Synthesis of a Novel Cyclopropyl Phosphonate Nucleotide as a Phosphate Mimic

Erich F. Altenhofer*, Michael J. Lawler, Pankaj Kumar, Leo A. Joyce, Matthew Fowler-Watters, Tao Pei, Zhen Li.

Arrowhead Pharmaceuticals, Inc. 502 S Rosa Rd, Madison WI 53719
General S2
Experimental Procedures S2
Copies of NMR Spectra S7
Analysis of Crude Cyclopropanation of 6 S27
Crystallographic Data S28

General. Commercially available 2'OMe Uridine was purchased from Chem Impex and used without further purification. Teledyne ISCO Combi-Flash systems were used where normal phase purification was needed. All NMR data was collected on a 400 MHz Varian instrument and chemical shifts (δ) are recorded in ppm. Single quadrupole mass spectrometry analyses were performed on a Waters instrument with ESI detection. High-resolution mass spectrometry was performed using an Agilent QTOF equipped with a 1290 Infinity II UHPLC. Mobile phases for the QTOF analysis were as follows: 2 mM ammonium formate pH 8.5 in water (mobile phase A), and 2 mM ammonium formate pH 8.5 in 90% acetonitrile/ 10% water (mobile phase B). Reaction progress was monitored at 254 nM on an analytical Shimadzu HPLC equipped with a Waters XBridge reverse phase C18 column. For most compounds, a 0.1% TFA-buffered mobile phase was used where mobile phase A was a 0.1% TFA in water solution and mobile phase B was a $0.1 \% \mathrm{TFA}$ in acetonitrile solution. For analysis of acid labile phosphoramidites mobile phase A was an aqueous solution of 5 mM ammonium bicarbonate buffer with mobile phase B consisting of acetonitrile. All compounds new to the literature were characterized with NMR and MS techniques.

Experimental Procedures.

