Supplementary Information

Pillar[6]quinone: Facile Synthesis, Crystal Structures and Electrochemical Properties

Tomoki Hirohata,¹ Naoki Shida,¹ Hidehiro Uekusa,² Nobuhiro Yasuda,³ Hirotomo Nishihara,⁴ Tomoki Ogoshi,⁵ Ikuyoshi Tomita,¹ and Shinsuke Inagi^{*,1,6}

¹Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan

²Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8551, Japan

³Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute, 1-

1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan

⁴Advanced Institute for Materials Research (WPI-AIMR) / Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan

⁵Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

⁶PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

Contents

General considerations	S2
Synthesis and set-up images	<i>S3</i>
Laser microscopy images	<i>S5</i>
MS charts	<i>S6</i>
Single crystal X-ray diffractions	<u>S</u> 8
DFT calculations	<i>S9</i>
UV-vis charts	<i>S18</i>
Powder X-ray diffractions	S19
Electrochemical properties	S21
NMR charts	S22
Supporting references	S24

Experimental

1. General considerations

All reagents, solvents, and indium-tin-oxide (ITO) plate were obtained from commercial source and used without further purification. 1,4-Dihydroxypillar[6]arene (P[HQ]₆) was prepared according to the reported procedures.^[1,2] ¹H and ¹³C NMR spectra were recorded on a Bruker Advance III HD500 (¹H: 500.13 MHz, ¹³C: 125.72 MHz) spectrometer using trifluoroacetic acid-d (TFA-d) as a solvent. The chemical shifts for ${}^{1}\text{H}$ and ¹³C NMR spectra are given in δ (ppm) relative to internal tetramethylsilane and deuterated solvent, respectively. Fourier transform infrared (FT-IR) spectra were obtained on SHIMAZU IRTracer-100. High-resolution mass spectra (HRMS) were obtained on a Bruker Daltonics microTOF II spectrometer. The cyclic voltammetry, square wave voltammetry, and normal pulse voltammetry measurements were performed using ALS/DY2325 BI-POTENTIOSTAT and AUTOLAB/PGSTAT101. All voltammetry measurements were carried out in the three-electrode system equipped with a glassy carbon (GC) disk working electrode ($\phi = 1 \text{ mm}$), a Pt plate counter electrode (10 mm × 10 mm) and an Ag/AgNO₃ reference electrode. Melting point was determined on a Yanaco/MP-500P. The single crystals suitable for X-ray diffraction were obtained by the electrochemical assembly on the electrode surface. The single crystal X-ray analysis was carried out on a precision diffractometer equipped with a hybrid photon counting detector, EIGER X 1M detector (DECTRIS) in the SPring-8 BL40XU beamline.^[3,4] The X-ray beam ($\lambda = 0.81078$ Å) was focused to 1.32 (vertical) × 2.95 (horizontal) μ m using a zoneplate. An empirical absorption correction was carried out by the MULTI-SCAN method. The structure was solved by the SHELXT and refined by full-matrix least squares method by SHELXL. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. Powder X-ray diffraction (PXRD) analysis was performed on a Rigaku/SmartLab with CuKa radiation. 3D laser confocal microscope observation was performed with an Olympus/OLS4100. All theoretical calculations were performed using Gaussian 16 software. Geometry optimizations and frequency calculations were performed for all compounds at the ω B97XD level of theory using 6-311+G(d,p) basis set for all atoms. UV-vis absorption spectra were recorded on a SHIMAZU UV-1800.

