Electronic Supplementary Information

Chemoselective Synthesis of Cyclic Carbamates by Atmospheric Carbon Dioxide Fixation

Yasunori Toda, Minoru Shishido, Tatsuya Aoki, Kimiya Sukegawa, and Hiroyuki Suga

Department of Materials Chemistry, Faculty of Engineering Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan

E-mail: ytoda@shinshu-u.ac.jp (Y.T.)

General Information	.S2
Preparation of Starting Materials	.S2
General Procedure for the Oxazolidinone Synthesis	.S8
General Procedure for the Oxazinanone SynthesisS	313
AppendixS	318
DFT StudiesS	319
ReferencesS	\$27
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 1a S	\$28
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 1b	529
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 1c S	330
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 1d S	331
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 1e S	332
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 1f S	333
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 1g S	334
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 1h S	\$35
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 1i	536
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 1j	\$37
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 1k S	538
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 11	539
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 1m S	\$40
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 1n S	541
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 10	\$42
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 1p S	543
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 1q S	344
¹ H (500 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (125 MHz, CDCl ₃) Spectra of 1r	\$45
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 1s S	546
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 2a	\$47
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 2b	548
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 2c	549
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 2d	\$50
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 2e	\$51
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 2f	\$52
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 2g	\$53
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 2h	\$54
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 2i	\$55
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 2 j	\$56
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 2k	\$57
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 21	\$58
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of $2m$	\$59
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 2n	560
¹ H (300 MHz, CDCl ₃) & ¹³ C{ ¹ H} NMR (75 MHz, CDCl ₃) Spectra of 20	361

Toda et al. Electronic Supplementary Information

General Information

All reagents and solvents were commercial grade and purified prior to use when necessary. Thin-layer chromatography (TLC) was performed using TLC aluminum sheets from Merck (silica gel 60 F₂₅₄, 200 μ m), and flash chromatography was performed using silica gel from Fuji Silysia Chemical (PSQ60B, 60 μ m). Products were visualized by ultraviolet (UV) light and TLC stains. Melting points were measured on a Yanaco micro melting point apparatus and were not corrected. Nuclear magnetic resonance (NMR) spectra were acquired on a Bruker Fourier 300 spectrometer. Chemical shifts were measured relative to residual solvent peaks as an internal standard set to 0.00 (¹H) for TMS and 77.0 (¹³C{¹H}) for CDCl₃. ¹³C{¹H} NMR peak assignments were confirmed by the DEPT135 program. Data are reported as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, qui = quintet, sext = sextet, sept = septet, br = broad, and m = multiplet), coupling constants (Hz), and integration. Infrared (IR) spectra were recorded on a Jasco FT/IR-4200 spectrophotometer and are reported in wavenumbers (cm⁻¹). All compounds were analyzed as neat films on a potassium bromide (KBr) plate. Mass spectra were recorded on a Bruker micrOTOF II mass spectrometer by the ionization method noted. A post-acquisition gain correction was applied using sodium formate (HCO₂Na) as the lock mass.

Preparation of Starting Materials

1-(Benzylamino)-3-chloropropan-2-ol (**1a**) was prepared according to the literature.¹ ¹H NMR (300 MHz, CDCl₃) δ 7.37-7.24 (m, 5H), 3.92-3.76 (m, 3H), 3.58 (dd, *J* = 11.4, 5.1 Hz, 1H), 3.54 (dd, *J* = 11.4, 5.7 Hz, 1H), 2.84 (dd, *J* = 12.3, 4.2 Hz, 1H), 2.72 (dd, *J* = 12.3, 7.8 Hz, 1H), 2.41 (br s, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 139.0 (C), 128.6 (CH), 128.2 (CH), 127.4 (CH), 69.3 (CH₂), 53.6 (CH₂), 51.4 (CH₂), 47.3 (CH₂); HRMS (ESI/TOF) m/z: [M+H]⁺ calcd for C₁₀H₁₅CINO 200.0837, found 200.0831.

Electronic Supplementary Information

1-Chloro-3-[(4-methoxybenzyl)amino]propan-2-ol (1b). To a solution of epichlorohydrin (196 μL, 2.5 mmol) in ⁱPrOH (7.5 mL) was added 4-methoxybenzylamine (388 μL, 3.0 mmol, 1.2 equiv) at 0 °C. After stirring at room temperature for 18 h, the mixture was concentrated. Flash column chromatography (SiO₂: 20 g, Hexane:EtOAc = 6:1–EtOAc) yielded a white solid (288.3 mg, 50%). $R_f = 0.35$ (EtOAc:MeOH = 4:1) visualized with KMnO4; mp 73-74 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.25-7.20 (m, 2H), 6.89-6.84 (m, 2H), 3.91-3.83 (m, 1H), 3.80 (s, 3H), 3.77 (d, *J* = 13.2 Hz, 1H), 3.72 (d, *J* = 13.2 Hz, 1H), 3.56 (dd, *J* = 11.1, 5.4 Hz, 1H), 3.53 (dd, *J* = 11.1, 6.0 Hz, 1H), 2.82 (dd, *J* = 12.3, 3.9 Hz, 1H), 2.70 (dd, *J* = 12.3, 7.8 Hz, 1H), 2.41 (br s, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 158.8 (C), 131.7 (C), 129.3 (CH), 113.9 (CH), 69.4 (CH), 55.3 (CH₃), 53.1 (CH₂), 51.3 (CH₂), 47.4 (CH₂); IR (KBr) 3275, 3262, 2837, 1516, 1254, 1034, 811, 736 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₁H₁₆CINNaO₂ 252.0762, found 252.0761.

1-Chloro-3-[(4-methylbenzyl)amino]propan-2-ol (1c). To a solution of epichlorohydrin (196 μL, 2.5 mmol) in ^{*i*}PrOH (7.5 mL) was added 4-methylbenzylamine (379 μL, 3.0 mmol, 1.2 equiv) at 0 °C. After stirring at room temperature for 18 h, the mixture was concentrated. Flash column chromatography (SiO₂: 20 g, Hexane:EtOAc = 6:1–1:1) yielded a white solid (264.5 mg, 50%). R_f = 0.40 (EtOAc:MeOH = 10:1) visualized with KMnO₄; mp 102-103 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.21-7.13 (m, 4H), 3.91-3.83 (m, 1H), 3.79 (d, *J* = 13.2 Hz, 1H), 3.74 (d, *J* = 13.2 Hz, 1H), 3.57 (dd, *J* = 11.1, 5.1 Hz, 1H), 3.53 (dd, *J* = 11.1, 5.7 Hz, 1H), 2.82 (dd, *J* = 12.3, 4.2 Hz, 1H), 2.70 (dd, *J* = 12.3, 7.8 Hz, 1H), 2.34 (s, 3H), 2.27 (br s, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 136.9 (C), 136.6 (C), 129.2 (CH), 128.0 (CH), 69.4 (CH), 53.4 (CH₂), 51.4 (CH₂), 47.4 (CH₂), 21.1 (CH₃); IR (KBr) 3286, 3019, 2906, 2856, 2670, 1342, 1074, 884, 813, 753 cm⁻¹; HRMS (ESI/TOF) m/z: [M+H]⁺ calcd for C₁₁H₁₇ClNO 214.0993, found 214.1004.

1-Chloro-3((**4-chlorobenzyl)amino**)**propan-2-ol** (**1d**). To a solution of epichlorohydrin (196 µL, 2.5 mmol) in ^{*i*}PrOH (7.5 mL) was added 4-chlorobenzylamine (364 µL, 3.0 mmol, 1.2 equiv) at 0 °C. After stirring at room temperature for 18 h, the mixture was concentrated. Flash column chromatography (SiO₂: 20 g, Hexane:EtOAc = 6:1–1:1) yielded a white solid (238.7 mg, 41%). R_f = 0.50 (EtOAc:MeOH = 10:1) visualized with KMnO₄; mp 94-95 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.33-7.29 (m, 2H), 7.27-7.22 (m, 2H), 3.93-3.85 (m, 1H), 3.81 (d, *J* = 13.5 Hz, 1H), 3.76 (d, *J* = 13.5 Hz, 1H), 3.59 (dd, *J* = 11.4, 5.1 Hz, 1H), 3.55 (dd, *J* = 11.4, 5.7 Hz, 1H), 2.82 (dd, *J* = 12.3, 3.9 Hz, 1H), 2.71 (dd, *J* = 12.3, 7.8 Hz, 1H), 2.35 (br s, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 138.1 (C), 133.0 (C), 129.4 (CH), 128.6 (CH), 69.6 (CH), 53.0 (CH₂), 51.4 (CH₂), 47.4 (CH₂); IR (KBr) 3410, 3285, 2855, 1491, 1089, 753 cm⁻¹; HRMS (ESI/TOF) m/z: [M+H]⁺ calcd for C₁₀H₁₄Cl₂NO 234.0430, found 234.0447.

