Supporting Information

Transformation from triple helicene to double helicene embedding adjacent stereogenic carbon atoms and axial stereogenicity

Ayaka Yubuta, Akihiro Tsurusaki,* and Ken Kamikawa*

Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

E-mail: kamikawa@c.s.osakafu-u.ac.jp; tsurusaki@c.s.osakafu-u.ac.jp

Table of Contents

1.	Experimental Details	S2
2.	Spectral Data	S12
3.	X-Ray Crystallographic Analysis	S46
4.	Stereochemical outcome for the formation of DH-2a-2d	S49
5.	HPLC Analysis of Optically Active DH-2a and DH-2b	S50
6.	Photophysical Properties	S52
7.	Theoretical Calculations	S53
8.	References	S59

1. Experimental Details.

General.

Triple Helicene (TH-1),^{S1} dimethyl [5]helicene-7,8-dicarboxylate (5),^{S2} dimethyl phenanthrene-9,10dicarboxylate (9)^{S3} were prepared according to the reported procedure. All the other chemicals were obtained from commercial sources and used without further purification unless otherwise noted.

Nuclear magnetic resonance (NMR) spectra were recorded on a JEOL ECS400 (400 MHz for ¹H NMR and 100 MHz for ¹³C NMR) or a JEOL EXZ500 (500 MHz for ¹H NMR and 125 MHz for ¹³C NMR) spectrometer with Me₄Si as a standard. Fast atom bombardment (FAB)-MS spectra were measured on a JEOL JMS-700 spectrometer.

Synthesis of Double Helicene (DH-2) and Triple Helicene (TH-3). (Table 1)

A solution of triple helicene (TH-1, 50 mg, 72 μ mol) in THF (6 mL) was added dropwise MeLi (1.2 M in ether, 0.60 mL, 0.72 mmol) at 0 °C under N₂ atmosphere. The mixture was stirred for 30 min at 0 °C (and slowly warmed to 80 °C (for entry 1) or 60 °C (for entry 2)). Then, O₂ (excess) was added to the mixture with bubbling. After stirring for 15 min, the resulting mixture was poured into sat. NH₄Cl *aq*, and the aqueous phase was extracted with dichloromethane. The combined organic layers were washed with brine and dried over anhydrous MgSO₄, filtered, and then evaporated under reduced pressure.

Reaction temperature at 80 °C (entry 1)

The crude mixture was purified by preparative thin-layer chromatography with CH₂Cl₂/hexane = 9/2 to give the title compound DH-**2a** ($R_f = 0.13$) as yellow solid (13.5 mg, 19 µmol, 26%) and TH-**3** ($R_f = 0.75$) as yellow solid (7.5 mg, 12 µmol, 16%).

Reaction temperature at 60 °C (entry 2)

The crude mixture was purified by preparative thin-layer chromatography with CH₂Cl₂/hexane = 9/2 to give the title compound DH-**2b** (R_f = 0.18) as yellow solid (13.6 mg, 19 µmol, 26%), DH-**2c** (R_f = 0.075) as yellow solid (4.7 mg, 6.5 µmol, 9 %), TH-**3** (R_f = 0.75) as yellow solid (1.9 mg, 2.9 µmol, 4%), and mixture of DH-**2a** (R_f = 0.125) and DH-**2d** (R_f = 0.125). Then, mixture of DH-**2a** and DH-**2d** was purified by preparative thin-layer chromatography with hexane/EtOAc = 5/3 to give the title compound DH-**2a** (R_f = 0.425) as yellow solid (23.0 mg, 32 µmol, 44%) and DH-**2d** (R_f = 0.575) as yellow solid (1.0 mg, 1.4 µmol, 2%).

Reaction temperature at 0 °C (entry 3)

The crude mixture was purified by preparative thin-layer chromatography with CH₂Cl₂/hexane = 9/2 to give the title compound DH-**2a** (R_f = 0.125) as yellow solid (16.2 mg, 22 µmol, 31%) and DH-**2b** (R_f = 0.175) as yellow solid (16.2 mg, 22 µmol, 31%).

DH-2a

Mp. 257.2 °C (decomp.). ¹H NMR (400 MHz, CDCl₃) δ 1.65 (s, 3H), 3.89 (s, 3H), 4.06 (s, 3H), 7.23-7.35 (m, 4H), 7.44 (t, *J* = 7.0 Hz, 1H), 7.49 (t, *J* = 7.0 Hz, 1H), 7.53 (t, *J* = 7.0 Hz, 2H), 7.63-7.69 (m, 4H), 7.81 (d, *J* = 8.4 Hz, 2H), 7.85 (t, *J* = 8.4 Hz, 2H), 7.95-7.99 (m, 4H), 8.39 (d, *J* = 8.4 Hz, 1H), 8.51 (d, *J* = 8.4 Hz, 1H), 8.56 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.6, 53.2, 53.3, 58.1, 80.6, 119.4, 120.0, 123.8, 124.0, 124.8, 124.9, 125.1, 125.1, 126.3, 126.5, 126.5, 126.6, 127.0, 127.3, 127.6, 127.6, 127.8, 127.8, 127.8, 127.8, 127.9 (x 2), 128.0 (x 2), 128.2 (x 3), 128.4, 129.4 (x 2), 129.6 (x 4), 129.8 (x 2), 130.8 (x 2), 131.0, 131.3, 131.5, 131.9, 132.1, 132.2, 175.3, 175.7; IR (CHCl₃): *v* 1239, 1431, 1736, 3199 cm⁻¹. HRMS (FAB) *m/z* calcd for C₅₁H₃₄O₅[M]⁺: 726.2406, found: 726.2415.

DH-2b

Mp. 267.4 °C (decomp.). ¹H NMR (400 MHz, CDCl₃) δ 2.12 (s, 3H), 3.02 (s, 3H), 3.79 (s, 3H), 4.08 (s, 1H), 7.28 (t, J = 8.4 Hz, 1H), 7.30 (d, J = 8.4 Hz, 1H), 7.32 (d, J = 8.4 Hz, 1H), 7.35 (t, J = 8.4 Hz, 1H), 7.46 (t, J = 8.4 Hz, 1H), 7.48 (t, J = 8.4 Hz, 1H), 7.53 (t, J = 7.4 Hz, 1H), 7.54 (t, J = 7.4 Hz, 1H), 7.60 (t, J = 7.4 Hz, 1H), 7.61 (d, J = 7.4 Hz, 1H), 7.64 (d, J = 7.4 Hz, 1H), 7.65 (t, J = 7.4 Hz, 1H), 7.83 (d, J = 7.4 Hz, 1H), 7.84 (d, J = 7.4 Hz, 1H), 7.95-7.99 (m, 5H), 8.04 (d, J = 9.2 Hz, 1H), 8.41 (d, J = 8.4 Hz, 1H), 8.46 (d, J = 8.4 Hz, 1H), 8.51 (d, J = 8.4 Hz, 1H), 8.58 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.5, 52.7, 53.7, 56.2, 79.8, 119.5, 121.6, 123.8, 124.0, 124.6, 125.0 (x 2), 125.1, 126.3 (x 3), 126.4, 126.7, 126.9, 127.5, 127.7 (x 2), 127.9, 128.0 (x 4), 128.5, 129.1, 129.4 (x 2), 129.5 (x 2), 129.6 (x 4), 130.2, 130.7, 130.9, 131.1, 131.3, 131.6, 131.7, 131.8, 132.0, 132.2 (x 2), 133.3, 173.8 (x 2); IR (CHCl₃): v 1249, 1637, 1725, 2089, 3440 cm⁻¹. HRMS (FAB) *m/z* calcd for C₅₁H₃₄O₅ [M]⁺: 726.2406, found: 726.2401.

DH-2c

Mp. 255.5 °C (decomp.). ¹H NMR (400 MHz, CDCl₃) δ 2.03 (s, 3H), 3.02 (s, 3H), 3.09 (s, 3H), 4.88 (s, 1H), 7.23-7.36 (m, 4H), 7.45-7.57 (m, 6H), 7.61 (d, *J* = 8.8 Hz, 1H), 7.66 (d, *J* = 8.8 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 1H), 7.97 (d, *J* = 9.2 Hz, 2H), 7.98 (d, *J* = 9.2 Hz, 2H), 8.26 (d, *J* = 9.2 Hz, 1H), 8.40 (d, *J* = 8.8 Hz, 1H), 8.45 (d, *J* = 8.8 Hz, 1H), 8.49 (d, *J* = 8.8 Hz, 1H), 8.54 (d, *J* = 8.8 Hz, 1H) 8.66 (d, *J* = 9.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 52.7, 53.5, 55.9, 81.3, 121.7, 122.3, 123.7 (x 2), 124.8 (x 3), 125.0, 126.3 (x 5), 126.8, 127.5 (x 2), 127.7, 127.8, 127.9 (x 4), 128.0 (x 2), 129.0, 129.3, 129.4 (x 2), 129.6 (x 3), 129.7, 130.2, 130.7, 130.8, 131.0, 131.1, 131.5, 131.6, 131.7, 131.9, 132.0, 132.2, 133.1, 172.7, 173.4; IR (CHCl₃): *v* 1232, 1734, 2949, 3484 cm⁻¹. HRMS (FAB) *m/z* calcd for C₅₁H₃₄O₅ [M]⁺: 726.2406, found: 726.2401.

