Copper-catalyzed synthesis of dihydrooxazoles from α , β -

unsaturated ketoximes and activated ketones

Binsen Rong, Gaochen Xu, Huan Yan, Sai Zhang, Qinghuan Wu, Ning Zhu, Jindian Duan* and Kai Guo*

College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China. E-mail: duanjd@njtech.edu.cn; guok@njtech.edu.cn

Supporting Information

Contents

Experimental section	
General	
General procedure for the synthesis of 3	
Compounds characterization	
Scale-up synthesis of compound 3ma	
General procedure for the synthesis of 4	
General procedure for the synthesis of 5 and 6	
General procedure for the synthesis of 7	
References	
NMR spectra and GC chromatograms	
Crystal structure and data for compound 7	

Experimental section

General

Unless otherwise noted, all experiments were performed under N2 atmosphere. Commercial solvents and reagents were used without further purification. Thin-layer chromatography (TLC) was performed on silica gel plates (60F-254) using UV-light (254 nm). Flash chromatography was conducted on silica gel (200-300 mesh). NMR (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR) spectra were recorded in CDCl₃ with TMS as the internal standard. Chemical shifts are reported in ppm and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quarter; m, multiplet; quint, quintet), coupling constant (Hz), integration. Data for ¹³C NMR and ¹⁹F NMR are reported in terms of chemical shift (\delta, ppm). An Agilent 7890A GC instrument equipped with a split-splitless injector and a flame ionization detector (FID) was used for separation and determination of the compounds. Chromatographic separation of target analytes was performed by HP-5 Agilent fused-silica capillary column (30 m \times 250 μ m \times 0.25 μ m film thickness). N₂ (99.999%) was used as the carrier gas with a flow rate of 4.0 mL/min. Detector and injector temperatures were 300 and 280 °C, respectively. The GC oven temperature program was: 80 °C for 2 min, increased to 280 °C at a rate of 10 °C/min and then held at 280 °C for 8 min. High-resolution mass spectra (HRMS) were obtained on an Agilent mass spectrometer using ESI-TOF (electrospray ionization-time of flight).

A variety of ketoxime-enoates¹ were prepared using general procedures reported in the literatures. General procedure for the synthesis of 3

1 (0.4 mmol), 2 (0.2 mmol) and CuCl (2 mg, 0.02 mmol) were loaded into a 10 mL Schlenk tube equipped with a Teflon-coated magnetic stir bar. The Schlenk tube was placed under vacuum for 1 min and then N₂ was pumped into it. The solvent THF (2 mL, 0.1 M) was added into the Schlenk tube by syringe. The reaction mixture was stirred at 120 °C for 12 h. After completion of the reaction (detected by TLC), the reaction tube was allowed to cool to room temperature and the reaction solution was concentrated under vacuum. The crude products were purified by column chromatography on silica gel (Petroleum Ether/EtOAc) to give the products 3.

Compounds characterization

Ethyl-5-(2-ethoxy-2-oxoethyl)-4-phenyl-2-(trifluoromethyl)-2,5-dihydrooxazole-2carboxylate (3aa)

64.9 mg, 87% yield; white oil; dr 86:14; ¹H NMR (400 MHz, Chloroform-d) $\delta 7.75 (d, J = 7.4 Hz, 2H), 7.51-7.47 (m, 1H), 7.41 (t, J = 7.3 Hz, 2H), 5.96 (dd, J = 7.6, 3.8 Hz, 1H), 4.27 (q, J = 7.0 Hz, 2H), 4.10 (q, J = 7.0 Hz, 2H), 2.89-2.78 (m, 2H), 1.28 (t, J = 7.0 Hz, 3H), 1.17 (t, J = 7.0 Hz, 3H) ppm; ¹³C$ NMR (100 MHz, Chloroform-d) δ 176.4, 169.5, 164.2, 132.9, 132.9, 129.1,

128.8, 121.6 (q, *J* = 286.1 Hz), 106.7 (q, *J* = 30.7 Hz), 85.5, 63.0, 61.3, 39.1, 14.0, 13.9 ppm; ¹⁹F NMR (376 MHz, Chloroform-d) δ -78.6 ppm; HRMS (ESI-TOF): m/z calcd for C₁₇H₁₉F₃NO₅

[M+H]⁺ 374.1215, found 374.1230.

Ethyl-5-(2-ethoxy-2-oxoethyl)-4-(4-fluorophenyl)-2-(trifluoromethyl)-2,5-dihydrooxazole-2-carboxylate (3ba)

60.2 mg, 77% yield; white oil; dr 90:10; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88–7.85 (m, 2H), 7.18 (t, *J* = 8.6 Hz, 2H), 6.01 (dd, *J* = 6.5, 4.7 Hz, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 4.18 (q, *J* = 7.2 Hz, 2H), 2.95–2.86 (m, 2H), 1.36 (t, *J* = 7.1 Hz, 3H), 1.26 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 175.3, 169.5, 166.8, 164.1, 131.3 (d, *J* = 9.1 Hz), 125.2 (d, *J* = 3.3 Hz), 121.6 (q, *J* = 285.9 Hz), 116.5 (d, *J* = 22.1 Hz), 106.6 (q, *J* = 30.9 Hz), 85.4, 63.1, 61.4, 39.1, 14.1, 13.9

ppm; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -78.7, -104.8 ppm; HRMS (ESI-TOF): m/z calcd for C₁₇H₁₈F₄NO₅ [M+H]⁺ 392.1121, found 392.1149.

Ethyl-4-(4-chlorophenyl)-5-(2-ethoxy-2-oxoethyl)-2-(trifluoromethyl)-2,5-dihydrooxazole-2-carboxylate (3ca)

69.2 mg, 85% yield; white oil; dr 86:14; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (d, J = 8.6 Hz, 2H), 7.47 (d, J = 8.6 Hz, 2H), 6.00 (dd, J = 6.4, 4.6 Hz, 1H), 4.36 (q, J = 7.1 Hz, 2H), 4.17 (q, J = 7.1 Hz, 2H), 2.94–2.85 (m, 2H), 1.36 (t, J = 7.1 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 175.4, 169.4, 164.0, 139.3, 130.1, 129.5, 127.2, 121.5 (q, J = 286.0 Hz), 106.6 (q, J = 30.9 Hz), 85.4, 63.1, 61.4, 39.0, 14.0, 13.9 ppm; ¹⁹F NMR (376 MHz,

Chloroform-*d*) δ -78.6 ppm; HRMS (ESI-TOF): m/z calcd for C₁₇H₁₈ClF₃NO₅ [M+H]⁺ 408.0826, found 408.0858.

Ethyl-4-(4-cyanophenyl)-5-(2-ethoxy-2-oxoethyl)-2-(trifluoromethyl)-2,5-dihydrooxazole-2-carboxylate (3da)

53.3 mg, 67% yield; white oil; dr 80:20; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (d, J = 8.6 Hz, 2H), 7.80 (d, J = 8.5 Hz, 2H), 6.01 (dd, J = 6.3, 4.4 Hz, 1H), 4.37 (q, J = 7.1 Hz, 2H), 4.16 (q, J = 7.1 Hz, 2H), 2.97–2.85 (m, 2H), 1.37 (t, J = 7.1 Hz, 3H), 1.25 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 175.1, 169.1, 163.6, 132.8, 129.3, 127.4, 121.4 (q, J = 286.0 Hz), 117.7, 116.2, 106.7 (q, J = 31.0 Hz), 85.4, 63.3, 61.5, 38.6, 14.0, 13.9 ppm; ¹⁹F NMR (376 MHz,

Chloroform-*d*) δ -78.5 ppm; HRMS (ESI-TOF): m/z calcd for C₁₈H₁₈F₃N2O₅ [M+H]⁺ 399.1168, found 399.1172.

