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Experimental 

1. General considerations 

All reagents, solvents, and indium-tin-oxide (ITO) plate were obtained from 

commercial source and used without further purification. 1,4-Dihydroxypillar[6]arene 

(P[HQ]6) was prepared according to the reported procedures.[1,2] 1H and 13C NMR spectra 

were recorded on a Bruker Advance III HD500 (1H: 500.13 MHz, 13C: 125.72 MHz) 

spectrometer using trifluoroacetic acid-d (TFA-d) as a solvent. The chemical shifts for 1H 

and 13C NMR spectra are given in δ (ppm) relative to internal tetramethylsilane and 

deuterated solvent, respectively. Fourier transform infrared (FT-IR) spectra were obtained 

on SHIMAZU IRTracer-100. High-resolution mass spectra (HRMS) were obtained on a 

Bruker Daltonics microTOF II spectrometer. The cyclic voltammetry, square wave 

voltammetry, and normal pulse voltammetry measurements were performed using 

ALS/DY2325 BI-POTENTIOSTAT and AUTOLAB/PGSTAT101. All voltammetry 

measurements were carried out in the three-electrode system equipped with a glassy 

carbon (GC) disk working electrode ( = 1 mm), a Pt plate counter electrode (10 mm × 

10 mm) and an Ag/AgNO3 reference electrode. Melting point was determined on a 

Yanaco/MP-500P. The single crystals suitable for X-ray diffraction were obtained by the 

electrochemical assembly on the electrode surface. The single crystal X-ray analysis was 

carried out on a precision diffractometer equipped with a hybrid photon counting detector, 

EIGER X 1M detector (DECTRIS) in the SPring-8 BL40XU beamline.[3,4] The X-ray 

beam (λ = 0.81078 Å) was focused to 1.32 (vertical) × 2.95 (horizontal) μm using a 

zoneplate. An empirical absorption correction was carried out by the MULTI-SCAN 

method. The structure was solved by the SHELXT and refined by full-matrix least squares 

method by SHELXL. The non-hydrogen atoms were refined anisotropically. Hydrogen 

atoms were refined using the riding model. Powder X-ray diffraction (PXRD) analysis 

was performed on a Rigaku/SmartLab with CuKα radiation. 3D laser confocal 

microscope observation was performed with an Olympus/OLS4100. All theoretical 

calculations were performed using Gaussian 16 software. Geometry optimizations and 

frequency calculations were performed for all compounds at the B97XD level of theory 

using 6-311+G(d,p) basis set for all atoms. UV-vis absorption spectra were recorded on a 

SHIMAZU UV-1800.  
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2. Synthesis 

2-1. Synthesis of pillar[6]quinone (P[Q]6) and partially oxidized form 

(P[HQ]6−mP[Q]m) by electrochemical oxidation[5] 

  

 

An electrolytic cell equipped with an ITO plate (10 mm × 10 mm), a Pt plate and a SCE, 

used as a working electrode, counter electrode, and a reference electrode, respectively, 

was filled with 0.1 M Bu4NPF6/MeOH (10 mL) and 1 mM P[HQ]6. Before electrolysis, 

Ar bubbling was conducted for the cell. Constant potential electrolysis was carried out at 

1.2 V or 0.9 V vs. SCE for 100 mC. After the electrochemical reaction, the small crystals 

precipitated on the electrode surface (ca. 0.1 mg) were purified by washing with 

acetonitrile. 