DH-2d

Mp. 254.8 °C (decomp.). ¹H NMR (400 MHz, CDCl₃) δ 1.80 (s, 3H), 2.95 (s, 3H), 3.75 (s, 3H), 4.37 (s, 1H), 7.29 (t, J = 8.4 Hz, 1H), 7.31 (t, J = 7.0 Hz, 1H), 7.32 (t, J = 8.4 Hz, 1H), 7.35 (t, J = 7.0 Hz, 1H), 7.48 (t, J = 8.0 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 7.54 (t, J = 8.0 Hz, 2H), 7.59 (d, J = 9.0 Hz, 2H), 7.65 (d, J = 9.0 Hz, 1H), 7.66 (d, J = 9.0 Hz, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 8.4 Hz, 1H), 7.94-7.99 (m, 4H), 8.41 (d, J = 9.0 Hz, 1H), 8.46 (d, J = 9.0 Hz, 1H), 8.52 (d, J = 8.0 Hz, 1H), 8.54 (d, J = 9.0 Hz, 1H), 8.59 (d, J = 9.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.2, 52.8, 53.6, 59.5, 81.4, 119.7, 122.2, 123.6, 123.9, 124.7, 124.9, 125.0, 125.0, 126.2, 126.4 (x 2), 126.5, 126.8, 127.5, 127.6 (x 2), 127.7, 127.9 (x 3), 128.0 (x 2), 128.2, 128.3, 128.5, 129.3 (x 3), 129.6 (x 2), 129.7 (x 2), 130.7, 130.8 (x 2), 130.9, 131.3 (x 2), 131.6, 131.7, 131.9, 132.1, 132.6, 133.0, 175.4, 175.4; IR (CHCl₃): v 1234, 1268, 1728, 3045, 3471 cm⁻¹. HRMS (FAB) *m/z* calcd for C₅₁H₃₄O₅ [M]⁺: 726.2406, found: 726.2405.

TH-3

Mp. 119.5 °C (decomp.). ¹H NMR (400 MHz, CDCl₃) δ 3.20 (s, 3H), 4.11 (s, 3H), 7.21 (dt, J = 1.2, 7.2 Hz, 1H), 7.30 (dt, J = 1.2, 7.2 Hz, 1H), 7.39 (t, J = 7.2 Hz, 1H), 7.42 (d, J = 7.2 Hz, 1H), 7.44 (d, J = 7.2 Hz, 1H), 7.47 (t, J = 7.2 Hz, 1H), 7.58 (t, J = 7.2 Hz, 1H), 7.58 (t, J = 7.2 Hz, 1H), 7.68 (d, J = 8.8 Hz, 1H), 7.73 (d, J = 8.8 Hz, 1H), 7.80 (d, J = 7.2 Hz, 1H), 7.83 (d, J = 7.2 Hz, 1H), 8.01-8,12 (m, 5H), 8.25 (d, J = 8.8 Hz, 1H), 8.38 (d, J = 8.8 Hz, 1H), 8.43 (d, J = 8.8 Hz, 1H), 8.45 (d, J = 8.8 Hz, 1H), 8.47 (d, J = 7.2 Hz, 1H), 8.50 (d, J = 8.8 Hz, 1H), 8.57 (d, J = 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.0, 52.8, 121.8, 124.3, 124.3, 124.6, 125.0 (x 2), 125.2 (x 2), 126.3 (x 2), 126.4, 126.5 (x 2), 126.6, 126.8, 126.9, 127.2, 127.4, 127.5, 127.6 (x 2), 127.7, 128.0 (x 2), 128.2, 129.4, 129.5 (x 3), 129.7 (x 2), 130.0, 130.6 (x 2), 130.7 (x 2), 130.9, 131.1, 131.6, 131.9, 132.0, 132.2 (x 2), 132.4, 132.9, 172.8 (x 2); IR (CHCl₃): ν 1217, 1506, 1726, 2920, 3449 cm⁻¹. HRMS (FAB) *m/z* calcd for C₄₉H₃₀O₂[M]⁺: 650.2246, found: 650.2248.

Synthesis of *trans-(P*, P*, Rax*, 1S*, 2S*)-DH-4ax* and *cis-(P*, P*, Rax*, 1R*, 2S*)-DH-4bx*.

A solution of triple helicene (TH-1, 50 mg, 72 μ mol) in THF (6 mL) was added dropwise MeLi (1.2 M in ether, 0.60 mL, 0.72 mmol, 10 eq) at 0 °C under N₂ atmosphere. The mixture was stirred for 30 min at 0 °C. Then, sat. NH₄Cl *aq*. was added to the mixture. After stirring for 15 min, the aqueous phase was extracted with dichloromethane. The combined organic layers were washed with brine and dried over anhydrous MgSO₄, filtered, and then evaporated under reduced pressure. The crude mixture was purified

by preparative thin-layer chromatography with CH₂Cl₂/hexane = 9/2 to give the title compound *trans*-DH-**4ax** (R_f = 0.65) as yellow solid (38.4 mg, 54 µmol, 75%) and *cis*-DH-**4bx** (R_f = 0.50) as yellow solid (12.8 mg, 18 µmol, 25%).

trans-(P*, P*, Rax*, 1S*, 2S*)-DH-4ax

Mp. 148.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.32 (s, 3H), 3.02 (s, 3H), 3.18 (s, 3H), 5.27 (s, 1H), 7.23 (t, *J* = 8.4 Hz, 1H), 7.28 (t, *J* = 8.4 Hz, 1H), 7.33 (t, *J* = 8.4 Hz, 2H), 7.45 (t, *J* = 6.8 Hz, 1H), 7.46 (t, *J* = 6.8 Hz, 1H), 7.52 (t, *J* = 6.8 Hz, 1H), 7.54 (t, *J* = 6.8 Hz, 1H), 7.63 (d, *J* = 8.4 Hz, 1H), 7.68-7.74 (m, 3H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.96-8.01 (m, 3H), 8.07 (d, *J* = 8.4 Hz, 1H), 8.29 (d, *J* = 8.8 Hz, 1H), 8.43 (d, *J* = 8.8 Hz, 2H), 8.46 (d, *J* = 8.8 Hz, 1H), 8.52 (d, *J* = 8.4 Hz, 1H), 8.58 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 25.7, 50.6, 51.8, 52.8, 53.8, 120.6, 123.1, 124.0, 124.3, 124.6, 124.7, 124.8 (x 2), 126.1, 126.2, 126.3, 126.4, 126.7, 127.2 (x 3), 127.5, 127.6, 127.8 (x 2), 128.0 (x 3), 128.3, 129.1, 129.3, 129.4 (x 2), 129.5, 129.7, 129.9, 130.1, 130.2, 130.7, 130.9, 131.2, 131.3, 131.6 (x 2), 131.9, 132.1 (x 2), 134.7, 135.0, 170.1, 174.8; IR (CHCl₃): *v* 1235, 1432, 1727, 2951, 3013, 3046 cm⁻¹. HRMS (FAB) *m/z* calcd for C₅₁H₃₄Q₄[M]⁺: 710.2457, found: 710.2449.

cis-(P, P*, R_{ax}*, 1R*, 2S*)*-DH-4bx

Mp. 168.2 °C (decomp.). ¹H NMR (400 MHz, CDCl₃) δ 1.71 (s, 3H), 3.27 (s, 3H), 3.72 (s, 3H), 4.74 (s, 1H), 7.24 (t, J = 8.0 Hz, 1H), 7.28 (t, J = 8.0 Hz, 1H), 7.35 (t, J = 8.0 Hz, 2H), 7.46 (t, J = 8.0 Hz, 2H), 7.48 (t, J = 8.0 Hz, 1H), 7.55 (t, J = 8.0 Hz, 1H), 7.65 (d, J = 8.8 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 8.8 Hz, 2H), 7.93 (d, J = 8.8 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H), 8.05 (d, J = 8.8 Hz, 1H), 8.17 (d, J = 8.8 Hz, 1H), 8.44 (d, J = 8.0 Hz, 1H), 8.47 (d, J = 8.0 Hz, 1H), 8.54 (d, J = 8.0 Hz, 1H), 8.60 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 22.8, 52.1, 52.4, 52.8, 53.7, 119.4, 120.0, 124.3, 124.4, 124.7, 124.8, 125.0, 125.1, 126.1, 126.3, 126.4, 126.5 (x 2), 127.3 (x 3), 127.5, 127.6, 127.7 (x 2), 127.9, 128.0, 128.1 (x 2), 128.8, 129.1, 129.3 (x 3), 129.5, 129.7 (x 2), 129.8, 130.2, 130.7, 130.8, 131.0, 131.3 (x 2), 131.5, 132.0, 132.1, 132.2, 133.8, 170.8, 176.6; IR (CHCl₃): v 1242, 1432, 1735, 2949, 3018, 3049 cm⁻¹. HRMS (FAB) m/z calcd for C₅₁H₃₄O₄[M]⁺: 710.2457, found: 710.2450.