1-((2R,3R,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-5-(hydroxymethyl)-3-methoxytetrahydrofuran-$2-y l)$ pyrimidine-2,4($1 \mathrm{H}, 3 \mathrm{H}$)-dione (3). To a solution of 2'OMe Uridine ($10.0 \mathrm{~g}, 39.0 \mathrm{mmol}$) in DMF (30 mL) was added imidazole ($5.80 \mathrm{~g}, 85.0 \mathrm{mmol}$) and the solution was cooled to $5^{\circ} \mathrm{C}$. To the solution was added $\mathrm{TBSCl}(12.8 \mathrm{~g}, 85.0 \mathrm{mmol})$ slowly over 15 minutes. The reaction was then warmed to $23^{\circ} \mathrm{C}$ and found to reach completion within 20 hours. The reaction was added to a separatory funnel containing 100 mL ethyl acetate and washed $5 \times 250 \mathrm{~mL}$ with water to remove the DMF. The organic layer was dried over sodium sulfate and concentrated to dryness. The white solids were redissolved in dichloromethane $(100 \mathrm{~mL})$ and treated with TFA ($18.2 \mathrm{~g}, 160 \mathrm{mmol}$). After 20 hours, the reaction was poured into a flask containing 300 mL water and pH adjusted to $\mathrm{pH}=8$ with solid sodium bicarbonate. The dichloromethane layer was dried over sodium sulfate and concentrated to 30 mL or until solids begin to precipitate. The concentrated solution was then transferred to a flask equipped with overhead stirring and treated with 70 mL hexanes. The solution was aged for 3 hours and the solids were collected via filtration funnel and the cake was rinsed with 100 mL hexanes. The solids were dried in a vacuum oven resulting white solids $(8.91 \mathrm{~g}, 62 \%)$. The crude solids were found to be 95% pure by HPLC and used without further purification. The identity was confirmed with proton NMR and MS analysis and found to be consistent with data in literature. (See A. V. Kel'in, I. Zlatev, J. Harp, M. Jayarman, A. Bisbe, J. O’Shea, N. Taneja, R. M. Monoharan, S. Khan, K. Charisse, M. A. Maier, M. Egli, K. G. Rajeev, M. Monoharan, J. Org Chem., 2016, 81, 2261)
dimethyl hydroxymethylphosphonate. To a 500 mL round bottom flask, equipped with nitrogen bubbler and reflux condenser was added methanol (250 mL), paraformaldehyde ($19.7 \mathrm{~g}, 0.63$ $\mathrm{mol})$ and triethylamine ($6.4 \mathrm{~g}, 0.63 \mathrm{~mol}$). The slurry was heated to $50^{\circ} \mathrm{C}$ and dimethylphosphite $(70.0 \mathrm{~g}, 0.63 \mathrm{~mol})$ was charged dropwise over the course of 2 hours keeping the internal temperature less than $55^{\circ} \mathrm{C}$. The reaction was monitored by TLC and found to reach completion within 1 hour. The solvent was removed under vacuum at $40{ }^{\circ} \mathrm{C}$ and the residue was co-evaporated with ethyl acetate ($2 \times 200 \mathrm{~mL}$) to remove residual methanol. To remove polar impurities, the crude oil was dissolved in ethyl acetate (100 mL) and passed through a silica
plug. The filtrate was collected and concentrated under vacuum resulting in a colorless oil (75.1 g, 84% yield).
dimethyl((E)-2-((2R,3R,4R,5R)-3-((tert-butyldimethylsilyl)oxy)-5-(2,4-dioxo-3,4-dihydropyrimidi $n-1(2 H)$-yl)-4-methoxytetrahydrofuran-2-yl)vinyl)phosphonate (6).
Compound 3 ($3.50 \mathrm{~g}, 9.0 \mathrm{mmol}$) was dissolved in 35 mL dichloromethane and cooled to $0^{\circ} \mathrm{C}$. To the reaction was added Dess-Martin periodinane ($4.24 \mathrm{~g}, 10 \mathrm{mmol}$) over 5 minutes. The reaction was warmed to $23^{\circ} \mathrm{C}$ and found to reach completion within 3 hours. Upon completion, undissolved solids were filtered through a pad of celite and the filter cake was rinsed with 10 mL dichloromethane. The filtrate was then transferred back to a clean flask, and stirred with ylide 5 $(5.19 \mathrm{~g}, 13.5 \mathrm{mmol})$ at ambient temperature for 16 hours. Upon completion, the reaction mixture was washed with water, followed by brine, and the organic layer was dried over sodium sulfate. The solvent was removed under reduced pressure and the crude oil was purified via flash chromatography and eluted with 20% methanol/dichloromethane solvent system resulting in white solids ($2.57 \mathrm{~g}, 60 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.75(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84$ (ddd, $J=22.4,17.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.01$ (ddd, $J=19.3,17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.84$ (d, J $=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{dd}, J=8.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.48(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=7.4,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.77 (d, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.74(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.87-19.00(\mathrm{~m}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.50$, $150.08,148.28(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 139.75,119.51,117.63,102.82,89.83,82.94(\mathrm{~d}, J=6.7 \mathrm{~Hz})$, $82.74,74.11(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 58.56,52.61(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 52.57,52.54,25.60,18.15-17.96(\mathrm{~m})$, -4.69, -4.88. HRMS (ESI) m/z [M-H]- calculated for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{PSi} 475.1666$, found 475.1667.
O,O-diethyl((E)-2-((2R,3R,4R,5R)-3-((tert-butyldimethylsilyl)oxy)-5-(2,4-dioxo-3,4-dihydropyri midin-1(2H)-yl)-4-methoxytetrahydrofuran-2-yl)vinyl)phosphonothioate (10).
In-Situ Preparation of ylide (9): To a slurry of methyltriphenylphosphonium bromide (17.0 g, 47.7 mmol) in THF (120 mL) was added LiHMDS ($47.7 \mathrm{~mL}, 47.7 \mathrm{mmol}$) at ambient temperature. The slurry was stirred for 30 minutes eventually forming a solution. To the solution was added O, O '-diethyl chlorothiophosphate ($3.0 \mathrm{~g}, 16.0 \mathrm{mmol}$) and the reaction was allowed to stir at ambient for 1 hour. After 1 hour, the reaction mixture was analyzed by proton NMR and found to contain 50% of the limiting reagent, O, O^{\prime}-diethyl chlorothiophosphate. Two additional equivalents of LiHMDS ($31.0 \mathrm{~mL}, 31.0 \mathrm{mmol}$) were added and the reaction was stirred for 1 hour. Upon completion, the reaction was diluted with methyl tert-butyl ether and washed with water ($2 \times 5 \mathrm{~mL}$). The organic layer was dried over sodium sulfate and concentrated to an oil. The ylide was isolated as an oil and found to be unstable to chromatography. The crude oil was used in the next step without purification assuming 100% yield (16.0 mmol).
In-situ Preparation of Compound 4: Compound 3 ($5.0 \mathrm{~g}, 13.4 \mathrm{mmol}$) was dissolved in 50 mL dichloromethane and cooled to $0{ }^{\circ} \mathrm{C}$. To the reaction was added Dess-Martin periodinane (5.68 $\mathrm{g}, 13.4 \mathrm{mmol}$) over 15 minutes. The reaction was stirred between $0-5{ }^{\circ} \mathrm{C}$ and found to reach completion within 3 hours. The crude reaction was passed through a celite pad and the filter cake was rinsed with 25 mL dichloromethane.
The filtrate from in-situ preparation of compound 4 was transferred to a flask containing crude ylide 9 from the previous step and stirred overnight at $23{ }^{\circ} \mathrm{C}$. Upon completion, the reaction mixture was washed with water, followed by brine, and the organic layer was dried over sodium sulfate. The solvent was removed under reduced pressure and the crude oil was purified via flash chromatography and eluted with 20% methanol/dichloromethane solvent system resulting
in white solids ($3.79 \mathrm{~g}, 54 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.51(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.80$ (ddd, $J=24.7,16.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22$ (ddd, $J=18.3,16.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.83$ (d, J $=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dddd}, J=6.6,4.9,2.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-$ $4.04(\mathrm{~m}, 4 \mathrm{H}), 3.95(\mathrm{dd}, J=7.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ (ddd, $J=5.1,2.2,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H})$, 1.30 (tdd, $J=7.1,2.1,0.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 10 \mathrm{H}), 0.09(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR (162 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 84.04-83.65 (m). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.89,149.75,145.66(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}$), 139.64, 125.63 (d, $J=153 \mathrm{~Hz}$), 102.77, $90.09,83.09,82.43(\mathrm{~d}, J=23 \mathrm{~Hz}), 74.30(\mathrm{~d}, J=1 \mathrm{~Hz})$, $62.63(\mathrm{~d}, J=2 \mathrm{~Hz}), 62.57(\mathrm{~d}, J=2 \mathrm{~Hz}), 58.71,25.26,18.12,16.19(\mathrm{~d}, J=2 \mathrm{~Hz}), 16.11(\mathrm{~d}, J=2$ Hz), -4.66, -4.79. HRMS (ESI) m/z [M-H]- calculated for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{PSSi} 519.1750$, found 519.1752.