(*S*)-1d. To a solution of (*S*)-epichlorohydrin (196 µL, 2.5 mmol, 99% ee) in ^{*i*}PrOH (7.5 mL) was added 4chlorobenzylamine (364 µL, 3.0 mmol, 1.2 equiv) at 0 °C. After stirring at room temperature for 18 h, the mixture was concentrated. Flash column chromatography (SiO₂: 23 g, Hexane:EtOAc = 20:1–EtOAc) yielded a white solid (333.4 mg, 57%). The product was determined to be 99% ee by chiral HPLC analysis (Chiralpak AD-3, Hexane:EtOH = 95:5, 1.0 mL/min, $t_r(minor) = 22.9 \text{ min}, t_r(major) = 24.6 \text{ min}, 220 \text{ nm}, 35 °C); <math>[\alpha]_D^{24}$ -17.4 (*c* 0.50, CHCl₃, 99% ee). The absolute configuration was determined according to the literature.²

Electronic Supplementary Information

1-{[3,5-bis(trifluoromethyl)benzyl]amino}-3-chloropropan-2-ol (1e). To a solution of epichlorohydrin (196 μL, 2.5 mmol) in ^{*i*}PrOH (7.5 mL) was added 3,5-bis(trifluoromethyl)benzylamine (728.6 mg, 3.0 mmol, 1.2 equiv) at 0 °C. After stirring at room temperature for 18 h, the mixture was concentrated. Flash column chromatography (SiO₂: 20 g, Hexane:EtOAc = 7:1–4:1) yielded a white solid (266.4 mg, 32%). R_{*f*} = 0.40 (hexane:EtOAc = 2:1) visualized with KMnO₄; mp 65-66 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.81 (s, 2H), 7.79 (s, 1H), 4.00-3.91 (m, 3H), 3.64 (dd, *J* = 11.4, 5.1 Hz, 1H), 3.60 (dd, *J* = 11.4, 6.0 Hz, 1H), 2.86 (dd, *J* = 12.3, 4.2 Hz, 1H), 2.76 (dd, *J* = 12.3, 7.2 Hz, 1H), 1.77 (br s, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 142.5 (C), 131.8 (q, *J* = 33.2 Hz, C), 128.1 (m, CH), 123.3 (q, *J* = 272.5 Hz, C), 121.2 (sept, *J* = 3.9 Hz, CH), 70.0 (CH), 52.9 (CH₂), 51.7 (CH₂), 47.5 (CH₂); ¹⁹F{¹H} NMR (470 MHz, CDCl₃) δ -62.8; IR (KBr) 3281, 3056, 2857, 1378, 1174, 1136, 903, 710 cm⁻¹; HRMS (ESI/TOF) m/z: [M+H]⁺ calcd for C₁₂H₁₃ClF₆NO 336.0584, found 336.0569.

1-Chloro-3-[(2-phenylethyl)amino]propan-2-ol (1f). To a solution of epichlorohydrin (196 μL, 2.5 mmol) in ^{*i*}PrOH (7.5 mL) was added phenethylamine (328 μL, 3.0 mmol, 1.2 equiv) at 0 °C. After stirring at room temperature for 72 h, the mixture was concentrated. Flash column chromatography (SiO₂: 14 g, Hexane:EtOAc = 6:1–EtOAc) yielded a pale yellow oil (286.2 mg, 54%). $R_f = 0.40$ (EtOAc:MeOH = 4:1) visualized with KMnO₄; ¹H NMR (300 MHz, CDCl₃) δ 7.33-7.18 (m, 5H), 3.89-3.81 (m, 1H), 3.54 (d, *J* = 5.4 Hz, 2H), 2.96-2.78 (m, 5H), 2.70 (dd, *J* = 12.4, 8.1 Hz, 1H), 2.33 (br s, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 139.5 (C), 128.7 (CH), 128.5 (CH), 126.3 (CH), 69.2 (CH), 51.8 (CH₂), 50.8 (CH₂), 47.3 (CH₂), 36.2 (CH₂); IR (KBr) 3303, 2948, 2844, 1455, 1117, 1080, 912 cm⁻¹; HRMS (ESI/TOF) m/z: [M+H]⁺ calcd for C₁₁H₁₇ClNO 214.0993, found 214.0970.

1-Chloro-3-{[2-(3,4-dimethoxyphenyl)ethyl]amino}propan-2-ol (1g). To a solution of epichlorohydrin (196 μL, 2.5 mmol) in ^{*i*}PrOH (7.5 mL) was added homoveratrylamine (525 μL, 3.0 mmol, 1.2 equiv) at 0 °C. After stirring at room temperature for 18 h, the mixture was concentrated. Flash column chromatography (SiO₂: 15 g, Hexane:EtOAc = 1:1–EtOAc) yielded a white solid (307.1 mg, 45%). R_f = 0.30 (EtOAc:MeOH = 4:1) visualized with KMnO₄; mp 65-66 °C; ¹H NMR (300 MHz, CDCl₃) δ 6.82-6.73 (m, 3H), 3.90-3.83 (m, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.55 (d, *J* = 5.4 Hz, 2H), 2.93-2.68 (m, 6H), 2.40 (br s, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 149.0 (C), 147.5 (C), 132.0 (C), 120.5 (CH), 111.9 (CH), 111.3 (CH), 69.2 (CH), 55.9 (CH₃), 55.8 (CH₃), 51.8 (CH₂), 51.0 (CH₂), 47.3 (CH₂), 35.7 (CH₂); IR (KBr) 3078, 2836, 1519, 1266, 1238, 1158, 1023, 834 cm⁻¹; HRMS (ESI/TOF) m/z: [M+H]⁺ calcd for C₁₃H₂₁ClNO₃ 274.1204, found 274.1197.

1-Chloro-3-(propan-2-ylamino)propan-2-ol (1h). To a solution of epichlorohydrin (392 μL, 5.0 mmol) in ⁱPrOH (15 mL) was added isopropylamine (516 μL, 6.0 mmol, 1.2 equiv) at 0 °C. After stirring at room temperature for 18 h, the mixture was concentrated. Flash column chromatography (SiO₂: 8 g, EtOAc) yielded a white solid (427.1 mg, 56%). $R_f = 0.10$ (EtOAc:MeOH = 4:1) visualized with KMnO₄; mp 44-45 °C; ¹H NMR (300 MHz, CDCl₃) δ 3.86-3.78 (m, 1H), 3.58 (dd, *J* = 11.1, 5.4 Hz, 1H), 3.54 (dd, *J* = 11.1, 5.7 Hz, 1H), 2.86-2.74 (m, 2H), 2.66 (dd, *J* = 12.3, 7.8 Hz, 1H), 2.12 (br s, 2H), 1.08 (d, *J* = 6.3 Hz, 6H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 69.6 (CH), 49.5 (CH₂), 48.9 (CH), 47.4 (CH₂), 23.1 (CH₃), 23.0 (CH₃); IR (KBr) 3278, 3096, 2977, 2831, 1471, 1380, 1253, 1172, 1076, 914, 739 cm⁻¹; HRMS (ESI/TOF) m/z: [M+H]⁺ calcd for C₆H₁₅CINO 152.0837, found 152.0861.

1-Chloro-3-[(diphenylmethyl)amino]propan-2-ol (**1i**).³ To a solution of epichlorohydrin (196 μL, 2.5 mmol) in ^{*i*}PrOH (7.5 mL) was added benzhydrylamine (514 μL, 3.0 mmol, 1.2 equiv) at 0 °C. After stirring at room temperature for 18 h, the mixture was concentrated. Flash column chromatography (SiO₂: 20 g, Hexane:EtOAc = 4:1) yielded a white solid (330.1 mg, 48%). R_f = 0.25 (Hexane:EtOAc = 4:1) visualized with KMnO4; mp 66-67 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.38-7.19 (m, 10H), 4.83 (s, 1H), 3.93-3.85 (m, 1H), 3.58 (d, *J* = 5.4 Hz, 2H), 2.79 (dd, *J* = 12.3, 4.2 Hz, 1H), 2.69 (dd, *J* = 12.3, 7.2 Hz, 1H), 2.10 (br s, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 143.4 (C), 143.3 (C), 128.6 (CH), 127.3 (CH), 127.2 (CH), 70.1 (CH), 67.2 (CH), 50.5 (CH₂), 47.7 (CH₂); IR (KBr) 3372, 3323, 3026, 2835, 1493, 1452, 1028, 762, 705 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₆H₁₈CINNaO 298.0969, found 298.0969.

1-(*tert*-Butylamino)-3-chloropropan-2-ol (1j). To a solution of epichlorohydrin (392 μL, 5.0 mmol) in ⁱPrOH (15 mL) was added *tert*-butylamine (636 μL, 6.0 mmol, 1.2 equiv) at 0 °C. After stirring at room temperature for 18 h, the mixture was concentrated. Flash column chromatography (SiO₂: 7 g, EtOAc) yielded a white solid (442.0 mg, 53%). $R_f = 0.10$ (EtOAc:MeOH = 4:1) visualized with KMnO₄; mp 42-44 °C; ¹H NMR (300 MHz, CDCl₃) δ 3.83-3.75 (m, 1H), 3.58 (dd, *J* = 11.1, 5.4 Hz, 1H), 3.53 (dd, *J* = 11.1, 6.0 Hz, 1H), 2.81 (dd, *J* = 12.0, 4.2 Hz, 1H), 2.67 (br s, 2H), 2.62 (dd, *J* = 12.0, 7.8 Hz, 1H), 1.11 (s, 9H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 69.7 (CH), 50.6 (C), 47.2 (CH₂), 44.9 (CH₂), 28.9 (CH₃); IR (KBr) 3108, 2969, 1474, 1369, 1229, 1093, 850, 741 cm⁻¹; HRMS (ESI/TOF) m/z: [M+H]⁺ calcd for C₇H₁₇ClNO 166.0993, found 166.0985.

