Electronic Supplementary Information (ESI) for

Construction of Polymeric Cobalt Phthalocyanine/Mesoporous Graphitic Carbon Nitride Composite for Efficient Photocatalytic CO₂ Reduction

Hongwei Li^a, Wei Xu^a, Jinjie Qian^{b,*}, Ting-Ting Li^{a,c,*}

^aSchool of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.

^bCollege of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China.

^cKey Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo 315211, China.

Experimental section

Chemicals and Materials.

Cyandiamide, 1,2,4,5-tetracyanobenzene, $CoCl_2 \cdot 6H_2O$, 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU), isopropanol, absolute ethanol, ammonium hydrogen fluoride (NH₄HF₂) and triethanolamine (TEOA) were commercially obtained from Sigma-Aldrich Co., Ltd. without further purification. 40 % dispersion of colloidal SiO₂ particles (LUDOX HS-40) were purchased from Aldrich Co., Ltd, and the sizes of SiO₂ particles are 12 nm. Fluorine-doped tin oxide (FTO) glasses were purchased from Dalian Heptachroma Co., Ltd. All the aqueous solutions were prepared using Milli-Q ultrapure water (> 18 MΩ).

Preparation of mpg-C₃N₄.

Firstly, cyanamide was added into the dispersion of SiO₂ particles in water, the ratio of SiO₂ to cyanamide is 2:1. The obtained mixture was stirred at 333 K overnight to afford white powder. The solid was heated to 823 K with a heating rate of 2.3 K min⁻¹ and kept this temperature over 4 h, the resulting brown-yellow powder was added to an aqueous NH_4HF_2 solution (4 M) to remove the SiO₂ template. The obtained powder was collected by centrifugation and washed with water and absolute ethanol. Finally, the mpg-C₃N₄ sample was dried at 343 K in a vacuum oven overnight.

Preparation of CoPPc@mpg-C₃N₄.

In a typical experiment, 60 mg of mpg- C_3N_4 was dispersed in 40 mL of EtOH with the assistance of sonication, and 40 mg of $CoCl_2 \cdot 6H_2O$, 43 mg of DBU, and 60 mg of 1,2,4,5-tetracyanobenzene were added, and the obtained suspension was sonicated for 30 min. The suspension was then transferred to a Teflon-lined autoclave for solvothermal reaction at 180 °C for 8 h. After cooling to room temperature, CoPPc@mpg-C_3N_4 was collected by centrifugation and washed repeatedly with ethanol and water, and finally dried at 60 °C in a vacuum oven.

Instrumentations and characterizations.

Powder X-ray diffraction (PXRD) patterns of the samples were recorded on an X-ray diffractometer (Bruker D8 Advance) at 1600 W (40 kV voltage, 40 mA) power with

Cu K α radiation. The Co content of CoPPc@mpg-C₃N₄ was determined using inductively coupled plasma optical emission spectrum (ICP-OES, Agilent 725). Fourier transform infrared (FT-IR) spectra were collected on an FT-IR spectrometer (NICOLET 6700) with a frequency range of 4000~450 cm⁻¹. Raman spectra were collected from a Renishaw inVia Raman spectrometer with an incident laser of 633 nm. Scanning electron microscopy (SEM) was performed on a Hitachi S-4800 field emission scanning electron microscope (20 kV). Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were performed on a JEOL JEM-2100 electron microscope equipped with an EDS detector at an accelerated voltage of 200 kV. Nitrogen adsorption-desorption isotherms were recorded at 77 K using an Accelerated Surface Area and Porosimetry 2020 (ASAP2020) adsorption apparatus. X-ray photoelectron spectroscopy (XPS) was carried out on a Thermo Fisher ESCALAB 250Xi spectrometer using C 1s (284.6 eV) as the reference line. The formed gaseous products were analyzed using a gas chromatography (GC) instrument equipped with a thermal conductivity detector (TCD) and a hydrogen flame ionization detector (FID) with a methanizer.

Photoelectrochemical (PEC) measurements.

To measure the photocurrent response, photocathodes were prepared as follows. 4 mg of sample was dispersed in 400 μ L isopropanol containing 10 μ L 5 wt% Nafion solution by sonication for 30 min. The obtained catalyst ink was dropped on the FTO conductive glass (100 μ L cm⁻¹) and allowed to dry under ambient conditions. PEC measurements were performed in a glass cell equipped with a quartz window using a three-electrode system. A platinum wire and an Ag/AgCl electrode were used as the counter and reference electrodes, respectively. Each photocathode was irradiated using a solar light simulator with a Xe lamp (100 mW cm⁻²) equipped with an air mass 1.5 global filter (AM 1.5G). Prior to each measurement, the electrolyte was purged with CO₂ for 30 min.

Photocatalytic CO₂ reduction experiments.

Typically, 5 mg of each photocatalyst was added in a 20.0 mL 9:1 MeCN/TEOA in a

quartz photoreactor (total volume 55 mL). The photoreactor was purged with CO₂ for 30 min and then sealed with a rubber septum. The photoreactor was then irradiated using a UV-filtered solar light simulator with a Xe lamp (100 mW cm⁻², AM 1.5 G, λ > 400 nm).

