11.965(6)	7.692(2)	16.924(5)	15.692(2)	7.811(3)
<i>c</i> (Å)	13.312(6)	13.893(4)	7.147(2)	13.006(2)	27.328(3)
α (deg)	115.153(14)	100.422(10)	90	90	90
β (deg)	99.218(15)	93.394(11)	97.239(17)	91.965(6)	90
γ (deg)	109.557(14)	101.959(11)	90	90	90
$V(Å^3)$	1500.4(12)	739.5(4)	1564.9(8)	1762.9(5)	4129(3)
$D_{\text{calcd}}, (g \cdot \text{cm}^{-3})$	1.520	1.479	1.203	1.249	1.266
μ (mm ⁻¹)	0.121	0.120	0.075	0.077	0.077
F(000)	704	336	608	704	1664
no. of obsd reflns	4525	2403	2228	3547	3822
no. of params refnd	453	219	211	231	275
goodness of fit	1.049	0.999	1.046	1.038	1.065
R_1 (I>2 σ)	0.0614	0.0371	0.0609	0.0407	0.0432
wR ₂	0.1561	0.1044	0.1883	0.1196	0.1220

Table S4. Selected crystallographic data for compounds 2f, 2g, 2h, 2i and 2j.

	2k	3	4•(C4H8O)	6
Empirical formula	$C_{24}H_{21}N_5$	$C_{26}H_{25}N_6F_3$	C ₃₆ H ₃₇ N ₆ F ₃ O	$C_{38}H_{40}N_8I_2$
FW (g·mol ⁻¹)	379.46	478.52	626.71	862.58
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space Group	$P2_1/c$	C2/c	$P2_1/c$	$P2_1/c$
Ζ	4	8	4	2
a (Å)	12.612(7)	32.987(16)	14.323(6)	14.919(6)
<i>b</i> (Å)	19.074(12)	16.616(7)	15.575(7)	16.322(6)
<i>c</i> (Å)	8.914(5)	11.427(5)	14.988(7)	8.526(3)
α (deg)	90	90	90	90
β (deg)	99.301(19)	105.17(2)	103.939(15)	92.459(14)
γ (deg)	90	90	90	90
$V(Å^3)$	2116(2)	6045(5)	3245(3)	2075.6(14)
$D_{\text{calcd}}, (g \cdot \text{cm}^{-3})$	1.191	1.052	1.283	1.380
μ (mm ⁻¹)	0.073	0.078	0.091	1.549
<i>F</i> (000)	800	2000	1320	860
no. of obsd reflns	2822	3214	4273	3093
no. of params refnd	266	325	439	222
goodness of fit	1.054	1.052	1.042	1.027
R ₁ (I>2σ)	0.0797	0.0967	0.0859	0.0536
wR ₂	0.2595	0.3110	0.2667	0.1374

Table S5. Selected crystallographic data for compounds 2k, 3, $4 \cdot (C_4H_8O)$ and 6.

6. Computation

All calculations were performed using Gaussian 16, Revision B.01¹⁴ with B3LYP^{15,16} functionals. The 6-31G* basis set was used for all elements. Structures were optimized with PCM solvent correction (solvent = tetrahydrofuran) and the D3 version of Grimme's dispersion correction with the original D3 damping function.¹⁷ Frequency analysis was then performed to confirm that the structure is a ground state or a transition state as appropriate and to obtain the thermodynamic data.

Or	timized x.v.z-	coordinates		1	1.455866000	7.381363000
Ar	N3			6	2.686120000	1.328951000
G=	-732.861144 Hai	rtree		9	3.334809000	1.188442000
7	-0.384440000	0.055198000	-0.323176000	9	3.398774000	0.624571000
7	-0.733053000	-0.237601000	0.720969000	9	1.501490000	0.649826000
7	0.139697000	0.340512000	-1.408640000			
6	-0.697603000	0.774105000	-2.466877000	1a		
6	-0.050847000	1.077358000	-3.673670000	G =	-900.629524 Hai	rtree
6	-2.091418000	0.904331000	-2.359620000	7	0.902919000	2.366267000
6	-0.793799000	1.507103000	-4.768650000	7	1.425909000	2.472116000
6	-2.829082000	1.334616000	-3.459566000	6	2.129264000	5.394927000
6	-2.184528000	1.633179000	-4.665172000	6	1.415340000	5.213762000
1	1.026865000	0.970473000	-3.742550000	7	0.290742000	3.517770000
1	-2.600999000	0.670585000	-1.429508000	6	1.168365000	3.698885000
1	-0.291735000	1.737872000	-5.702389000	6	-0.406249000	3.771789000
1	-3.906744000	1.431483000	-3.376927000	6	-1.755140000	4.277493000
6	-2.980145000	2.145023000	-5.829496000	6	1.649729000	4.016080000
9	-3.108812000	3.506183000	-5.807502000	6	0.391569000	4.362491000
9	-2.410945000	1.840326000	-7.024714000	6	-0.425936000	4.688850000
9	-4.245170000	1.649017000	-5.854460000	6	-2.391889000	3.609708000
				6	-1.735005000	3.340831000
Ar	NH ₂			6	0.506608000	6.252523000
G =	-624.613424 Hai	rtree		6	1.064696000	7.537312000
7	1.819439000	6.757829000	1.612137000	6	0.276483000	4.446159000
6	1.999893000	5.432537000	1.244756000	6	1.960308000	6.521045000
6	2.092442000	4.420215000	2.223560000	6	-2.476381000	4.523909000
1	1.980813000	4.676634000	3.274034000	6	0.341744000	7.381303000
6	2.332114000	3.101142000	1.857333000	6	2.196485000	1.375746000
1	2.399999000	2.336711000	2.625494000	6	1.707781000	4.893800000
6	2.489550000	2.756691000	0.507648000	6	-2.423069000	2.613611000
6	2.156577000	5.075025000	-0.110856000	1	-3.424968000	3.289817000
1	2.094397000	5.841302000	-0.879423000	1	2.301351000	3.279776000
6	2.396033000	3.753918000	-0.472155000	1	2.533207000	6.610636000
1	2.513244000	3.499084000	-1.520868000	1	2.182995000	0.555433000
1	1.405299000	6.925273000	2.521358000	1	2.832548000	4.623551000

