Electronic Supplemental Information Triple-Mode Tunable Long-persistent Luminescence in a 3D Zinc-Organic Hybrid

Yu-Juan Ma, ${ }^{a}$ Xiaoyu Fang, ${ }^{a}$ Guowei Xiao, ${ }^{a}$ Bo Lu ${ }^{\text {a }}$ and Dongpeng Yan*abc

a. Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China. E-mail: yandp@bnu.edu.cn
b. Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China.
c. College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China.

Contents

Experimental section
Figure S1. The coordination mode of D-Cam and tib.
Figure S2. Oscilloscope traces of SHG signals of KDP and $\mathbf{1 .}$
Figure S3. IR plot of $\mathbf{1 .}$
Figure S4. The prompt excitation spectra of $\mathbf{1}$ at room temperature.
Figure S5. The decay and IRF spectra of 1.
Figure S6. The PL spectra (a) and CIE coordinate (b) of $\mathbf{1}$ at room temperature.
Figure S 7 . The temperature-dependent emission spectra of $\mathbf{1}$.
Figure S8. The excitation wavelength-dependent emission spectra.
Figure S9. The delayed excitation spectra of $\mathbf{1}$ at room temperature.
Figure S10. (a) Prompt and delayed PL emission spectra of tib ($\lambda_{\mathrm{ex}}=307 \mathrm{~nm}, 380 \mathrm{~nm}$). (b) PL decay and fit curves obtained at room temperature.

Figure S11. (a) Prompt and delayed PL emission spectra of compound D-Cam ($\lambda_{\mathrm{ex}}=267 \mathrm{~nm}, 310$
nm). (b) PL decay and fit curves obtained at room temperature.
Figure S12. Phosphorescence spectrum of D-Cam and absorption spectrum of tib.
Figure S13. The delayed emission spectra (a) and CIE coordinate (b) of $\mathbf{1}$ at 77 K .

Figure S14. Time-resolved emission spectra.
Figure S15. (a) RTP decay at 525 nm and 535 nm of $\mathbf{1}$ (Insert: photo-activable process).
Figure S16. The temperature-dependent emission spectra.
Figure S17. (a) PL decay and fitting curves obtained at 77 K and (b) 327 K .
Figure S18. PXRD plot of $\mathbf{1}$.
Figure S19. TG plot of $\mathbf{1}$.
Figure S20. Calculated molecular orbitals.

Table S1. Crystallographic data for $\mathbf{1}$ at 100 K .
Table S2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 1 at 100 K .
Table S3 Phosphorescence lifetimes (τ) of $\mathbf{1}$.

Experimental Section

Materials and methods

All chemicals were reagent grade and used as purchased without further purification.
Synthesis of 1: $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.09 \mathrm{~g}, 0.30 \mathrm{mmol})$, D-Cam $(0.03 \mathrm{~g}, 0.15 \mathrm{mmol})$, tib $(0.027 \mathrm{~g}$, 0.10 mmol) was added to mixed solution of 14 mL water and 1 mL DMF with a drop of concentrated HNO_{3}, then sealed in a Teflon-lined autoclave (20 mL) and heated to $140{ }^{\circ} \mathrm{C}$ for 3 days, colorless crystals were obtained and washed with deionized water. Yield: ca. 31% based on tib. IR of $1\left(\mathrm{KBr}\right.$ pellets, $\left.\mathrm{cm}^{-1}\right): 3422(\mathrm{~s}), 2963(\mathrm{w}), 2876(\mathrm{w}), 1605(\mathrm{~s}), 1508(\mathrm{~s}), 1385(\mathrm{~s}), 1287(\mathrm{~m})$, 1242(m), 1076(s), 1018(m), 943(m), 872(m), 766(m), 687(m), 652(s), 536(w), 446(w).

The SHG measurements of the crystals samples were completed by a Nd:YAG laser with 1064 nm as fundamental frequency light. IR spectra was recorded on a Shimadzu IRAffinity-1 FT-IR spectrometer with KBr pellet. All luminescence data were measured on an FLS 980 fluorescence spectrometer. The absorption spectra were carried out on a Puxi Tu-1901 spectrophotometer with BaSO_{4} reference. Thermogravimetric (TG) analysis was measured using a powder sample with a heating rate of $10^{\circ} \mathrm{C} \mathrm{K}^{-1}$ under N_{2} atmosphere on a METTLER TOLEDO Thermogravimetric Analyzer. Powder X-ray diffraction (PXRD) data were recorded on a Shimadzu XRD-7000 (3KW) X-ray diffractometer. Simulated curve of PXRD was exported by the single-crystal data and diffraction-crystal module of the Mercury (Hg) program available free of charge via the Internet at http://www.iucr.org.

X-ray Crystallography.