 

2-2 Synthesis of 1,4-dihydroxypillar[6]arene-based structures by chemical 

oxidation[6] 

 

 

To a solution of P[HQ]6 (50.0 mg, 0.068 mmol) in MeOH (15 mL), phenyliodine (III) 

bis(trifluoroacetate) (PIFA) (88.2 mg, 0.21 mmol) was added. The mixture was stirred at 

25 °C for 30 min. The resulting precipitate was isolated by filtration and washed with 

MeOH and CHCl3 to give a brown solid of P[HQ]6-mP[Q]m (27.3 mg).  
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2-3 Synthesis of pillar[6]quinone by chemical oxidation using 1,1,1,3,3,3-hexafluoro-

2-propanol 

 

 

To a dispersion of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) (50 mL) containing P[HQ]6 

(500.2 mg, 0.683 mmol) was added PIFA (2.911 g, 6.83 mmol, 10 eq.) under N2 

atmosphere and the mixture was stirred at 25 °C for 24 h. The resulting solution was 

concentrated under vacuum. The obtained product was dispersed into MeOH. After 

filtration, the residue was washed with MeOH and CHCl3 to give a yellow solid of P[Q]6 

(394.6 mg, 80%). 

 

P[Q]6: yellow solid; 1H NMR (500.13 MHz, TFA-d, ppm): δ = 6.86 (s, 12H, CH), 3.61 (s, 

12H, CH2), 
13C NMR (125.72 MHz, TFA-d, ppm): δ = 190.5 (s, C=O), 148.1 (s, C-CH2), 

137.8 (s, CH), 30.1 (s, CH2). HRMS (ESI-TOF-MS): m/z [M+Na]+ calculated for 

C42H24O12Na: 743.1160; found: 743.1159, mp: this compound does not melt, but 

decomposes above 260 °C, IR (KBr, cm−1): 1653, 1615, 1355, 1293, 1249, 1125, 937, 

845. 
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2-4. Setup for the electrochemical reaction 

 

Fig. S1  The schematic illustration and photograph of electrochemical setup. 

 

 

3. Laser confocal microscopy images 

 

Fig. S2  3D laser confocal microscopic images of P[Q]6 and P[HQ]6-mP[Q]m obtained 

on ITO plates by electrochemical oxidation. 
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4. MS spectra 

 

Fig. S3  ESI-MS spectra of P[HQ]6-mP[Q]m synthesized by electrochemical oxidation 

(ion polarity is positive). 

 

 

Fig. S4  ESI-MS spectra of P[HQ]6-mP[Q]m synthesized by chemical oxidation (ion 

polarity is positive). 
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Fig. S5  ESI-MS spectra of P[Q]6 synthesized by chemical oxidation (ion polarity is 

positive). 
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5. Single crystal X-ray diffraction  

Table S1  Crystallographic data of P[Q]6. 

Crystal data P[Q]6 

CCDC 2075802 

Empirical Formula C42H24O12 

Formula Weight 720.61 

h, k, lmax 17, 17, 5 

Crystal System Trigonal 

Space Group P-3 

a, Å 14.2829(6) 

b, Å 14.2829(6) 

c, Å 5.2532(3) 

α, deg 90 

β, deg 90 

γ, deg 120 

Volume, Å 928.08(10) 

Dcalcd, g cm-3 1.289 

Z 1 

F(000) 372 

Data Collection Data Collection 

Temperature, K 273(2) 

2 θ max, deg 58.446 

Tmin/Tmax 0.3038 / 1.000 

Refinement Refinement 

No. of Observed Data 1111 

No. of parameters 83 

R, wR2 0.0864, 0.2377 

S 1.076 

 

Although small continuous residual electron densities were observed in this channel, no 

molecular model could not be established for the densities in this analysis. 
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6. DFT calculations 

 

Fig. S6  The energy diagrams of P[Q]6 for its (a)tilted and (b)pillar-like optimized 

structures obtained at the ωB97XD/6-311+G(d,p) level of theory. 