5	2.686120000	1.328951000	0.118702000
)	3.334809000	1.188442000	-1.069327000
)	3.398774000	0.624571000	1.042064000
)	1.501490000	0.649826000	-0.024432000
la			
G =	-900.629524 Hai	rtree	
7	0.902919000	2.366267000	2.819806000
7	1.425909000	2.472116000	1.581842000
5	2.129264000	5.394927000	-2.304799000
5	1.415340000	5.213762000	-1.084384000
7	0.290742000	3.517770000	2.993541000
5	1.168365000	3.698885000	0.950362000
5	-0.406249000	3.771789000	4.231208000
5	-1.755140000	4.277493000	6.607526000
5	1.649729000	4.016080000	-0.316726000
5	0.391569000	4.362491000	1.939148000
5	-0.425936000	4.688850000	6.439031000
5	-2.391889000	3.609708000	5.553007000
5	-1.735005000	3.340831000	4.346652000
5	0.506608000	6.252523000	-0.740143000
5	1.064696000	7.537312000	-2.734119000
5	0.276483000	4.446159000	5.253372000
5	1.960308000	6.521045000	-3.103846000
5	-2.476381000	4.523909000	7.912347000
5	0.341744000	7.381303000	-1.546331000
5	2.196485000	1.375746000	1.035482000
5	1.707781000	4.893800000	5.076961000
5	-2.423069000	2.613611000	3.216552000
l	-3.424968000	3.289817000	5.669665000
l	2.301351000	3.279776000	-0.778036000
l	2.533207000	6.610636000	-4.025026000
l	2.182995000	0.555433000	1.753376000
l	2.832548000	4.623551000	-2.615091000

0.901334000

1	0.078271000	5.210527000	7.249573000
1	3.229212000	1.694927000	0.855133000
1	0.933370000	8.418880000	-3.355984000
1	2.103355000	5.306711000	6.009084000
1	-1.938653000	1.650949000	3.015591000
1	-3.472693000	2.424228000	3.457789000
1	-0.103043000	6.173038000	0.151999000
1	2.349556000	4.059909000	4.770536000
1	-2.141109000	5.452997000	8.385751000
1	-2.283641000	3 707329000	8 620852000
1	1.753607000	1.049893000	0.088001000
1	-0.046073000	5 343754000	1 981689000
1	1 790599000	5 664987000	4 301823000
1	-3.560077000	4.583070000	7.766545000
1	-2 384256000	3 192787000	2 286553000
1	-0.369129000	8 146776000	-1 240078000
1	-0.307127000	0.140770000	-1.240070000
3			
G=	= -1633.494042 Ha	artree	
7	1.996035000	3.033658000	3.119786000
7	2.120309000	2.906063000	1.806698000
6	2.732116000	6.331655000	-0.494400000
6	1.742380000	5.455708000	-0.963000000
7	1.495981000	4.254610000	3.275744000
6	1.703518000	4.007264000	1.113395000
6	1.183788000	4.747741000	4.597499000
6	0.577302000	5.718487000	7.122746000
6	1.640017000	4.040794000	-0.389042000
6	1.293515000	4.886079000	2.094964000
6	1.866296000	5.866846000	6.592622000
6	-0.397076000	5.063858000	6.356736000
6	-0.120520000	4.564379000	5.079482000
6	0.923234000	5.869063000	-2.019890000
6	2.056252000	8.013923000	-2.101046000
6	2.198972000	5.387629000	5.321189000
6	2.886497000	7.604419000	-1.053427000
6	0.235332000	6.277441000	8.483787000
6	1.077691000	7.138200000	-2.583981000
6	2.642586000	1.653060000	1.253744000
6	3.589621000	5.541379000	4.753723000
6	-1.174758000	3.863174000	4.257697000
1	-1.397747000	4.935076000	6.762735000
1	2.522522000	3,498631000	-0.750935000
1	3 656742000	8 270574000	-0 672433000
1	2 731392000	0.940539000	2.072425000
1	3 392095000	6 022390000	0.313620000
1	2 632464000	6 365368000	7 181789000
1	3 621373000	1 838821000	0.806007000
1	2 171606000	9 002681000	-2 537620000
1	4 227765000	6 106983000	5 437890000
1	-0.826257000	2 88436000	3 908841000
1	-2.084745000	3 711604000	4 844187000
1	0 154171000	5 199835000	-2 390231000
1	4 057286000	4 564739000	4 581264000
1 1	1 119202000	6 334801000	9 12750000
1 1	_0 520012000	5 666763000	8 988768000
1	-0.520712000	5.000/05000	0.200200000