The single-crystal X-ray diffraction data of $\mathbf{1}$ was collected on a Rigaku XtalLAB Synergy diffractometer at $100(10) \mathrm{K}$ with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation $(\lambda=1.54184 \AA)$. SHELX-2016 software was used to solve and refine the structure. ${ }^{1}$ Crystallographic data for $\mathbf{1}$ are listed in Table S1, and selected bond lengths and angles are listed in Table S2. Full crystallographic data for $\mathbf{1}$ has been deposited with the CCDC (2079214).

Calculation Details

All DFT calculation were carried out with the D. 01 revision of the Gaussian 09 program package ${ }^{2}$, using the cam-b3lyp functional with the $6-311 \mathrm{G}^{*}$ basis set for $\mathrm{C}, \mathrm{H}, \mathrm{O}$ and N , and lanl2dz basis set for the Zn element. The D3 Grimme's dispersion term with Becke-Johnson damping was added to the cam-B3LYP functional to get a better description of the intramolecular non-covalent interactions. In this work, the frontier orbitals were analyzed by Multiwfn ${ }^{3}$ and $V M D^{4}$.

References

[S1] G. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, $3-8$.
[S2] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2009.
[S3] T. Lu; F. Chen, Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem., 2012, 33, 580-592
[S4] W. Humphrey; A. Dalke; K. Schulten, VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14, 33-38.

(a)

(b)

Figure S1. The coordination modes of D-Cam (a) and tib (b).

Figure S2. Oscilloscope traces of SHG signals of KDP and 1.

Figure S3. IR plot of $\mathbf{1}$.

Figure S4. The prompt excitation spectra of $\mathbf{1}$ at room temperature.

Figure S5. The decay and IRF spectra of 1.

Figure S6. The PL spectra (a) and CIE coordinate (b) of $\mathbf{1}$ at room temperature.

Figure S7. The temperature-dependent emission spectra of $\mathbf{1}$.

Figure S8. The excitation wavelength-dependent emission spectra.

Figure S9. The delayed excitation spectra of $\mathbf{1}$ at room temperature.

Figure S10. (a) Prompt and delayed PL emission spectra of tib ($\lambda_{\mathrm{ex}}=307 \mathrm{~nm}, 380 \mathrm{~nm}$). (b) PL decay and fit curves obtained at room temperature.

Figure S11. (a) Prompt and delayed PL emission spectra of D-Cam ($\lambda_{\mathrm{ex}}=267 \mathrm{~nm}, 310 \mathrm{~nm}$). (b)
PL decay and fitting curves obtained at room temperature.

Figure S12. Normalized phosphorescence spectrum of D-Cam and absorption spectrum of tib.

Figure S13. The delayed emission spectra (a) and CIE coordinate (b) of $\mathbf{1}$ at 77 K .

Figure S14. Time-resolved emission spectra ($\left.\lambda_{\mathrm{ex}}=333 \mathrm{~nm}\right)$.

Figure S15. (a) RTP decay at 525 nm and 535 nm of 1 (Insert: photo-activable process).

Figure S16. The temperature-dependent emission spectra $\left(\lambda_{\mathrm{ex}}=333 \mathrm{~nm}\right)$.

Figure S17. (a) PL decay and fitting curves obtained at 77 K and (b) 327 K .

Figure S18. PXRD and simulated profiles of $\mathbf{1}$.

Figure S19. TG profile of $\mathbf{1}$.

Figure S20. Calculated molecular orbitals.

Table S1. Crystallographic data for 1 at 100K

	1
Formula	$\mathrm{C}_{60} \mathrm{H}_{70} \mathrm{~N}_{12} \mathrm{O}_{14} \mathrm{Zn}_{3}$
$M \mathrm{r}\left(\mathrm{g} \cdot \mathrm{mol}^{-1}\right)$	1379.39
Space group	$P 2{ }_{1}{ }_{1} 2$
Crystal system	Orthorhombic
$a(\AA)$	17.6445(2)
$b(\AA)$	25.2002(3)
$c(\AA)$	$6.87410(10)$
$V\left(\AA^{3}\right)$	3056.53(7)
Z	2
$F(000)$	1432
$D c\left(\mathrm{gcm}^{-3}\right)$	1.499
$\mu\left(\mathrm{mm}^{-1}\right)$	2.005
$R_{\text {int }}$	0.0293
	$-21 \leq h \leq 21$
limiting indices	$-30 \leq k \leq 21$
	$-8 \leq 1 \leq 8$
Collected reflections	21484
Unique reflections	5930
GOF on F^{2}	1.039
$R_{1}, w R_{2}[1>2 \sigma(I)]$	$0.0581 \quad 0.1560$
$R_{1}, w R_{2}$ [all data]	$0.0588 \quad 0.1568$