Synthesis of *trans-(P*, P*, R_{ax}*, 1S*, 2S*)*-DH-4ay and *cis-(P*, P*, R_{ax}*, 1R*, 2S*)*-DH-4by. A solution of triple helicene 1 (100 mg, 0.14 mmol) in THF (12 mL) was added dropwise "BuLi (1.58 M in hexane, 0.91 mL, 1.44 mmol, 10 eq) at -78 °C under N₂ atmosphere. The mixture was stirred for 3 min at -78 °C, then warmed to 0 °C and stirred for 7 min. The aqueous solution of NH₄Cl was added

to the mixture. After stirring for 15 min, the aqueous phase was extracted with dichloromethane. The combined organic layers were washed with brine and dried over anhydrous MgSO₄, filtered, and then evaporated under reduced pressure. The crude mixture was purified by preparative thin-layer chromatography with hexane/EtOAc = 5/1 to give the title compound *trans*-DH-**4ay** ($R_f = 0.40$) as yellow solid (36.8 mg, 49 µmol, 34%) and *cis*-DH-**4by** ($R_f = 0.43$) as yellow solid (43.3 mg, 58 µmol, 40%) (It is difficult to separate each diastereomer completely).

trans-(P, P*, R_{ax}*, 1S*, 2S*)*-DH-4ay

Mp. 103.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.00 (m, 3H), 0.39-0.44 (m, 1H), 0.66 (q, *J* = 7.6 Hz, 2H), 0.88 (m, 1H), 2.08-2.11 (m, 1H), 2.28 (dt, *J* = 3.2, 13.2 Hz, 1H), 3.80 (m, 3H), 3.93 (s, 3H), 5.13 (s, 1H), 7.25 (t, *J* = 8.0 Hz, 1H), 7.30 (t, *J* = 8.0 Hz, 1H), 7.34 (t, *J* = 8.0 Hz, 2H), 7.45 (t, *J* = 8.0 Hz, 1H), 7.48 (t, *J* = 8.0 Hz, 1H), 7.53 (t, *J* = 8.0 Hz, 1H), 7.55 (t, *J* = 8.0 Hz, 1H), 7.62-7.63 (m, 3H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.73 (m, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.92-7.98 (m, 5H), 8.37 (d, *J* = 8.4 Hz, 1H), 8.49 (d, *J* = 8.4 Hz, 1H), 8.52 (d, *J* = 8.4 Hz, 1H), 8.58 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.0, 23.2, 27.9, 32.3, 52.5, 53.0, 55.9 (x 2), 120.4, 120.9, 123.5, 124.0, 124.8, 124.9, 125.0 (x 2), 126.2, 126.3 (x 2), 126.5, 126.9, 127.6, 127.7 (x 4), 127.9 (x 5), 128.1, 129.2, 129.4, 129.5 (x 2), 129.6, 130.0 (x 2), 130.1, 130.8, 130.9, 131.0, 131.3, 131.5 (x 2), 131.8 (x 3), 131.9, 132.0, 132.8, 177.6 (x 2); IR (CHCl₃): *v* 1222, 1733, 2953, 3016, 3047 cm⁻¹. HRMS (FAB) *m/z* calcd for C₅₄H₄₀O4 [M]⁺: 752.2927, found: 752.2933

cis-(*P**, *P**, *R_{ax}**, 1*R**, 2*S**)-DH-4by

Mp. 143.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.41 (t, J = 7.4 Hz, 3H), 0.82-0.93 (m, 2H), 1.13-1.15 (m, 1H), 1.45-1.52 (m, 1H), 1.91 (dt, J = 3.6, 12.8 Hz, 1H), 2.28 (dt, J = 3.6, 12.8 Hz, 1H), 3.23 (s, 3H), 3.69 (s, 3H), 4.93 (s, 1H), 7.24 (t, J = 7.6 Hz, 1H), 7.26 (t, J = 7.6 Hz, 1H), 7.32-7.37 (m, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.52 (t, J = 7.6 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.65 (d, J = 9.2 Hz, 1H), 7.73 (d, J = 7.6 Hz, 1H), 7.82-7.87 (m, 4H), 7.91 (d, J = 7.6 Hz, 1H), 7.95 (d, J = 7.6 Hz, 1H), 8.06 (d, J = 9.2 Hz, 1H), 8.20 (d, J = 9.2 Hz, 1H), 8.44 (d, J = 8.4 Hz, 1H), 8.46 (d, J = 8.4 Hz, 1H), 8.54 (d, J = 8.4 Hz, 1H), 8.58 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.4, 22.9, 28.3, 37.1, 51.0, 52.3, 52.5, 55.3, 119.3, 120.8, 124.3, 124.4, 124.7 (x 2), 124.9, 125.1, 126.1, 126.3, 126.4, 126.5 (x 2), 127.2, 127.3, 127.4 (x 2), 127.6 (x 4), 127.9, 128.0, 128.1, 128.3, 128.8, 129.2, 129.3, 129.5 (x 2), 129.6, 129.7, 129.9, 130.2, 130.7, 130.8, 131.3, 131.4, 131.9, 132.0, 132.1, 132.2, 132.6, 133.8, 171.1, 176.4; IR (CHCl₃): v 1222, 1733, 2953, 3016, 3047 cm⁻¹. HRMS (FAB) m/z calcd for C₅₄H₄₀O₄ [M]⁺: 752.2927, found: 752.2934

Synthesis of *trans-(P*, P*, R_{ax}*, 1S*, 2S*)*-DH-4az.

A solution of triple helicene **1** (100 mg, 0.14 mmol) in THF (12mL) was added dropwise PhLi (1.0 M in THF, 1.44 mL, 1.44 mmol, 10 eq) at -78 °C under N₂ atmosphere. The mixture was stirred for 3 min at -78 °C, stirred for 7 min at 0 °C. Then, sat. NH₄Cl *aq* was added to the mixture. After stirring for 15 min, the aqueous phase was extracted with dichloromethane. The combined organic layers were washed with brine and dried over anhydrous MgSO₄, filtered, and then evaporated under reduced pressure. The crude mixture was purified by preparative thin-layer chromatography with CH₂Cl₂/hexane = 9/2 to give the title compound *trans*-DH-**4az** (R_f = 0.53) as yellow solid (78.0 mg, 54 µmol, 70%).

trans-(P, P*, R_{ax}*, 1S*, 2S*)*-DH-4az

Mp. 276.1 °C. (decomp.). ¹H NMR (400 MHz, CDCl₃) δ 2.98 (s, 3H), 3.34 (s, 3H), 5.61 (s, 1H), 6.69 (d, J = 7.6 Hz, 1H), 7.07 (t, J = 7.6 Hz, 1H), 7.21-7.35 (m, 6H), 7.43-7.54 (m, 5H), 7.58 (d, J = 8.8 Hz, 1H), 7.64 (d, J = 8.8 Hz, 1H), 7.73-7.75 (m, 3H), 7.83 (m, 3H), 7.88 (d, J = 8.8 Hz, 1H), 7.96 (d, J = 8.8 Hz, 1H), 8.02 (d, J = 8.8 Hz, 1H), 8.33 (d, J = 8.8 Hz, 1H), 8.45 (d, J = 8.8 Hz, 1H), 8.52 (d, J = 8.8 Hz, 2H), 8.60 (d, J = 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 51.8, 53.1, 54.7, 61.1, 120.0, 124.3, 124.4, 124.5, 124.6, 124.7, 124.8, 125.3, 126.0 (x 2), 126.2 (x 2), 126.3, 126.4, 127.1, 127.3, 127.4, 127.5, 127.6 (x 2), 127.7, 127.8, 127.9 (x 2), 128.1 (x 2), 128.5, 129.1, 129.3, 129.4 (x 2), 129.5, 129.7 (x 2), 129.8, 130.1, 130.3, 130.5, 130.8, 130.9 (x 2), 131.1, 131.3 (x 2), 132.0, 132.1, 132.3, 132.4, 135.6, 140.2, 170.4, 171.8; IR (CHCl₃): *v* 1233, 1728, 2949, 3015, 3047 cm⁻¹. HRMS (FAB) *m/z* calcd for C₅₆H₃₆O₄[M]⁺: 772.2614, found: 772.2621