2. Synthesis

2-1. Synthesis of pillar[6]quinone (P[Q]₆) and partially oxidized form (P[HQ]_{6-m}P[Q]_m) by electrochemical oxidation^[5]

An electrolytic cell equipped with an ITO plate ($10 \text{ mm} \times 10 \text{ mm}$), a Pt plate and a SCE, used as a working electrode, counter electrode, and a reference electrode, respectively, was filled with 0.1 M Bu₄NPF₆/MeOH (10 mL) and 1 mM P[HQ]₆. Before electrolysis, Ar bubbling was conducted for the cell. Constant potential electrolysis was carried out at 1.2 V or 0.9 V vs. SCE for 100 mC. After the electrochemical reaction, the small crystals precipitated on the electrode surface (ca. 0.1 mg) were purified by washing with acetonitrile.

2-2 Synthesis of 1,4-dihydroxypillar[6]arene-based structures by chemical oxidation^[6]

To a solution of $P[HQ]_6$ (50.0 mg, 0.068 mmol) in MeOH (15 mL), phenyliodine (III) bis(trifluoroacetate) (PIFA) (88.2 mg, 0.21 mmol) was added. The mixture was stirred at 25 °C for 30 min. The resulting precipitate was isolated by filtration and washed with MeOH and CHCl₃ to give a brown solid of $P[HQ]_{6-m}P[Q]_m$ (27.3 mg).

2-3 Synthesis of pillar[6]quinone by chemical oxidation using 1,1,1,3,3,3-hexafluoro-2-propanol

To a dispersion of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) (50 mL) containing $P[HQ]_6$ (500.2 mg, 0.683 mmol) was added PIFA (2.911 g, 6.83 mmol, 10 eq.) under N₂ atmosphere and the mixture was stirred at 25 °C for 24 h. The resulting solution was concentrated under vacuum. The obtained product was dispersed into MeOH. After filtration, the residue was washed with MeOH and CHCl₃ to give a yellow solid of $P[Q]_6$ (394.6 mg, 80%).

P[Q]₆: yellow solid; ¹H NMR (500.13 MHz, TFA-*d*, ppm): $\delta = 6.86$ (s, 12H, *CH*), 3.61 (s, 12H, *CH*₂), ¹³C NMR (125.72 MHz, TFA-*d*, ppm): $\delta = 190.5$ (s, *C*=O), 148.1 (s, *C*-CH₂), 137.8 (s, *C*H), 30.1 (s, *C*H₂). HRMS (ESI-TOF-MS): m/z [M+Na]⁺ calculated for C₄₂H₂₄O₁₂Na: 743.1160; found: 743.1159, mp: this compound does not melt, but decomposes above 260 °C, IR (KBr, cm⁻¹): 1653, 1615, 1355, 1293, 1249, 1125, 937, 845.

2-4. Setup for the electrochemical reaction

Fig. S1 The schematic illustration and photograph of electrochemical setup.

3. Laser confocal microscopy images

Fig. S2 3D laser confocal microscopic images of $P[Q]_6$ and $P[HQ]_{6-m}P[Q]_m$ obtained on ITO plates by electrochemical oxidation.

Fig. S3 ESI-MS spectra of $P[HQ]_{6-m}P[Q]_m$ synthesized by electrochemical oxidation (ion polarity is positive).

Fig. S4 ESI-MS spectra of $P[HQ]_{6-m}P[Q]_m$ synthesized by chemical oxidation (ion polarity is positive).

Fig. S5 ESI-MS spectra of P[Q]₆ synthesized by chemical oxidation (ion polarity is positive).

5. Single crystal X-ray diffraction

Table S1	Crystallographic data of P	[O]6.
		· · · · ·

Crystal data	P[Q]6		
CCDC	2075802		
Empirical Formula	C42H24O12		
Formula Weight	720.61		
h, k, lmax	17, 17, 5		
Crystal System	Trigonal		
Space Group	P-3		
a, Å	14.2829(6)		
b, Å	14.2829(6)		
c, Å	5.2532(3)		
α, deg	90		
β, deg	90		
γ, deg	120		
Volume, Å	928.08(10)		
D_{calcd} , g cm ⁻³	1.289		
Z	1		
F(000)	372		
Data Collection	Data Collection		
Temperature, K	273(2)		
2θ max, deg	58.446		
Tmin/Tmax	0.3038 / 1.000		
Refinement	Refinement		
No. of Observed Data	1111		
No. of parameters	83		
R, wR2	0.0864, 0.2377		
S	1.076		

Although small continuous residual electron densities were observed in this channel, no molecular model could not be established for the densities in this analysis.