O,O-diethyl(($1 R, 2 S)-2-((2 R, 3 R, 4 R, 5 R)-3-((t e r t-b u t y l d i m e t h y l s i l y l)$ oxy $)-5-(2,4-d i o x o-3,4-d i h y d r o p$ yrimidin- $1(2 H)$-yl)-4-methoxytetrahydrofuran-2-yl)cyclopropyl)phosphonothioate (11). To a solution of trimethylsulfoxonium iodide ($634 \mathrm{mg}, 2.9 \mathrm{mmol}$) in DMSO (2.5 mL) was added 60% weight percent NaH dispersion in mineral oil ($115 \mathrm{mg}, 2.9 \mathrm{mmol}$). The frothy mixture was stirred for 30 minutes or until a uniform solution was formed. The solution was then transferred to a separate flask containing a solution of vinyl thiophosphonate $10(500 \mathrm{mg}, 0.96$ mmol) in 2.5 mL DMSO. After the transfer was complete, the reaction was held at $23{ }^{\circ} \mathrm{C}$ until complete conversion of starting material to a more polar intermediate, presumably 6 a . The reaction was then heated to $35^{\circ} \mathrm{C}$ for $2-3$ hours. Upon completion, the reaction was cooled to room temperature and extracted with ethyl acetate ($3 \times 25 \mathrm{~mL}$). The combined extracts were washed with water ($3 \times 25 \mathrm{~mL}$) and brine (25 mL). The organic layer was dried over sodium sulfate, filtered and concentrated to dryness. The crude solids were found to exist in a 3:2 diastereomeric ratio but could not be separated by crystallization or chromatography. The solids were purified via flash chromatography and eluted with 20% methanol/dichloromethane solvent system resulting in a 3:2 diastereomeric ratio of the desired compound ($333 \mathrm{mg}, 65 \%$ yield). Major : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.75(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.81-5.75(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.02(\mathrm{~m}, 4 \mathrm{H}), 4.00(\mathrm{dd}, \mathrm{J}=7.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (dd, J $=5.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}) 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{dd}, \mathrm{J}=8.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.49-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.25$ $(\mathrm{m}, 6 \mathrm{H}), 1.25-1.10(\mathrm{~m}, 2 \mathrm{H}), 1.05-0.92(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR (162 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 100.75 .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.67,150.11,139.40,102.58,88.97$, $85.86(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}), 83.76,74.49,62.75(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}), 62.71(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}), 58.52$, 25.62, $20.05(\mathrm{~d}$, $\mathrm{J}=3 \mathrm{~Hz}), 18.09,16.23(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}), 15.91(\mathrm{~d}, \mathrm{~J}=156 \mathrm{~Hz}), 8.38(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}), 8.31(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz})$, -4.67, -4.96. Minor: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.65$ (s, 1H), 7.33 (d, J = $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.81 $-5.75(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.02(\mathrm{~m}, 3 \mathrm{H}), 3.78(\mathrm{dd}, \mathrm{J}=5.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, \mathrm{J}=7.1,5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.25(\mathrm{~m}, 6 \mathrm{H}), 1.25-1.10(\mathrm{~m}, 2 \mathrm{H}), 1.05-0.92(\mathrm{~m}$, $1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 100.62 .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 163.58,150.14,140.22,102.84,88.83,84.75(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}), 82.85,73.71,62.97(\mathrm{~d}, \mathrm{~J}=$ $6 \mathrm{~Hz}), 62.48(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}), 58.25,25.71,19.71(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}), 18.09$, $16.16(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}), 15.47(\mathrm{~d}$, $\mathrm{J}=160 \mathrm{~Hz}$), $8.31(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}),-4.64,-4.76 . \operatorname{HRMS}(E S I) \mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{H}]-$ calculated for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{PSSi} 533.1907$, found 533.1907.
diethyl((1R,2S)-2-((2R,3R,4R,5R)-3-((tert-butyldimethylsilyl)oxy)-5-(2,4-dioxo-3,4-dihydropyrim idin- $1(2 \mathrm{H})$-yl)-4-methoxytetrahydrofuran-2-yl)cyclopropyl)phosphonate (12).
To a solution of compound $11(1.20 \mathrm{~g}, 2.2 \mathrm{mmol})$ in 12 mL THF was added concentrated $\mathrm{HCl}(2$ mL) at $0^{\circ} \mathrm{C}$ over 5 minutes. The solution was allowed to warm to ambient over 1 hour and found to be complete. The solution was concentrated to dryness under vacuum at $200^{\circ} \mathrm{C}$ and
then subjected to co-evaporation with acetonitrile ($2 \times 50 \mathrm{~mL}$). After removal of solvent at reduced pressure the crude mixture was purified via flash chromatography and eluted with 20% methanol/dichloromethane solvent system resulting in a white foam ($750 \mathrm{mg}, 80 \%$ yield). Major ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.41(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.78(\mathrm{~m}, 2 \mathrm{H}), 4.19-$ $4.05(\mathrm{~m}, 4 \mathrm{H}), 4.02(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~s}), 1.62-1.49(\mathrm{~m}$, $1 \mathrm{H}), 1.34-1.27(\mathrm{~m}, 6 \mathrm{H}), 1.27-1.18(\mathrm{~m}, 2 \mathrm{H}), 1.07-0.95(\mathrm{~m}, 1 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR (162 MHz , CDCl_{3}) $\delta 100.45 .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 163.19, 150.01, 139.24, 102.77, 88.08, 85.91 (d, J $=2.5 \mathrm{~Hz}), 83.44,72.99,62.81(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 62.77(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 58.85,19.98(\mathrm{~d}, J=2.9 \mathrm{~Hz})$, $16.25(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 16.19(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 15.94(\mathrm{~d}, J=156.4 \mathrm{~Hz}), 8.24(\mathrm{~d}, J=4.1 \mathrm{~Hz}) . \mathrm{HRMS}$ (ESI) m / z [M-H]- calculated for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{PS}$ 419.1042, found 419.1067. Minor: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.41(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.78(\mathrm{~m}, 2 \mathrm{H}), 4.19-4.05(\mathrm{~m}$, $4 \mathrm{H}), 3.93(\mathrm{t}, J=8 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~s}), 1.62-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.34-$ $1.27(\mathrm{~m}, 6 \mathrm{H}), 1.27-1.18(\mathrm{~m}, 2 \mathrm{H}), 1.07-0.95(\mathrm{~m}, 1 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $100.08 .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.23,149.96,139.42,102.77,88.38,84.93$ (d, $J=5.0$ $\mathrm{Hz}), 83.28,72.62,62.90(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 62.80(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 58.89,19.19(\mathrm{~d}, J=2.7 \mathrm{~Hz})$, $16.21(\mathrm{~d}, J=7.2 \mathrm{z} \mathrm{Hz}), 16.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 14.87(\mathrm{~d}, J=157.0 \mathrm{~Hz}) 8.64(\mathrm{~d}, J=4.3 \mathrm{~Hz})$. HRMS (ESI) m / z [M-H]- calculated for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{PS} 419.1042$, found 419.1044.
diethyl((1R,2S)-2-((2R,3R,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3-hydroxy-4-met hoxytetrahydrofuran-2-yl)cyclopropyl)phosphonate (13).
To a solution of thiophosphate $\mathbf{1 2}(2.1 \mathrm{~g}, 5.0 \mathrm{mmol})$ in 40 mL THF/water (1:1) was added Oxone ($3.1 \mathrm{~g}, 10 \mathrm{mmol}$) and the resulting slurry was stirred for 4 hours at ambient, or until all starting material was consumed. The reaction mixture was extracted with ethyl acetate ($7 \times 25 \mathrm{~mL}$) and the combined extracts were dried over sodium sulfate. The solvent was removed under vacuum resulting in recovery of a white solid. The solids were triturated with 12 mL ethyl acetate for 2 hours and filtered. The cake was rinsed with 5 mL cold ethyl acetate and the solids were dried under high vacuum resulting in a d.r. enrichment of the penultimate alcohol to $93: 7$ (655 mg , 32% yield). The solids were added to a vial containing 10 mL of 40% methanol/heptane solution and heated to $70{ }^{\circ} \mathrm{C}$. After the solids dissolved, the heating was turned off and the solution was allowed to cool to $23^{\circ} \mathrm{C}$ over 1 hour. The solids were aged for 16 hours and filtered resulting in penultimate alcohol as a single diastereomer ($563 \mathrm{mg}, 28 \%$ overall yield). The solids were found to be crystalline and were suitable for X-ray analysis. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $9.90(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.14-4.06(\mathrm{~m}, 4 \mathrm{H}), 4.06-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=5.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{dd}, J$ $=8.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{tdd}, J=14.0,8.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{dtd}, J=12.6,7.1,0.5 \mathrm{~Hz}, 6 \mathrm{H})$, 1.22 (ddd, $J=10.8,5.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.02$ (ddt, $J=12.0,9.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.97-0.87(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 29.03. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.47,150.19$, 139.39, $102.73,88.00,86.38(\mathrm{~d}, J=3 \mathrm{~Hz}, 83.52,72.80,62.20(\mathrm{~d}, J=6 \mathrm{~Hz}), 62.14(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}), 58.77$, $18.95(\mathrm{~d}, J=4 \mathrm{~Hz}), 16.43(\mathrm{~d}, J=2 \mathrm{~Hz}), 16.37(\mathrm{~d}, J=2 \mathrm{~Hz}), 8.76(\mathrm{~d}, J=193 \mathrm{~Hz}), 7.14(\mathrm{~d}, J=5$ Hz) . HRMS (ESI-TOF) m / z : [M-H]- calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{P}$ 403.1270; Found 403.1273.
2-cyanoethyl(($2 R, 3 R, 4 R, 5 R)-2-((1 S, 2 R)$-2-(diethoxyphosphoryl)cyclopropyl)-5-(2,4-dioxo-3,4-di hydropyrimidin-1(2H)-yl)-4-methoxytetrahydrofuran-3-yl)diisopropylphosphoramidite (14).
Penultimate alcohol $13(100 \mathrm{~g}, 247 \mathrm{mmol})$ was dissolved in acetonitrile (1 L) and concentrated to dryness under high vacuum. This was repeated twice, or until a KF reading of the solids was less than 100 ppm . The solids were then redissolved in DCM $(500 \mathrm{~mL})$ and to the solution was added diisopropylammonium tetrazolide $(6.9 \mathrm{~g}, \quad 98 \mathrm{mmol})$, and 2-cyanoethyl