Synthesis of dimethyl-1-hydroxy-2-methyl-1,2-dihydrodibenzo[*f,j*]picene-1,2-dicarboxylate (6). (Scheme 3A)

A solution of dibenzo[f_i]picene-9,10-dicarboxylic acid, 9,10-dimethyl ester (5, 50 mg, 0.10 mmol) in THF (6 mL) was added dropwise MeLi (1.2 M in ether, 0.68 mL, 0.81 mmol, 8 eq.) at 0 °C under N₂ atmosphere. The mixture was stirred for 30 min at same temperature. Then, to the mixture was added O₂ (excess) with bubbling. After stirring for 15 min, the resulting mixture was poured into sat. NH₄Cl aq, and the aqueous phase was extracted with dichloromethane. The combined organic layers were washed with brine and dried over anhydrous MgSO₄, filtered, and then evaporated under reduced pressure. The crude mixture was purified by preparative thin-layer chromatography with hexane/THF =

3/1 to give the title compound *trans*-**6a** ($R_f = 0.48$) as yellow solid (23.0 mg, 44 µmol, 43%) and *cis*-**6b** ($R_f = 0.35$) as yellow solid (24.6 mg, 47 µmol, 46%).

trans-dimethyl-1-hydroxy-2-methyl-1,2-dihydrodibenzo[f,j]picene-1,2-dicarboxylate 6a

Mp. 125.6 °C. ¹H NMR (400 MHz, CDCl₃, D₂O was added) δ 1.71 (s, 3H), 3.75 (s, 3H), 3.97 (s, 3H), 7.18 (t, *J* = 8.0 Hz, 1H), 7.23 (t, *J* = 8.0 Hz, 1H), 7.27 (d, *J* = 8.0 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.55 (t, *J* = 8.0 Hz, 1H), 7.57 (t, *J* = 8.0 Hz, 1H), 7.59 (t, *J* = 8.0 Hz, 1H), 7.61 (t, *J* = 8.0 Hz, 1H), 7.66 (dt, *J* = 1.2, 7.2 Hz, 1H), 7.67 (dt, *J* = 1.2, 7.2 Hz, 1H), 7.81 (d, *J* = 7.2 Hz, 2H), 8.68 (d, *J* = 8.0 Hz, 1H), 8.70 (d, *J* = 8.0 Hz, 1H), 8.74 (d, *J* = 8.0 Hz, 1H), 8.79 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 21.0, 53.2 (x 2), 58.6, 81.3, 123.1, 123.2, 123.6, 123.7, 124.1, 124.7, 125.6, 126.1, 126.3, 126.5, 126.6, 127.1, 127.9, 128.0, 128.1, 128.4, 128.7, 128.9, 129.3, 129.5, 129.8, 129.9, 130.3, 130.8, 130.9, 131.2, 131.4, 132.0, 175.3, 175.8; IR (CHCl₃): *v* 1081, 1720, 2345, 2374, 3202 cm⁻¹. HRMS (FAB) *m/z* calcd for C₃₅H₂₆O₅ [M]⁺: 526.1780, found: 526.1777.

cis-dimethyl-1-hydroxy-2-methyl-1,2-dihydrodibenzo[f,j]picene-1,2-dicarboxylate 6b

Mp. 251.0 °C (decomp.). ¹H NMR (400 MHz, CDCl₃) δ 1.93 (s, 3H), 3.17 (s, 3H), 3.64 (s, 3H), 4.15 (s, 1H), 7.18-7.28 (m, 4H), 7.56 (t, *J* = 8.0 Hz, 2H), 7.60 (t, *J* = 8.0 Hz, 2H), 7.64 (dt, *J* = 1.6, 7.6 Hz, 1H), 7.66 (dt, *J* = 1.6, 7.6 Hz, 1H), 7.94 (d, *J* = 8.0 Hz, 2H), 8.65 (d, *J* = 8.0 Hz, 1H), 8.69 (d, *J* = 8.0 Hz, 1H), 8.73 (d, *J* = 7.6 Hz, 1H), 8.75 (d, *J* = 7.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 19.4, 52.7, 53.6, 56.2, 80.2, 122.8 (x 3), 123.6, 123.7, 125.4, 125.8, 125.9 (x 2), 126.0, 126.1, 126.5, 126.8 (x 3), 128.2, 128.6, 129.6, 129.7, 129.9, 130.0, 130.3 (x 2), 130.7, 131.5, 131.7, 131.8, 133.3, 173.7, 176.3; IR (CHCl₃): *v* 1236, 1734, 2344, 2372, 3483 cm⁻¹. HRMS (FAB) *m/z* calcd for C₃₅H₂₆O₅ [M]⁺: 526.1780, found: 526.1789.

Synthesis of [5]helicene-7,8-dicarboxylic anhydride (S2).

A solution of 7,8-dicyano-[5]helicene (S1, 100 mg, 0.30 mmol)^{S3}, KOH (342 mg, 6.1 mmol, 20 eq), H₂O (6 mL), MeOH (3 mL) in THF (12 mL) was stirred for 24 h at 100 °C. Then, to the mixture was added H₂O and the aqueous phase was extracted with dichloromethane. The combined organic layers were washed with brine and dried over anhydrous MgSO₄, filtered, and then evaporated under reduced pressure. The crude mixture was washed with MeOH to give the title compound S2 as yellow solid (72.1 mg, 0.21 mmol, 68%).

Mp. 267.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (t, *J* = 8.4 Hz, 2H), 7.64 (t, *J* = 8.4 Hz, 2H), 8.02 (d, *J* = 8.4 Hz, 2H), 8.15 (d, *J* = 8.4 Hz, 2H), 8.38 (d, *J* = 8.4 Hz, 2H), 8.90 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 120.9, 125.7, 126.3, 126.4, 128.3, 128.8, 129.5, 130.4, 131.0, 132.9, 133.7, 163.5; IR (CHCl₃): *v* 1761, 1838, 2368, 2919 cm⁻¹. HRMS (FAB) *m/z* calcd for C₂₄H₁₂O₃ [M]⁺: 348.0786, found: 348.0790.

Synthesis of [5] helicene 7,8-carboxylic acid dimethyl ester 7.

A solution of [5]helicene-7,8-dicarboxylic anhydride **S2** (100 mg, 0.29 mmol), NaHCO₃ (37.1 mg, 0.43 mmol, 1.5 eq), and MeOH (5 mL) in THF (10 mL) was stirred for 2 h at 70 °C. After removal of the solvent, the obtained [5]helicene-8-methoxycarbonyl-7-carboxylic acid was dissolved in DMF. MeI (44.9 μ L, 0.72 mmol, 2.5eq) was added dropwise to the mixture at room temperature under N₂ atmosphere. After stirring for 1 h at 70 °C, H₂O was added and the aqueous phase was extracted with DCM. The combined organic layers were washed with brine and dried over anhydrous MgSO₄, filtered, and then evaporated under reduced pressure. The crude mixture was purified by preparative thin-layer chromatography with hexane/EtOAc = 5/1 to give the title compound 7 as yellow solid (88.9 mg, 0.24 mmol, 85%). The synthesis of compound 7 was previously reported.^{S4} However, the reported protocol involving a Pd-catalyzed [2+2+2] cross-cyclotrimerization reaction afforded some isomers that are difficult to separate. Considering the overall efficiency of synthesis, compound 7 was synthesized from **S1** for this study.

Synthesis of 1,3-dimethyl-2,3-dihydro-1*H*-dibenzo[*c*,*g*]cyclopenta[*I*]phenanthrene-1,3-diol (8). (Scheme 3B)

A solution of [5]helicene 7,8-carboxylic acid dimethyl ester (7, 50 mg, 0.13 mmol) in THF (6 mL) was added dropwise MeLi (1.2 M in ether, 0.87 mL, 1.04 mmol, 8 eq) at 0 °C under N₂ atmosphere. The mixture was stirred for 24 h at room temperature and poured into sat. NH₄Cl *aq*. The mixture was extracted with dichloromethane and the combined organic layers were washed with brine and dried over anhydrous MgSO₄, filtered, and then evaporated under reduced pressure. The crude mixture was purified

by GPC to give the title compound *trans*-**8** as colorless solid (22.5 mg, 60 µmol, 47%) and *cis*-**8** as colorless solid (6.2 mg, 16 µmol, 13%).

trans-1,3-dimethyl-2,3-dihydro-1H-dibenzo[c,g]cyclopenta[/]phenanthrene-1,3-diol 8

Two inseparable *trans*-isomers based on a helicity of [5]helicene unit are detected and the ratio of the two (*trans*-8 major/*trans*-8 minor = 62/38) was determined by ¹H NMR.