1	1.944037000	1.291591000	0.498256000
1	0.863932000	5.870709000	2.026651000
1	3.574784000	6.067276000	3.791588000
1	-0.172030000	7.292976000	8.391481000
1	-1.443804000	4.445023000	3.369013000
1	0.425835000	7.445563000	-3.398013000
7	-0.685927000	3.492876000	-0.498805000
7	0.507601000	3.178133000	-0.872363000
7	-0.859009000	4.586766000	0.206262000
6	-2.143999000	4.755275000	0.703210000
6	-2.438981000	6.019718000	1.267682000
6	-3.149409000	3.756628000	0.757529000
6	-3.667557000	6.277832000	1.862210000
6	-4.379153000	4.018802000	1.348891000
6	-4.651202000	5.278212000	1.906676000
1	-1.676019000	6.792684000	1.228697000
1	-2.943525000	2.776058000	0.343459000
1	-3.866903000	7.256291000	2.289401000
1	-5.133995000	3.238082000	1.385220000
6	-5.942041000	5.524030000	2.610024000
9	-6.322138000	6.832339000	2.583057000
9	-6.976623000	4.804752000	2.091184000
9	-5.897456000	5.185797000	3.943392000

TS1			
G = -	-1633.464203 H	artree	
Freq	uency -1579.85	571	
7	-1.358272000	-1.759709000	-1.686904000
7	-0.971729000	-1.695928000	-2.959767000
6	-1.939515000	-2.589203000	-5.984378000
6	-1.346308000	-1.319086000	-6.122753000
7	-2.229920000	-0.775798000	-1.564988000
6	-1.603454000	-0.695628000	-3.675641000
6	-2.860489000	-0.527417000	-0.289493000
6	-4.077290000	-0.033148000	2.154176000
6	-1.299385000	-0.311435000	-5.035879000
6	-2.426053000	-0.097649000	-2.723944000
6	-2.947301000	0.696041000	1.759069000
6	-4.577564000	-1.020546000	1.294530000
6	-3.984561000	-1.289716000	0.056230000
6	-0.800582000	-0.984975000	-7.380147000
6	-1.395055000	-3.158484000	-8.279742000
6	-2.314693000	0.468800000	0.532205000
6	-1.952509000	-3.501409000	-7.044081000
6	-4.759648000	0.260676000	3.469634000
6	-0.826776000	-1.887845000	-8.442915000
6	0.090919000	-2.580655000	-3.425495000
6	-1.097744000	1.257048000	0.110243000
6	-4.522841000	-2.357967000	-0.864960000
1	-5.450562000	-1.596444000	1.592951000
1	-0.098271000	0.472958000	-4.826290000
1	-2.415641000	-4.475869000	-6.906338000
1	0.657993000	-2.914734000	-2.557079000
1	-2.416346000	-2.862617000	-5.045791000
1	-2.545015000	1.458406000	2.422238000
1	0.725696000	-2.008973000	-4.106127000