Ethyl-5-(2-ethoxy-2-oxoethyl)-4-(4-nitrophenyl)-2-(trifluoromethyl)-2,5-dihydrooxazole-2-carboxylate (3ea)

32.6 mg, 39% yield; white oil; dr 97:3; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.35 (d, *J* = 8.7 Hz, 2H), 8.03 (d, *J* = 8.7 Hz, 2H), 6.05–6.02 (m, 1H), 4.38 (q, *J* = 7.1 Hz, 2H), 4.16 (q, *J* = 7.1 Hz, 2H), 2.97–2.88 (m, 2H), 1.38 (t, *J* = 7.1 Hz, 3H), 1.25 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 174.9, 169.1, 163.6, 150.2, 134.4, 129.9, 124.2, 121.4 (q, *J* = 286.0 Hz), 106.7 (q, *J* = 31.0 Hz), 85.5, 63.4,

61.5, 38.5, 14.0, 13.9 ppm; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -78.6 ppm; HRMS (ESI-TOF): m/z calcd for C₁₇H₁₈F₃N₂O₇ [M+H]⁺ 419.1066, found 419.1042.

Ethyl-5-(2-ethoxy-2-oxoethyl)-4-(p-tolyl)-2-(trifluoromethyl)-2,5-dihydrooxazole-2carboxylate (3fa)

49.5 mg, 65% yield; white oil; dr 84:16; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 6.02 (dd, J = 7.6, 3.7 Hz, 1H), 4.35 (q, J = 7.1 Hz, 2H), 4.18 (q, J = 7.2 Hz, 2H), 1.25 (t, J = 7.1 Hz, 3H), 2.96–2.85 (m, 2H), 2.42 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 176.2, 169.6, 164.3, 143.8, 129.8, 126.9, 121.6 (q, J = 284.3 Hz), 106.6 (q, J = 30.8 Hz), 85.4, 63.0, 61.3, 39.3, 21.7, 14.1, 13.9 ppm; ¹⁹F NMR (376

MHz, Chloroform-*d*) δ -78.7 ppm; HRMS (ESI-TOF): m/z calcd for C₁₈H₂₁F₃NO₅ [M+H]⁺ 388.1372, found 388.1397.

Ethyl-5-(2-ethoxy-2-oxoethyl)-4-(4-methoxyphenyl)-2-(trifluoromethyl)-2,5-dihydrooxazole-2-carboxylate (3ga)

66.9 mg, 83% yield; white oil; dr 87:13; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (d, J = 8.9 Hz, 2H), 6.97 (d, J = 8.9 Hz, 2H), 6.01 (dd, J = 7.4, 3.9 Hz, 1H), 4.34 (q, J = 7.1 Hz, 2H), 4.19 (q, J = 7.2 Hz, 2H), 3.87 (s, 3H), 2.97–2.86 (m, 2H), 1.36 (t, J = 7.1 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 175.5, 169.7, 164.4, 163.3, 130.8, 121.6 (q, J = 285.9 Hz), 121.2, 114.5, 106.5 (q, J = 30.8 Hz), 85.2, 63.0, 61.3, 55.5, 39.4, 14.1, 13.9

ppm; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -78.7 ppm; HRMS (ESI-TOF): m/z calcd for C₁₈H₂₁F₃NO₆ [M+H]⁺ 404.1321, found 404.1368.

Ethyl-4-(3-bromophenyl)-5-(2-ethoxy-2-oxoethyl)-2-(trifluoromethyl)-2,5-dihydrooxazole-2-carboxylate (3ha)

62.2 mg, 69% yield; white oil; dr 98:2; ¹H NMR (400 MHz, Chloroformd) δ 8.04 (t, J = 1.7 Hz, 1H), 7.70 (dd, J = 7.9, 1.4 Hz, 2H), 7.37 (t, J = 7.9Hz, 1H), 5.99 (dd, J = 6.8, 4.3 Hz, 1H), 4.36 (q, J = 7.1 Hz, 2H), 4.18 (q, J = 7.1 Hz, 2H), 2.96–2.85 (d, 2H), 1.37 (t, J = 7.1 Hz, 3H), 1.26 (t, J =7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-d) δ 175.3, 169.3, 163.9, 135.8, 131.6, 130.7, 130.6, 127.3, 123.3, 121.5 (q, J = 286.0 Hz), 106.6 (q, J = 31.0 Hz), 85.4, 63.2, 61.4, 38.9, 14.1, 13.9 ppm; ¹⁹F NMR

(376 MHz, Chloroform-*d*) δ -78.6 ppm; HRMS (ESI-TOF): m/z calcd for C₁₇H₁₈BrF₃NO₅ [M+H]⁺ 452.0320, found 452.0348.

Ethyl-5-(2-ethoxy-2-oxoethyl)-4-(3-nitrophenyl)-2-(trifluoromethyl)-2,5-dihydrooxazole-2-carboxylate (3ia)

49.3 mg, 59% yield; white oil; dr 98:2; ¹H NMR (400 MHz, Chloroformd) δ 8.57–8.62 (m, 1H), 8.36 (d, J = 8.3 Hz, 1H), 8.12 (d, J = 7.8 Hz, 1H), 7.66 (t, J = 8.0 Hz, 1H), 5.97 (dd, J = 6.3, 4.4 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 4.10 (q, J = 7.1 Hz, 2H), 2.93–2.82 (m, 2H), 1.31 (t, J = 7.1 Hz, 3H), 1.18 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-d) δ 174.7, 169.1, 163.6, 148.5, 134.4, 130.6, 130.4, 127.2, 123.6, 121.4 (q, J = 284.5 Hz), 106.6 (q, J = 31.1 Hz), 85.4, 63.4, 61.6, 38.6, 14.0, 13.9 ppm; ¹⁹F

NMR (376 MHz, Chloroform-*d*) δ -78.5 ppm; HRMS (ESI-TOF): m/z calcd for C₁₇H₁₈F₃N₂O₇ [M+H]⁺ 419.1066, found 419.1097.

Ethyl-5-(2-ethoxy-2-oxoethyl)-4-(3-methoxyphenyl)-2-(trifluoromethyl)-2,5-dihydrooxazole-2-carboxylate (3ja)

77.4 mg, 96% yield; white oil; dr 91:9; ¹H NMR (400 MHz, Chloroformd) δ 7.43–7.37 (m, 2H), 7.32–7.30 (m, 1H), 7.13–7.01 (m, 1H), 6.02 (dd, J = 7.6, 3.7 Hz, 1H), 4.36 (q, J = 7.1 Hz, 2H), 4.18 (q, J = 7.2 Hz, 2H), 3.86 (s, 3H), 2.98–2.85 (m, 2H), 1.37 (t, J = 7.1 Hz, 3H), 1.26 (t, J = 7.2Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-d) δ 176.4, 169.6, 164.2, 160.0, 130.1, 130.0, 121.6 (q, J = 285.9 Hz), 121.2, 119.4, 113.3, 106.6 (q, J = 30.8 Hz), 85.6, 63.1, 61.3, 55.5, 39.2, 14.1, 13.9 ppm; ¹⁹F NMR (376

MHz, Chloroform-*d*) δ -78.6 ppm; HRMS (ESI-TOF): m/z calcd for C₁₈H₂₁F₃NO₆ [M+H]⁺ 404.1321, found 404.1367.

Ethyl-5-(2-ethoxy-2-oxoethyl)-4-(2-fluorophenyl)-2-(trifluoromethyl)-2,5-dihydrooxazole-2-carboxylate (3ka)

60.2 mg, 77% yield; white oil; dr 95:5; ¹H NMR (400 MHz, Chloroformd) δ 8.15–8.11 (m, 1H), 7.61–7.55 (m, 1H), 7.31 (d, J = 7.9 Hz, 1H), 7.18 (dd, J = 10.8, 8.8 Hz, 1H), 5.98–5.95 (m, 1H), 4.36 (q, J = 7.1 Hz, 2H), 4.18–4.10 (m, 2H), 2.95–2.78 (m, 2H), 1.37 (t, J = 7.1 Hz, 3H), 1.23 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.8, 169.4, 164.1, 161.0 (d, J = 253.4 Hz), 134.9 (d, J = 9.0 Hz), 131.5 (d, J = 2.8 Hz),

125.2 (d, J = 3.1 Hz), 121.6 (q, J = 284.5 Hz), 117.4 (d, J = 12.2 Hz), 116.5 (d, J = 22.0 Hz), 105.7 (q, J = 31.0 Hz), 86.9 (d, J = 8.2 Hz), 63.1, 61.2, 38.0 (d, J = 1.8 Hz), 14.1, 13.9 ppm; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -78.7, -110.3 ppm; HRMS (ESI-TOF): m/z calcd for C₁₇H₁₈F₄NO₅ [M+H]⁺ 392.1121, found 392.1153.