Mp. 126.5 °C. *trans*-**8**_major: ¹H NMR (400 MHz, CDCl₃) δ 2.01 (s, 6H), 2.14 (s, 2H), 2.71 (s, 2H), 7.20 (t, J = 7.6 Hz, 1H), 7.20 (t, J = 7.6 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.93 (d, J = 9.2 Hz, 4H), 8.28 (d, J = 7.6 Hz, 2H), 8.61 (d, J = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 30.9, 62.2, 80.8, 122.1, 124.5, 126.3, 127.7, 127.7, 128.0, 129.0, 129.5, 131.3, 132.0, 140.2; *trans*-**8**_minor: ¹H NMR (400 MHz, CDCl₃) δ 1.97 (s, 6H), 2.16 (s, 2H), 2.71 (s, 2H), 7.20 (t, J = 8.0 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 7.96 (d, J = 8.8 Hz, 4H), 8.26 (d, J = 8.0 Hz, 2H); ^{8.59} (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 30.9, 62.7, 80.2, 122.7, 124.4, 126.3, 127.1, 127.5, 128.0, 128.8, 129.6, 131.1, 132.0, 139.9; IR (CHCl₃): v 1143, 2929, 2970, 3375 cm⁻¹. HRMS (FAB) m/z calcd for C₂₇H₂₂O₂ [M]⁺: 378.1620, found: 378.1615.

cis-1,3-dimethyl-2,3-dihydro-1H-dibenzo[c,g]cyclopenta[/]phenanthrene-1,3-diol 8

Mp. 138.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.76 (s, 3H), 1.81 (s, 3H), 2.43 (m, 2H), 2.50 (d, *J* = 14.6 Hz, 1H), 2.78 (d, *J* = 14.6 Hz, 1H), 7.18 (t, *J* = 8.0 Hz, 1H), 7.19 (t, *J* = 8.0 Hz, 1H), 7.48 (t, *J* = 7.4 Hz, 2H), 7.89 (d, *J* = 8.8 Hz, 2H), 7.92 (d, *J* = 8.0 Hz, 2H), 8.25 (d, *J* = 7.4 Hz, 1H), 8.26 (d, *J* = 7.4 Hz, 1H), 8.63 (d, *J* = 8.4 Hz, 1H), 8.66 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 28.1, 28.3, 63.3, 78.4, 79.4, 122.4, 122.8, 124.3, 124.3, 126.2 (x 2), 127.1 (x 2), 127.6 (x 2), 127.8, 127.9, 128.0, 129.0, 129.3, 129.5, 131.0, 131.1, 131.9 (x 2), 139.4, 139.7; IR (CHCl₃): *v* 1135, 2932, 2976, 3370 cm⁻¹. HRMS (FAB) *m/z* calcd for C₂₇H₂₂O₂ [M]⁺: 378.1620, found: 378.1628.

Synthesis of 1,3-dimethyl-2,3-dihydro-1*H*-cyclopenta[*l*]phenanthrene-1,3-diol (10). (Scheme 3B)

A solution of dimethyl phenanthrene-9,10-dicarboxylate **9** (50 mg, 0.17 mmol) in THF (6 mL) was added dropwise MeLi (1.2 M in ether, 1.1 mL, 1.36 mmol, 8 eq) at 0 °C under N₂ atmosphere. The mixture was stirred for 24 h at room temperature and poured into sat. NH₄Cl *aq*. The mixture was extracted with dichloromethane and the combined organic layers were washed with brine and dried over anhydrous MgSO₄, filtered, and then evaporated under reduced pressure. The crude mixture was purified by preparative thin-layer chromatography with hexane/EtOAc = 5/3 to give the title compound *trans*-

10 (R_f = 0.38) as colorless solid (10.9 mg, 39 µmol, 23%) and *cis*-**10** (R_f = 0.28) as colorless solid (18.4 mg, 66 µmol, 39%).

trans-1,3-dimethyl-2,3-dihydro-1H-cyclopenta[/]phenanthrene-1,3-diol 10

Mp. 133.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.95 (s, 6H), 2.67 (s, 2H), 7.62 (dt, J = 7.6 Hz, 1H), 7.64 (t, J = 7.6 Hz, 2H), 7.66 (dt, J = 7.6 Hz, 1H), 8.61 (d, J = 7.6 Hz, 1H), 8.61 (d, J = 7.6 Hz, 1H), 8.72 (d, J = 7.6 Hz, 1H), 8.72 (d, J = 7.6 Hz, 1H), 8.72 (d, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 30.5, 61.9, 80.8, 123.4, 125.6, 126.7, 126.7, 180.0, 132.1, 139.4; IR (CHCl₃): v 1128, 1145, 2930, 2970, 3369 cm⁻¹. HRMS (FAB) m/z calcd for C₁₉H₁₈O₂ [M]⁺: 278.1307, found: 278.1305.

cis-1,3-dimethyl-2,3-dihydro-1H-cyclopenta[l]phenanthrene-1,3-diol 10

Mp. 182.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.69 (s, 3H), 1.70 (s, 3H), 2.28-2.31 (m, 3H), 2.64-2.69 (m, 1H), 7.56 (t, *J* = 7.6 Hz, 1H), 7.57 (d, *J* = 7.6 Hz, 1H), 7.60 (d, *J* = 7.6 Hz, 1H), 7.61 (t, *J* = 7.6 Hz, 1H), 8.56-8.60 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 27.7, 63.2, 79.3, 123.2, 125.7, 126.6, 126.6, 127.8, 131.7, 138.8; IR (CHCl₃): *v* 1148, 1375, 1622, 3431, cm⁻¹. HRMS (FAB) *m/z* calcd for C₁₉H₁₈O₂ [M]⁺: 278.1307, found: 278.1312.

2. Spectral Data

Figure S1. ¹H NMR spectrum of *trans-(P*, P*, R_{ax}*, 1R*, 2S*)*-DH-2a.

Figure S2. ¹³C NMR spectrum of *trans-(P*, P*, Rax*, 1R*, 2S*)-DH-2a*.

Figure S3. ¹H NMR spectrum of *cis*-(*P**, *P**, *R_{ax}**, 1*R**, 2*R**)-DH-2b.

Figure S4. ¹³C NMR spectrum of *cis*-(*P**, *P**, *R_{ax}**, 1*R**, 2*R**)-DH-2b.

Figure S5. ¹H NMR spectrum of *trans-(P*, P*, R_{ax}*, 1R*, 2R*)*-DH-2c.

Figure S6. ¹³C NMR spectrum of *trans-(P*, P*, R_{ax}*, 1R*, 2R*)*-DH-2c.

Figure S7. ¹H NMR spectrum of *cis-(P*, P*, R_{ax}*, 1S*, 2S*)*-DH-2d.

Figure S8. ¹³ NMR spectrum of *cis*-(*P**, *P**, *R_{ax}**, 1*S**, 2*S**)-DH-2d.

Figure S9. ¹H NMR spectrum of TH-3.

Figure S10. ¹³C NMR spectrum of TH-3.

Figure S11. ¹H NMR spectrum of *trans-(P*, P*, R_{ax}^*, 1S*, 2S*)-DH-4ax.*

Figure S12. ¹³C NMR spectrum of *trans-(P*, P*, R_{ax}*, 1S*, 2S*)*-DH-4ax.

Figure S13. ¹H NMR spectrum of *cis*-(*P**, *P**, *R_{ax}**, 1*R**, 2*S**)-DH-4bx.

Figure S14. ¹³C NMR spectrum of *cis*-(*P**, *P**, *R_{ax}**, 1*R**, 2*S**)-DH-4bx.

Figure S15. ¹H NMR spectrum of *trans-(P*, P*, R_{ax}^*, 1S*, 2S*)-DH-4ay.*

Figure S16. ¹³C NMR spectrum of *trans-(P*, P*, R_{ax}*, 1S*, 2S*)*-DH-4ay.

Figure S17. ¹H NMR spectrum of *cis*-(*P**, *P**, *R_{ax}**, 1*R**, 2*S**)-DH-4by.

Figure S18. ¹³C NMR spectrum of *cis*-(*P**, *P**, *R_{ax}**, 1*R**, 2*S**)-DH-4by.