Figure S1. Schematic illustration of the in-situ polymerization of CoPPc on $mpg-C_3N_4$ via the solvothermal reaction.

Figure S2. SEM image of mpg-C₃N₄.

Figure S3. Powder XRD patterns of pristine mpg-C₃N₄.

Figure S4. FT-IR spectra of mpg-C₃N₄, CoPPc, and CoPPc@mpg-C₃N₄.

Figure S5. UV/Vis absorbance spectra recorded from a) bare mpg-C₃N₄ and b) CoPPc@mpg-C₃N₄.

Figure S6. UV/Vis absorbance spectrum recorded from CoPc monomer in DMF.

Figure S7. Raman spectra of CoPPc, mpg-C₃N₄, and CoPPc@mpg-C₃N₄.

Figure S8. TEM image of bare mpg-C₃N₄.

Figure S9. N₂ adsorption/desorption isotherms of a) mpg-C₃N₄ and b) CoPPc@mpg-C₃N₄.

Figure S10. TEM image of CoPPc₇₃₀@mpg-C₃N₄.

Figure S11. The mass spectrum of the CO GC peak obtained after long-term photocatalysis under 13 CO₂ atmosphere.

Figure S12. TEM image of CoPPc@mpg- C_3N_4 recorded after long-term photocatalysis.

Figure S13. Co 2p core-level XPS spectra of CoPPc@mpg-C₃N₄ before and after photocatalysis.

Figure S14. UV/Vis absorbance spectra of CoPPc@mpg-C₃N₄ before and after photocatalysis.

Figure S15. Raman spectrum of CoPPc@mpg-C₃N₄ after long-term photocatalysis.

Photocatalyst	Starting materials (mg)			Co content
-	mpg-	CoCl ₂ ·6H ₂ O	1,2,4,5-	(µmor cog)
	C_3N_4		tetracyanobenzene	
CoPPc ₂₂₁ @mpg-	60	30	45	221
C_3N_4				
CoPPc ₃₅₆ @mpg-	60	40	60	356
C_3N_4				
CoPPc ₅₀₉ @mpg-	60	50	75	509
C_3N_4				

Table S1. The preparation of CoPPc@mpg- C_3N_4 with various CoPPc loading by changing the ratio of starting materials.

CoPPc ₆₁₁ @mpg-	60	60	90	611
C_3N_4				
CoPPc ₇₃₀ @mpg-	60	80	120	730
C_3N_4				

entry	catalyst —	product (µmol)	
		H_2	CO
1 ^{<i>a</i>}	mpg-C ₃ N ₄	3.7	0
2α	CoPPc	0	0
3 ^b	CoPPc ₃₅₆ @mpg- C ₃ N ₄	0	0
4 ^{<i>c</i>}	CoPPc ₃₅₆ @mpg- C ₃ N ₄	5.8	0
5^d	CoPPc ₃₅₆ @mpg- C ₃ N ₄	0	0
6 ^e	CoPPc ₃₅₆ @mpg- C ₃ N ₄	1.4	2.8

Table S2. Visible-light-driven CO₂ reduction under different reaction conditions.

^{*a*}Reaction conditions: 5 mg of catalyst in a CO₂-saturated MeCN solution containing 10% TEOA. Light source: UV-filtered Xe lamp (100 mW cm⁻², $\lambda > 400$ nm). Reaction time: 8 h. ^{*b*}The reaction was conducted in a CO₂-saturated MeCN solution without TEOA. ^{*c*}Under an argon atmosphere. ^{*d*}In the dark. ^{*e*}Irradiation of the photoreactor under visible light equipped with optical filter ($\lambda > 455$ nm).

Table S3. Comparision of CoPPc@mpg- C_3N_4 with other g- C_3N_4 based organic/inorganic photocatalysts.

Photocatalyst	Product (CO)	TON _{CO}	Ref.
g-C ₃ N ₄ -	28.3 mmol g ⁻¹ (6 h)	24.9	S 1
C _{0.05} /FeTCPP			
g-C ₃ N ₄ /FeTCPP	6.52 mmol g ⁻¹ (6 h)	5.7	S2

CoPc@P-g-C ₃ N ₄	295 µmol g ⁻¹ (24 h)	not mentioned	S3
mpg-CN _x CoPPc	1000 μmol g ⁻¹ (48 h)	84	S4
CoPPc@mpg-	$74.4 \pm 0.5 \text{ mmol g}^{-1} (120 \text{ h})$	209	This work
C_3N_4			

References

S1. X. Zhang, L. Lin, Q. Dan, J. Yang, Y. Weng, Z. Wang, Z. Sun, Y. Chen and T. He, *Appl. Catal. B-Environ.*, 2020, **265**, 118595.

S2. L. Lin, C. Hou, X. Zhang, Y. Wang, Y. Chen and T. He, *Appl. Catal. B-Environ.*, 2018, **221**, 312–319.

S3. G. Liu, Y. Wang, Y. Zhou, J. Cao, M. Yuan and H. Lv, *J. Colloid Interf. Sci.*, 2021, **594**, 658–668.

S4. S. Roy and E. Reisner, Angew. Chem., 2019, 131, 12308–12312.