N',N',N,N-tetraisopropylphosphoramidite ($93.2 \mathrm{~g}, 309 \mathrm{mmol}$) at ambient temperature. The solution was stirred overnight. At $16 \mathrm{~h},<1 \%$ alcohol remained, and the reaction was quenched with $1: 1$ saturated bicarb/brine solution. The organic layer was washed with saturated bicarb and brine once more. The resulting dichloromethane solution was concentrated to 400 mL and poured into 6 L of $1: 1 \mathrm{MTBE} /$ hexanes. The solid cake was washed twice with the $1: 1$ mixture of MTBE/hexanes resulting in 143 g amidite 14 (95% yield, 98% purity). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{dd}, J=8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dd}, J=7.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.24-4.03(\mathrm{~m}, 5 \mathrm{H}), 3.92-3.39(\mathrm{~m}, 9 \mathrm{H}), 2.62(\mathrm{tt}, J=6.1,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.48(\mathrm{~m}, 1 \mathrm{H})$, 1.29 (dtd, $J=11.4,7.1,1.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.26-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{td}, J=6.5,2.1 \mathrm{~Hz}, 12 \mathrm{H}), 0.95$ (tdd, $J=14.4,7.4,4.5 \mathrm{~Hz}, 2 \mathrm{H}) . \delta{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.19,150.02,28.86$, $28.69 .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.38,163.37,150.23,150.18,139.30,139.20,117.74$, 117.66, 102.63, 88.62, 88.28, 85.69, 85.66, 85.63, 83.04, 83.02, 82.46, 82.43, 74.53, 74.40, $74.18,74.03,62.15,62.10,62.04,58.75,58.74,58.52,58.41,58.40,58.34,57.97,57.77,43.32$, 43.20, 24.70, 24.63, 24.60, 24.57, 24.52, 24.49, 20.42, 20.40, 20.35, 20.33, 19.07, 19.04, 19.03, 19.01, 16.45, 16.43, 16.39, 16.37, 10.07, 9.99, 8.13, 8.06, 7.78, 7.73, 7.55, 7.51. HRMS (ESI-TOF) m / z : [M-H]- calculated for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{P}_{2}$ 603.2349; Found 603.2353.