Ethyl-5-(2-ethoxy-2-oxoethyl)-4-(2-methoxyphenyl)-2-(trifluoromethyl)-2,5-dihydrooxazole-2-carboxylate (3la)

68.5 mg, 85% yield; white oil; dr 99:1; ¹H NMR (400 MHz, Chloroformd) δ 8.06 (dd, J = 7.8, 1.7 Hz, 1H), 7.54–7.50 (m, 1H), 7.06 (t, J = 7.9 Hz, 1H), 6.98 (d, J = 8.4 Hz, 1H), 6.10 (dd, J = 7.6, 3.0 Hz, 1H), 4.35 (q, J =7.2 Hz, 2H), 4.15 (q, J = 7.1 Hz, 2H), 3.89 (s, 3H), 2.86–2.70 (m, 2H), 1.36 (t, J = 7.1 Hz, 3H), 1.24 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-d) δ 176.5, 170.0, 164.5, 158.0, 134.3, 131.8, 121.7 (q, J =

286.4 Hz), 121.4, 118.4, 111.4, 105.3 (q, J = 30.6 Hz), 87.4, 62.9, 61.0, 55.5, 38.2, 14.1, 13.9 ppm; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -78.7 ppm; HRMS (ESI-TOF): m/z calcd for C₁₈H₂₁F₃NO₆ [M+H]⁺ 404.1321, found 404.1356.

Ethyl-4-([1,1'-biphenyl]-4-yl)-5-(2-ethoxy-2-oxoethyl)-2-(trifluoromethyl)-2,5dihydrooxazole-2-carboxylate (3ma)

69.9 mg, 78% yield; white oil; dr 92:8; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (d, J = 8.2 Hz, 2H), 7.68 (d, J = 8.2 Hz, 2H), 7.59 (d, J = 7.4 Hz, 2H), 7.44 (t, J = 7.4 Hz, 2H), 7.37–7.35 (m, 1H), 6.10 (dd, J = 7.5, 3.5 Hz, 1H), 4.34 (q, J = 7.1 Hz, 2H), 4.17 (q, J = 7.1 Hz, 2H), 3.04–2.92 (m, 2H), 1.34 (t, J = 7.1 Hz, 3H), 1.24 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 176.2, 169.5, 164.2, 145.6, 139.5, 129.4, 129.0, 128.4, 127.6, 127.5, 127.1, 121.8 (q, J = 7.1 Hz, 2H)

285.8 Hz), 106.7 (q, J = 30.7 Hz), 85.6, 63.0, 61.2, 39.2, 14.0, 13.8 ppm; ¹⁹F NMR (376 MHz,

Chloroform-*d*) δ -78.5 ppm; HRMS (ESI-TOF): m/z calcd for C₂₃H₂₂F₃NO₅ [M+H]⁺ 449.1450, found 449.1474.

72.8 mg, 86% yield; white oil; dr 80:20; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (s, 1H), 7.99–7.87 (m, 4H), 7.62–7.54 (m, 2H),
6.19 (dd, J = 7.7, 3.5 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 4.19 (q, J = 7.1 Hz, 2H), 3.06–2.94 (m, 2H), 1.38 (t, J = 7.1 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 176.5, 169.7, 164.3, 135.3, 132.6, 130.0, 129.1, 129.0, 128.6, 127.9, 127.2, 126.2,

124.6, 121.6 (q, J = 286.0 Hz), 106.7 (q, J = 30.7 Hz), 85.6, 63.1, 61.3, 39.4, 14.1, 13.9 ppm; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -78.5 ppm; HRMS (ESI-TOF): m/z calcd for C₂₁H₂₁F₃NO₅ [M+H]⁺ 424.1372, found 424.1389.

Ethyl-5-(2-ethoxy-2-oxoethyl)-4-(furan-2-yl)-2-(trifluoromethyl)-2,5-dihydrooxazole-2-carboxylate (30a)

50.8 mg, 70% yield; white oil; dr 92:8; ¹H NMR (400 MHz, Chloroformd) δ 7.65 (d, J = 1.2 Hz, 1H), 7.29–7.28 (m, 1H), 6.62 (dd, J = 3.6, 1.7 Hz, 1H), 5.83 (dd, J = 7.9, 3.4 Hz, 1H), 4.34 (q, J = 7.1 Hz, 2H), 4.22–4.13 (m, 2H), 3.13–2.96 (m, 2H), 1.35 (t, J = 7.1 Hz, 3H), 1.26 (s, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-d) δ 169.4, 165.9, 164.1, 146.8, 145.4, 121.5 (q, J = 286.2 Hz), 117.5, 112.8, 106.5 (q, J = 31.0 Hz), 85.6, 63.1, 61.2,

38.9, 14.0, 13.8 ppm; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -78.6 ppm; HRMS (ESI-TOF): m/z calcd for C₁₅H₁₇F₃NO₆ [M+H]⁺ 364.1008, found 364.1036.

Ethyl-5-(2-ethoxy-2-oxoethyl)-4-(thiophen-2-yl)-2-(trifluoromethyl)-2,5-dihydrooxazole-2-carboxylate (3pa)

36.4 mg, 48% yield; white oil; dr 93:7; ¹H NMR (400 MHz, Chloroformd) δ 7.66 (d, J = 5.0 Hz, 1H), 7.52 (d, J = 3.7 Hz, 1H), 7.17–7.15 (m, 1H), 5.92 (dd, J = 7.3, 4.0 Hz, 1H), 4.34 (q, J = 7.1 Hz, 2H), 4.20 (q, J = 7.1 Hz, 2H), 3.07–2.95 (m, 2H), 1.35 (t, J = 7.1 Hz, 3H), 1.27 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.0, 169.4, 164.1, 132.9, 132.3, 128.3, 121.5 (q, J = 286.0 Hz), 106.2 (q, J = 31.0 Hz), 85.5, 63.1,

61.3, 39.8, 14.1, 13.8 ppm; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -78.6 ppm; HRMS (ESI-TOF): m/z calcd for $C_{15}H_{17}F_3NO_5S$ [M+H]⁺ 380.0780, found 380.0792.

Ethyl-5-(2-ethoxy-2-oxoethyl)-4-methyl-2-(trifluoromethyl)-2,5-dihydrooxazole-2carboxylate (3qa)

31.7 mg, 51% yield; white oil; dr 71:29; ¹H NMR (400 MHz, Chloroformd) δ 5.31–5.28 (m, 1H), 4.20–4.13 (m, 2H), 4.20–4.13 (m, 2H), 3.99–3.09 (m, 2H), 1.93 (s, 3H), 1.24–1.16 (m, 6H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 179.0, 169.1, 164.0, 121.5 (q, *J* = 284.4 Hz), 105.9 (q, *J* = 30.1 Hz), 87.5, 63.0, 61.3, 37.4, 15.8, 14.1, 13.9 ppm; ¹⁹F NMR (376 MHz,

Chloroform-*d*) δ -79.0 ppm; HRMS (ESI-TOF): m/z calcd for C₁₂H₁₇F₃NO₅ [M+H]⁺ 312.1059, found 312.1083.