Figure S19. ¹H NMR spectrum of *trans-(P*, P*, R_{ax}^*, 1S*, 2S*)-DH-4az.*

Figure S20. ¹³C NMR spectrum of *trans-(P*, P*, R_{ax}*, 1S*, 2S*)*-DH-4az.

Figure S21. ¹H NMR spectrum of *trans*-dimethyl-1-hydroxy-2-methyl-1,2dihydrodibenzo[*f*,*j*]picene-1,2-dicarboxylate 6a.

Figure S22. ¹³C NMR spectrum of *trans*-dimethyl-1-hydroxy-2-methyl-1,2dihydrodibenzo[*f*,*j*]picene-1,2-dicarboxylate 6a.

Figure S23. ¹H NMR spectrum of *cis*-dimethyl-1-hydroxy-2-methyl-1,2dihydrodibenzo[*f*,*j*]picene-1,2-dicarboxylate 6b

Figure S24. ¹³C NMR spectrum of *cis*-dimethyl-1-hydroxy-2-methyl-1,2dihydrodibenzo[*f*,*j*]picene-1,2-dicarboxylate 6b.

Figure S25. ¹H NMR spectrum of S2.

Figure S26. ¹³C NMR spectrum of S2.

Figure S29. ¹H NMR spectrum of *trans*-1,3-dimethyl-2,3-dihydro-1*H*-dibenzo[*c*,*g*]cyclopenta[*I*]phenanthrene-1,3-diol 8.

Figure S30. ¹³C NMR spectrum of *trans*-1,3-dimethyl-2,3-dihydro-1*H*-dibenzo[*c*,*g*]cyclopenta[*I*]phenanthrene-1,3-diol 8.

Figure S27. ¹H NMR spectrum of *cis*-1,3-dimethyl-2,3-dihydro-1*H*dibenzo[*c*,*g*]cyclopenta[*I*]phenanthrene-1,3-diol 8.

Figure S28. ¹³C NMR spectrum of *cis*-1,3-dimethyl-2,3-dihydro-1*H*-dibenzo[*c,g*]cyclopenta[*I*]phenanthrene-1,3-diol 8.

Figure S33. ¹H NMR spectrum of *trans*-1,3-dimethyl-2,3-dihydro-1*H*-cyclopenta[*l*]phenanthrene-1,3-diol 10.

Figure S34. ¹³C NMR spectrum of *trans*-1,3-dimethyl-2,3-dihydro-1*H*-cyclopenta[*I*]phenanthrene-1,3-diol 10.

Figure S31. ¹H NMR spectrum of *cis*-1,3-dimethyl-2,3-dihydro-1*H*-cyclopenta[*l*]phenanthrene-1,3-diol 10a.

Figure S32. ¹³C NMR spectrum of *cis*-1,3-dimethyl-2,3-dihydro-1*H*-cyclopenta[*l*]phenanthrene-1,3-diol 10a.

3. X-ray Crystallographic Analysis

Single crystals of **2a**, **2b**, **2c**, and **2d** were grown by CS₂/Et₂O at -20 °C (for **2a**), CH₂Cl₂/Et₂O at -20 °C (for **2b** and **2c**), and CH₂Cl₂/MeOH at -20 °C (for **2d**). X-Ray data were collected on a Rigaku Saturn diffractometer with VariMax multi-layer mirror monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) at -170 °C. The data were corrected for Lorentz and polarization effects. An empirical absorption correction based on the multiple measurement of equivalent reflections was applied using the REQABS program in CrystalClear software. The structures were solved by direct methods (SIR2014⁸⁵ for **2a** and **2b** or SHELXS-2013⁸⁶ for **2c** and **2d**) and refined by full-matrix least squares against *F*² using all data. Non-hydrogen atoms were refined anisotropically, while all hydrogen atoms were generated by AFIX instructions. The major isomer DH-**2a** crystallized with three independent molecules in the unit cell. The contribution of severely disordered solvent molecules in **2a** and **2b** was subtracted from the reflection data using the SQUEEZE routine in PLATON software package.⁸⁷ All calculations were performed using Yadokari-XG 2009⁸⁸ software package except for refinement, which was performed using SHELXL-2013.⁵⁹

	2a	2b	2c	2d
Formula	$C_{156}H_{102}O_{15}S_6$	$C_{51}H_{34}O_5$	$C_{59}H_{54}O_7$	C ₅₃ H ₃₆ Cl ₂ O ₆
Formula weight	2408.73	726.78	875.02	839.72
Crystal Size/mm	$0.23 \times 0.18 \times 0.14$	$0.19 \times 0.13 \times 0.10$	$0.25 \times 0.22 \times 0.11$	$0.14 \times 0.06 \times 0.04$
Temperature/ °C	-170	-170	-170	-170
Crystal system	triclinic	triclinic	triclinic	triclinic
Space group	<i>P</i> -1 (#2)	<i>P</i> -1 (#2)	<i>P</i> -1 (#2)	<i>P</i> -1 (#2)
Lattice parameters				
a/Å	14.695(3)	11.493(9)	11.541(4)	11.523(6)
b/Å	20.709(4)	13.905(10)	14.334(7)	12.874(7)
c/Å	22.202(4)	15.123(10)	15.473(6)	14.864(6)
α'°	79.292(4)	69.85(3)	94.345(16)	75.48(3)
$eta\!\!/^{\circ}$	80.514(4)	68.97(2)	108.46(2)	75.27(3)
$\gamma^{\prime \circ}$	89.184(5)	83.25(3)	110.631(14)	87.03(4)
$V/Å^3$	6547(2)	2118(3)	2221.1(16)	2064.3(18)
Ζ	2	2	2	2
$D_{calc} /g \; cm^{-3}$	1.222	1.140	1.308	1.351
μ (cm ⁻¹)	0.169	0.073	0.085	0.211
$2\theta_{\rm max}/^{\circ}$	55.0	55.0	55.0	55.0
No. of reflections	68195	20986	22810	16632
Independent reflections	29547	9445	9989	8983
No. of parameters	1787	511	597	564
$R_{ m int}$	0.0471	0.0499	0.0334	0.0436
Completeness to θ (%)	99.2	99.0	98.9	97.9
$R_1 [I > 2\sigma(I)]$	0.0834	0.0627	0.0760	0.1047
wR_2 (all data)	0.2473	0.1881	0.2486	0.3464
Largest diff. peak (e.Å ⁻³)	0.820	0.325	0.760	0.703
Largest diff. hole (e.Å ⁻³)	-1.236	-0.409	-0.669	-0.862
Goodness-of-fit	1.065	0.905	1.066	1.039

Table S1. Crystal Data for 2a–d.

Table S2. Dihedral angles of internal biaryl unit for DH-2a–d.

4. Stereochemical outcome for the formation of DH-2a-2d.

Figure S33.

5. HPLC analysis of optically active DH-2a and DH-2b

Figure S34. HPLC of DH-2a

Condition: CHIRALPAK IB, Hexane/iPrOH = 19/1, 0.5 mL/min, 365 nm

racemate

(+)-(*M*, *M*, *S*_{ax}, 1*S*, 2*R*)-DH-**2a** $[\alpha]_D^{24}$ +36 (*c* = 0.10, CHCl₃)

racemate

(+)-(*M*, *M*, *S*_{ax}, 1*S*, 2*S*)-DH-**2b**

(+)-(*M*, *M*, *S*_{ax}, 1*S*, 2*S*)-DH-**2b** $[\alpha]_D^{24}$ +1.5 x 10² (*c* = 0.10, CHCl₃)

6. Photophysical Study

UV-Vis absorption spectra were measured on a JASCO V-670 spectrophotometer with dilute chloroform solution in spectral grade solvent at room temperature with a 1 cm square quarts cell. Emission spectra were measured on a JASCO FP-6200 spectrofluorometer with dilute solutions in spectral grade solvent in a 1 cm square quartz cell upon the excitation at 320 nm. Circular dichroism (CD) spectra were measured on a JASCO J-820 spectrometer at 20 °C (PTC-423L thermostat, JASCO) with a dilute chloroform solution in a 1 mm quartz cell.

Figure S36. (a) UV-vis absorption (solid line) and photoluminescence (dashed line) spectra, (b) CD spectra of (–)-TH-1 (green), (+)-DH-2a (red) and (+)-DH-2b (blue) in CHCl₃.

7. Theoretical Calculations

Theoretical calculations were performed using the Gaussian 09^{S10} programs on a NEC LX 110Rh-1 system of the Research Center for Computational Science, Japan. All structures were optimized without any symmetry assumptions unless otherwise noted. Zero-point energy, enthalpy, and Gibbs free energy at 298.15 K and 1 atm were estimated from the gas-phase studies. The structure of local minimums of (*M*,*P*,*M*)-**TH-1**, (*P*)-**5**, (*P*)-**7**, and **9** were optimized at B3LYP/6-31G(d) level,^{S11} and the GIAO calculations were carried out at B3LYP/6-311+G(2d,p) level. Molecular orbitals are visualized by the use of GaussView 5.0.9 software.