$$
\begin{array}{lll}
0 \\
190
\end{array}
$$

Proton NMR of 6 (vinyl phosphonate peaks in blue)

Crude NMR of 7a (disappearance of vinyl phosphonate protons blue, absence of cp protons green)

Crystallographic Data.

A blocky crystal with a diameter of roughly 1 mm in all three directions was mounted using vacuum grease and analyzed on a Bruker X8 Prospector SCXRD equipped with an $I \mu S$ microfocus $\mathrm{Cu} \mathrm{K} \alpha$ source $(\lambda=1.54178 \AA$; beam power $=45 \mathrm{kV}, 0.65 \mathrm{~mA})$.

Table 1. Crystal data and structure refinement for $\mathrm{Cp}-\mathrm{U}$.

Identification code	s1
Empirical formula	C16 H25 N2 O8 P
Formula weight	404.35
Temperature	298(2) K
Wavelength	1.54178 £
Crystal system	Orthorhombic
Space group	P21212
Unit cell dimensions	$a=11.4700(4) \AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=23.4314(8) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=7.3958(3) \AA \quad \gamma=90^{\circ}$.
Volume	1987.68(13) \AA^{3}
Z	4
Density (calculated)	$1.351 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.633 \mathrm{~mm}^{-1}$
F(000)	856
Crystal size	$1.2 \times 1 \times 0.88 \mathrm{~mm}^{3}$
Theta range for data collection	3.773 to 72.555°.
Index ranges	$-14<=\mathrm{h}<=13,-28<=\mathrm{k}<=28,-9<=1<=9$
Reflections collected	45084
Independent reflections	$3941[\mathrm{R}(\mathrm{int})=0.0468]$
Completeness to theta $=67.679^{\circ}$	100.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.3859 and 0.2310
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3941/3/270
Goodness-of-fit on F^{2}	1.052
Final R indices [$\mathrm{I}>2 \mathrm{sigma}(\mathrm{I}$]]	$\mathrm{R} 1=0.0617, \mathrm{wR} 2=0.1638$
R indices (all data)	$\mathrm{R} 1=0.0632, \mathrm{wR} 2=0.1661$
Absolute structure parameter	0.029(10)
Extinction coefficient	0.022(2)
Largest diff. peak and hole	0.345 and -0.417e. \AA^{-3}
	S28

Figure 1: Labeled 50\% probability ellipsoid plot of asymmetric/formula unit for Cp-U.