Ethyl-4-(tert-buty-ethoxy-2-oxoethyl)-2-(trifluoromethyl)-2,5-dihydrooxazole-2-carboxylate (3ra)

47.3 mg, 67% yield; white oil; dr 95:5; ¹H NMR (400 MHz, Chloroformd) δ 5.50 (dd, J = 8.4, 3.3 Hz, 1H), 4.31 (q, J = 7.1 Hz, 2H), 4.22–4.16 (m, 2H), 2.98–2.80 (m, 2H), 1.33–1.26 (m, 15H), ppm; ¹³C NMR (100 MHz, Chloroform-d) δ 188.0, 169.3, 164.2, 121.5 (q, J = 285.6 Hz), 105.6 (q, J = 30.4 Hz), 85.9, 62.8, 61.2, 39.1, 35.5, 28.4, 14.1, 13.8 ppm; ¹⁹F NMR (376 MHz, Chloroform-d) δ -79.3 ppm; HRMS (ESI-TOF):

m/z calcd for C₁₅H₂₃F₃NO₅ [M+H]⁺ 354.1528, found 354.1556. Ethyl-5-(2-isopropoxy-2-oxoethyl)-4-phenyl-2-(trifluoromethyl)-2,5-dihydrooxazole-2-carboxylate (3sa)

58.1 mg, 75% yield; white oil; dr 93:7; ¹H NMR (400 MHz, Chloroformd) δ 7.84–7.82 (m, 2H), 7.60–7.55 (m, 1H), 7.49 (t, J = 7.5 Hz, 2H), 6.04 (dd, J = 7.5, 3.9 Hz, 1H), 5.08–5.02 (m, 1H), 4.35 (q, J = 7.1 Hz, 2H), 2.94–2.83 (m, 2H), 1.36 (t, J = 7.1 Hz, 3H), 1.23 (t, J = 6.6 Hz, 6H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 176.5, 169.1, 164.2, 132.9, 129.1,

128.8, 121.6 (q, J = 285.9 Hz), 106.6 (q, J = 30.9 Hz), 117.3, 85.5, 68.9, 63.0, 39.4, 21.8, 13.9 ppm; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -78.66 ppm; HRMS (ESI-TOF): m/z calcd for C₁₈H₂₁F₃NO₅ [M+H]⁺ 388.1372, found 388.1395.

Ethyl (*Z*)-4-phenyl-5-((*E*)-3-phenylallylidene)-2-(trifluoromethyl)-2,5-dihydrooxazole-2carboxylate (3va)

16.0 mg, 20% yield; white oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80–7.78 (m, 2H), 7.59–7.47 (m, 5H), 7.36–7.27 (m, 3H), 7.25–7.20 (m, 1H), 6.76 (d, *J* = 15.8 Hz, 1H), 6.13 (d, *J* = 11.2 Hz, 1H), 4.44–4.31 (m, 2H), 1.36 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.8, 162.6, 152.0, 136.7, 136.7, 131.9, 129.6, 128.9, 128.8, 128.5, 126.9, 122.0,

120.9 (q, J = 284.6 Hz), 109.6, 104.9 (q, J = 31.4 Hz), 63.5, 14.0 ppm; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -78.2 ppm; HRMS (ESI-TOF): m/z calcd for C₂₂H₁₉F₃NO₃ [M+H]⁺ 402.1317, found 402.1346.

Ethyl 2-(4-phenyl-2,2-bis(trifluoromethyl)-2,5-dihydrooxazol-5-yl)acetate (3ab)

59.0 mg, 80% yield; white oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85–7.83 (m, 2H), 7.63–7.59 (m, 1H), 7.51 (t, *J* = 7.6 Hz, 2H), 6.11 (dd, *J* = 8.8, 2.7 Hz, 1H), 4.25–4.17 (m, 2H), 2.96–2.67 (m, 2H), 1.27 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 178.9, 169.2, 133.5, 129.2, 128.9, 128.2, 120.9 (q, *J* = 287.1 Hz, 2C), 106.0–104.7 (quint, *J* = 31.5 Hz), 86.3,

61.5, 39.1, 14.0 ppm; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -78.4 (q, J = 8.6 Hz), -77.8 (q, J = 8.7 Hz) ppm; HRMS (ESI-TOF): m/z calcd for C₁₅H₁₄F₆NO₃ [M+H]⁺ 370.0878, found 370.0893. Ethyl 2-(4-(4-chlorophenyl)-2,2-bis(trifluoromethyl)-2,5-dihydrooxazol-5-yl)acetate (3cb)

58.8 mg, 73% yield; white oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (d, *J* = 8.7 Hz, 2H), 7.49 (d, *J* = 8.6 Hz, 2H), 6.07 (dd, *J* = 8.3, 3.1 Hz, 1H), 4.25–4.17 (m, 2H), 2.92–2.68 (m, 2H), 1.27 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 177.8, 169.0, 140.0, 130.2, 129.6, 126.7, 120.8 (q, *J* = 285.4 Hz, 2C), 116.2–104.7 (quint, *J* = 31.5 Hz), 86.1, 61.6, 39.0, 14.0 ppm; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -78.4 (q, *J* = 8.6 Hz), -77.8 (q, *J* = 8.5 Hz) ppm; HRMS (ESI-TOF): m/z calcd for C₁₅H₁₃ClF₆NO₃ [M+H]⁺ 404.0488, found 404.0497.

Ethyl 2-(4-(4-methoxyphenyl)-2,2-bis(trifluoromethyl)-2,5-dihydrooxazol-5-yl)acetate (3gb)

65.4 mg, 82% yield; white oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (d, J = 8.9 Hz, 2H), 6.99 (d, J = 8.9 Hz, 2H), 6.06 (dd, J = 8.8, 2.6 Hz, 1H), 4.25–4.18 (m, 2H), 3.88 (s, 3H), 2.96–2.67 (m, 2H), 1.28 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 177.8, 169.4, 163.7, 131.0, 120.9 (q, J = 286.9 Hz, 2C), 120.6, 114.6, 105.9– 104.6 (quint, J = 31.3 Hz), 85.9, 61.5, 55.5, 39.4, 14.0 ppm; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -78.5 (q, J = 8.6 Hz), -77.9 (q, J = 8.7

Hz) ppm; HRMS (ESI-TOF): m/z calcd for $C_{16}H_{16}F_6NO_4 [M+H]^+ 400.0984$, found 400.1021. Ethyl 2-(4-(3-bromophenyl)-2,2-bis(trifluoromethyl)-2,5-dihydrooxazol-5-yl)acetate (3hb)

55.3 mg, 62% yield; white oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 (s, 1H), 7.75–7.71 (m, 2H), 7.39 (t, J = 7.9 Hz, 1H), 6.06 (dd, J = 8.3, 3.1 Hz, 1H), 4.25–4.18 (m, 2H), 2.93–2.69 (m, 2H), 1.28 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 177.8, 168.9, 136.4, 131.7, 130.7, 130.1, 127.4, 123.5, 120.7 (q, J = 287.1 Hz, 2C), 106.1–104.5 (quint, J = 31.5 Hz), 86.2, 61.7, 38.9, 14.0 ppm; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -78.3 (q, J = 8.7 Hz), -77.7 (q, J = 8.5 Hz) ppm; HRMS

(ESI-TOF): m/z calcd for $C_{15}H_{13}BrF_6NO_3 [M+H]^+ 447.9983$, found 447.9989.