1-Chloro-3-(phenylamino)propan-2-ol (1k).⁴ To a mixture of aniline (456 μL, 5.0 mmol, 1.0 equiv) and epichlorohydrin (394 μL, 5.0 mmol) was added LiBr (21.2 mg, 0.25 mmol, 5 mol %) at room temperature. After stirring at room temperature for 4 h, the resulting mixture was directly purified by flash column chromatography (SiO₂: 24 g, Hexane:EtOAc = 10:1–8:1) to give a white solid (572.7 mg, 62%). R_{*f*} = 0.25 (Hexane:EtOAc = 4:1); mp 39-40 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.23-7.16 (m, 2H), 6.78-6.73 (m, 1H), 6.68-6.64 (m, 2H), 4.12-4.04 (m, 1H), 3.69 (dd, *J* = 11.1, 4.5 Hz, 1H), 3.64 (dd, *J* = 11.1, 6.0 Hz, 1H), 3.38 (dd, *J* = 13.2, 4.5 Hz, 1H), 3.24 (dd, *J* = 13.2, 7.2 Hz, 1H), 2.54 (br, s, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 147.7 (C), 129.4 (CH), 118.2 (CH), 113.3 (CH), 69.8 (CH), 47.7 (CH₂), 47.1 (CH₂); HRMS (ESI/TOF) m/z: [M+H]⁺ calcd for C₉H₁₃ClNO 186.0680, found 186.0686.

1-Chloro-3-[(4-iodophenyl)amino]propan-2-ol (11). To a mixture of 4-iodoaniline (547.6 mg, 2.5 mmol, 1.0 equiv) and epichlorohydrin (196 μ L, 2.5 mmol) was added LiBr (10.8 mg, 0.125 mmol, 5 mol %) at room temperature. After stirring at room temperature for 4 h, the resulting mixture was directly purified by flash column chromatography (SiO₂: 12 g, Hexane:EtOAc = 12:1–10:1) to give a white solid (415.5 mg, 52%). R_f = 0.50 (Hexane:EtOAc = 4:1) visualized with KMnO₄; mp 69-70 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.46-7.41 (m, 2H), 6.46-6.41 (m, 2H), 4.10-4.02 (m, 2H), 3.68 (dd, *J* = 11.4, 4.5 Hz, 1H), 3.62 (dd, *J* = 11.4, 6.0 Hz,

1H), 3.34 (dd, J = 13.2, 4.5 Hz, 1H), 3.19 (dd, J = 13.2, 7.2 Hz, 1H), 2.44 (br s, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 147.4 (C), 137.9 (CH), 115.4 (CH), 78.9 (C), 69.8 (CH), 47.6 (CH₂), 46.8 (CH₂); IR (KBr) 3315, 3146, 1591, 1488, 1245, 1073, 810 cm⁻¹; HRMS (ESI/TOF) m/z: [M+H]⁺ calcd for C₉H₁₂ClINO 311.9647, found 311.9674.

1-[(2-Bromophenyl)amino]-3-chloropropan-2-ol (1m). To a mixture of 2-bromoaniline (430.1 mg, 2.5 mmol, 1.0 equiv) and epichlorohydrin (196 μ L, 2.5 mmol) was added LiBr (21.7 mg, 0.25 mmol, 10 mol %) at room temperature. After stirring at 50 °C for 4 h, the resulting mixture was directly purified by flash column chromatography (SiO₂: 14 g, Hexane:EtOAc = 30:1–3:1) to give a yellow oil (352.7 mg, 53%). R_f = 0.36 (Hexane:EtOAc = 4:1) visualized with KMnO4; ¹H NMR (300 MHz, CDCl₃) δ 7.43 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.18 (ddd, *J* = 8.1, 7.2, 1.5 Hz, 1H), 6.68 (dd, *J* = 8.1, 1.5 Hz, 1H), 6.60 (ddd, *J* = 7.8, 7.2, 1.5 Hz, 1H), 4.63 (br s, 1H), 4.13-4.06 (m, 1H) 3.70 (dd, *J* = 11.4, 4.5 Hz, 1H), 3.64 (dd, *J* = 11.4, 6.0 Hz, 1H), 3.45-3.40 (m, 1H), 3.29 (dd, *J* = 13.2, 6.9 Hz, 1H), 2.52 (br s, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 144.6 (C), 132.6 (CH), 128.5 (CH), 118.6 (CH), 111.6 (CH), 110.3 (C), 69.7 (CH), 47.5 (CH₂), 46.8 (CH₂); IR (KBr) 3405, 3063, 2952, 2911, 2855, 1596, 1509, 1458, 1320, 1090, 1019, 744 cm⁻¹; HRMS (ESI/TOF) m/z: [M+H]⁺ calcd for C₉H₁₂BrCINO 263.9785, found 263.9787.

1-Chloro-3-[(4-methoxyphenyl)amino]propan-2-ol (1n). To a mixture of 4-methoxyaniline (307.8 mg, 2.5 mmol, 1.0 equiv) and epichlorohydrin (196 μL, 2.5 mmol) was added LiBr (10.8 mg, 0.125 mmol, 5 mol %) at room temperature. After stirring at room temperature for 4 h, the resulting mixture was directly purified by flash column chromatography (SiO₂: 14 g, Hexane:EtOAc = 7:1–EtOAc) to give a brownish solid (327.3 mg, 61%). R_f = 0.30 (Hexane:EtOAc = 2:1) visualized with KMnO₄; mp 43-44 °C; ¹H NMR (300 MHz, CDCl₃) δ 6.82-6.77 (m, 2H), 6.67-6.61 (m, 2H), 4.10-4.02 (m, 1H), 3.75 (s, 3H), 3.69 (dd, *J* = 11.1, 4.5 Hz, 1H), 3.63 (dd, *J* = 11.1, 6.0 Hz, 1H), 3.34 (dd, *J* = 13.2, 4.2 Hz, 1H), 3.18 (dd, *J* = 13.2, 7.2 Hz, 1H), 2.68 (br s, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 152.7 (C), 141.8 (C), 114.9 (CH), 114.8 (CH), 69.8 (CH), 55.8 (CH₃), 48.2 (CH₂), 47.6 (CH₂); IR (KBr) 3255, 3082, 2832, 1514, 1246, 1038, 828 cm⁻¹; HRMS (ESI/TOF) m/z: [M+H]⁺ calcd for C₁₀H₁₅ClNO₂ 216.0786, found 216.0795.

1-Chloro-3-[(2-methoxyphenyl)amino]propan-2-ol (**10**). To a mixture of 2-methoxyaniline (282 μL, 2.5 mmol, 1.0 equiv) and epichlorohydrin (196 μL, 2.5 mmol) was added LiBr (10.8 mg, 0.125 mmol, 5 mol %) at room temperature. After stirring at room temperature for 4 h, the resulting mixture was directly purified by flash column chromatography (SiO₂: 14 g, Hexane:EtOAc = 15:1–5:1) to give a brownish oil (323.0 mg, 60%). R_f = 0.45 (Hexane:EtOAc = 2:1) visualized with KMnO₄; ¹H NMR (300 MHz, CDCl₃) δ 6.87 (td, *J* = 7.5, 1.5 Hz, 1H), 6.78 (dd, *J* = 7.8, 1.5 Hz, 1H), 6.74-6.64 (m, 2H), 4.12-4.05 (m, 1H), 3.84 (s, 3H), 3.69 (dd, *J* = 11.4, 4.5 Hz, 1H), 3.65 (dd, *J* = 11.4, 6.0 Hz, 1H), 3.38 (dd, *J* = 13.5, 4.8 Hz, 1H), 3.26 (dd, *J* = 13.5, 6.9 Hz, 1H), 2.82 (br s, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 147.1 (C), 137.6 (C), 121.2 (CH), 117.4 (CH), 110.3 (CH), 109.6 (CH), 69.9 (CH), 55.4 (CH₃), 47.6 (CH₂), 46.9 (CH₂); IR (KBr) 3411, 2943, 2835, 1603, 1514, 1458, 1250, 1223, 1028, 741 cm⁻¹; HRMS (ESI/TOF) m/z: [M+H]⁺ calcd for C₁₀H₁₅ClNO₂ 216.0786, found 216.0787.

1-Chloro-3-[(3-methoxyphenyl)amino]propan-2-ol (**1p**). To a mixture of 3-methoxyaniline (280 μL, 2.5 mmol, 1.0 equiv) and epichlorohydrin (196 μL, 2.5 mmol) was added LiBr (10.8 mg, 0.125 mmol, 5 mol %) at room temperature. After stirring at room temperature for 4 h, the resulting mixture was directly purified by flash column chromatography (SiO₂: 14 g, Hexane:EtOAc = 20:1–EtOAc) to give a brownish oil (346.3 mg, 64%). $R_f = 0.40$ (Hexane:EtOAc = 2:1) visualized with KMnO₄; ¹H NMR (300 MHz, CDCl₃) δ 7.09 (t, *J* = 8.1 Hz, 1H), 6.32 (ddd, *J* = 8.1, 2.4, 0.9 Hz, 1H), 6.27 (ddd, *J* = 8.1, 2.4, 0.9 Hz, 1H), 6.21 (t, *J* = 2.4 Hz, 1H), 4.10-4.02 (m, 1H), 3.77 (s, 3H), 3.67 (dd, *J* = 11.1, 4.5 Hz, 1H), 3.61 (dd, *J* = 11.1, 6.0 Hz, 1H), 3.36 (dd, *J* = 13.5, 4.5 Hz, 1H), 3.20 (dd, *J* = 13.5, 7.2 Hz, 1H), 3.10 (br s, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 160.8 (C), 149.1 (C), 130.1 (CH), 106.3 (CH), 103.3 (CH), 99.4 (CH), 69.8 (CH), 55.1 (CH₃), 47.6 (CH₂), 47.0 (CH₂); IR (KBr) 3406, 2952, 2837, 1615, 1513, 1497, 1211, 1164, 1047, 830, 760, 689 cm⁻¹; HRMS (ESI/TOF) m/z: [M+H]⁺ calcd for C₁₀H₁₅ClNO₂ 216.0786, found 216.0783.