6. DFT calculations

Fig. S6 The energy diagrams of $P[Q]_6$ for its (a)tilted and (b)pillar-like optimized structures obtained at the $\omega B97XD/6-311+G(d,p)$ level of theory.

Fig. S7 The energy diagrams of $P[HQ]_6$ for its (a)tilted and (b)pillar-like optimized structures obtained at the $\omega B97XD/6-311+G(d,p)$ level of theory.

	Х	Y	Ζ	С	0.99184474	4.91403874	1.23717531
0	-4.84737941	1.58511379	-2.28832427	0	1.04798404	-4.98570051	-2.29046232
0	-4.98571349	-1.0380862	2.29011016	С	0.44226204	-4.99359977	-1.23896159
С	-4.54924195	2.11370032	-1.23744394	С	1.17144966	-5.09254328	0.06626752
С	-4.99718976	1.53187756	0.06852256	С	2.666188	-5.27139923	-0.00213028
С	-5.89969571	0.32709169	0.0019123	Η	2.90752348	-5.85673551	-0.89019266
Η	-6.52919089	0.41086768	-0.88478146	С	3.40825996	-3.9615543	-0.06878698
С	-5.13638735	-0.9702433	-0.06634268	С	3.75817204	-3.31554893	1.23710591
С	-4.75190072	-1.59746055	1.23886819	0	-3.79597552	-3.40122862	-2.28854888
С	-4.10732578	-2.92915942	1.21233284	0	-1.59308256	-4.8389277	2.28858695
С	-3.82552223	-3.56051898	0.06830972	С	-4.10538975	-2.88030291	-1.23710105
С	-3.23259433	-4.94420442	0.00075076	Η	-3.61997099	-5.44753116	-0.88584142
Η	-3.53658928	-5.49950398	0.88888313	С	-0.99174734	-4.91391744	1.23719111
С	-1.72737735	-4.93151838	-0.067923	С	0.48386308	-5.02194608	1.2104236
С	-1.03626552	-4.93729384	-1.2121003	Η	2.9955561	-5.81468423	0.88436943
С	-4.58951343	2.0914643	1.21192529	С	3.7614582	-3.36603388	-1.21220841
Η	-6.53279247	0.31359053	0.88991225	С	4.10714404	2.92909272	1.21224665
С	- 4.79634444	-1.57198737	-1.21047537	Η	3.53669729	5.49949403	0.88862032
С	-0.48376731	5.0220669	1.21052494	С	1.03616078	4.93730558	-1.21212011
С	-1.1714504	5.09259884	0.06642279	0	4.84669131	-1.58447974	-2.28828125
С	-2.66619908	5.27141098	-0.00185945	0	4.98595324	1.03828513	2.29013888
Η	-2.99553013	5.81460496	0.8847092	С	4.54930358	-2.11363892	-1.23747665
С	-3.40823267	3.96154739	-0.06860475	С	4.99727432	-1.53193906	0.06853528
С	-3.76146973	3.36613982	-1.21207272	С	5.89970306	-0.32709471	0.00201752
0	-1.04816909	4.98583152	-2.29031946	Η	6.52928391	-0.41082139	-0.88462009
0	-3.39105208	3.79870686	2.28810195	С	5.13627665	0.97016305	-0.06632153
С	-0.44236958	4.9936009	-1.23886232	С	4.75141151	1.59724708	1.23884013
Η	-2.90761266	5.85681833	-0.88985347	С	4.58964348	-2.09164782	1.2118936
С	-3.75816461	3.31544673	1.23723826	Η	6.53271028	-0.31354201	0.89008028
0	3.79632518	3.40125324	-2.28868234	С	4.79629063	1.57186677	-1.2104913
0	1.59327575	4.83924049	2.28853	Η	1.52980072	4.91613434	-2.17817586
С	4.10505358	2.88003141	-1.23717987	Η	-0.97655461	5.05614596	2.17663813
С	3.82539029	3.56041282	0.06818914	Η	5.02551548	1.1337533	-2.17638985
С	3.23259059	4.94414953	0.00055424	Η	3.88885332	3.37264748	2.1781628
Η	3.61994457	5.44737092	-0.88610767	Η	3.49874067	-3.7830508	-2.17886702
С	1.72736657	4.93157514	-0.06799949	Η	-1.52998485	-4.91620501	-2.17811761