Ethyl 2-(4-(3-methoxyphenyl)-2,2-bis(trifluoromethyl)-2,5-dihydrooxazol-5-yl)acetate (3jb)

62.2 mg, 78% yield; white oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42–7.38 (m, 2H), 7.31 (d, J = 7.7 Hz, 1H), 7.14 (dd, J = 8.2, 2.2 Hz, 1H), 6.08 (dd, J = 8.6, 2.9 Hz, 1H), 4.25–4.17 (m, 2H), 3.87 (s, 3H), 2.96– 2.67 (m, 2H), 1.27 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 178.8, 169.2, 160.1, 130.2, 129.4, 121.3, 120.8 (q, J =285.2 Hz, 2C), 119.9, 113.4, 106.0–104.7 (quint, J = 31.3 Hz), 86.3, 61.5, 55.6, 39.2, 14.1 ppm; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -78.4 (q, J =

8.6 Hz), -77.8 (q, J = 8.6 Hz) ppm; HRMS (ESI-TOF): m/z calcd for C₁₆H₁₆F₆NO₄ [M+H]⁺ 400.0984, found 400.1033.

Ethyl 2-(4-(2-fluorophenyl)-2,2-bis(trifluoromethyl)-2,5-dihydrooxazol-5-yl)acetate (3kb)

40.9 mg, 53% yield; white oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15– 8.11 (m, 1H), 7.64–7.59 (m, 1H), 7.33 (t, *J* = 7.6 Hz, 1H), 7.22–7.18 (m, 1H), 6.05–6.03 (m, 1H), 4.19 (q, *J* = 7.2 Hz, 2H), 2.91–2.60 (m, 2H), 1.26 (t, *J* = 7.1 Hz, 1H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 176.3, 168.8, 161.1 (d, *J* = 254.0 Hz), 135.5 (d, *J* = 9.1 Hz), 131.4 (d, *J* = 2.6 Hz), 125.4 (d, *J* = 3.1 Hz), 120.9 (q, *J* = 285.4 Hz, 2C), 116.9 (d, *J* = 12.2 Hz),

116.6 (d, J = 21.9 Hz), 105.1–103.8 (quint, J = 31.5 Hz), 87.8, 61.4, 38.1 (d, J = 2.0 Hz), 14.0 ppm; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -109.7, -78.3 (q, J = 8.6 Hz), -77.8 (q, J = 8.6 Hz) ppm; HRMS (ESI-TOF): m/z calcd for C₁₅H₁₂F₇NO₃ [M+H]⁺ 387.0705, found 387.0751.

Ethyl 2-(4-(2-methoxyphenyl)-2,2-bis(trifluoromethyl)-2,5-dihydrooxazol-5-yl)acetate (3lb) 51.9 mg, 65% yield; white oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99–7.97 (m, 1H), 7.49–7.45

(m, 1H), 6.99 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 6.08 (d, J = 8.5 Hz, 1H), 4.14–4.08 (m, 2H), 3.81 (s, 3H), 2.75–2.41 (m, 2H), 1.18 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 178.9, 169.7, 158.1, 134.9, 131.7, 121.5, 121.0 (q, J = 285.0 Hz, 2C), 117.9, 111.5, 104.7–103.4 (quint, J = 31.3 Hz), 88.3, 61.2, 55.5, 38.3, 14.1 ppm; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -78.4 (q, J = 8.5 Hz), -78.1 (q, J = 8.5

Hz) ppm; HRMS (ESI-TOF): m/z calcd for $C_{16}H_{16}F_6NO_4$ [M+H]⁺ 400.0984, found 400.1033. Ethyl 2-(4-([1,1'-biphenyl]-4-yl)-2,2-bis(trifluoromethyl)-2,5-dihydrooxazol-5-yl)acetate (3mb)

59.6 mg, 67% yield; white oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (d, J = 8.3 Hz, 2H), 7.72 (d, J = 8.3 Hz, 2H), 7.62 (d, J = 7.3 Hz, 2H), 7.49 (t, J = 7.4 Hz, 2H), 7.42 (t, J = 7.3 Hz, 1H), 6.13 (dd, J = 8.7, 2.9 Hz, 1H), 4.27–4.19 (m, 2H), 3.00–2.70 (m, 2H), 1.28 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 178.5, 169.2, 146.3, 139.4, 129.5, 129.1, 128.6, 127.8, 127.2, 127.1, 120.9 (q, J = 287.0 Hz, 2C), 106.0–104.8 (quint, J = 31.3 Hz), 86.3, 61.6, 39.2, 14.1 ppm; ¹⁹F

NMR (376 MHz, Chloroform-*d*) δ -78.4 (q, *J* = 8.6 Hz), -77.8 (q, *J* = 8.7 Hz) ppm; HRMS (ESI-TOF): m/z calcd for C₂₁H₁₈F₆NO₃ [M+H]⁺ 446.1191, found 446.1209.

Ethyl 2-(4-(naphthalen-2-yl)-2,2-bis(trifluoromethyl)-2,5-dihydrooxazol-5-yl)acetate (3nb)

77.9 mg, 93% yield; white oil; ¹H NMR (400 MHz, Chloroform-*d*) δ
8.13 (s, 1H), 7.89–7.78 (m, 4H), 7.55–7.44 (m, 2H), 6.16 (dd, *J* = 8.7,
2.9 Hz, 1H), 4.17–4.09 (m, 2H), 2.96–2.64 (m, 2H), 1.17 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 178.9, 169.3, 135.5, 132.5, 130.4, 129.3, 129.1, 128.9, 128.0, 127.4, 125.6, 124.5, 120.9 (q, *J* =285.2 Hz, 2C), 106.1–104.8 (quint, *J* = 31.5 Hz), 61.6,

39.4, 14.0 ppm; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -78.3 (q, J = 8.7 Hz), -77.7 (q, J = 8.7 Hz) ppm; HRMS (ESI-TOF): m/z calcd for C₁₉H₁₆F₆NO₃ [M+H]⁺ 420.1034, found 420.1075.

Isopropyl 2-(4-phenyl-2,2-bis(trifluoromethyl)-2,5-dihydrooxazol-5-yl)acetate (3rb)

63.6 mg, 83% yield; white oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85–7.83 (m, 2H), 7.63–7.58 (m, 1H), 7.52–7.49 (m, 2H), 6.10 (dd, J = 8.7, 2.9 Hz, 1H), 5.08 (p, J = 6.3 Hz, 1H), 2.64–2.93 (m, 2H), 1.27–1.22 (m, 6H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 179.0, 168.7, 133.4, 129.2, 129.0, 128.3, 120.5 (q, J = 286.3 Hz, 2C), 105.9–104.7 (quint, J= 31.3 Hz), 86.3, 69.2, 39.4, 21.7, 21.6 ppm; ¹⁹F NMR (376 MHz,

Chloroform-*d*) δ -78.4 (q, *J* = 8.6 Hz), -77.9 (q, *J* = 8.6 Hz) ppm; HRMS (ESI-TOF): m/z calcd for C₁₆H₁₆F₆NO₃ [M+H]⁺ 384.1034, found 384.1076.

Diethyl 5-(2-ethoxy-2-oxoethyl)-4-phenyloxazole-2,2(5H)-dicarboxylate (3ac)

46.0 mg, 61% yield; white oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 (d, *J* = 7.2 Hz, 2H), 7.47–7.36 (m, 3H), 5.93 (dd, *J* = 7.3, 3.7 Hz, 1H), 4.29–4.20 (m, 4H), 4.06 (q, *J* = 7.1 Hz, 2H), 2.84–2.72 (m, 2H), 1.28–1.22 (m, 6H), 1.15 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 174.2, 169.7, 166.3, 166.1, 132.4, 129.3, 129.0, 128.7, 108.0, 84.3, 62.6,

61.2, 39.1, 14.0, 14.0, 14.0 ppm; HRMS (ESI-TOF): m/z calcd for $C_{19}H_{24}NO_7 [M+H]^+$ 378.1553, found 378.1587.

Diethyl 5-(2-ethoxy-2-oxoethyl)-4-(p-tolyl)oxazole-2,2(5H)-dicarboxylate (3fc)

43.8 mg, 56% yield; white oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (d, *J* = 8.2 Hz, 2H), 7.27 (d, *J* = 8.2 Hz, 2H), 5.98 (dd, *J* = 7.5, 3.7 Hz, 1H), 4.37–4.28 (m, 4H), 4.15 (q, *J* = 7.2 Hz, 2H), 2.91–2.79 (m, 2H), 2.41 (s, 3H), 1.36–1.30 (m, 6H), 1.24 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 174.0, 169.8, 166.5, 166.2, 143.1, 129.6, 128.7, 126.6, 108.0, 84.2, 62.5, 61.1, 21.6, 14.1, 14.0, 14.0 ppm; HRMS (ESI-TOF): m/z calcd for C₂₀H₂₆NO₇ [M+H]⁺ 392.1709, found

392.1745.