1	-1.409798000	-3.865058000	-9.105487000
1	-0.269560000	0.595031000	-0.168144000
1	-3.803685000	-3.176878000	-0.983865000
1	-5.452681000	-2.777173000	-0.471314000
1	-0.349226000	-0.004636000	-7.513571000
1	-1.312462000	1.888651000	-0.760184000
1	-4.044882000	0.611333000	4.221615000
1	-5.269152000	-0.624790000	3.863885000
1	-0.329827000	-3 434020000	-3 960694000
1	-3 112732000	0 728980000	-2 803034000
1	-0 756821000	1 906713000	0.920767000
1	-5 515925000	1.046853000	3 344000000
1	-4 726676000	-1 958448000	-1 865419000
1	-0.397115000	-1.603158000	-9.400585000
7	-1.26/088000	1 00/177000	-5 228233000
7	1 000232000	0.058425000	-5.228255000
7	-1.999232000	1 730657000	-3.408200000
6	0.011144000	2 721457000	4 682042000
6	2 222 488000	2.721457000	4 225217000
6	2.223488000	2.334303000	4.333217000
6	3 22002/000	3 277006000	4.929803000
6	1 670186000	5.025025000	-4.237282000
6	2 071587000	1 630455000	-4.820794000
1	2.971387000	1.284402000	-4.485218000
1	2.431821000	1.204492000	-4.148029000
1	-0.333120000	2 960085000	-3.201003000
1	1.455163000	2.900083000	5.010602000
6	1.455105000	5 654834000	-3.019092000
0	3 807500000	6 713583000	-4.323181000
9	3.897399000 4.078155000	6 10/211000	-3.10/138000
9	5 202810000	5 152722000	-5.000887000
9	5.292810000	5.152722000	-4.558571000
Int	1		
G=	- 1633.486859 Ha	artree	
7	2.394966000	4.281699000	2.703136000
7	2.770628000	4.145359000	1.445109000
6	1.165099000	1.385876000	-0.544413000
6	1.389826000	2.493270000	-1.394514000
7	1 070293000	4 210467000	2 657523000
6	1.717658000	4.028640000	0.564695000
6	0.299892000	4.245191000	3.879158000
6	-1 204145000	4 292655000	6 210074000
6	1 848256000	3 794399000	-0.875304000
6	0.607316000	4 055197000	1 391199000
6	-1 032244000	5 455868000	5 447438000
6	-0 598289000	3 105588000	5 775998000
6	0.163207000	3 052444000	4 603704000
6	1 158897000	2 299853000	-2 777281000
6	0.512110000	-0.016329000	-2.416860000
6	-0 279916000	5 460375000	4 268069000
6	0 729277000	0 156982000	-1 046491000
6	-2.051977000	4 312610000	7 460159000
6	0.736890000	1.068500000	-3 275815000
6	4 188730000	4 166866000	1 102514000
6	-0.093598000	6.711987000	3.448922000
6	0.811017000	1.770579000	4.137992000
~			

1	-0.721696000	2.197613000	6.361685000
1	3.330566000	7.105505000	-0.155557000
1	0.570061000	-0.671600000	-0.359701000
1	4.755037000	3.791755000	1.954360000
1	1.346750000	1.475540000	0.523441000
1	-1.492359000	6.384272000	5.777774000
1	4.485447000	5.187955000	0.858556000
1	0.175199000	-0.972627000	-2.808304000
1	-0.575084000	7.568645000	3.927173000
1	1.903719000	1.857587000	4.128333000
1	0.542463000	0.939147000	4.795114000
1	1.314805000	3.134089000	-3.453557000
1	0.967399000	6.948145000	3.313638000
1	-1.997387000	5.282980000	7.964957000
1	-1.741751000	3.536874000	8.167925000
1	4.326872000	3.527538000	0.229308000
1	-0.444157000	3.973252000	1.167679000
1	-0.522435000	6.607353000	2.446854000
1	-3.106357000	4.130764000	7.213132000
1	0.497928000	1.510927000	3.119308000
1	0.569289000	0.957460000	-4.345045000
7	2.707339000	5.888819000	-1.655111000
7	2.359571000	4.663953000	-1.756186000
7	2.517258000	6.514230000	-0.304966000
6	1.334103000	7.214638000	-0.094212000
6	1.334354000	8.391279000	0.689092000
6	0.104665000	6.749754000	-0.609896000
6	0.152257000	9.064663000	0.962621000
6	-1.077745000	7.429326000	-0.331081000
6	-1.066060000	8.587341000	0.456032000
1	2.273890000	8.771543000	1.083431000
1	0.082368000	5.860210000	-1.229011000
1	0.174943000	9.965575000	1.568355000
1	-2.014419000	7.056030000	-0.733791000
6	-2.342321000	9.268968000	0.819738000
9	-3.329988000	9.072998000	-0.095131000
9	-2.854892000	8.826728000	2.016167000
9	-2.199895000	10.616255000	0.963921000

TS2

G =	= -1633.476264 Ha	rtree	
Fre	quency -98.1401		
7	2.418427000	4.301350000	2.683672000
7	2.801770000	4.085406000	1.444308000
6	1.066685000	1.158583000	-0.698887000
6	1.419651000	2.283810000	-1.469937000
7	1.105144000	4.109111000	2.664588000
6	1.758647000	3.786693000	0.601819000
6	0.337398000	4.215744000	3.884955000
6	-1.147068000	4.395432000	6.219294000
6	1.900453000	3.512100000	-0.824080000
6	0.649459000	3.797766000	1.426275000
6	-0.817811000	5.546363000	5.491748000
6	-0.705865000	3.149966000	5.749750000
6	0.043406000	3.030548000	4.575488000
6	1.303243000	2.197191000	-2.872409000