Table S2 Cartesian coordinates of the optimized structure for $P[Q]_6$ in Fig. S6(a)

Н	0.97673471	-5.05596947	2.17649631
Η	-5.02537086	-1.1338234	-2.17639717
Η	-3.88893248	-3.37261951	2.17826925
Η	-3.49880931	3.78327284	-2.17869674
Н	-4.86315362	1.68082498	2.17833283
Η	4.86332574	-1.68111341	2.17833389
0	3.39190009	-3.79945568	2.28796535

	Х	Y	Z	С	0.99184474	4.91403874	1.23717531
0	-4.84737941	1.58511379	-2.28832427	0	1.04798404	-4.98570051	-2.29046232
0	-4.98571349	-1.0380862	2.29011016	С	0.44226204	-4.99359977	-1.23896159
С	-4.54924195	2.11370032	-1.23744394	С	1.17144966	-5.09254328	0.06626752
С	-4.99718976	1.53187756	0.06852256	С	2.666188	-5.27139923	-0.00213028
С	-5.89969571	0.32709169	0.0019123	Η	2.90752348	-5.85673551	-0.89019266
Η	-6.52919089	0.41086768	-0.88478146	С	3.40825996	-3.9615543	-0.06878698
С	-5.13638735	-0.9702433	-0.06634268	С	3.75817204	-3.31554893	1.23710591
С	-4.75190072	-1.59746055	1.23886819	0	-3.79597552	-3.40122862	-2.28854888
С	-4.10732578	-2.92915942	1.21233284	0	-1.59308256	-4.8389277	2.28858695
С	-3.82552223	-3.56051898	0.06830972	С	-4.10538975	-2.88030291	-1.23710105
С	-3.23259433	-4.94420442	0.00075076	Н	-3.61997099	-5.44753116	-0.88584142
Н	-3.53658928	-5.49950398	0.88888313	С	-0.99174734	-4.91391744	1.23719111
С	-1.72737735	-4.93151838	-0.067923	С	0.48386308	-5.02194608	1.2104236
С	-1.03626552	-4.93729384	-1.2121003	Η	2.9955561	-5.81468423	0.88436943
С	-4.58951343	2.0914643	1.21192529	С	3.7614582	-3.36603388	-1.21220841
Η	-6.53279247	0.31359053	0.88991225	С	4.10714404	2.92909272	1.21224665
С	-4.79634444	-1.57198737	-1.21047537	Η	3.53669729	5.49949403	0.88862032
С	-0.48376731	5.0220669	1.21052494	С	1.03616078	4.93730558	-1.21212011
С	-1.1714504	5.09259884	0.06642279	0	4.84669131	-1.58447974	-2.28828125
С	-2.66619908	5.27141098	-0.00185945	0	4.98595324	1.03828513	2.29013888
Η	-2.99553013	5.81460496	0.8847092	С	4.54930358	-2.11363892	-1.23747665
С	-3.40823267	3.96154739	-0.06860475	С	4.99727432	-1.53193906	0.06853528
С	-3.76146973	3.36613982	-1.21207272	С	5.89970306	-0.32709471	0.00201752
0	-1.04816909	4.98583152	-2.29031946	Η	6.52928391	-0.41082139	-0.88462009
0	-3.39105208	3.79870686	2.28810195	С	5.13627665	0.97016305	-0.06632153
С	-0.44236958	4.9936009	-1.23886232	С	4.75141151	1.59724708	1.23884013
Η	-2.90761266	5.85681833	-0.88985347	С	4.58964348	-2.09164782	1.2118936
С	-3.75816461	3.31544673	1.23723826	Η	6.53271028	-0.31354201	0.89008028
0	3.79632518	3.40125324	-2.28868234	С	4.79629063	1.57186677	-1.2104913
0	1.59327575	4.83924049	2.28853	Η	1.52980072	4.91613434	-2.17817586
С	4.10505358	2.88003141	-1.23717987	Η	-0.97655461	5.05614596	2.17663813
С	3.82539029	3.56041282	0.06818914	Η	5.02551548	1.1337533	-2.17638985
С	3.23259059	4.94414953	0.00055424	Η	3.88885332	3.37264748	2.1781628
Н	3.61994457	5.44737092	-0.88610767	Η	3.49874067	-3.7830508	-2.17886702
С	1.72736657	4.93157514	-0.06799949	Η	-1.52998485	-4.91620501	-2.17811761