1-Chloro-3-[(pyridin-2-ylmethyl)amino]propan-2-ol (1q). To a solution of epichlorohydrin (196 μL, 2.5 mmol) in ⁱPrOH (7.5 mL) was added 2-picolylamine (300 μL, 3.0 mmol, 1.2 equiv) at 0 °C. After stirring at room temperature for 60 h, the mixture was concentrated. Flash column chromatography (SiO₂: 20 g, Hexane:EtOAc = 1:1–EtOAc–EtOAc:MeOH = 4:1) yielded a pale yellow oil (267.1 mg, 53%). R_f = 0.30 (EtOAc:MeOH = 3:1) visualized with KMnO4; ¹H NMR (300 MHz, CDCl₃) δ 8.56 (ddd, *J* = 4.8, 1.8, 0.9 Hz, 1H), 7.67 (td, *J* = 7.8, 1.8 Hz, 1H), 7.29 (d, *J* = 7.8 Hz, 1H), 7.20 (ddd, *J* = 7.8, 4.8, 0.9 Hz, 1H), 4.04-3.90 (m, 5H), 3.56 (d, *J* = 5.7 Hz, 2H), 2.91 (dd, *J* = 12.3, 3.6 Hz, 1H), 2.79 (dd, *J* = 12.3, 8.1 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 158.4 (C), 149.2 (CH), 136.8 (CH), 122.5 (CH), 122.3 (CH), 69.4 (CH), 54.2 (CH₂), 51.9 (CH₂), 47.1 (CH₂); IR (KBr) 3306, 2952, 2911, 2846, 1595, 1436, 761 cm⁻¹; HRMS (ESI/TOF) m/z: [M+H]⁺ calcd for C₉H₁₄ClN₂O 201.0789, found 201.0791.

tert-Butyl {2-[(3-chloro-2-hydroxypropyl)amino]ethyl}carbamate (1r). To a solution of epichlorohydrin (196 μ L, 2.5 mmol) in ^{*i*}PrOH (7.5 mL) was added *N*-Boc-ethylenediamine (400.5 mg, 2.5 mmol, 1.0 equiv) at 0 °C. After stirring at room temperature for 30 h, the mixture was concentrated. Flash column chromatography (SiO₂: 20 g, Hexane:EtOAc = 1:1–EtOAc–EtOAc:MeOH = 4:1) yielded a yellow solid (420.1 mg, 66%). R_f = 0.35 (EtOAc:MeOH = 4:1) visualized with KMnO₄; mp 57-59 °C; ¹H NMR (500 MHz, CDCl₃) δ 5.31 (br s, 1H), 3.89-3.84 (m, 1H), 3.50 (d, *J* = 5.5 Hz, 2H), 3.37 (br s, 2H), 3.20-3.17 (m, 2H), 2.77-2.63 (m, 4H), 1.38 (s, 9H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 156.2 (C), 79.2 (C), 69.5 (CH), 51.9 (CH₂), 49.1 (CH₂), 47.2 (CH₂), 39.9 (CH₂), 28.3 (CH₃); IR (KBr) 3359, 3273, 2985, 2897, 2847, 1684, 1535, 1295, 1272, 1180, 1119, 1102, 1058, 984, 968, 938, 802 694 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₀H₂₁ClN₂NaO₃ 275.1133, found 275.1113.

1-(Benzylamino)-3-chloro-2-methylpropan-2-ol (1s). To a solution of 2-(chloromethyl)-2-methyloxirane (240 μ L, 2.5 mmol) in ^{*i*}PrOH (7.5 mL) was added benzylamine (327 μ L, 3.0 mmol, 1.2 equiv) at 0 °C. After stirring at room temperature for 18 h, the mixture was concentrated. Flash column chromatography (SiO₂: 23 g, Hexane:EtOAc = 10:1–1:2) yielded a yellow oil (276.4 mg, 52%). R_f = 0.35 (Hexane:EtOAc = 1:2)

visualized with KMnO₄; ¹H NMR (300 MHz, CDCl₃) δ 7.37-7.24 (m, 5H), 3.84 (s, 2H), 3.52 (d, *J* = 11.1 Hz, 1H), 3.46 (d, *J* = 11.1 Hz, 1H), 2.90 (d, *J* = 12.6 Hz, 1H), 2.55 (d, *J* = 12.6 Hz, 1H), 2.29 (br s, 2H), 1.25 (s, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 139.8 (C), 128.5 (CH), 128.0 (CH), 127.2 (CH), 71.3 (C), 55.0 (CH₂), 54.4 (CH₂), 51.0 (CH₂), 23.5 (CH₃); IR (KBr) 3408, 2975, 2934, 2839, 1454, 1110, 789, 737, 699 cm⁻¹; HRMS (ESI/TOF) m/z: [M+H]⁺ calcd for C₁₁H₁₇ClNO 214.0993, found 214.0990.

General Procedure for the Oxazolidinone Synthesis

To an oven-dried 10 mL test tube equipped with a stir bar was added **1** (0.30 mmol, 1.0 equiv), TBAB (9.7 mg, 0.03 mmol, 10 mol %), Cs_2CO_3 (488.7 mg, 1.5 mmol, 5.0 equiv), and MeOH (1.0 mL, 0.3 M). The atmosphere was replaced with CO_2 (× 3) using a diaphragm pump. After stirring at 50 °C for 24 h, the mixture was filtrated by Celite® with CH_2Cl_2 (20 mL). Flash column chromatography yielded oxazolidinone **2**.

3-Benzyl-5-(hydroxymethyl)-1,3-oxazolidin-2-one (2a).⁵ Prepared according to the general procedure using **1a** (59.9 mg, 0.30 mmol). Flash column chromatography (SiO₂: 7 g, Hexane:EtOAc = 1:1–EtOAc) yielded a white solid (59.0 mg, 95%). $R_f = 0.30$ (EtOAc:Hexane = 2.5:1) visualized with KMnO4; ¹H NMR (300 MHz, CDCl₃) δ 7.38-7.26 (m, 5H), 4.61-4.53 (m, 1H), 4.48 (d, *J* = 15.0 Hz, 1H), 4.36 (d, *J* = 15.0 Hz, 1H), 3.84 (ddd, *J* = 12.6, 6.6, 3.3 Hz, 1H), 3.60 (ddd, *J* = 12.6, 6.6, 4.5 Hz, 1H), 3.44 (t, *J* = 8.7 Hz, 1H), 3.35 (dd, *J* = 8.7, 6.6 Hz, 1H), 3.25-3.21 (t, *J* = 6.6 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 158.1 (C), 135.5 (C), 128.8 (CH), 128.0 (CH), 127.9 (CH), 73.6 (CH), 62.9 (CH₂), 48.2 (CH₂), 45.1 (CH₂); HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₁H₁₃NNaO₃ 230.0788, found 230.0776.

Procedure for a gram-scale reaction: To an oven-dried 50 mL round-bottom flask equipped with a stir bar was added **1a** (1.20 g, 6.0 mmol), TBAB (193 mg, 0.60 mmol, 10 mol %), Cs_2CO_3 (9.80 g, 30 mmol, 5.0 equiv), and MeOH (20 mL, 0.3 M). The atmosphere was replaced with CO_2 (× 3) using a diaphragm pump. After stirring at 50 °C for 24 h, the mixture was filtrated by Celite® with CH₂Cl₂ (60 mL). Flash column chromatography (SiO₂: 16 g, Hexane:EtOAc = 1:1–EtOAc) yielded **2a** (1.13 g, 91%).

5-(Hydroxymethyl)-3-(4-methoxylbenzyl)-1,3-oxazolidin-2-one (2b). Prepared according to the general procedure using **1b** (68.9 mg, 0.30 mmol). Flash column chromatography (SiO₂: 13 g, Hexane:EtOAc = 2:1–1:2) yielded a white solid (70.2 mg, 98%). R_f = 0.30 (EtOAc) visualized with KMnO₄; mp 93-94 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.23-7.18 (m, 2H), 6.90-6.85 (m, 2H), 4.56 (dddd, *J* = 8.7, 6.6, 4.5, 3.3 Hz, 1H), 4.42 (d, *J* = 14.7 Hz, 1H), 4.31 (d, *J* = 14.7 Hz, 1H), 3.83 (dd, *J* = 12.6, 3.3 Hz, 1H), 3.80 (s, 3H), 3.60 (dd, *J* = 12.6, 4.5 Hz, 1H), 3.42 (t, *J* = 8.7 Hz, 1H), 3.31 (dd, *J* = 8.7, 6.6 Hz, 1H), 2.73 (br s, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 159.3 (C), 157.9 (C), 129.4 (CH), 127.6 (C), 114.2 (CH), 73.5 (CH), 63.1 (CH₂), 55.3 (CH₃), 47.7 (CH₂), 45.0 (CH₂); IR (KBr) 3354, 2919, 1718, 1519, 1459, 1256, 1182, 1100, 1035, 837, 762 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₅NNaO₄ 260.0893, found 260.0910.