6	0.499198000	-0.087169000	-2.703321000	6)	0.313915000	4.902905000	7.383734000
6	-0.070525000	5.487846000	4.309431000	6	5	3.398376000	3.963042000	0.372061000
6	0.607011000	-0.008962000	-1.311297000	6	5	2.484838000	4.519795000	2.726644000
6	-1.984107000	4.488712000	7.473224000	6	5	1.258594000	3.876189000	7.253867000
6	0.854844000	1.023655000	-3.477723000	6	5	-0.144787000	5.544555000	6.226373000
6	4.204345000	4.247296000	1.069761000	6	5	0.311451000	5.191308000	4.951615000
6	0.277358000	6.731121000	3.530502000	6	<u>,</u>	3.569599000	3.813752000	-2.129438000
6	0.518403000	1.687728000	4.072885000	6)	1.569196000	3.723739000	-3.498341000
1	-0.946696000	2.250716000	6.312117000	6	, ,	1.751381000	3.478793000	6.006784000
1	3 32261 5000	7 485452000	0 407416000	6		0 784679000	3 758723000	-2.341156000
1	0 340476000	-0.863427000	-0 694333000	6	, ,	-0 174553000	5 333666000	8 746637000
1	4 795648000	4 277297000	1 983755000	6	, ,	2 963114000	3 7562500000	-3 383992000
1	1 159416000	1 189115000	0.383262000	6	, ,	1 986208000	1 318196000	1 101582000
1	-1 149780000	6 517867000	5 850163000	6	, ,	2 779541000	2 378127000	5 891525000
1	4 290580000	5 181183000	0.510671000	6	,	-0 173761000	5 920163000	3 722207000
1	0.144305000	-0.007746000	-3 177853000	1	,	-0.878753000	6 3/220105000	6 313936000
1	-0.131206000	7 620042000	4 017462000	1		3 780113000	7 877411000	3 36605/000
1	1 602880000	1 680400000	3 011/50000	1		0.200537000	2 747672000	2 414603000
1	0.277228000	0.808761000	<i>4</i> 700125000	1		1 762518000	0.480727000	1 760702000
1	1.560355000	2.052610000	4./90155000	1		0.760148000	2 005062000	0.107221000
1	1.300333000	6 857020000	-3.490431000	1		1 627802000	2 274421000	-0.19/331000
1	1.301/43000	0.837930000	5.440807000	1		1.02/892000	3.3/4431000	0.143343000
1	-1.890803000	3.472043000	/.94341/000	1		2.930937000	1.1/8283000	0.012493000
1	-1.0938/8000	3.723429000	8.203982000	1		1.100634000	3.0/9018000	-4.4//3/0000
1	4.492950000	3.396008000	0.450306000	1		3.214291000	2.156/49000	6.8/0082000
1	-0.394335000	3.623680000	1.219513000	1		-0.416820000	5.228/94000	2.906969000
1	-0.118345000	6.694912000	2.510317000	1		-1.0/0405000	6.502844000	3.951293000
1	-3.045865000	4.334298000	7.239653000	l		4.653789000	3.839186000	-2.061172000
1	0.046660000	1.426953000	3.117351000	l		2.334228000	1.455494000	5.502154000
1	0.774378000	0.981218000	-4.560915000	l		-0.128204000	4.51110/000	9.467999000
7	2.872559000	5.478965000	-1.912/9/000	l		-1.20620/000	5.698852000	8.704636000
7	2.436444000	4.480/25000	-1.543/50000	1		1.205260000	1.434943000	0.347685000
1	2.577044000	6.836/26000	0.138/33000	1		2.755451000	5.577453000	2.928060000
6	1.391711000	7.461462000	0.204419000	1		3.594588000	2.656797000	5.213378000
6	1.194546000	8.792193000	0.724238000	1		0.446523000	6.150496000	9.137541000
6	0.189228000	6.792747000	-0.225023000	1		0.599808000	6.608832000	3.357013000
6	-0.062023000	9.348670000	0.873736000	1		3.584456000	3.739677000	-4.275142000
6	-1.063271000	7.361633000	-0.080603000	7	7	5.651320000	4.915612000	0.554763000
6	-1.219787000	8.645531000	0.479933000	7		4.600152000	4.481717000	0.486914000
1	2.071105000	9.358125000	1.036705000	7	7	3.019014000	7.463367000	2.834633000
1	0.273984000	5.809287000	-0.675817000	6)	3.231071000	7.643433000	1.520516000
1	-0.158194000	10.345513000	1.297774000	6)	4.385934000	8.289800000	0.942946000
1	-1.940518000	6.809785000	-0.410061000	6)	2.276851000	7.139026000	0.565604000
6	-2.562745000	9.204935000	0.726115000	6)	4.577163000	8.373670000	-0.422770000
9	-3.507554000	8.762791000	-0.158973000	6)	2.480576000	7.221860000	-0.800148000
9	-3.085510000	8.886624000	1.973410000	6)	3.633935000	7.835981000	-1.325866000
9	-2.599796000	10.571802000	0.683683000	1		5.134957000	8.705515000	1.615857000
				1		1.374094000	6.665768000	0.945067000
Int	2			1		5.472993000	8.856899000	-0.808226000
G =	-1633.482918 H	artree		1		1.744607000	6.795504000	-1.475760000
7	1.460985000	2.561174000	3.094393000	6	5	3.903723000	7.869792000	-2.774660000
7	2.062549000	2.528996000	1.921450000	9)	4.343125000	9.095320000	-3.222677000
6	1.384638000	3.831402000	-1.083588000	9)	4.903880000	6.997302000	-3.181102000
6	2.786064000	3.855247000	-0.963025000	9)	2.822522000	7.549745000	-3.541013000
7	1.743707000	3.765278000	3.578413000	-				
6	2.698238000	3.713189000	1.622877000	Т	[S 3			
6	1.252009000	4.151646000	4.880725000	(<u></u>	-1633.480695 H	artree	