Table S3 Cartesian coordinates of the optimized structure for $P[Q]_6$ in Fig. S6(b)

Η	0.97673471	-5.05596947	2.17649631
Η	-5.02537086	-1.1338234	-2.17639717
Η	-3.88893248	-3.37261951	2.17826925
Η	-3.49880931	3.78327284	-2.17869674
Н	-4.86315362	1.68082498	2.17833283
Н	4.86332574	-1.68111341	2.17833389
0	3.39190009	-3.79945568	2.28796535

	Х	Y	Ζ	С	-2.79248968	-5.03109869	-0.50451051
С	4.50470277	2.1638445	-0.41164319	Н	-3.70414543	-5.40265523	-0.96706202
С	5.51887758	1.3852332	-0.96943521	С	-2.89750259	-4.10476428	0.5299676
С	5.75386393	0.0968149	-0.50582516	С	-1.71667553	-3.64160189	1.10638062
Н	6.52978224	-0.5078897	-0.9699556	С	-0.48357945	-4.07320583	0.63529458
С	5.00590057	-0.4561491	0.53056669	Н	0.42519749	-3.67456352	1.07805441
С	4.01642791	0.33606218	1.10889244	С	0.96112502	-5.43317024	-0.96316389
С	3.77375204	1.61975208	0.637736	Н	1.14494122	-6.46755708	-0.65430922
Н	2.97555916	2.20818009	1.08206051	Н	0.89245119	-5.44887728	-2.05350274
С	4.22703927	3.54974154	-0.96259184	С	-4.12667985	2.81761562	-0.41220775
Н	5.03051756	4.2264215	-0.65328684	С	-3.95985705	4.08594793	-0.96847106
Н	4.27536096	3.49834069	-2.05291257	С	-2.96088861	4.93280318	-0.50475097
С	0.37779012	4.98047475	0.41213925	Н	-2.8256195	5.90782228	-0.96753553
С	1.55913897	5.47168053	0.96804971	С	-2.10697502	4.56001139	0.53023961
С	2.79249008	5.03109906	0.50451074	С	-2.29769947	3.30613019	1.10687013
Н	3.70414567	5.40265539	0.96706275	С	-3.28872823	2.45497735	0.63557267
С	2.89750336	4.1047649	-0.52996757	Н	-3.39896675	1.46883442	1.07850178
С	1.71667656	3.64160279	-1.1063813	С	-5.18917956	1.885278	-0.96283453
С	0.48358031	4.07320673	-0.63529569	Н	-6.17642657	2.24354497	-0.65279422
Н	-0.4251965	3.67456488	-1.07805621	Н	-5.16946424	1.95308864	-2.05314331
С	-0.96112479	5.43317013	0.96316305	С	-4.50470303	-2.1638445	0.41164382
Н	-1.14494127	6.46755687	0.65430834	С	-5.51887489	-1.38523173	0.96943917
Н	-0.89245112	5.44887717	2.05350192	С	-5.7538616	-0.09681352	0.50582907
С	4.12667975	-2.81761602	0.41220791	Н	-6.52977721	0.5078924	0.96996226
С	3.95985728	-4.08594866	0.96847056	С	-5.00590161	0.4561489	-0.53056606
С	2.96088907	-4.9328039	0.50474994	С	-4.01643241	-0.33606406	-1.10889541
Н	2.82561997	-5.90782318	0.96753414	С	-3.77375611	-1.61975385	-0.63773895
С	2.10697544	-4.56001177	-0.53024048	Н	-2.97556575	-2.20818316	-1.08206625
С	2.2976996	-3.30613021	-1.10687035	С	-4.22703833	-3.54974118	0.96259278
С	3.2887282	-2.45497743	-0.63557245	Н	-5.03051662	-4.22642167	0.65328893
Н	3.39896655	-1.46883422	-1.07850097	Н	-4.27535885	-3.49833988	2.05291355
С	5.18917885	-1.88527813	0.96283528	0	1.44260466	6.38345108	1.98281718
Н	6.1764262	-2.24354465	0.65279552	Н	2.31280772	6.60820753	2.31408463
Η	5.16946287	-1.95308873	2.05314403	0	1.82050612	2.72901981	-2.12147495
С	-0.37778965	-4.98047447	-0.41213985	Н	0.9426897	2.51302904	-2.43917014
С	-1.55913874	-5.47168037	-0.96804974	0	-4.80699846	4.44155334	-1.98360414