Diethyl 4-([1,1'-biphenyl]-4-yl)-5-(2-ethoxy-2-oxoethyl)oxazole-2,2(5H)-dicarboxylate (3mc)

42.5 mg, 47% yield; white oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (d, *J* = 8.3 Hz, 2H), 7.69 (d, *J* = 8.2 Hz, 2H), 7.61 (d, *J* = 7.4 Hz, 2H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.42–7.38 (m, 1H), 6.04 (dd, *J* = 7.4, 3.6 Hz, 1H), 4.38–4.29 (m, 4H), 4.17 (q, *J* = 7.1 Hz, 2H), 2.97–2.84 (m, 2H), 1.37–1.31 (m, 6H), 1.24 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.9, 169.8, 166.4, 166.1, 145.2, 139.7, 129.3, 129.0, 128.3, 128.1, 127.6, 127.2, 108.1, 84.3, 62.7, 61.2, 39.3, 14.1,

14.0, 14.0 ppm; HRMS (ESI-TOF): m/z calcd for C₂₅H₂₇NO₇ [M+H]⁺ 453.1788, found 453.1824. **Diethyl 4-(3-bromophenyl)-5-(2-ethoxy-2-oxoethyl)oxazole-2,2(5H)-dicarboxylate (3hc)**

47.3 mg, 52% yield; white oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.07 (s, 1H), 7.68 (t, *J* = 8.7 Hz, 2H), 7.35 (t, *J* = 7.9 Hz, 1H), 5.96 (dd, *J* = 6.5, 4.3 Hz, 1H), 4.39–4.29 (m, 4H), 4.15 (q, *J* = 7.1 Hz, 1H), 2.91–2.81 (m, 2H), 1.37–1.31 (m, 6H), 1.24 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.0, 169.4, 166.0, 165.8, 135.3, 131.5, 131.3, 130.4, 127.2, 123.2, 108.0, 84.2, 62.7, 61.3, 38.9, 14.0, 14.0, 14.0 ppm; HRMS (ESI-TOF): m/z calcd for C₁₉H₂₃NO₇ [M+H]⁺ 456.0658, found 456.0667.

Diethyl 5-(2-ethoxy-2-oxoethyl)-4-(3-methoxyphenyl)oxazole-2,2(5H)-dicarboxylate (3jc)

44.8 mg, 55% yield; white oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38– 7.37 (m, 1H), 7.30–7.21 (m, 2H), 7.01–6.99 (m, 1H), 5.91 (dd, J = 7.4, 3.7 Hz, 1H), 4.31–4.20 (m, 4H), 4.07 (q, J = 7.2 Hz, 2H), 3.78 (s, 3H), 2.82– 2.73 (m, 2H), 1.29–1.23 (m, 6H), 1.16 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 174.2, 169.7, 166.3, 166.1, 160.0, 130.5, 129.9, 121.2, 119.1, 113.0, 108.0, 84.4, 62.6, 61.1, 55.6, 39.3, 14.1, 14.0, 14.0; HRMS (ESI-TOF): m/z calcd for C₂₀H₂₆NO₈ [M+H]⁺ 408.1658,

found 408.1697.

Diethyl 5-(2-ethoxy-2-oxoethyl)-4-(2-methoxyphenyl)oxazole-2,2(5H)-dicarboxylate (3lc)

38.3 mg, 47% yield; white oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.50–7.46 (m, 1H), 7.06–7.02 (m, 1H), 6.95 (d, *J* = 8.3 Hz, 1H), 6.07 (dd, *J* = 7.3, 3.2 Hz, 1H), 4.36–4.27 (m, 4H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.87 (s, 3H), 2.81–2.64 (m, 2H), 1.36–1.30 (m, 6H), 1.22 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 174.2, 170.1, 166.6, 166.4, 157.9, 133.7, 131.9, 121.3, 119.0, 111.3, 106.7, 86.2,

62.5, 62.4, 60.8, 55.4, 38.3, 14.1, 14.0 ppm; HRMS (ESI-TOF): m/z calcd for $C_{20}H_{26}NO_8$ [M+H]⁺ 408.1658, found 408.1694.

Diethyl 5-(2-ethoxy-2-oxoethyl)-4-(thiophen-2-yl)oxazole-2,2(5H)-dicarboxylate (3pc)

33.7 mg, 44% yield; white oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 (d, *J* = 5.0 Hz, 1H), 7.49 (d, *J* = 3.6 Hz, 1H), 7.06–7.20 (m, 1H), 5.88 (dd, *J* = 7.3, 3.8 Hz, 1H), 4.35–4.29 (m, 4H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.02–2.90 (m, 2H), 1.35–1.30 (m, 6H), 1.25 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.7, 167.9, 166.3, 166.0, 132.9, 132.3, 131.8, 128.1, 107.6, 84.4, 63.5, 62.6, 61.2, 39.8, 14.1, 14.0, 13.9 ppm; HRMS

(ESI-TOF): m/z calcd for $C_{17}H_{22}NO_7S$ [M+H]⁺ 384.1117, found 384.1152. Diethyl 4-(tert-butyl)-5-(2-ethoxy-2-oxoethyl)oxazole-2,2(5*H*)-dicarboxylate (3qc)

41.4 mg, 58% yield; white oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 1.27–1.19 (m, 18H), 2.89–2.67 (m, 2H), 4.24–4.08 (m, 6H), 5.40 (dd, *J* = 8.0, 3.4 Hz, 1H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 185.2, 169.4, 166.4, 166.2, 107.0, 84.6, 62.3, 61.0, 39.1, 35.3, 28.6, 14.1, 13.9, 13.9 ppm; HRMS (ESI-TOF): m/z calcd for C₁₇H₂₈NO₇ [M+H]⁺ 358.1866, found

358.1888.

Scale-up synthesis of compound 3ma

ketoxime-enoate **1m** (3.37 g, 10 mmol), ethyl trifluoropyruvate **2a** (0.85 g, 5 mmol) and CuCl (49 mg, 0.5 mmol) were loaded into a Schlenk tube equipped with a Teflon-coated magnetic stir bar. The Schlenk tube was placed under vacuum for 1 min and then N₂ was pumped into it. The solvent THF (40 mL) was added into the Schlenk tube by syringe. The reaction mixture was stirred at 120 °C for 12 h. Then the reaction tube was allowed to cool to room temperature and the reaction solution was concentrated under reduced pressure. The crude products were purified by column chromatography on silica gel (Petroleum Ether/EtOAc= 10:1) to give the product **3ma** 1.68 g (75% yield, 92:7 dr).

General procedure for the synthesis of 4

3ma (0.2 mmol), Phenyl chloroformate (0.3 mmol), and NaBH₃CN (0.6 mmol) were loaded into a 10 mL Schlenk tube equipped with a Teflon-coated magnetic stir bar. The solvent MeOH (2 mL, 0.1 M) was added into the Schlenk tube by syringe. The reaction mixture was stirred at room temperature for 12 h. After completion of the reaction (detected by TLC), the reaction solution was concentrated under vacuum. The crude products were purified by column chromatography on silica gel (Petroleum Ether/EtOAc) to give the products **4**.

Ethyl-4-([1,1'-biphenyl]-4-yl)-5-(2-ethoxy-2-oxoethyl)-2-(trifluoromethyl)oxazolidine-2carboxylate (4)

74.0 mg, 82% yield; white oil; dr 95:5; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 (t, *J* = 6.4 Hz, 4H), 7.52 (d, *J* = 8.2 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.35 (t, *J* = 7.3 Hz, 1H), 4.53–4.34 (m, 4H), 4.10 – 3.95 (m, 2H), 3.67 (d, *J* = 6.1 Hz, 1H), 2.74–2.63 (m, 2H), 1.37 (t, *J* = 7.1 Hz, 3H), 1.15 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.4, 167.0, 141.6, 140.6, 136.0, 128.84, 127.9, 127.5, 127.1, 122.7 (q, *J* = 285.0 Hz), 91.7 (q, *J* = 32.7 Hz), 84.0, 65.0, 63.4, 60.9, 36.5, 14.0, 14.0 ppm; ¹⁹F

NMR (376 MHz, Chloroform-*d*) δ -80.0 ppm; HRMS (ESI-TOF): m/z calcd for C₂₃H₂₅F₃NO₅ [M+H]⁺ 452.1685, found 452.1721.