Table 2. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for Cp-U. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{P}(1)$	$5828(1)$	$8783(1)$	$8422(2)$	$96(1)$
$\mathrm{O}(4)$	$9111(2)$	$8966(1)$	$5618(3)$	$51(1)$
$\mathrm{O}(8)$	$12355(2)$	$9187(1)$	$5842(5)$	$66(1)$
$\mathrm{O}(7)$	$13084(3)$	$7301(1)$	$6643(5)$	$71(1)$
$\mathrm{O}(6)$	$10449(3)$	$9298(2)$	$1505(4)$	$70(1)$
$\mathrm{O}(1)$	$4993(3)$	$8483(2)$	$7237(6)$	$87(1)$
$\mathrm{N}(2)$	$12705(3)$	$8242(1)$	$6213(5)$	$50(1)$
$\mathrm{N}(1)$	$10914(2)$	$8555(1)$	$5123(4)$	$45(1)$
$\mathrm{C}(11)$	$12023(3)$	$8697(1)$	$5730(5)$	$45(1)$
$\mathrm{C}(10)$	$12387(3)$	$7669(2)$	$6206(6)$	$52(1)$
$\mathrm{C}(8)$	$10531(3)$	$7998(2)$	$5133(6)$	$54(1)$
		S 29		

$\mathrm{O}(5)$	$8207(3)$	$9663(2)$	$1567(5)$	$81(1)$
$\mathrm{C}(1)$	$6680(3)$	$9273(2)$	$7215(8)$	$77(2)$
$\mathrm{C}(4)$	$8237(3)$	$9295(2)$	$4690(6)$	$52(1)$
$\mathrm{C}(7)$	$10127(3)$	$9001(1)$	$4539(4)$	$45(1)$
$\mathrm{C}(6)$	$9700(3)$	$8958(2)$	$2585(5)$	$54(1)$
$\mathrm{C}(3)$	$7068(3)$	$9116(2)$	$5358(6)$	$56(1)$
$\mathrm{C}(9)$	$11203(3)$	$7567(2)$	$5676(7)$	$61(1)$
$\mathrm{C}(5)$	$8437(4)$	$9186(2)$	$2665(6)$	$58(1)$
$\mathrm{C}(2)$	$6148(4)$	$9551(2)$	$5603(13)$	$103(2)$
$\mathrm{O}(3)$	$6677(5)$	$8398(3)$	$9540(9)$	$143(2)$
$\mathrm{O}(2)$	$5277(5)$	$9137(4)$	$9975(10)$	$210(5)$
$\mathrm{C}(16)$	$10388(8)$	$9155(3)$	$-382(7)$	$110(2)$
$\mathrm{C}(12)$	$4177(13)$	$9211(7)$	$10470(20)$	$232(8)$
$\mathrm{C}(13)$	$3695(16)$	$9003(11)$	$11620(20)$	$283(11)$
$\mathrm{C}(14)$	$6950(30)$	$7869(9)$	$9080(40)$	$144(11)$
$\mathrm{C}\left(14^{\prime}\right)$	$7600(50)$	$8001(13)$	$8630(40)$	$250(30)$
$\mathrm{C}(15)$	$7950(40)$	$7480(20)$	$8910(50)$	$250(20)$
$\left.\mathrm{C}(15)^{\prime}\right)$	$6590(30)$	$7553(13)$	$9190(30)$	$165(10)$

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathrm{Cp}-\mathrm{U}$.

$\mathrm{P}(1)-\mathrm{O}(1)$	1.475(4)
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.753(6)$
$\mathrm{P}(1)-\mathrm{O}(3)$	1.563(7)
$\mathrm{P}(1)-\mathrm{O}(2)$	1.552(6)
$\mathrm{O}(4)-\mathrm{C}(4)$	1.439(4)
$\mathrm{O}(4)-\mathrm{C}(7)$	$1.415(4)$
$\mathrm{O}(8)-\mathrm{C}(11)$	1.212(4)
$\mathrm{O}(7)-\mathrm{C}(10)$	1.220(5)
$\mathrm{O}(6)-\mathrm{C}(6)$	1.418(5)
$\mathrm{O}(6)-\mathrm{C}(16)$	1.437(6)
$\mathrm{N}(2)-\mathrm{C}(11)$	$1.369(5)$
$\mathrm{N}(2)-\mathrm{C}(10)$	$1.392(5)$
$\mathrm{N}(1)-\mathrm{C}(11)$	1.390(4)
$\mathrm{N}(1)-\mathrm{C}(8)$	$1.375(5)$
$\mathrm{N}(1)-\mathrm{C}(7)$	1.447(4)
$\mathrm{C}(10)-\mathrm{C}(9)$	$1.433(5)$
$\mathrm{C}(8)-\mathrm{C}(9)$	1.333(6)
$\mathrm{O}(5)-\mathrm{C}(5)$	$1.407(5)$
$\mathrm{C}(1)-\mathrm{C}(3)$	1.489(7)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.489(10)
$\mathrm{C}(4)-\mathrm{C}(3)$	$1.489(5)$
$\mathrm{C}(4)-\mathrm{C}(5)$	1.536(6)
$\mathrm{C}(7)-\mathrm{C}(6)$	$1.529(5)$
$\mathrm{C}(6)-\mathrm{C}(5)$	1.545(6)
$\mathrm{C}(3)-\mathrm{C}(2)$	$1.478(5)$
$\mathrm{O}(3)-\mathrm{C}(14)$	1.322(19)
$\mathrm{O}(3)-\mathrm{C}\left(14^{\prime}\right)$	1.56(5)
$\mathrm{O}(2)-\mathrm{C}(12)$	1.325(13)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.129(19)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.46(4)
$\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	1.62(4)
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(1)$	111.8(3)