Table S4 Cartesian coordinates of the optimized structure for P[HQ]₆ in Fig. S7(a)

Η	-4.56552212	5.30719975	-2.31503972
0	-1.45621902	2.93914654	2.12235272
Η	-1.70892973	2.07119129	2.44004633
0	-6.2485185	-1.94085932	1.98607075
Η	-6.87691156	-1.29884796	2.31841613
0	-3.27973443	0.20901954	-2.12582673
Η	-2.65475977	-0.44375063	-2.44432387
0	-1.82050465	-2.72901821	2.12147373
Η	-0.9426884	-2.51303178	2.43917234
0	-1.44260481	-6.38345129	-1.9828169
Η	-2.31280792	-6.608207	-2.31408475
0	4.80699853	-4.44155436	1.98360367
Η	4.56552402	-5.30720219	2.31503692
0	1.45621912	-2.93914634	-2.12235281
Η	1.70892666	-2.07118892	-2.440043
0	3.27972618	-0.20902316	2.12582012
Η	2.6547509	0.44374673	2.44431661
0	6.24852485	1.94086249	-1.98606328
Η	6.87691971	1.29885201	-2.31840693

	Х	Y	Ζ	Η	-4.73228476	1.64007348	2.46090402
0	3.10695738	3.97008316	2.48253163	С	-4.96519969	0.15801092	1.2406183
Н	3.78587281	3.27945393	2.46167329	С	-5.10518572	0.90216871	0.0642336
С	2.61970184	4.22266587	1.24093388	С	-5.33622624	2.39974893	0.07254368
С	3.33406504	3.97131554	0.06454976	Н	-5.93615893	2.67460081	0.9438476
С	4.7463146	3.42198948	0.07245944	С	-4.07517063	3.23697679	0.03699767
Н	5.28494107	3.8036681	0.94357165	С	-3.48911135	3.58875969	-1.17089926
С	4.84005128	1.91122494	0.0368068	Ο	1.88371789	-4.67598859	2.48219467
С	4.85150756	1.22772408	-1.17106127	Η	0.94641582	-4.91965031	2.46120156
0	4.98971628	-0.70646954	-2.4821179	С	2.34619105	-4.38050952	1.24060134
Н	4.73228476	-1.64007348	-2.46090402	С	1.77179556	-4.87409865	0.06425233
С	4.96519969	-0.15801092	-1.2406183	С	0.59017106	-5.82273661	0.07262201
С	5.10518572	-0.90216871	-0.0642336	Η	0.65134238	-6.47922951	0.94436512
С	5.33622624	-2.39974893	-0.07254368	С	-0.76512424	-5.14869163	0.03662371
Н	5.93615893	-2.67460081	-0.9438476	С	-1.36279723	-4.81712587	-1.17127414
С	4.07517063	-3.23697679	-0.03699767	0	4.04547921	-3.33304958	-2.40711591
С	3.48911135	-3.58875969	1.17089926	Н	3.51284902	-3.65327527	-3.13664132
0	4.90792329	1.83762095	2.40691497	С	5.06782963	-0.21865288	1.15004317