Structure	Ε	E + ZPE	Н	G
(<i>M</i> , <i>P</i> , <i>M</i>)- TH-1	-2224.35865269	-2223.703879	-2223.662571	-2223.776016
(P) -5	-1609.81737841	-1609.349398	-1609.318904	-1609.409043
(P) -7	-1302.54102203	-1302.167296	-1302.142112	-1302.222394
9	-995.273557394	-994.993289	-994.973385	-995.042725

Table S3. Uncorrected and thermal-corrected (298 K) energies of stationary points (Hartree).^a

a) *E*: electronic energy; *ZPE*: zero-point energy; $H (= E + ZPE + E_{vib} + E_{rot} + E_{trans} + RT)$: sum of electronic and thermal enthalpies; G (= H - TS): sum of electronic and thermal free energies.

MeO ₂ d	2 3 1 6 5 CO ₂ I TH-1	Me	MeO ₂		Me N	1 1 MeO ₂ C 7	CO ₂ Me	1 MeO ₂ C 6 5 9
			Bond leng	gth (R _i , Å)			HOMA	NICS(0)
	C1-C2	C2–C3	C3–C4	C4–C5	C5-C6	C6-C1		
TH-1 (x-ray) ^a	1.404(4)	1.439(4)	1.420(4)	1.424(4)	1.385(4)	1.426(4)	0.715	_
TH-1 (calc)	1.416	1.435	1.416	1.424	1.392	1.424	0.726	-5.61
5	1.415	1.437	1.415	1.423	1.392	1.423	0.728	-5.80
7	1.424	1.445	1.424	1.431	1.381	1.431	0.588	-7.09
9	1.427	1.456	1.427	1.444	1.372	1.444	0.390	-6.22
[5]helicene	_	-	_	_	_	_	0.584	-7.32
phenanthrene ^{b,c}	_	_	_	_	_	_	0.435	-6.82

Table S4. HOMA and GIAO values of benzene ring A of TH-1, 5, 7, and 9.

Calculated at B3LYP/6-31G(d) level.

The definition of HOMA index^{S13}

HOMA =
$$1 - \frac{257.7}{6} \sum_{i=1}^{6} (1.388 - R_i)^2$$

The individual C–C bond length : R_i Number of bonds: n = 6Empirical constant: $\alpha = 257.7$ Optimal value: $R_{opt} = 1.388$ **Table S5.** Atomic coordinates of the optimized structures.(M,P,M)-TH-1

С	-5.40630700	0.64796900	-1.64110400
С	-4.77051200	-0.41435500	-0.92485800
С	-3.48313500	2.07027500	-1.24341100
С	-3.52259500	-0.15807300	-0.23339500
С	-2.83659300	1.05058200	-0.47971900
С	-4.73970500	1.89763400	-1.75161100
С	-2.87322600	-1.13091100	0.64416200
С	-0.71263500	-0.03974900	0.08133100
С	-1.46338600	-1.16890400	0.62988200
С	-2.87812800	-3.01106500	2.27053100
С	-6.53556200	-1.91329100	-1.71005500
Н	-6.94796800	-2.91648400	-1.77576200
С	-4.94633400	-1.76715700	1.93936700
Н	-5.48773600	-0.93721300	1.50335600
С	-6.63770700	0.41701500	-2.30722200
Н	-7.11026000	1.24910300	-2.82394000
С	-3.58638100	-1.97749900	1.57988900
С	-5.35551600	-1.70752200	-1.02738100
С	-5.58487700	-2.58152900	2.85081900
С	-7.20403500	-0.83710800	-2.33435700
Н	-8.14135600	-1.00683900	-2.85704500
С	-0.78504800	-2.19737300	1.35792600
С	-1.46943400	-3.11666800	2.09907300
С	-3.56728200	-3.85631500	3.17693100
С	-4.90066000	-3.65711900	3.45788200
Н	-4.85508400	-2.55407900	-0.57509200
Н	-6.62160500	-2.38516200	3.11033200
Н	-5.41659700	-4.30270900	4.16330100
Н	-5.20680400	2.69201900	-2.32854800
Н	0.29691100	-2.22602700	1.34454800
Н	-2.95382800	2.98051500	-1.48981800
Н	-3.01037400	-4.64936700	3.67040700
Н	-0.93185900	-3.89204800	2.63926000
С	0.71263300	-0.03975200	-0.08132300
С	1.46338100	-1.16891100	-0.62986800
С	0.78503900	-2.19738300	-1.35790400
С	2.87322100	-1.13092100	-0.64415200
С	2.83659500	1.05058000	0.47971400
С	1.46942200	-3.11668500	-2.09904700
Н	-0.29692000	-2.22603500	-1.34452200
С	3.58637200	-1.97751600	-1.57987700
С	3.52259400	-0.15807800	0.23339600

С	3.48314200	2.07027800	1.24339500
С	2.87811500	-3.01108500	-2.27050900
Н	0.93184400	-3.89206600	-2.63922700
С	4.94632400	-1.76717800	-1.93936000
С	4.77051300	-0.41435600	0.92485700
С	4.73971300	1.89763900	1.75159100
Н	2.95383700	2.98052100	1.48979500
С	3.56726500	-3.85634100	-3.17690700
С	5.58486300	-2.58155700	-2.85080800
Н	5.48772800	-0.93723200	-1.50335500
С	5.40631200	0.64797300	1.64109200
С	5.35551600	-1.70752400	1.02738800
Н	5.20681500	2.69202800	2.32852000
Н	3.01035400	-4.64939500	-3.67037600
С	4.90064200	-3.65714900	-3.45786400
Н	6.62159000	-2.38519200	-3.11032700
С	6.63771500	0.41702200	2.30720700
Н	4.85508000	-2.55408300	0.57510700
С	6.53556300	-1.91328900	1.71005900
Н	5.41657600	-4.30274400	-4.16327900
С	7.20404100	-0.83710200	2.33435100
Н	7.11027100	1.24911200	2.82391700
Н	6.94796900	-2.91648200	1.77577300
Н	8.14136300	-1.00683100	2.85703700
С	1.42296100	1.17003900	0.11057100
С	-1.42296000	1.17004100	-0.11057300
С	-0.69213200	2.39170700	-0.07480000
С	0.69213500	2.39170600	0.07478900
С	1.37325700	3.73538700	0.09144800
С	-1.37325000	3.73538900	-0.09146900
0	1.18421300	4.59960200	0.92348600
0	-1.18420700	4.59959500	-0.92351600
0	-2.20447300	3.86689100	0.95601700
0	2.20449200	3.86687200	-0.95603000
С	2.87329100	5.13643700	-1.05284200
Н	3.52043700	5.29491200	-0.18554100
Н	2.14066700	5.94478000	-1.10966500
Н	3.46440600	5.08276600	-1.96705900
С	-2.87326400	5.13646100	1.05282300
Н	-3.52041800	5.29493100	0.18552600
Н	-2.14063400	5.94479900	1.10963000
Н	-3.46436900	5.08280200	1.96704600

С	5.58977400	0.01447600	1.09044800
С	4.93505600	-1.01997300	0.44322500
С	3.54286100	1.29046200	1.08849800
С	3.57495900	-0.92314200	0.08526300
С	2.86410400	0.26899700	0.38748100
С	4.88177900	1.17460800	1.42600800
С	2.87354300	-2.02108600	-0.57663500
С	0.71249700	-0.85479800	-0.09084800
С	1.45414800	-2.01437500	-0.60839800
С	0.79468300	-3.04727300	-1.31526700
С	1.49579200	-4.07682200	-1.91744700
Н	5.36739400	1.97417600	1.97851900
Н	-0.28336400	-3.01926100	-1.41110800
Н	3.00411500	2.16329000	1.43367900
Н	0.95841200	-4.84933700	-2.46033100
С	-0.71252400	-0.85476800	0.09094200
С	-1.45423400	-2.01432400	0.60845900
С	-0.79483600	-3.04728700	1.31529600
С	-2.87362900	-2.02098000	0.57665400
С	-2.86408000	0.26910400	-0.38744000
С	-1.49601200	-4.07683900	1.91739600
С	-3.56714400	-3.07829000	1.20293100
С	-3.57498100	-0.92301300	-0.08525400
С	-3.54278500	1.29059200	-1.08847100
С	-2.89630800	-4.09976900	1.85269900
С	-4.93507400	-1.01979800	-0.44322100
С	-4.88170200	1.17478300	-1.42600200
С	-5.58974600	0.01467600	-1.09045000
С	-1.42540300	0.35312400	-0.09248700
С	1.42542300	0.35307000	0.09256200