General procedure for the synthesis of 5 and 6

3ma (0.2 mmol, 1.0 equiv.), NaBH₄ (0.2 mmol, 1.0 equiv or 0.6 mmol, 3.0 equiv) were loaded into a 10 mL Schlenk tube equipped with a Teflon-coated magnetic stir bar. The solvent THF (2 mL, 0.1 M) was added into the Schlenk tube by syringe. The reaction mixture was stirred at room temperature for 12 h. After completion of the reaction (detected by TLC), the reaction solution was concentrated under vacuum. The crude products were purified by column chromatography on silica gel (Petroleum Ether/EtOAc) to give the products **5** or **6**.

Ethyl 2-(4-([1,1'-biphenyl]-4-yl)-2-(hydroxymethyl)-2-(trifluoromethyl)-2,5-dihydrooxazol-5-yl)acetate (5)

CO₂Et 29.3 mg, 36% yield; white oil; dr 85:15; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (d, *J* = 8.3 Hz, 2H), 7.68 (d, *J* = 8.2 Hz, 2H), 7.60 (d, *J* = 7.3 Hz, 2H), 7.47 (t, *J* = 7.4 Hz, 2H), 7.40 (t, *J* = 7.3 Hz, 1H), 5.88 (dd, *J* = 8.2, 3.3 Hz, 1H), 4.2–4.00 (m, 4H), 3.03–2.80 (m, 2H), 1.24 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, Chloroform*d*) δ 174.9, 170.2, 145.3, 139.7, 129.0, 129.0, 128.3, 128.1, 127.6,

127.2, 123.0 (q, J = 285.4 Hz), 109.3 (q, J = 27.8 Hz), 83.8, 61.6, 61.5, 39.4, 14.1 ppm; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -79.9 ppm; HRMS (ESI-TOF): m/z calcd for C₂₁H₂₁F₃NO₄ [M+H]⁺ 408.1423, found 408.1456.

2-(4-([1,1'-Biphenyl]-4-yl)-2-(hydroxymethyl)-2-(trifluoromethyl)-2,5-dihydrooxazol-5-yl)ethan-1-ol (6)

63.5 mg, 87% yield; white oil; dr 85:15; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (d, J = 8.3 Hz, 2H), 7.58 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 7.1 Hz, 2H), 7.38 (t, J = 7.3 Hz, 2H), 7.33–7.29 (m, 1H), 5.61 (dd, J = 7.2, 3.6 Hz, 1H), 4.15 (d, J = 12.1 Hz, 1H), 3.93 (d, J = 12.1 Hz, 1H), 3.83–3.78 (m, 1H), 3.69–3.63 (m, 1H), 2.25–2.18 (m, 1H), 2.04–1.97 (m, 1H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 176.9,

145.1, 139.7, 129.0, 128.9, 128.7, 128.3, 127.6, 127.2, 123.2 (q, *J* = 286.0 Hz), 108.6 (q, *J* = 27.4

Hz), 86.4, 61.4, 59.0, 35.5 ppm; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -80.2 ppm; HRMS (ESI-TOF): m/z calcd for $C_{19}H_{19}F_3NO_3$ [M+H]⁺ 366.1317, found 366.1354.

General procedure for the synthesis of 7

6 (0.2 mmol), 4-bromobenzoyl chloride (0.3 mmol), and Et_3N (0.3 mmol) were loaded into a 10 mL Schlenk tube equipped with a Teflon-coated magnetic stir bar. The solvent DCM (2 mL, 0.1 M) was added into the Schlenk tube by syringe. The reaction mixture was stirred at room temperature for 12 h. After completion of the reaction (detected by TLC), the reaction solution was concentrated under vacuum. The crude product was purified by column chromatography on silica gel (Petroleum Ether/EtOAc) to give the product **7**.

2-(4-([1,1'-Biphenyl]-4-yl)-2-(((4-bromobenzoyl)oxy)methyl)-2-(trifluoromethyl)-2,5dihydrooxazol-5-yl)ethyl 4-bromobenzoate (7)

128.3 mg, 88% yield; white solid; mp 285–286 °C; dr 87:13; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89–7.82 (m, 4H), 7.72 (d, *J* = 8.5 Hz, 2H), 7.64–7.57 (m, 4H), 7.53–7.38 (m, 7H), 5.68 (dd, *J* = 8.9, 2.5 Hz, 1H), 4.92–4.84 (m, 2H), 4.50 (t, *J* = 6.2 Hz, 2H), 2.50–2.04 (m, 2H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 175.8, 165.5, 165.0, 145.4, 139.5, 132.4, 132.0, 131.7, 131.2, 131.0, 129.1, 128.7, 128.4, 128.3, 128.3, 128.1, 127.6, 127.2, 122.9 (q, *J* = 286.0 Hz), 107.1 (q, *J* = 28.9 Hz), 85.1, 63.1, 61.3, 33.6 ppm; ¹⁹F NMR (376 MHz,

Chloroform-*d*) δ -78.5 PPM; HRMS (ESI-TOF): m/z calcd for C₃₃H₂₅Br₂F₃NO₅ [M+H]⁺ 730.0052, found 730.0098.

REFERENCES

 J. Duan, L. Zhang, G. Xu, H. Chen, X. Ding, Y. Mao, B. Rong, N. Zhu and K. Guo, J. Org. Chem., 2020, 85, 8157.

NMR spectra and GC chromatograms

Ethyl-5-(2-ethoxy-2-oxoethyl)-4-phenyl-2-(trifluoromethyl)-2,5-dihydrooxazole-2-carboxylate (3aa)

7.756 7.738 7.509 7.491 7.473 7.473 7.405 7.405 7.387	4.298 4.298 4.281 4.263 4.121 4.104 4.069	2.889 2.776	1.296 1.279 1.261 1.186 1.169 1.151
		11	~~~~

- -78.61

Ethyl-5-(2-ethoxy-2-oxoethyl)-4-(4-fluorophenyl)-2-(trifluoromethyl)-2,5-dihydrooxazole-2-c

Ethyl -4-(4-chlorophenyl)-5-(2-ethoxy-2-oxoethyl)-2-(trifluoromethyl)-2,5-dihydrooxazole-2-

--78.615

Ethyl-4-(4-cyanophenyl)-5-(2-ethoxy-2-oxoethyl)-2-(trifluoromethyl)-2,5-dihydrooxazole-2-c

S22

S23

Ethyl - 5 - (2 - ethoxy - 2 - oxoethyl) - 4 - (p - tolyl) - 2 - (trifluoromethyl) - 2, 5 - dihydrooxazole - 2 - carboxyla -

Ethyl - 5 - (2 - ethoxy - 2 - oxoethyl) - 4 - (4 - methoxyphenyl) - 2 - (trifluoromethyl) - 2, 5 - dihydrooxazole - 2, 5 - d

Ethyl-4-(3-bromophenyl)-5-(2-ethoxy-2-oxoethyl)-2-(trifluoromethyl)-2, 5-dihydrooxazole-2

S29

Ethy 1-5-(2-ethoxy-2-oxoethyl)-4-(3-nitrophenyl)-2-(trifluoromethyl)-2, 5-dihydrooxazole(1)-2, 5-dihydrooxazole(-2-ca
rboxylate (3ia)	

--78.50

Ethyl-5-(2-ethoxy-2-oxoethyl)-4-(3-methoxyphenyl)-2-(trifluoromethyl)-2,5-dihydrooxazole-