Н	4.91921709	1.21630556	3.13649028	Н	5.93682368	-2.65556888	0.8034905
С	2.72345933	4.28059743	-1.14977345	С	3.46741942	-3.69227103	-1.20422873
Н	5.26797502	3.81400262	-0.8037855	0	-0.86292869	-5.17068722	2.40665318
С	4.92994937	1.15729901	1.20407224	Η	-1.40638793	-4.86937644	3.13624835
0	-1.88371789	4.67598859	-2.48219467	С	2.34502992	-4.50004001	-1.15007481
Н	-0.94641582	4.91965031	-2.46120156	Η	0.66892466	-6.47118089	-0.80311577
С	-2.34619105	4.38050952	-1.24060134	С	-1.46305241	-4.84940683	1.20383959
С	-1.77179556	4.87409865	-0.06425233	0	-4.04547921	3.33304958	2.40711591
С	-0.59017106	5.82273661	-0.07262201	Η	-3.51284902	3.65327527	3.13664132
Н	-0.65134238	6.47922951	-0.94436512	С	-5.06782963	0.21865288	-1.15004317
С	0.76512424	5.14869163	-0.03662371	Н	-5.93682368	2.65556888	-0.8034905
С	1.36279723	4.81712587	1.17127414	С	-3.46741942	3.69227103	1.20422873
0	0.86292869	5.17068722	-2.40665318	0	-4.90792329	-1.83762095	-2.40691497
Н	1.40638793	4.86937644	-3.13624835	Н	-4.91921709	-1.21630556	-3.13649028
С	-2.34502992	4.50004001	1.15007481	С	-2.72345933	-4.28059743	1.14977345
Η	-0.66892466	6.47118089	0.80311577	С	-3.33406504	-3.97131554	-0.06454976
С	1.46305241	4.84940683	-1.20383959	С	-4.7463146	-3.42198948	-0.07245944
0	-4.98971628	0.70646954	2.4821179	Н	-5.26797502	-3.81400262	0.8037855

Table S5 Cartesian coordinates of the optimized structure for P[HQ]₆ in Fig. S7(b)

С	-4.84005128	-1.91122494	-0.0368068
С	-4.92994937	-1.15729901	-1.20407224
0	-3.10695738	-3.97008316	-2.48253163
Η	-3.78587281	-3.27945393	-2.46167329
С	-2.61970184	-4.22266587	-1.24093388
Η	-5.28494107	-3.8036681	-0.94357165
С	-4.85150756	-1.22772408	1.17106127
Η	0.85316346	5.02975178	2.10498895
Η	3.26566182	4.08983117	-2.07291419
Η	-3.92775487	3.25322401	-2.10458655
Η	-1.9090745	4.87472802	2.07318329
Η	-5.1740797	0.7835049	-2.07318697
Η	-4.78056353	-1.77538566	2.10475248
Η	-3.26566182	-4.08983117	2.07291419
Η	-0.85316346	-5.02975178	-2.10498895
Η	1.9090745	-4.87472802	-2.07318329
Η	3.92775487	-3.25322401	2.10458655
Η	5.1740797	-0.7835049	2.07318697
Η	4.78056353	1.77538566	-2.10475248