5-(Hydroxymethyl)-3-(4-methylbenzyl)-1,3-oxazolidin-2-one (2c). Prepared according to the general procedure using **1c** (64.1 mg, 0.30 mmol). Flash column chromatography (SiO₂: 13 g, Hexane:EtOAc = 2:1-

Electronic Supplementary Information

1:2) yielded a white solid (63.2 mg, 95%). $R_f = 0.40$ (EtOAc) visualized with KMnO₄; mp 78-80 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.19-7.13 (m, 4H), 4.56 (dddd, J = 8.7, 6.6, 4.5, 3.3 Hz, 1H), 4.44 (d, J = 14.7 Hz, 1H), 4.33 (d, J = 14.7 Hz, 1H), 3.84 (ddd, J = 12.6, 6.3, 3.3 Hz, 1H), 3.61 (ddd, J = 12.6, 6.3, 4.5 Hz, 1H), 3.42 (t, J = 8.7 Hz, 1H), 3.31 (dd, J = 8.7, 6.6 Hz, 1H), 2.63 (t, J = 6.3 Hz, 1H), 2.34 (s, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 157.9 (C), 137.7 (C), 132.5 (C), 129.5 (CH), 128.1 (CH), 73.5 (CH), 63.1 (CH₂), 48.0 (CH₂), 45.0 (CH₂), 21.1 (CH₃); IR (KBr) 3418, 2946, 2920, 1725, 1708, 1460, 1269, 1105, 992, 766 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₅NNaO₃ 244.0944, found 244.0933.

3-(4-Chlorobenzyl)-5-(hydroxymethyl)-1,3-oxazolidin-2-one (2d). Prepared according to the general procedure using **1d** (70.2 mg, 0.30 mmol). Flash column chromatography (SiO₂: 13 g, Hexane:EtOAc = 2:1–1:2) yielded a white solid (69.2 mg, 95%). R_f = 0.35 (EtOAc) visualized with KMnO₄; mp 82-83 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.35-7.31 (m, 2H), 7.25-7.20 (m, 2H), 4.59 (dddd, *J* = 8.7, 6.6, 3.9, 3.3 Hz, 1H), 4.43 (d, *J* = 15.0 Hz, 1H), 4.37 (d, *J* = 15.0 Hz, 1H), 3.86 (dd, *J* = 12.6, 3.0 Hz, 1H), 3.60 (dd, *J* = 12.6, 3.9 Hz, 1H), 3.44 (t, *J* = 8.7 Hz, 1H), 3.36 (dd, *J* = 8.7, 6.6 Hz, 1H), 2.82 (br s, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 158.0 (C), 134.1 (C), 133.9 (C), 129.4 (CH), 129.0 (CH), 73.5 (CH), 62.9 (CH₂), 47.6 (CH₂), 45.1 (CH₂); IR (KBr) 3363, 2909, 1724, 1711, 1492, 1282, 1102, 814 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₁H₁₂ClNNaO₃ 264.0398, found 264.0416.

(*S*)-2d. Prepared according to the general procedure using (*S*)-1d (70.2 mg, 0.30 mmol, 99% ee). Flash column chromatography (SiO₂: 13 g, Hexane:EtOAc = 2:1–1:2) yielded a white solid (71.3 mg, 98%). The product was determined to be 99% ee by chiral HPLC analysis (Chiralpak AD-3, Hexane:EtOH = 70:30, 1.0 mL/min, $t_r(minor) = 12.0 \text{ min}, t_r(major) = 15.3 \text{ min}, 220 \text{ nm}, 35 \text{ °C}$); $[\alpha]_D^{24}$ -40.9 (*c* 0.50, CHCl₃, 99% ee). The absolute configuration was determined according to the literature.⁶

3-[3,5-Bis(trifluoromethyl)benzyl]-5-(hydroxymethyl)-1,3-oxazolidin-2-one (2e). Prepared according to the general procedure using **1e** (100.7 mg, 0.30 mmol). Flash column chromatography (SiO₂: 13 g, Hexane:EtOAc = 3:1–1:2) yielded a white solid (95.1 mg, 92%). $R_f = 0.35$ (Hexane:EtOAc = 1:3) visualized with KMnO4; mp 129-131 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.83 (s, 1H), 7.77 (s, 2H), 4.70-4.63 (m, 1H), 4.63 (d, *J* = 15.9 Hz, 1H), 4.52 (d, *J* = 15.9 Hz, 1H), 3.96 (d, *J* = 12.6, 1.2 Hz, 1H), 3.62 (d, *J* = 12.6 Hz, 1H), 3.53 (t, *J* = 8.4 Hz, 1H), 3.47 (dd, *J* = 8.4, 6.6 Hz, 1H), 2.63 (br s, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 158.1 (C), 138.5 (C), 132.3 (q, *J* = 33.6 Hz, C), 127.9 (q, *J* = 2.8 Hz, CH), 123.1 (q, *J* = 272.7 Hz, C), 122.0 (sept, *J* = 3.9 Hz, CH), 73.6 (CH), 62.8 (CH₂), 47.6 (CH₂), 45.2 (CH₂); ¹⁹F{¹H} NMR (470 MHz, CDCl₃) δ - 62.9; IR (KBr) 3390, 2943, 1731, 1349, 1283, 1167, 1119, 707, 682 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₃H₁₁F₆NNaO₃ 366.0535, Found 366.0532.

5-(Hydroxymethyl)-3-(2-phenylethyl)-1,3-oxazolidin-2-one (2f). Prepared according to the general procedure using **1f** (64.1 mg, 0.30 mmol). Flash column chromatography (SiO₂: 7 g, EtOAc) yielded a white solid (55.8 mg, 84%). $R_f = 0.40$ (EtOAc) visualized with KMnO₄; mp 85-87 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.32-7.20 (m, 5H), 4.54-4.46 (m, 1H), 3.76 (dd, J = 12.3, 3.0 Hz, 1H), 3.59-3.31 (m, 6H), 2.86 (t, J = 7.5 Hz, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 157.9 (C), 138.2 (C), 128.6 (CH), 128.5 (CH), 126.5 (CH), 73.5 (CH), 62.7 (CH₂), 46.0 (CH₂), 45.3 (CH₂), 33.7 (CH₂); IR (KBr) 3362, 2937, 2878, 1712, 1464, 1268, 1102, 1039, 776, 759, 709 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₅NNaO₃ 244.0944, found 244.0939.

3-[2-(3,4-Dimethoxyphenyl)ethyl]-5-(hydroxymethyl)-1,3-oxazolidin-2-one (2g). Prepared according to the general procedure using **1g** (82.1 mg, 0.30 mmol). Flash column chromatography (SiO₂: 7 g, Hexane:EtOAc = 1:2) yielded a white solid (75.7 mg, 90%). $R_f = 0.25$ (EtOAc) visualized with KMnO₄; mp 82-84 °C; ¹H NMR (300 MHz, CDCl₃) δ 6.82-6.74 (m, 3H), 4.55-4.47 (m, 1H), 3.87 (s, 3H), 3.85 (s, 3H), 3.77 (dd, J = 12.6, 3.3 Hz, 1H), 3.62-3.35 (m, 6H), 2.82 (t, J = 7.2 Hz, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 157.9 (C), 148.9 (C), 147.6 (C), 130.6 (C), 120.5 (CH), 111.7 (CH), 111.2 (CH), 73.5 (CH), 62.7 (CH₂), 55.8 (CH₃), 46.0 (CH₂), 45.3 (CH₂), 33.3 (CH₂); IR (KBr) 3420, 2948, 2832, 1727, 1516, 1451, 1264, 1158, 1034, 767 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₄H₁₉NNaO₅ 304.1155, found 304.1152.

5-(Hydroxymethyl)-3-(propan-2-yl)-1,3-oxazolidin-2-one (2h). Prepared according to the general procedure using **1h** (45.5 mg, 0.30 mmol). Flash column chromatography (SiO₂: 7 g, Hexane:EtOAc = 1:1) yielded a white solid (43.1 mg, 90%). $R_f = 0.30$ (EtOAc) visualized with KMnO₄; mp 54-55 °C; ¹H NMR (300 MHz, CDCl₃) δ 4.63-4.55 (m, 1H), 4.07 (sept, J = 6.9 Hz, 1H), 3.84 (dd, J = 12.0, 4.2 Hz, 1H), 3.82 (br s, 1H), 3.66 (dd, J = 12.0, 3.3 Hz, 1H), 3.53 (t, J = 8.7 Hz, 1H), 3.43 (dd, J = 8.7, 6.6 Hz, 1H), 1.183 (d, J = 6.9 Hz, 3H), 1.177 (d, J = 6.9 Hz, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 157.3 (C), 73.6 (CH), 62.8 (CH₂), 44.7 (CH), 40.8 (CH₂), 19.7 (CH₃), 19.4 (CH₃); IR (KBr) 3357, 2974, 2934, 2875, 1716, 1455, 1266, 1078, 1058, 762 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₇H₁₃NNaO₃ 182.0788, found 182.0794.