Fra	1270 56	24	
7	1 260/20000	2 674842000	3 141125000
7	1.065121000	2.074843000	1.071100000
6	1.903121000	2.370990000	1.9/1199000
0	2 740854000	2.029675000	-1.018134000
0	2.749854000	3.9280/3000	-0.92/330000
1	1./48954000	3.8/4358000	3.591/81000
6	2.685427000	3.708496000	1.6613/2000
6	1.274876000	4.317099000	4.880501000
6	0.380088000	5.194404000	7.363537000
6	3.392640000	3.890380000	0.395448000
6	2.551397000	4.573607000	2.740882000
6	1.305116000	4.146180000	7.266461000
6	-0.075399000	5.798234000	6.184948000
6	0.358150000	5.378188000	4.921953000
6	3.505479000	3.965423000	-2.113867000
6	1.476893000	4.110044000	-3.436610000
6	1.772403000	3.685984000	6.030902000
6	0.719442000	4.065299000	-2.261985000
6	-0.131043000	5.647005000	8.711415000
6	2.872825000	4.062332000	-3.352677000
6	1.792434000	1.366256000	1.167402000
6	2.781365000	2.565217000	5.945456000
6	-0.127092000	6.060752000	3.665421000
1	-0.786243000	6.619232000	6.246286000
1	4.200238000	7.381820000	3.275943000
1	-0.365405000	4 112426000	-2.308911000
1	1 527875000	0 548362000	1 836300000
1	0.741120000	3 991050000	-0 115874000
1	1 679726000	3 679258000	8 174759000
1	2 735123000	1 157804000	0.659797000
1	0.987519000	4 187916000	-4 403292000
1	3 203708000	2 350705000	6 931218000
1	-0.424353000	5 335/92000	2 800306000
1	-0.424333000	6 600087000	2.899300000
1	4 500084000	3 035468000	2 071063000
1	4.330384000	1 645016000	-2.0/1903000
1	2.323374000	5.042601000	0.020065000
1	-0.994130000	5.042001000	9.020903000
1	-0.454100000	0.093013000	8.08/088000
1	1.005255000	1.524/62000	0.42/303000
1	2.963629000	3.8349/8000	2.849280000
1	3.6056/0000	2.819/16000	5.268815000
1	0.636209000	5.541267000	9.486024000
1	0.664058000	6.686609000	3.2349/2000
1	3.475651000	4.105051000	-4.255739000
7	5.752485000	4.538843000	0.560469000
7	4.653000000	4.238738000	0.499199000
7	3.389174000	7.126122000	2.711502000
6	3.551422000	7.468529000	1.406231000
6	4.689875000	8.159596000	0.883277000
6	2.549113000	7.099607000	0.456234000
6	4.828018000	8.412425000	-0.472019000
6	2.701439000	7.338371000	-0.899920000
6	3.841705000	7.998347000	-1.387852000
1	5.472949000	8.473419000	1.571122000
1	1.656914000	6.592641000	0.813204000
1	5.715118000	8.928328000	-0.832231000