 

 

Fig. S7  The energy diagrams of P[HQ]6 for its (a)tilted and (b)pillar-like optimized 

structures obtained at the ωB97XD/6-311+G(d,p) level of theory. 
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Table S2 Cartesian coordinates of the optimized structure for P[Q]6 in Fig. S6(a) 
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H 0.97673471 -5.05596947 2.17649631 

H -5.02537086 -1.1338234 -2.17639717 

H -3.88893248 -3.37261951 2.17826925 

H -3.49880931 3.78327284 -2.17869674 

H -4.86315362 1.68082498 2.17833283 

H 4.86332574 -1.68111341 2.17833389 

O 3.39190009 -3.79945568 2.28796535 
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Table S3 Cartesian coordinates of the optimized structure for P[Q]6 in Fig. S6(b) 

  

 

  X Y Z 

O -4.84737941 1.58511379 -2.28832427 

O -4.98571349 -1.0380862 2.29011016 

C -4.54924195 2.11370032 -1.23744394 

C -4.99718976 1.53187756 0.06852256 

C -5.89969571 0.32709169 0.0019123 

H -6.52919089 0.41086768 -0.88478146 

C -5.13638735 -0.9702433 -0.06634268 

C -4.75190072 -1.59746055 1.23886819 

C -4.10732578 -2.92915942 1.21233284 

C -3.82552223 -3.56051898 0.06830972 

C -3.23259433 -4.94420442 0.00075076 

H -3.53658928 -5.49950398 0.88888313 

C -1.72737735 -4.93151838 -0.067923 

C -1.03626552 -4.93729384 -1.2121003 

C -4.58951343 2.0914643 1.21192529 

H -6.53279247 0.31359053 0.88991225 

C -4.79634444 -1.57198737 -1.21047537 

C -0.48376731 5.0220669 1.21052494 

C -1.1714504 5.09259884 0.06642279 

C -2.66619908 5.27141098 -0.00185945 

H -2.99553013 5.81460496 0.8847092 

C -3.40823267 3.96154739 -0.06860475 

C -3.76146973 3.36613982 -1.21207272 

O -1.04816909 4.98583152 -2.29031946 

O -3.39105208 3.79870686 2.28810195 

C -0.44236958 4.9936009 -1.23886232 

H -2.90761266 5.85681833 -0.88985347 

C -3.75816461 3.31544673 1.23723826 

O 3.79632518 3.40125324 -2.28868234 

O 1.59327575 4.83924049 2.28853 

C 4.10505358 2.88003141 -1.23717987 

C 3.82539029 3.56041282 0.06818914 

C 3.23259059 4.94414953 0.00055424 

H 3.61994457 5.44737092 -0.88610767 

C 1.72736657 4.93157514 -0.06799949 

 