3-(Diphenylmethyl)-5-(hydroxymethyl)-1,3-oxazolidin-2-one (2i). Prepared according to the general procedure using **1i** (82.7 mg, 0.30 mmol). Flash column chromatography (SiO₂: 7 g, Hexane:EtOAc = 3:1) yielded a white solid (76.0 mg, 90%). $R_f = 0.40$ (Hexane:EtOAc = 1:2) visualized with KMnO₄; mp 138-140 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.20 (m, 10H), 6.34 (s, 1H), 4.61-4.54 (m, 1H), 3.86 (dd, *J* = 12.6, 3.0 Hz, 1H), 3.60 (dd, *J* = 12.6, 3.9 Hz, 1H), 3.37 (dd, *J* = 8.7, 6.9 Hz, 1H), 3.33 (t, *J* = 8.7 Hz, 1H), 2.65 (br s, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 157.9 (C), 138.1 (C), 137.9 (C), 128.69 (CH), 128.65 (CH), 128.6 (CH), 128.04 (CH), 127.95 (CH), 127.6 (CH), 73.9 (CH), 62.9 (CH₂), 60.8 (CH), 43.0 (CH₂); IR (KBr) 3376, 2916, 1705, 1477, 1262, 712 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₇H₁₇NNaO₃ 306.1101, found 306.1107.

3-*tert***-Butyl-5-**(hydroxymethyl)-1,3-oxazolidin-2-one (2j).⁵ Prepared according to the general procedure using 1j (49.7 mg, 0.30 mmol). Flash column chromatography (SiO₂: 7 g, Hexane:EtOAc = 1:1) yielded a white solid (44.1 mg, 85%). $R_f = 0.45$ (EtOAc) visualized with KMnO₄; mp 53-54 °C; ¹H NMR (300 MHz, CDCl₃) δ 4.52-4.44 (m, 1H), 3.82 (dt, *J* = 12.0, 4.2 Hz, 1H), 3.68-3.51 (m, 4H), 1.39 (s, 9H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 156.9 (C), 72.3 (CH), 62.7 (CH₂), 53.4 (C), 44.5 (CH₂), 27.3 (CH₃). Characterization data matched the literature.

5-(Hydroxymethyl)-3-phenyl-1,3-oxazolidin-2-one (**2k**).⁵ Prepared according to the general procedure using **1k** (54.8 mg, 0.30 mmol). Flash column chromatography (SiO₂: 15 g, Hexane:EtOAc = 3:1) yielded a white solid (54.0 mg, 93%). $R_f = 0.25$ (Hexane:EtOAc = 1:2) visualized with KMnO₄; mp 138-139 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.56-7.52 (m, 2H), 7.41-7.34 (m, 2H), 7.17-7.12 (m, 1H), 4.78-4.70 (m, 1H), 4.05 (t, *J* = 8.7 Hz, 1H), 4.00 (dd, *J* = 8.7, 7.1 Hz, 1H), 3.96 (br s, 1H), 3.78-3.74 (m, 1H), 2.52. (br s, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 154.9 (C), 138.0 (C), 129.0 (CH), 124.2 (CH), 118.3 (CH), 72.9 (CH), 62.7 (CH₂), 46.3 (CH₂); IR (KBr) 3390, 2953, 2926, 2867, 1713, 1601, 1497, 1430, 1383, 1310, 1233, 1146, 1005, 767 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₀H₁₁NNaO₃ 216.0631, found 216.0630.

5-(Hydroxymethyl)-3-(4-iodophenyl)-1,3-oxazolidin-2-one (**2l**).⁵ Prepared according to the general procedure using **1l** (93.5 mg, 0.30 mmol). Flash column chromatography (SiO₂: 15 g, Hexane:EtOAc = 2:1–1:2) yielded a white solid (84.8 mg, 89%). $R_f = 0.30$ (Hexane:EtOAc = 1:2) visualized with KMnO₄; mp 114-115 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.68-7.63 (m, 2H), 7.34-7.29 (m, 2H), 4.78-4.70 (m, 1H), 4.03-3.94 (m, 3H), 3.74 (d, *J* = 12.4 Hz, 1H), 2.65 (br s, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 154.6 (C), 137.93 (CH), 137.88 (C), 120.0 (CH), 87.6 (C), 72.9 (CH), 62.6 (CH₂), 46.0 (CH₂); IR (KBr) 3385, 2962, 1743, 1726, 1494, 1428, 1233, 1083, 811, 754 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₀H₁₀INNaO₃ 341.9598, found 341.9597.

3-(2-Bromophenyl)-5-(hydroxymethyl)-1,3-oxazolidin-2-one (2m). Prepared according to the general procedure using **1m** (79.4 mg, 0.30 mmol) in MeCN (1.0 mL, 0.3 M). Flash column chromatography (SiO₂: 13 g, Hexane:EtOAc = 2:1–1:2) yielded a white solid (71.1 mg, 87%). $R_f = 0.20$ (Hexane:EtOAc = 1:3) visualized with KMnO₄; mp 93-94 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.66 (dd, J = 8.1, 0.9 Hz, 1H), 7.43-7.35 (m, 2H), 7.24 (ddd, J = 8.1, 6.9, 2.4 Hz, 1H), 4.82 (dddd, J = 8.7, 6.6, 4.5, 3.3 Hz, 1H), 4.04 (t, J = 8.7 Hz, 1H), 3.98 (dd, J = 12.6, 3.3 Hz, 1H), 3.90 (dd, J = 8.7, 6.6 Hz, 1H), 3.80 (dd, J = 12.6, 4.5 Hz, 1H), 2.77 (br s, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 156.3 (C), 136.2 (C), 133.7 (CH), 130.0 (CH), 129.8 (CH),

128.7 (CH), 122.5 (C), 74.3 (CH), 63.0 (CH₂), 48.3 (CH₂); IR (KBr) 3395, 2915, 2874, 1714, 1487, 1236, 1146, 758 cm⁻¹; HRMS (ESI/TOF) m/z: $[M+Na]^+$ calcd for $C_{10}H_{10}BrNNaO_3$ 293.9736, found 293.9758.

5-(Hydroxymethyl)-3-(4-methoxyphenyl)-1,3-oxazolidin-2-one (2n).² Prepared according to the general procedure using **1n** (64.7 mg, 0.30 mmol). Flash column chromatography (SiO₂: 13 g, Hexane:EtOAc = 3:1–2:1) yielded a white solid (65.7 mg, 97%). R_f = 0.30 (Hexane:EtOAc = 1:2) visualized with KMnO₄; mp 138-140 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.47-7.41 (m, 2H), 6.94-6.88 (m, 2H), 4.77-4.69 (m, 1H), 4.04-3.93 (m, 3H), 3.80 (s, 3H), 3.76 (dd, *J* = 12.6, 4.2 Hz, 1H), 2.30 (br s, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 156.5 (C), 155.0 (C), 131.2 (C), 120.4 (CH), 114.3 (CH), 72.8 (CH), 62.9 (CH₂), 55.5 (CH₃), 46.9 (CH₂); IR (KBr) 3419, 2930, 1718, 1517, 1445, 1237, 1037, 826 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₁H₁₃NNaO₄ 246.0737, found 246.0746.

5-(Hydroxymethyl)-3-(2-methoxyphenyl)-1,3-oxazolidin-2-one (20). Prepared according to the general procedure using **10** (64.7 mg, 0.30 mmol). Flash column chromatography (SiO₂: 15 g, Hexane:EtOAc = 3:1–1:2) yielded a white solid (59.2 mg, 88%). $R_f = 0.20$ (Hexane:EtOAc = 1:3) visualized with KMnO₄; mp 69-70 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.36-7.33 (m, 1H), 7.31-7.26 (m, 1H), 7.00-6.94 (m, 2H), 4.78-4.70 (m, 1H), 3.99 (t, *J* = 8.7 Hz, 1H), 3.92-3.80 (m, 5H), 3.75 (dd, *J* = 12.6, 4.8 Hz, 1H), 3.07 (br s, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 157.0 (C), 154.9 (C), 129.0 (CH), 128.4 (CH), 125.7 (C), 120.9 (CH), 112.0 (CH), 74.1 (CH), 63.2 (CH₂), 55.6 (CH₃), 48.2 (CH₂); IR (KBr) 3376, 2957, 1719, 1512, 1437, 1247, 1023, 758 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₁H₁₃NNaO₄ 246.0737, found 246.0729.

5-(Hydroxymethyl)-3-(3-methoxyphenyl)-1,3-oxazolidin-2-one (2p).² Prepared according to the general procedure using **1p** (64.7 mg, 0.30 mmol). Flash column chromatography (SiO₂: 13 g, Hexane:EtOAc = 2:1–1:2) yielded a white solid (59.8 mg, 90%). R_f = 0.25 (Hexane:EtOAc = 1:3) visualized with KMnO₄; mp 120-121 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.29-7.24 (m, 2H), 7.04 (ddd, *J* = 8.1, 2.1, 0.9 Hz, 1H), 6.70 (ddd, *J* = 8.4, 2.4, 0.9 Hz, 1H), 4.77-4.69 (m, 1H), 4.06-3.94 (m, 3H), 3.82 (s, 3H), 3.76 (dd, *J* = 12.6, 3.9 Hz, 1H), 2.36 (br s, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 160.2 (C), 154.6 (C), 139.3 (C), 129.8 (CH), 110.4 (CH), 109.8 (CH), 104.5 (CH), 72.8 (CH), 62.8 (CH₂), 55.4 (CH₃), 46.4 (CH₂); IR (KBr) 3409, 2967, 1718, 1499, 1415, 1250, 1014, 779 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₁H₁₃NNaO₄ 246.0737, found 246.0737.