1	1.934537000	6.999875000	-1.590252000
6	4.054957000	8.196501000	-2.840155000
9	4.553756000	9.436259000	-3.149098000
9	4.969487000	7.316248000	-3.387035000
9	2.922130000	8.041488000	-3.580954000
Int	3		
G =	-1633.493879 Ha	artree	
7	1.334605000	2.543607000	3.214732000
7	1.960510000	2.503970000	2.059139000
6	1.390977000	3.963409000	-0.904394000
6	2.792449000	3.928471000	-0.772856000
7	1.678334000	3.747122000	3.704212000
6	2.656441000	3.669745000	1.816836000
6	1.147264000	4.114447000	4.992992000
6	0.135785000	4.852336000	7.480344000
6	3.393557000	3.886196000	0.568786000
6	2.488625000	4.524030000	2.915396000
6	1.290697000	4.065289000	7.382868000
6	-0.495762000	5.266312000	6.299630000
6	-0.007613000	4.908041000	5.037989000
6	3.579830000	3.991586000	-1.938046000
6	1.588345000	4.136405000	-3.316261000
6	1.818413000	3.681216000	6.144196000
6	0.798787000	4.063031000	-2.164212000
6	-0.433703000	5.226211000	8.829693000
6	2.981786000	4.101039000	-3.192781000
6	1.842203000	1.316985000	1.213273000
6	3.068692000	2.841009000	6.044274000
6	-0.686669000	5.363906000	3.769165000
1	-1.389203000	5.884302000	6.360723000
1	4.646488000	7.477850000	2.973138000
1	-0.284892000	4.098078000	-2.241456000
1	1.592626000	0.466629000	1.847062000
1	0.762445000	3.947889000	-0.018388000
1	1.796652000	3.744530000	8.291168000
1	2.799356000	1.153933000	0.715812000
1	1.125856000	4.226290000	-4.295085000
1	3.495694000	2.656374000	7.034247000
1	-0.969734000	4.510560000	3.140977000
1	-1.590586000	5.937477000	3.993591000
1	4.664115000	3.973796000	-1.865774000
1	2.859472000	1.871578000	5.576438000
1	-0.917388000	6.208757000	8.801636000
1	0.343733000	5.248114000	9.600816000
1	1.064269000	1.471862000	0.462208000
1	3.285112000	6.469925000	2.803334000
1	3.828461000	3.337112000	5.428463000
1	-1.191590000	4.497577000	9.147395000
1	-0.016815000	5.993227000	3.171489000
1	3.609445000	4.166460000	-4.077341000
7	5.739757000	4.561596000	0.806964000
7	4.646850000	4.241530000	0.706566000
7	3.760473000	7.335742000	2.500713000
6	3.775603000	7.556688000	1.136135000
6	4.817002000	8.279617000	0.509515000

6	2.716842000	7.082133000	0.330336000
6	4.807485000	8.493814000	-0.863126000
6	2.718456000	7.285114000	-1.043516000
6	3.760962000	7.994627000	-1.653727000
1	5.640623000	8.659068000	1.109637000
1	1.910830000	6.521240000	0.793081000
1	5.622638000	9.043994000	-1.325005000
1	1.914161000	6.872771000	-1.643985000
6	3.811086000	8.159380000	-3.133634000
9	4.241061000	9.399759000	-3.513946000
9	4 677336000	7 281351000	-3 740738000
9	2 607317000	7 962997000	-3 735331000
/	2.007517000	1.9029910000	5.755551000
TS.	4		
G=	▪ ₌ -1008 860487 H:	artree	
Ere	1000.000407110		
7	-0.262136000	-0.048506000	-0.046129000
7	0.202150000	1 106853000	0.413012000
6	-0.397333000	1.190855000	2 170500000
6	-0.191363000	4.740223000	2 448402000
0	-0.909037000	5.780005000	2.446402000
	-0.334345000	-0./8/938000	1.068020000
6	-0.565994000	1.224604000	1./69486000
6	-0.20/490000	-2.218453000	0.92/4/4000
6	0.035445000	-4.9/96/2000	0.6/3/01000
6	-0.681170000	2.347680000	2.680752000
6	-0.503037000	-0.102779000	2.232354000
6	1.165685000	-4.178591000	0.883315000
6	-1.219252000	-4.361338000	0.588972000
6	-1.367679000	-2.975247000	0.714735000
6	-1.876113000	4.219602000	1.525051000
6	-1.379130000	6.533911000	2.050294000
6	1.069775000	-2.788216000	1.015071000
6	-0.432417000	6.108072000	2.989298000
6	0.162312000	-6.482415000	0.571493000
6	-2.098627000	5.582567000	1.318886000
6	-0.298185000	2.290904000	-0.552665000
6	2.289742000	-1.929183000	1.243244000
6	-2.721041000	-2.312662000	0.624116000
1	-2.104568000	-4.971158000	0.421045000
1	0.130640000	6.838191000	3.565157000
1	0.240763000	3.120140000	-0.095192000
1	0.562228000	4.421382000	3.892486000
1	2.146656000	-4.645051000	0.945600000
1	-1.293384000	2.622803000	-0.855973000
1	-1 558006000	7 594420000	1 894702000
1	3 196021000	-2 540247000	1 284532000
1	-2 758905000	-1 601207000	-0.209513000
1	-2.756505000	-3.05/73/000	0.475864000
1	-2 474133000	3 48060/000	0.986888000
1	2.410271000	_1 100830000	0.441470000
1 1	2.4103/1000	-1.190039000	1 558574000
1 1	0.0402/8000	-0.747/03000 6776500000	1.3383/4000
1	0.24070000	1 020027000	1 410656000
1	0.248/80000	1.92083/000	-1.419030000
1	2.206034000	-1.3/1108000	2.183238000
1	-0.60/45/000	-0.905924000	-0.082822000
1	-2.944483000	-1.748847000	1.537519000