Table S2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{1}$ at 100 K

$\mathrm{Zn}(1)-\mathrm{O}(1)$	$1.943(5)$	$\mathrm{Zn}(2)-\mathrm{O}(5 \mathrm{~A})$	$1.965(10)$
$\mathrm{Zn}(1)-\mathrm{O}(1) \# 1$	$1.943(5)$	$\mathrm{Zn}(2)-\mathrm{O}(5)$	$2.020(12)$
$\mathrm{Zn}(1)-\mathrm{N}(3)$	$2.046(5)$	$\mathrm{Zn}(2)-\mathrm{N}(1)$	$2.021(5)$
$\mathrm{Zn}(1)-\mathrm{N}(3) \# 1$	$2.046(5)$	$\mathrm{Zn}(2)-\mathrm{N}(6) \# 3$	$2.024(6)$
$\mathrm{Zn}(2)-\mathrm{O}(3) \# 2$	$1.940(5)$	$\mathrm{Zn}(2)-\mathrm{O}(6 \mathrm{~A})$	$2.334(10)$
$\mathrm{O}(1)-\mathrm{Zn}(1)-\mathrm{O}(1) \# 1$			
$\mathrm{O}(1)-\mathrm{Zn}(1)-\mathrm{N}(3)$	$121.3(3)$	$\mathrm{O}(5 \mathrm{~A})-\mathrm{Zn}(2)-\mathrm{N}(1)$	$109.2(3)$
$\mathrm{O}(1) \# 1-\mathrm{Zn}(1)-\mathrm{N}(3)$	$90.8(2)$	$\mathrm{O}(5)-\mathrm{Zn}(2)-\mathrm{N}(1)$	$104.6(3)$
$\mathrm{O}(1)-\mathrm{Zn}(1)-\mathrm{N}(3) \# 1$	$116.3(2)$	$\mathrm{O}(3) \# 2-\mathrm{Zn}(2)-\mathrm{N}(6) \# 3$	$99.0(3)$
$\mathrm{O}(1) \# 1-\mathrm{Zn}(1)-\mathrm{N}(3) \# 1$	$116.3(2)$	$\mathrm{O}(5)-\mathrm{Zn}(2)-\mathrm{N}(6) \# 3$	$122.8(4)$
$\mathrm{N}(3)-\mathrm{Zn}(1)-\mathrm{N}(3) \# 1$	$90.8(2)$	$\mathrm{N}(1)-\mathrm{Zn}(2)-\mathrm{N}(6) \# 3$	$103.6(2)$
$\mathrm{O}(3) \# 2-\mathrm{Zn}(2)-\mathrm{O}(5 \mathrm{~A})$	$124.5(3)$	$\mathrm{O}(3) \# 2-\mathrm{Zn}(2)-\mathrm{O}(6 \mathrm{~A})$	$87.6(3)$
$\mathrm{O}(3) \# 2-\mathrm{Zn}(2)-\mathrm{O}(5)$	$114.5(3)$	$\mathrm{O}(5 \mathrm{~A})-\mathrm{Zn}(2)-\mathrm{O}(6 \mathrm{~A})$	$60.2(4)$
$\mathrm{O}(3) \# 2-\mathrm{Zn}(2)-\mathrm{N}(1)$	$101.9(4)$	$\mathrm{N}(1)-\mathrm{Zn}(2)-\mathrm{O}(6 \mathrm{~A})$	$89.1(3)$

Symmetry codes: \#1: -x+1, -y+2, z; \#2: -x+3/2, y-1/2, -z+1; \#3: x-1/2, -y+3/2, -z; \#4: -$\mathrm{x}+1,-\mathrm{y}+1, \mathrm{z} ; \# 5: \mathrm{x}+1 / 2,-\mathrm{y}+3 / 2,-\mathrm{z} ; \# 6:-\mathrm{x}+3 / 2, \mathrm{y}+1 / 2,-\mathrm{z}+1$.

Table S3 Phosphorescence lifetimes (τ) of $\mathbf{1}$.

Compound	Temperature	Wavelength (nm)	Excitation light		$\begin{aligned} & \mathrm{A}_{1} \\ & (\%) \end{aligned}$	$\begin{gathered} \tau_{2} \\ (\mathrm{~ms}) \end{gathered}$	$\begin{aligned} & \mathrm{A}_{2} \\ & (\%) \end{aligned}$	$\begin{aligned} & \langle\tau\rangle \\ & (\mathrm{ms}) \end{aligned}$	χ^{2}
1	RT	525	uF2	150.2	34.72	701.4	65.28	510.0	1.260
		525	Xe	405.2	47.72	1270	52.28	857.3	1.217
		535	Xe	343.8	50.62	1162	49.38	747.8	1.230
	327 K	550	uF2	40.24	30.28	304.1	69.72	224.2	1.176
	77 K	495	uF2	373.0	32.87	1540	67.13	1156.4	1.147
tib	RT	550	uF2	16.93	34.19	117.7	65.81	83.2	1.237
D-Cam	RT	565	uF2	0.014	14.16	0.502	85.84	0.44	1.141

$\langle\tau\rangle=\sum \mathrm{A}_{\mathrm{j}} \tau_{\mathrm{j}}^{2} / \sum \mathrm{A}_{\mathrm{j}} \tau_{\mathrm{j}}, \mathrm{j}=1,2,3 \ldots ; \mathrm{RT}=$ Room temperature.