5-(Hydroxymethyl)-3-(pyridin-2-ylmethyl)-1,3-oxazolidin-2-one (2q). Prepared according to the general procedure using **1q** (40.0 mg, 0.20 mmol). Flash column chromatography (SiO₂: 7 g, EtOAc:MeOH = 200:1–20:1) yielded a pale yellow oil (35.5 mg, 86%). $R_f = 0.40$ (EtOAc:MeOH = 3:1) visualized with KMnO₄; ¹H NMR (300 MHz, CDCl₃) δ 8.54 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H), 7.71 (td, J = 7.8, 1.8 Hz, 1H), 7.34 (d, J = 7.8)

Electronic Supplementary Information

Hz, 1H), 7.26-7.21 (m, 1H), 4.68-4.61 (m, 2H), 4.52 (d, J = 15.9 Hz, 1H), 4.14 (br s, 1H), 3.89 (dd, J = 12.3, 3.2 Hz, 1H), 3.70-3.63 (m, 1H), 3.55 (dd, J = 8.7, 6.0 Hz, 1H); ${}^{13}C{}^{1}H{}$ NMR (75 MHz, CDCl₃) δ 158.3 (C), 155.6 (C), 149.2 (CH), 137.3 (CH), 122.8 (CH), 122.1 (CH), 73.8 (CH), 63.1 (CH₂), 49.3 (CH₂), 45.9 (CH₂); IR (KBr) 3400, 2925, 1738, 1595, 1490, 1440, 1272, 1080, 763 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₀H₁₂N₂NaO₃ 231.0740, found 231.0729.

tert-Butyl {2-[5-(hydroxymethyl)-2-oxo-1,3-oxazolidin-3-yl]ethyl}carbamate (2r). Prepared according to the general procedure using 1r (50.5 mg, 0.20 mmol). Flash column chromatography (SiO₂: 7 g, EtOAc:MeOH = 200:1–20:1) yielded a pale yellow oil (45.3 mg, 87%). $R_f = 0.45$ (EtOAc:MeOH = 10:1) visualized with KMnO₄; ¹H NMR (500 MHz, CDCl₃) δ 5.12 (br s, 1H), 4.62-4.57 (m, 1H), 3.87-3.84 (m, 2H), 3.69-3.64 (m, 2H), 3.57 (dd, J = 8.2, 6.3 Hz, 1H), 3.40-3.30 (m, 5H), 1.42 (s, 9H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 158.5 (C), 155.4 (C), 79.6 (C), 73.7 (CH), 62.9 (CH₂), 45.6 (CH₂), 44.1 (CH₂), 37.9 (CH₂), 28.3 (CH₃); IR (KBr) 3370, 2978, 2934, 1737, 1693, 1525, 1454, 1366, 1254, 1171, 763 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₁H₂₀N₂NaO₅ 283.1264, found 283.1257.

3-Benzyl-5-(hydroxymethyl)-5-methyl-1,3-oxazolidin-2-one (2s). Prepared according to the general procedure using **1s** (64.1 mg, 0.30 mmol). Flash column chromatography (SiO₂: 15 g, Hexane:EtOAc = 4:1–1:2) yielded a white solid (64.9 mg, 98%). $R_f = 0.45$ (EtOAc) visualized with KMnO₄; mp 78-79 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.38-7.25 (m, 5H), 4.50 (d, *J* = 15.0 Hz, 1H), 4.38 (d, *J* = 15.0 Hz, 1H), 3.66 (d, *J* = 12.0 Hz, 1H), 3.50 (d, *J* = 8.4 Hz, 1H), 3.43 (d, *J* = 12.0 Hz, 1H), 3.04 (d, *J* = 8.4 Hz, 1H), 2.98 (br s, 1H), 1.35 (s, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 157.6 (C), 135.7 (C), 128.8 (CH), 127.89 (CH), 127.85 (CH), 79.6 (C), 67.0 (CH₂), 51.1 (CH₂), 48.1 (CH₂), 22.7 (CH₃); IR (KBr) 3328, 2920, 1716, 1496, 1453, 1324, 1080, 963, 762, 698 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₅NNaO₃ 244.0944, found 244.0937.

General Procedure for the Oxazinanone Synthesis

To an oven-dried 10 mL test tube equipped with a stir bar was added **1** (0.30 mmol, 1.0 equiv), a 1:1 mixture of PhMe/MeCN (v/v, 1.0 mL, 0.3 M), and Et₃N (0.21 mL, 1.5 mmol, 5.0 equiv). The atmosphere was replaced with CO₂ (× 3) using a diaphragm pump. After stirring at 50 °C for 24 h, the mixture was directly purified by flash column chromatography to obtain oxazinanone **3**.

3-Benzyl-5-hydroxy-1,3-oxazinan-2-one (3a).⁶ Prepared according to the general procedure using **1a** (59.9 mg, 0.30 mmol). Flash column chromatography (SiO₂: 8 g, EtOAc:Et₃N = 250:1) yielded a white solid (57.7 mg, 93%). R_f = 0.30 (EtOAc) visualized with KMnO₄; ¹H NMR (300 MHz, CDCl₃) δ 7.36-7.25 (m, 5H), 4.65 (d, *J* = 15.0 Hz, 1H), 4.43 (d, *J* = 15.0 Hz, 1H), 4.28-4.18 (m, 2H) 4.15-4.10 (m, 1H), 3.84 (br s, 1H), 3.40 (dd, *J* = 12.3, 3.9 Hz, 1H), 3.22-3.16 (m, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 153.8 (C), 136.1 (C), 128.7 (CH), 127.9 (CH), 127.7 (CH), 70.5 (CH₂), 60.9 (CH), 52.7 (CH₂), 51.3 (CH₂); ¹H NMR (300 MHz, CD₃OD) δ 7.38-7.25 (m, 5H), 4.57 (d, *J* = 15.3 Hz, 1H), 4.52 (d, *J* = 15.3 Hz, 1H), 4.32 (dddd, *J* = 11.4, 1.8, 0.6, 0.6 Hz, 1H), 4.18 (ddd, *J* = 11.4, 3.3, 2.7 Hz, 1H), 4.12-4.08 (m, 1H), 3.49 (ddd, *J* = 12.3, 3.9, 0.6 Hz, 1H), 3.15

(ddd, J = 12.3, 2.7, 2.7, 0.6 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CD₃OD) δ 156.0 (C), 137.9 (C), 129.7 (CH), 128.9 (CH), 128.7 (CH), 71.9 (CH₂), 61.9 (CH), 53.5 (CH₂), 52.5 (CH₂); IR (KBr) 3294, 2921, 1668, 1504, 1264, 730 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₁H₁₃NNaO₃ 230.0788, found 230.0801. **Procedure for a gram-scale reaction:** To an oven-dried 50 mL round-bottom flask equipped with a stir bar was added **1a** (1.20 g, 6.0 mmol), a 1:1 mixture of PhMe/MeCN (v/v, 20 mL, 0.3 M), and Et₃N (4.2 mL, 30 mmol, 5.0 equiv). The atmosphere was replaced with CO₂ (× 3) using a diaphragm pump. After stirring at 50 °C for 24 h, the mixture was concentrated. Flash column chromatography (SiO₂: 25 g, EtOAc:Et₃N = 250:1) yielded **3a** (1.10 g, 89%).

5-Hydroxy-3-(4-methoxylbenzyl)-1,3-oxazinan-2-one (3b). Prepared according to the general procedure using **1b** (68.9 mg, 0.30 mmol). Flash column chromatography (SiO₂: 7 g, EtOAc:Et₃N = 250:1) yielded a white solid (61.3 mg, 86%). $R_f = 0.15$ (EtOAc) visualized with KMnO₄; mp 97-99 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.25-7.20 (m, 2H), 6.88-6.84 (m, 2H), 4.58 (d, J = 14.7 Hz, 1H), 4.38 (d, J = 14.7 Hz, 1H), 4.27-4.17 (m, 2H), 4.14-4.10 (m, 1H), 3.79 (s, 3H), 3.47 (br s, 1H), 3.38 (dd, J = 12.3, 3.9 Hz, 1H), 3.20-3.15 (m, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 159.1 (C), 153.7 (C), 129.4 (CH), 128.2 (C), 114.0 (CH), 70.5 (CH₂), 60.8 (CH), 55.2 (CH₃), 52.1 (CH₂) 51.0 (CH₂); IR (KBr) 3512, 3376, 2936, 1686, 1516, 1493, 1248, 1027, 811 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₅NNaO₄ 260.0893, found 260.0893.

5-Hydroxy-3-(4-methylbenzyl)-1,3-oxazinan-2-one (3c). Prepared according to the general procedure using **1c** (64.1 mg, 0.30 mmol). Flash column chromatography (SiO₂: 7 g, EtOAc:Et₃N = 250:1) yielded a white solid (58.7 mg, 88%). $R_f = 0.20$ (EtOAc) visualized with KMnO₄; mp 109-110 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.19-7.11 (m, 4H), 4.62 (d, *J* = 15.0 Hz, 1H), 4.35 (d, *J* = 15.0 Hz, 1H), 4.25-4.16 (m, 2H), 4.13-4.08 (m, 1H), 4.01 (br s, 1H), 3.37 (dd, *J* = 12.3, 3.9 Hz, 1H), 3.19-3.14 (m, 1H), 2.32 (s, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 153.7 (C), 137.4 (C), 133.1 (C) 129.4 (CH), 128.0 (CH), 70.5 (CH₂), 61.0 (CH), 52.5 (CH₂), 51.2 (CH₂), 21.1 (CH₃); IR (KBr) 3420, 2923, 1671, 1496, 1250, 1153, 760 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₅NNaO₃ 244.0944, found 244.0939.