$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(3)$	116.4(3)
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(2)$	115.5(3)
$\mathrm{O}(3)-\mathrm{P}(1)-\mathrm{C}(1)$	107.4(3)
$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{C}(1)$	104.7(4)
$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{O}(3)$	99.8(5)
$\mathrm{C}(7)-\mathrm{O}(4)-\mathrm{C}(4)$	105.9(3)
$\mathrm{C}(6)-\mathrm{O}(6)-\mathrm{C}(16)$	112.7(4)
$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(10)$	126.9(3)
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(7)$	119.6(3)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(11)$	121.2(3)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(7)$	119.1(3)
$\mathrm{O}(8)-\mathrm{C}(11)-\mathrm{N}(2)$	122.7(3)
$\mathrm{O}(8)-\mathrm{C}(11)-\mathrm{N}(1)$	122.5(3)
$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{N}(1)$	114.8(3)
$\mathrm{O}(7)-\mathrm{C}(10)-\mathrm{N}(2)$	120.7(3)
$\mathrm{O}(7)-\mathrm{C}(10)-\mathrm{C}(9)$	125.2(4)
$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(9)$	114.2(3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{N}(1)$	122.3(3)
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{P}(1)$	118.3(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{P}(1)$	117.8(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)$	59.5(4)
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(3)$	108.6(3)
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(5)$	105.8(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	114.3(3)
$\mathrm{O}(4)-\mathrm{C}(7)-\mathrm{N}(1)$	107.7(3)
$\mathrm{O}(4)-\mathrm{C}(7)-\mathrm{C}(6)$	105.4(3)
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	115.8(3)
$\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{C}(7)$	107.5(3)
$\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{C}(5)$	113.3(3)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	103.9(3)
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	120.4(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(1)$	60.2(4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	119.3(4)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	120.3(3)
$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(4)$	113.8(3)

$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(6)$	$115.4(4)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$103.6(3)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$60.3(3)$
$\mathrm{P}(1)-\mathrm{O}(3)-\mathrm{C}\left(14^{\prime}\right)$	$122.7(15)$
$\mathrm{C}(14)-\mathrm{O}(3)-\mathrm{P}(1)$	$123.5(9)$
$\mathrm{C}(12)-\mathrm{O}(2)-\mathrm{P}(1)$	$131.4(8)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{O}(2)$	$128(2)$
$\mathrm{O}(3)-\mathrm{C}(14)-\mathrm{C}(15)$	$142(4)$
$\mathrm{O}(3)-\mathrm{C}\left(14^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	$78(3)$

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathrm{Cp}-\mathrm{U}$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{P}(1)$	49(1)	143(1)	97(1)	-40(1)	16(1)	-30(1)
$\mathrm{O}(4)$	37(1)	66(1)	49(1)	-2(1)	-1(1)	7(1)
$\mathrm{O}(8)$	50(1)	60(2)	88(2)	$0(1)$	-10(1)	-14(1)
$\mathrm{O}(7)$	49(2)	73(2)	92(2)	6(2)	8(2)	17(1)
$\mathrm{O}(6)$	72(2)	93(2)	46(1)	1(1)	5(1)	-7(2)
$\mathrm{O}(1)$	40(1)	106(2)	116(3)	-18(2)	-1(2)	-16(2)
N(2)	33(1)	60(2)	58(2)	-1(1)	2(1)	-2(1)
N(1)	33(1)	51(1)	52(2)	-4(1)	-2(1)	-3(1)
$\mathrm{C}(11)$	32(1)	57(2)	45(2)	-1(1)	3(1)	-7(1)
C(10)	38(2)	58(2)	61(2)	-2(2)	9(2)	6(1)
C(8)	36(2)	54(2)	73(2)	-8(2)	-5(2)	-4(1)
$\mathrm{O}(5)$	78(2)	85(2)	79(2)	24(2)	-28(2)	-2(2)
C(1)	37(2)	85(3)	109(4)	-42(3)	11(2)	-5(2)
C(4)	43(2)	47(2)	68(2)	-3(2)	-7(2)	4(1)
C(7)	37(2)	50(2)	48(2)	-3(1)	$0(1)$	-1(1)
C(6)	54(2)	61(2)	46(2)	-4(2)	-5(2)	-2(2)
C(3)	37(2)	54(2)	76(2)	-7(2)	-9(2)	5(1)
C(9)	43(2)	48(2)	91(3)	-6(2)	2(2)	-4(1)
C(5)	55(2)	61(2)	59(2)	4(2)	-15(2)	-4(2)
C(2)	42(2)	65(2)	200(7)	-4(4)	0(3)	14(2)
$\mathrm{O}(3)$	102(4)	225(7)	102(4)	15(4)	-43(3)	-65(4)
$\mathrm{O}(2)$	114(4)	329(11)	187(7)	-151(8)	88(5)	-100(6)
C(16)	148(7)	136(5)	45(2)	-4(3)	10(3)	3(5)
C(12)	236(15)	252(16)	209(13)	-94(13)	134(13)	-67(13)
C(13)	260(20)	390(30)	201(16)	32(17)	140(16)	-10(20)
$\mathrm{C}(14)$	210(30)	90(11)	129(17)	5(12)	-94(19)	-46(14)
C(14')	450(70)	170(20)	123(17)	-24(18)	40(30)	-190(40)
$\mathrm{C}(15)$	270(40)	290(40)	200(30)	-40(30)	-60(30)	160(40)
C(15')	230(30)	170(20)	94(11)	11(14)	-61(16)	-20(20)