Ethyl-5-(2-ethoxy-2-oxoethyl)-4-(2-fluorophenyl)-2-(trifluoromethyl)-2,5-dihydrooxazole-2-

Ethyl-5-(2-ethoxy-2-oxoethyl)-4-(2-methoxyphenyl)-2-(trifluoromethyl)-2,5-dihydrooxazole-

Ethyl-4-([1,1'-biphenyl]-4-yl)-5-(2-ethoxy-2-oxoethyl)-2-(trifluoromethyl)-2,5-dihydrooxazole

Ethyl - 5 - (2 - ethoxy - 2 - oxoethyl) - 4 - (naphthalen - 2 - yl) - 2 - (trifluoromethyl) - 2, 5 - dihydrooxazole - 2 - yl) - 2 - (trifluoromethyl) - 2, 5 - dihydrooxazole - 2 - yl) - 2 - (trifluoromethyl) - 2, 5 - dihydrooxazole - 2 - yl) - 2 - (trifluoromethyl) - 2, 5 - dihydrooxazole - 2 - yl) - 2 - (trifluoromethyl) - 2, 5 - dihydrooxazole - 2 - yl) - 2 - (trifluoromethyl) - 2, 5 - dihydrooxazole - 2 - yl) - 2 - (trifluoromethyl) - 2, 5 - dihydrooxazole - 2 - yl) - 2 - (trifluoromethyl) - 2, 5 - dihydrooxazole - 2 - yl) - 2 - (trifluoromethyl) - 2, 5 - dihydrooxazole - 2 - yl) - 2 - (trifluoromethyl) - 2, 5 - dihydrooxazole - 2 - yl) - 2 - (trifluoromethyl) - 2, 5 - dihydrooxazole - 2 - yl) - 2 - (trifluoromethyl) - 2, 5 - dihydrooxazole - 2 - yl) - 2 - (trifluoromethyl) - 2, 5 - dihydrooxazole - 2 - yl) - 2 - (trifluoromethyl) - 2, 5 - dihydrooxazole - 2 - yl) - 2 - (trifluoromethyl) - 2, 5 - dihydrooxazole - 2 - yl) - 2 - (trifluoromethyl) - 2, 5 - dihydrooxazole - 2 - yl) - 2 - (trifluoromethyl) - 2, 5 - dihydrooxazole - 2 - yl) - 2 - (trifluoromethyl) - 2 -

--78.53

Ethyl-5-(2-ethoxy-2-oxoethyl)-4-(furan-2-yl)-2-(trifluoromethyl)-2,5-dihydrooxazole-2-carbo

xylate (3oa)

Ethyl-5-(2-ethoxy-2-oxoethyl)-4-(thiophen-2-yl)-2-(trifluoromethyl)-2,5-dihydrooxazole-2-ca

Ethyl-5-(2-ethoxy-2-oxoethyl)-4-methyl-2-(trifluoromethyl)-2,5-dihydrooxazole-2-

Ethyl-5-(2-isopropoxy-2-oxoethyl)-4-phenyl-2-(trifluoromethyl)-2,5-dihydrooxazole-2-carbo

Ethyl (Z)-4-phenyl-5-((E)-3-phenylallylidene)-2-(trifluoromethyl)-2,5-dihydrooxazole-2-carb

Ethyl 2-(4-(2-fluorophenyl)-2,2-bis(trifluoromethyl)-2,5-dihydrooxazol-5-yl)acetate (3kb)

0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-1
						ppm						

Ethyl 2-(4-([1,1'-biphenyl]-4-yl)-2,2-bis(trifluoromethyl)-2,5-dihydrooxazol-5-yl)acetate (3m

Diethyl 5-(2-ethoxy-2-oxoethyl)-4-(p-tolyl)oxazole-2,2(5H)-dicarboxylate (3fc)

7.737 7.716 7.278 7.276 7.255	5.999 5.990 5.980 5.971	4.374 4.282 4.180 4.180 4.162 4.162 4.126	2.912 2.789 2.405	1.258 1.255 1.237 1.219
YY			17 1	-

Dicentif i ([1,1] Diplicitif i ji) 5 (2 centoxy 2 oxoccutyi)oxu2ole 2,2(311) alcutboxy acc (on	2-ethoxy-2-oxoethyl)oxazole-2,2(5H)-dicarboxylate	Diethyl 4-([1,1'-biphenyl]-4-yl)-5-(2-ethoxy-
--	---	---

4 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	80 4 5 8 8 3 30 4 9 5 8 3 5 8 10 10 10 10 10 10 10 10 10 10 10 10 10	13 0	26 13 18 1
000000000000000000000000000000000000000	111110	8	55533
0.0000000000000000000000000000000000000	44444	NN	
		17	

S78

Diethyl 5-(2-ethoxy-2-oxoethyl)-4-(2-methoxyphenyl)oxazole-2,2(5H)-dicarboxylate (3lc)

Diethyl 5-(2-ethoxy-2-oxoethyl)-4-(thiophen-2-yl)oxazole-2,2(5H)-dicarboxylate (3pc)

Diethyl 4-(tert-butyl)-5-(2-ethoxy-2-oxoethyl)oxazole-2,2(5H)-dicarboxylate (3qc)

Ethyl (2R,5R)-4-([1,1'-biphenyl]-4-yl)-5-(2-ethoxy-2-oxoethyl)-2-

(trifluoromethyl)oxazolidine-2-carboxylate (4)

000000000000000000000000000000000000000	01 59 59 59 50 50 50 50 50 50 50 50 50 50 50 50 50	32 40	372088
0 0 0 0 4 4 4 0 0 0 0 0	0000	6.7	111133
~~~~~	444000	NN	
	1111	11	







S83



Ethyl 2-4-([1,1'-biphenyl]-4-yl)-2-(hydroxymethyl)-2-(trifluoromethyl)-2,5-dihydrooxazol-5-



S85

2-4-([1,1'-Biphenyl]-4-yl)-2-(hydroxymethyl)-2-(trifluoromethyl)-2,5-dihydrooxazol-5-

yl)ethan-1-ol (6)



Л Сон





- -80.23

2-4-([1,1'-Biphenyl]-4-yl)-2-(((4-bromobenzoyl)oxy)methyl)-2-(trifluoromethyl)-2,5-dihydroo

### xazol-5-yl)ethyl 4-bromobenzoate (7)









# Crystal Structure and data for compound 7

Table 1. Crystal data and structure refine	ement for 7		
Identification code		2101301167	
Empirical formula		C33 H24 Br2 F3 N O5	
Formula weight		731.35	
Temperature		193.01 K	
Wavelength		1.34139 Å	
Crystal system		Triclinic	
Space group		P-1	
Unit cell dimensions		a = 9.3047(2) Å	a= 73.9880(10)°.
		b = 9.9702(2) Å	b= 80.7730(10)°.
		c = 17.0352(4) Å	g = 80.4190(10)°.
Volume		1486.89(6) Å ³	
Z		2	
Density (calculated)		1.634 Mg/m ³	
Absorption coefficient		2.736 mm ⁻¹	
F(000)		732	
Crystal size		0.08 x 0.05 x 0.03 mm ³	
Theta range for data collection		4.047 to 54.932°.	
Index ranges		-11<=h<=11, -12<=k<=12, -20	)<=l<=20
Reflections collected		17604	
Independent reflections		5621 [R(int) = 0.0541]	
Completeness to theta = $53.594^{\circ}$		99.6 %	
Absorption correction		Semi-empirical from equivaler	nts
Max. and min. transmission		0.7508 and 0.5632	
Refinement method		Full-matrix least-squares on F ²	
Data / restraints / parameters		5621 / 0 / 397	
Goodness-of-fit on F ²		1.032	
Final R indices [I>2sigma(I)]		R1 = 0.0465, wR2 = 0.0957	
R indices (all data)		R1 = 0.0723, wR2 = 0.1098	
Extinction coefficient Largest diff. peak and hole	0.879 and	n/a -0.815 e.Å ⁻³	