Fig. S8 UV-vis absorption spectra of $P[Q]_6$ and $P[HQ]_{6-m}P[Q]_m$ synthesized by electrochemical oxidation, measured in HFIP.

Fig. S9 UV-vis absorption spectra of $P[Q]_6$ and $P[HQ]_{6-m}P[Q]_m$ synthesized by chemical oxidation, measured in HFIP.

8. Powder X-ray diffractions

Fig. S10 Powder X-ray diffraction pattern of $P[Q]_6$ on an ITO plate obtained by electrochemical oxidation.

Fig. S11 Powder X-ray diffraction pattern of $P[HQ]_{6-m}P[Q]_m$ on an ITO plate obtained by electrochemical oxidation.

Fig. S12 Powder X-ray diffraction pattern of P[Q]₆ obtained by chemical oxidation.

Fig. S13 Powder X-ray diffraction pattern of $P[HQ]_{6-m}P[Q]_m$ by chemical oxidation.

9. Electrochemical properties of *p*-xyloquinone

Fig. S14 Cyclic voltammogram of *p*-xyloquinone (1 mM) measured in 0.1 M Bu_4NPF_6/DMF using an GC disk ($\varphi = 1$ mm) as a working electrode at a scan rate of 20 mV/s.

Fig. S15 Cathodic voltammetric behavior of *p*-xyloquinone (1 mM) measured in 0.1 M Bu₄NPF₆/DMF using an GC disk ($\varphi = 1$ mm) as a working electrode at a scan rate of 20 mV/s. (a) Square wave voltammetry. (b) Normal pulse voltammetry.

10. NMR charts

Fig. S16 ¹H NMR spectrum (500.13 MHz, TFA-d) of P[Q]₆ synthesized by chemical oxidation.

Fig. S17 ¹³C NMR spectrum (125.76 MHz, TFA-*d*) of $P[Q]_6$ synthesized by chemical oxidation.

Fig. S18 DEPT-135 NMR spectrum (125.76 MHz, TFA-d) of P[Q]₆ synthesized by chemical oxidation.

Supplementary References

- J. Cao, Y. Shang, B. Qi, X. Sun, L. Zhang, H. Liu, H. Zhang and X. Zhou, *RSC Adv.*, 2015, 5, 9993-9996.
- [2] Y. Ma, X. Chi, X. Yan, J. Liu, Y. Yao, W. Chen, F. Huang and J. Hou, Org. Lett., 2012, 14, 1532–1535.
- [3] N. Yasuda, H. Murayama, Y. Fukuyama, J. E. Kim, S. Kimura, K. Toriumi, Y. Tanaka, Y. Moritomo, Y. Kuroiwa, K. Kato, H. Tanaka and M, Takata, J. Synchrotron Rad., 2009, 16, 352–357.
- [4] N. Yasuda, Y. Fukuyama, K. Toriumi, S. Kimura and M. Takata, *AIP Conference Proceedings*, 2010, **1234**, 147–150.
- [5] C. Tsuneishi, Y. Koizumi, R. Sueto, H. Nishiyama, K. Yasuhara, T. Yamagishi,
 T. Ogoshi, I. Tomita and S. Inagi, *Chem. Commun.*, 2017, 53, 7454–7456.
- [6] T. Ogoshi, K. Yoshikoshi, R. Sueto, H. Nishihara and T. Yamagishi, *Angew. Chem. Int. Ed.*, 2015, **54**, 6466–6469.