1	-2.849511000	5.900737000	0.600088000
7	-0.507747000	0.819649000	4.458138000
7	-0.603960000	1.855463000	3.916732000

- - - -

2a

G=	= -1008.933037 H	lartree	
7	2.898917000	-5.574957000	-4.534171000
7	2.711311000	-4.322990000	-4.132852000
6	2.633292000	-1.106161000	-2.262124000
6	2.093255000	-2.058160000	-1.378514000
7	2.855431000	-6.335261000	-3.433893000
6	2.562760000	-4.238410000	-2.775085000
6	2.984082000	-7.764055000	-3.536422000
6	3.231263000	-10.528892000	-3.698954000
6	2.299167000	-3.495250000	-1.592901000
6	2.641812000	-5.562766000	-2.320275000
6	4.263205000	-9.750085000	-3.158836000
6	2.072223000	-9.886896000	-4.155239000
6	1.919169000	-8.498262000	-4.080657000
6	1.350341000	-1.599514000	-0.273548000
6	1.687257000	0.704522000	-0.957992000
6	4.164279000	-8.357794000	-3.064254000
6	2.428162000	0.260386000	-2.057917000
6	3.350457000	-12.033969000	-3.756675000
6	1.154416000	-0.233685000	-0.065294000
6	2.711459000	-3.263011000	-5.139446000
6	5.279040000	-7.525714000	-2.477905000
6	0.659607000	-7.820360000	-4.564340000
1	1.262617000	-10.481333000	-4.573018000
1	2.857395000	0.977466000	-2.753247000
1	3.642146000	-2.694409000	-5.072816000
1	3.239369000	-1.432461000	-3.102004000
1	5.169679000	-10.235938000	-2.804725000
1	1.857809000	-2.607430000	-4.961176000
1	1.528553000	1.767498000	-0.796501000
1	6.156832000	-8.143852000	-2.269917000
1	0.839307000	-7.262676000	-5.490817000
1	-0.125424000	-8.556696000	-4.758156000
1	0.925995000	-2.324959000	0.413451000
1	5.579596000	-6.722805000	-3.161608000
1	2.932761000	-12.489254000	-2.848826000
1	4.396173000	-12.350648000	-3.830827000
1	2.630069000	-3.730150000	-6.120457000
1	4.964556000	-7.051681000	-1.540440000
1	2.803489000	-12.446695000	-4.611149000
1	0.282028000	-7.104863000	-3.824652000
1	0.576173000	0.099857000	0.792892000
7	2.462778000	-5.684667000	-1.000651000
7	2.254018000	-4.395380000	-0.577663000

7. References

- (1) Liang, Q.; Hayashi, K.; Song, D. Organometallics 2020, 39, 4115–4122.
- Jia, Q.; Yang, G.; Chen, L.; Du, Z.; Wei, J.; Zhong, Y.; Wang, J. Eur. J. Org. Chem. 2015, 3435–3440.
- (3) Ramachary, D. B.; Shashank, A. B.; Karthik, S. Angew. Chem. Int. Ed. 2014, 53, 10420–10424.
- (4) Lee, W.-T.; Dickie, D. A.; Metta-Magaña, A. J.; Smith, J. M. Inorg. Chem. 2013, 52, 12842–12846.
- (5) Yan, W.; Wang, X.; Lia, K.; Li, T.-X.; Wang, J.-J.; Yao, K.-C.; Cao, L.-L.; Zhao, S.-S.; Ye. Y.-H. Pesticide Biochemistry and Physiology, 2019, 156, 160–169.
- (6) Ngai, M. H.; Yang, P.-Y.; Liu, K.; Shen, Y; Wenk, M. R.; Yao, S. Q.; Lear. M. J. Chem. Commun.
 2010, 46, 8335–8337.
- (7) Lu, X.; Lin, S. J. Org. Chem. 2005, 70, 9651–9653.
- Brown, D. G.; Sanguantrakun, N.; Schulze, B.; Schubert, U. S.; Berlinguette, C. P. J. Am. Chem.
 Soc. 2012, 134, 12354–12357.
- (9) Bielawski, M.; Zhu, M.; Olofsson. B. Adv. Synth. Catal. 2007, 349, 2610–2618.
- (10) Apex2 Software Package; Bruker AXS Inc.: Madison, WI, 2013.
- (11) Sheldrick, G. M. Crystal structure refinement with SHELXL. *Acta Crystallogr., Sect. C: Struct. Chem.* **2015**, *C71*, 3.
- (12) http://shelx.uni-ac.gwdg.de/SHELX/index.php. (accessed on January 30, 2017).
- (13) Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7.
- (14) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
 Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.;
 Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov,
 A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng,
 B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.;

Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

- (15) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B. 1988, 37, 785–789.
- Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.Tomasi, J.; Mennucci, B.; Cammi, R. Chem.
 Rev. 2005, 105, 2999–3093.
- (17) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.