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathrm{Cp}-\mathrm{U}$.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(8)	9776	7920	4747	65
H(1)	7220	9506	7927	92
H(4)	8354	9701	4950	63
H(7)	10498	9373	4724	54
H(6)	9710	8560	2173	65
H(3)	6797	8744	4924	67
H(9)	10903	7199	5710	73
H(5A)	7914	8878	2289	70
$\mathrm{H}(2 \mathrm{~A})$	5356	9446	5289	123
H(2B)	6350	9946	5365	123
H(16A)	10933	9384	-1045	165
H(16B)	9613	9225	-821	165
H(16C)	10575	8759	-540	165
H(12A)	4094	9619	10663	279
H(12B)	3720	9125	9398	279
H(13A)	2906	9140	11650	425
H(13B)	3695	8597	11461	425
H(13C)	4074	9097	12742	425
H(14A)	6608	7843	7885	173
H(14B)	6433	7650	9850	173
H(14C)	8333	7960	9283	296
H(14D)	7717	8056	7346	296
H(15A)	7678	7115	8497	382
H(15B)	8495	7634	8062	382
H(15C)	8315	7438	10070	382
H(15D)	6813	7175	8828	247
H(15E)	6473	7562	10473	247
H(15F)	5874	7656	8591	247
H (2)	13580(100)	8290(40)	6330(180)	198
		S		

$\mathrm{H}(5)$	$8860(80)$	$9870(50)$	$2030(180)$	247

Table 6. Torsion angles [${ }^{\circ}$] for $\mathrm{Cp}-\mathrm{U}$.

$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	-144.2(3)
$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	107.3(4)
$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-108.2(4)
$\mathrm{P}(1)-\mathrm{O}(3)-\mathrm{C}(14)-\mathrm{C}(15)$	135(4)
$\mathrm{P}(1)-\mathrm{O}(3)-\mathrm{C}\left(14{ }^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	-102.2(13)
$\mathrm{P}(1)-\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{C}(13)$	102(2)
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(1)$	71.4(5)
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	142.1(5)
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(5)$	-145.1(3)
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-19.0(4)
$\mathrm{O}(4)-\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{O}(6)$	146.8(3)
$\mathrm{O}(4)-\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	26.5(4)
$\mathrm{O}(7)-\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	-176.5(4)
$\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{O}(5)$	4.5(5)
$\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	-120.5(3)
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(3)$	-37.7(4)
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	30.7(5)
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(3)-\mathrm{C}(14)$	23(2)
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(3)-\mathrm{C}\left(14^{\prime}\right)$	63.5(15)
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(2)-\mathrm{C}(12)$	1.8(18)
$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	4.2(6)
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	-2.6(7)
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{O}(6)$	-94.4(4)
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	145.3(3)
$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{O}(7)$	178.8(4)
$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(9)$	-1.8(6)
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	-1.7(6)
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{O}(4)$	-121.7(3)
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	120.7(3)
$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{O}(8)$	177.1(4)
$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{N}(1)$	-2.1(5)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{O}(8)$	-175.2(4)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{N}(2)$	$3.9(5)$

$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{O}(4)$	$55.7(4)$
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$-61.8(4)$
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{O}(3)-\mathrm{C}(14)$	$-103(2)$
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{O}(3)-\mathrm{C}\left(14{ }^{\prime}\right)$	$-62.6(15)$
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{O}(2)-\mathrm{C}(12)$	$125.1(16)$
$\mathrm{C}(4)-\mathrm{O}(4)-\mathrm{C}(7)-\mathrm{N}(1)$	$-164.0(3)$
$\mathrm{C}(4)-\mathrm{O}(4)-\mathrm{C}(7)-\mathrm{C}(6)$	$-39.9(3)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$-110.3(5)$
$\mathrm{C}(7)-\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(3)$	$160.2(3)$
$\mathrm{C}(7)-\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(5)$	$37.1(3)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{O}(8)$	$2.2(5)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{N}(2)$	$-178.6(3)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$-179.1(4)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{O}(5)$	$120.9(4)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$-4.1(4)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(5)$	$-84.6(5)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$95.5(4)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(1)$	$-138.4(3)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$-171.5(15)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$-123.8(4)$
$\mathrm{O}(3)-\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(3)$	$-163.4(5)$
$\mathrm{O}(3)-\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$-100.1(6)$
$\mathrm{O}(3)-\mathrm{P}(1)-\mathrm{O}(2)-\mathrm{C}(12)$	$108.6(4)$
$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(3)$	$91.2(5)$
$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$159.6(5)$
$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{O}(3)-\mathrm{C}(14)$	$-\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{C}(5)$
	$\left.-\mathrm{C}(3)-\mathrm{C}(14)^{\prime}\right)$
C	$-\mathrm{C}(7)$

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for $\mathrm{Cp}-\mathrm{U}$ [\AA and ${ }^{\circ}$].

D-H...A	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{C}(8)-\mathrm{H}(8) \ldots \mathrm{O}(7) \# 1$	0.93	2.26	$3.177(5)$	170.4
$\mathrm{~N}(2)-\mathrm{H}(2) \ldots \mathrm{O}(1) \# 2$	$1.01(12)$	$1.81(12)$	$2.789(4)$	$161(11)$
$\mathrm{O}(5)-\mathrm{H}(5) \ldots \mathrm{O}(6) \# 3$	$0.95(3)$	$2.15(10)$	$2.881(5)$	$133(11)$

Symmetry transformations used to generate equivalent atoms:
$\# 1 \mathrm{x}-1 / 2,-\mathrm{y}+3 / 2,-\mathrm{z}+1 \quad \# 2 \mathrm{x}+1, \mathrm{y}, \mathrm{z} \quad \# 3-\mathrm{x}+2,-\mathrm{y}+2, \mathrm{z}$

ORTEP Representation