С	0.69263500	1.57294500	0.06829000
С	-0.69256800	1.57297000	-0.06823300
С	-1.36548500	2.92201100	-0.07445200
С	1.36560900	2.92195700	0.07445000
Ο	-1.20454300	3.77260900	-0.92648000
Ο	1.20466600	3.77261900	0.92641400
Ο	2.14102700	3.07925300	-1.01061400
Ο	-2.14087200	3.07940300	1.01061900
С	-2.78827800	4.35858400	1.12230000
Н	-3.47708400	4.51280100	0.28689000
Н	-2.04378100	5.15797800	1.13003800
Н	-3.33250000	4.32563200	2.06614800
С	2.78848100	4.35840400	-1.12235900
Н	3.47728500	4.51264100	-0.28695000
Н	2.04401500	5.15782700	-1.13014700
Н	3.33271100	4.32538100	-2.06619900
С	3.56698900	-3.07841200	-1.20297900
С	2.89608800	-4.09981800	-1.85278800
Н	3.45574900	-4.89639700	-2.33523800
Н	6.63604600	-0.09078800	1.36374500
Н	5.47696300	-1.93740900	0.24147500
Н	4.65144000	-3.07630300	-1.21047200
Н	0.28320800	-3.01934300	1.41115300
Н	-0.95868100	-4.84941400	2.46023400
Н	-3.45602300	-4.89636900	2.33505500
Н	-4.65159700	-3.07616300	1.21032100
Н	-5.47701300	-1.93721200	-0.24145500
Н	-6.63602000	-0.09054800	-1.36375300
Н	-5.36727900	1.97436800	-1.97851400
Н	-3.00400200	2.16340100	-1.43363700

(P)**-7**

С	0.68942000	-3.49137100	-0.68362200	
С	-0.46179000	-2.76671100	-0.69334100	
С	1.89217500	-2.93671900	-0.14843100	
С	0.75090400	-0.72185900	-0.03419700	
С	1.91804300	-1.56004600	0.23042600	
С	3.04319800	-1.11167800	0.96972300	
С	4.11788900	-1.94077800	1.22562100	
Н	3.05296100	-0.10292600	1.36228800	
Н	4.95633100	-1.56621600	1.80636800	
С	0.75089800	0.72185300	0.03418300	
С	1.91802900	1.56005300	-0.23043100	
С	3.04319700	1.11169300	-0.96971300	
С	1.89214600	2.93672600	0.14842700	
С	-0.46182300	2.76669500	0.69331400	
С	4.11788600	1.94080100	-1.22560000	
С	3.02283300	3.75619400	-0.08674900	
С	0.68938000	3.49136600	0.68360700	
С	4.12733800	3.26814400	-0.75241700	
С	-0.47967300	1.38517800	0.30286500	
С	-0.47965900	-1.38519600	-0.30288600	
С	-1.71032400	-0.66425100	-0.18866300	
С	-1.71032900	0.66422300	0.18863600	
С	-3.04018900	1.31037700	0.47510300	
С	-3.04018200	-1.31040900	-0.47512700	

0	-3.84779400	0.86744800	1.26432700
0	-3.84780200	-0.86746800	-1.26433000
0	-3.24483200	-2.42435400	0.25527200
0	-3.24481700	2.42435000	-0.25525900
С	-4.53572900	3.03676400	-0.08274700
Н	-4.68584100	3.33594900	0.95792900
Н	-5.32337600	2.33686800	-0.37195900
Н	-4.53271100	3.90723900	-0.73899700
С	-4.53576000	-3.03674300	0.08278800
Н	-4.68588600	-3.33595800	-0.95787700
Н	-5.32339000	-2.33681900	0.37198200
Н	-4.53275900	-3.90719700	0.73906600
С	3.02286800	-3.75617500	0.08675300
С	4.12736300	-3.26812000	0.75243600
Н	4.98347800	-3.90983700	0.94162700
Н	2.98713700	-4.79354500	-0.23739600
Н	3.05297500	0.10293600	-1.36227000
Н	4.95634000	1.56624600	-1.80633400
Н	4.98345900	3.90986900	-0.94159300
Н	2.98709000	4.79356100	0.23740700
Н	0.68854100	4.52999500	1.00451200
Н	-1.38984100	3.23568000	0.99416000
Н	-1.38979800	-3.23570500	-0.99420000
Н	0.68859500	-4.53000000	-1.00453000

С	-1.81136100	-1.38596300	-0.14814000
С	-1.81112600	1.38621800	0.14778700
0	-2.63929200	-1.14966300	-1.00166900
0	-2.63999000	1.14876900	1.00011200
0	-1.98023300	2.30327800	-0.82533100
0	-1.98142300	-2.30168900	0.82605300
С	-3.26547700	-2.95229400	0.83303100
Н	-3.43382900	-3.48513900	-0.10651300
Н	-4.05825800	-2.21368300	0.97392800
Н	-3.23254400	-3.64796000	1.67168900
С	-3.26413000	2.95419500	-0.83245700
Н	-3.43332100	3.48539300	0.10786400
Н	-4.05694800	2.21602800	-0.97548400
Н	-3.23018400	3.65133700	-1.66984800
С	-0.48141700	0.68481300	0.04502100
С	-0.48158900	-0.68465600	-0.04504700
С	0.75455900	1.42774900	0.12440200
С	0.75413600	-1.42795400	-0.12436700
С	1.99476200	0.72351500	0.07734200
С	0.76722100	2.83578900	0.28750100
С	0.76629100	-2.83601500	-0.28731800
С	1.99455300	-0.72411700	-0.07734000
С	3.19095200	1.47140700	0.18916000
Н	-0.17262100	3.37297200	0.31793500
С	1.95269100	3.53377100	0.39354100
С	1.95151900	-3.53440600	-0.39332500
Н	-0.17374800	-3.37287700	-0.31766800
С	3.19048500	-1.47241800	-0.18915600
С	3.17632600	2.84399300	0.34313500
Н	4.14868300	0.96484200	0.16399700
Н	1.93781100	4.61291200	0.51742500
С	3.17538000	-2.84501100	-0.34303400
Н	1.93629000	-4.61355300	-0.51709900
Н	4.14839600	-0.96618900	-0.16405500
Н	4.11312700	3.38761600	0.42901900
Н	4.11199800	-3.38894900	-0.42891400

8. References

- (S1) A. Yubuta, T. Hosokawa, M. Gon, K. Tanaka, Y. Chujo, A. Tsurusaki and K. Kamikawa, J. Am. Chem. Soc. 2020, 141, 10025-10033.
- (S2) D. Peña, D. Pérez, E. Guitián and L. Castedo, J. Org. Chem. 2000, 65, 6944–6950.
- (S3) S. Goretta, C. Tasciotti, S. Mathieu, M. Smet, W. Maes, Y. M. Chabre, W. Dehaen, R. Giasson, J. M. Raimundo, C. R. Henry, C. Barth and M. Gingras *Org. Lett.* 2009, **11**, 3846-3849.
- (S4) J. Caeiro, D. Peña, A. Cobas, D. Pérez and E. Guitián, Adv. Synth. Catal. 2006, 348, 2466–2474.
- M. C. Burla, R. Caliandro, B. Carrozzini, G. L. Cascarano, C. Cuocci, C. Giacovazzo, M. Mallamo,
 A. Mazzone and G. Polidori, *J. Appl. Cryst.* 2015, 48, 306-309.
- (S6) G. M. Sheldrick, *Acta Cryst.* 2008, A64, 112-122.
- (S7) A. L. Spek, Acta Cryst. 2015, C71, 9-18.
- (S8) C. Kabuto, S. Akine, T. Nemoto and E. Kwon, J. Cryst. Soc. Jpn. 2009, 51, 218-224.
- (S9) G. M. Sheldrick, *Acta Cryst.* 2015, C71, 3-8.
- (S10) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian 09, Revision D.01*, Gaussian, Inc., Wallingford CT, **2013.**
- (S11) a) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B* 1988, **37**, 785-789. b) A. D. Becke, *Phys. Rev. A* 1988, **38**, 3098-3100. c) A. D. Becke, *J. Chem. Phys.* 1993, **98**, 5648-5652.
- (S12) G. Portella, J. Poater, J. M. Bofill, P. Alemany, and M. Solá, J. Org. Chem. 2005, 70, 2509-2521.
- (S13) T. M. Krygowski and M. K. Cyrański, Chem. Rev. 2001, 101, 1385-1419.