C 0.99184474 4.91403874 1.23717531 

O 1.04798404 -4.98570051 -2.29046232 

C 0.44226204 -4.99359977 -1.23896159 

C 1.17144966 -5.09254328 0.06626752 

C 2.666188 -5.27139923 -0.00213028 

H 2.90752348 -5.85673551 -0.89019266 

C 3.40825996 -3.9615543 -0.06878698 

C 3.75817204 -3.31554893 1.23710591 

O -3.79597552 -3.40122862 -2.28854888 

O -1.59308256 -4.8389277 2.28858695 

C -4.10538975 -2.88030291 -1.23710105 

H -3.61997099 -5.44753116 -0.88584142 

C -0.99174734 -4.91391744 1.23719111 

C 0.48386308 -5.02194608 1.2104236 

H 2.9955561 -5.81468423 0.88436943 

C 3.7614582 -3.36603388 -1.21220841 

C 4.10714404 2.92909272 1.21224665 

H 3.53669729 5.49949403 0.88862032 

C 1.03616078 4.93730558 -1.21212011 

O 4.84669131 -1.58447974 -2.28828125 

O 4.98595324 1.03828513 2.29013888 

C 4.54930358 -2.11363892 -1.23747665 

C 4.99727432 -1.53193906 0.06853528 

C 5.89970306 -0.32709471 0.00201752 

H 6.52928391 -0.41082139 -0.88462009 

C 5.13627665 0.97016305 -0.06632153 

C 4.75141151 1.59724708 1.23884013 

C 4.58964348 -2.09164782 1.2118936 

H 6.53271028 -0.31354201 0.89008028 

C 4.79629063 1.57186677 -1.2104913 

H 1.52980072 4.91613434 -2.17817586 

H -0.97655461 5.05614596 2.17663813 

H 5.02551548 1.1337533 -2.17638985 

H 3.88885332 3.37264748 2.1781628 

H 3.49874067 -3.7830508 -2.17886702 

H -1.52998485 -4.91620501 -2.17811761 
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Table S4 Cartesian coordinates of the optimized structure for P[HQ]6 in Fig. S7(a) 

  



 S15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 S16 

Table S5 Cartesian coordinates of the optimized structure for P[HQ]6 in Fig. S7(b) 
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C -4.84005128 -1.91122494 -0.0368068 

C -4.92994937 -1.15729901 -1.20407224 

O -3.10695738 -3.97008316 -2.48253163 

H -3.78587281 -3.27945393 -2.46167329 

C -2.61970184 -4.22266587 -1.24093388 

H -5.28494107 -3.8036681 -0.94357165 

C -4.85150756 -1.22772408 1.17106127 

H 0.85316346 5.02975178 2.10498895 

H 3.26566182 4.08983117 -2.07291419 

H -3.92775487 3.25322401 -2.10458655 

H -1.9090745 4.87472802 2.07318329 

H -5.1740797 0.7835049 -2.07318697 

H -4.78056353 -1.77538566 2.10475248 

H -3.26566182 -4.08983117 2.07291419 

H -0.85316346 -5.02975178 -2.10498895 

H 1.9090745 -4.87472802 -2.07318329 

H 3.92775487 -3.25322401 2.10458655 

H 5.1740797 -0.7835049 2.07318697 

H 4.78056353 1.77538566 -2.10475248 
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7. UV-vis spectra 

 

Fig. S8  UV-vis absorption spectra of P[Q]6 and P[HQ]6-mP[Q]m synthesized by 

electrochemical oxidation, measured in HFIP. 

 

Fig. S9  UV-vis absorption spectra of P[Q]6 and P[HQ]6-mP[Q]m synthesized by 

chemical oxidation, measured in HFIP. 
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8. Powder X-ray diffractions 

 

Fig. S10  Powder X-ray diffraction pattern of P[Q]6 on an ITO plate obtained by 

electrochemical oxidation. 

 

 

Fig. S11  Powder X-ray diffraction pattern of P[HQ]6-mP[Q]m on an ITO plate 

obtained by electrochemical oxidation. 
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Fig. S12  Powder X-ray diffraction pattern of P[Q]6 obtained by chemical oxidation. 

 

 

Fig. S13  Powder X-ray diffraction pattern of P[HQ]6-mP[Q]m by chemical oxidation. 
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9. Electrochemical properties of p-xyloquinone  

 

Fig. S14  Cyclic voltammogram of p-xyloquinone (1 mM) measured in 0.1 M 

Bu4NPF6/DMF using an GC disk (φ = 1 mm) as a working electrode at a scan rate of 

20 mV/s. 

 

 

Fig. S15  Cathodic voltammetric behavior of p-xyloquinone (1 mM) measured in 0.1 

M Bu4NPF6/DMF using an GC disk (φ = 1 mm) as a working electrode at a scan rate 

of 20 mV/s. (a) Square wave voltammetry. (b) Normal pulse voltammetry. 
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10. NMR charts  

 

Fig. S16  1H NMR spectrum (500.13 MHz, TFA-d) of P[Q]6 synthesized by chemical 

oxidation. 

 

Fig. S17  13C NMR spectrum (125.76 MHz, TFA-d) of P[Q]6 synthesized by chemical 

oxidation. 
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Fig. S18  DEPT-135 NMR spectrum (125.76 MHz, TFA-d) of P[Q]6 synthesized by 

chemical oxidation. 
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