3-(4-Chlorobenzyl)-5-hydroxy-1,3-oxazinan-2-one (3d). Prepared according to the general procedure using **1d** (70.1 mg, 0.30 mmol). Flash column chromatography (SiO₂: 7 g, EtOAc:Et₃N = 250:1) yielded a white solid (64.0 mg, 88%). $R_f = 0.20$ (EtOAc) visualized with KMnO₄; mp 131-132 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.34-7.29 (m, 2H), 7.27-7.23 (m, 2H), 4.55 (d, *J* = 15.0 Hz, 1H), 4.49 (d, *J* = 15.0 Hz, 1H), 4.31-4.21 (m, 2H), 4.18-4.14 (m, 1H), 3.43 (dd, *J* = 12.3, 3.9 Hz, 1H), 3.22-3.16 (m, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 153.3 (C), 134.7 (C), 133.7 (C), 129.4 (CH), 128.9 (CH), 70.5 (CH₂), 61.3 (CH), 52.1 (CH₂), 51.5 (CH₂); IR (KBr) 3296, 2919, 1665, 1493, 1282, 1160, 1012, 836, 757 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₁H₁₂CINNaO₃ 264.0398, found 264.0420.

CI

$$CI$$

 H
 H
 OH
 CI
 H
 CI
 $Et_3N (5.0 equiv)$
 $FhMe:MeCN = 1:1 (0.3 M)$
 $50 °C, 24 h$

(*S*)-**3d**. Prepared according to the general procedure using (*S*)-**1d** (70.1 mg, 0.30 mmol, 99% ee). Flash column chromatography (SiO₂: 7 g, EtOAc:Et₃N = 250:1) yielded a white solid (63.4 mg, 88%). The product was determined to be 99% ee by chiral HPLC analysis (Chiralcel OZ-3, Hexane:EtOH = 80:20, 1.0 mL/min, $t_r(minor) = 11.3 \text{ min}, t_r(major) = 14.4 \text{ min}, 220 \text{ nm}, 35 °C$); $[\alpha]_D^{23}$ -34.9 (*c* 0.50, CHCl₃, 99% ee). The absolute configuration was determined to be (*S*) by X-ray crystallographic analysis. The crystal was grown from EtOAc under hexane atmosphere. The data has been deposited with the Cambridge Crystallographic Data Centre (CCDC2082859).

Figure S1. ORTEP drawing of (S)-3d (30% probability ellipsoids).

3-[3,5-Bis(trifluoromethyl)benzyl]-5-hydroxy-1,3-oxazinan-2-one (3e). Prepared according to the general procedure using **1e** (100.7 mg, 0.30 mmol). Flash column chromatography (SiO₂: 7 g, Hexane:EtOAc:Et₃N = 150:50:1–EtOAc) yielded a white solid (89.5 mg, 87%). $R_f = 0.30$ (EtOAc) visualized with KMnO₄; mp 143-145 °C; ¹H NMR (300 MHz, CD₃OD) δ 7.99 (s, 2H), 7.88 (s, 1H), 4.89 (d, *J* = 15.9 Hz, 1H), 4.51 (d, *J* = 15.9, Hz, 1H), 4.41 (dd, *J* = 11.4, 1.8 Hz, 1H), 4.25 (dt, *J* = 11.4, 3.0 Hz, 1H), 4.17-4.13 (m, 1H), 3.67 (dd, *J* = 12.3, 3.0 Hz, 1H), 3.22 (dt, *J* = 12.3, 2.7 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CD₃OD) δ 156.0 (C), 141.8 (C), 133.0 (q, *J* = 33.3 Hz, C), 129.2 (q, *J* = 2.7 Hz, CH), 124.8 (q, *J* = 271.8 Hz, C), 122.3 (sept, *J* = 3.9 Hz, CH), 72.3 (CH₂), 61.8 (CH), 53.1 (CH₂), 52.5 (CH₂); ¹⁹F{¹H} NMR (470 MHz, CD₃OD) δ -64.3; IR (KBr) 3289, 2930, 1657, 1508, 1281, 1167, 1126, 1015, 837, 763, 683 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₃H₁₁F₆NNaO₃ 366.0535, found 366.0524.

5-Hydroxy-3-(2-phenylethyl)-1,3-oxazinan-2-one (3f). Prepared according to the general procedure using **1f** (64.1 mg, 0.30 mmol). Flash column chromatography (SiO₂: 7 g, EtOAc) yielded a white solid (51.0 mg, 77%). $R_f = 0.40$ (EtOAc:MeOH = 10:1) visualized with KMnO₄; mp 120-121 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.31-7.17 (m, 5H), 4.32 (br s, 1H), 4.19-4.12 (m, 2H), 4.09-4.05 (m, 1H), 3.61 (ddd, *J* = 13.8, 8.7, 6.2 Hz, 1H), 3.41 (ddd, *J* = 13.8, 8.4, 6.9 Hz, 1H), 3.31 (dd, *J* = 12.3, 3.9 Hz, 1H), 3.18-3.13 (m, 1H), 2.97-2.81 (m, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 153.3 (C), 138.5 (C), 128.8 (CH), 128.5 (CH), 126.5 (CH), 70.4 (CH₂), 60.8 (CH), 52.7 (CH₂), 51.3 (CH₂), 33.3 (CH₂); IR (KBr) 3298, 2941, 1660, 1494, 1284, 1147, 759 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₅NNaO₃ 244.0944, found 244.0954.

S15

Electronic Supplementary Information

3-[2-(3,4-Dimethoxyphenyl)ethyl]-5-hydroxy-1,3-oxazinan-2-one (3g). Prepared according to the general procedure using **1g** (82.1 mg, 0.30 mmol). Flash column chromatography (SiO₂: 7 g, EtOAc) yielded a white solid (71.9 mg, 85%). $R_f = 0.30$ (EtOAc:MeOH = 10:1) visualized with KMnO₄; mp 124-125 °C; ¹H NMR (300 MHz, CDCl₃) δ 6.80-6.73 (m, 3H), 4.31 (br s, 1H), 4.17-4.16 (m, 2H), 4.11-4.07 (m, 1H), 3.86 (s, 3H), 3.84 (s, 3H), 3.63-3.54 (m, 1H), 3.46-3.39 (m, 1H), 3.34 (dd, *J* = 12.0, 3.9 Hz, 1H), 3.20-3.15 (m, 1H), 2.92-2.76 (m, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 153.2 (C), 148.8 (C), 147.5 (C), 131.0 (C), 120.7 (CH), 112.1 (CH), 111.3 (CH), 70.4 (CH₂), 60.8 (CH), 55.8 (2CH₃), 52.6 (CH₂), 51.3 (CH₂), 32.8 (CH₂); IR (KBr) 3301, 2921, 1656, 1498, 1291, 1239, 1149, 1031, 852, 810, 763 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₄H₁₉NNaO₅ 304.1155, found 304.1160.

5-Hydroxy-3-(propan-2-yl)-1,3-oxazinan-2-one (3h). Prepared according to the general procedure using **1h** (45.5 mg, 0.30 mmol). Flash column chromatography (SiO₂: 7 g, EtOAc) yielded a white solid (14.8 mg, 31%). $R_f = 0.25$ (EtOAc:MeOH = 10:1) visualized with KMnO₄; mp 111-112 °C; ¹H NMR (300 MHz, CDCl₃) δ 4.52 (sept, J = 6.9 Hz, 1H), 4.25-4.15 (m, 3H), 4.08 (br s, 1H), 3.37-3.31 (m, 1H), 3.23-3.17 (m, 1H), 1.16 (d, J = 6.9 Hz, 3H), 1.15 (d, J = 6.9 Hz, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 152.9 (C), 70.0 (CH₂), 60.9 (CH), 47.4 (CH), 45.0 (CH₂), 19.2 (CH₃), 18.9 (CH₃); IR (KBr) 3336, 2925, 1661, 1490, 1289, 1202, 1142, 827, 762, 648 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₇H₁₃NNaO₃ 182.0788, found 182.0781.

5-Hydroxy-3-phenyl -1,3-oxazinan-2-one (3k).⁷ Prepared according to the general procedure using **1k** (54.8 mg, 0.30 mmol). Flash column chromatography (SiO₂: 7 g, Hexane:EtOAc = 20:1) yielded a white solid (10.2 mg, 18%). $R_f = 0.25$ (Hexane:EtOAc = 2:1) visualized with KMnO₄; mp 113-114 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.25-7.17 (m, 2H), 6.82-6.76 (m, 1H), 6.67-6.62 (m, 2H), 4.96-4.88 (m, 1H), 4.54 (t, *J* = 8.4 Hz, 1H), 4.29 (dd, *J* = 8.4, 6.9 Hz, 1H), 3.97 (br s, 1H) 3.56-3.40 (m, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 154.6 (C), 146.9 (C), 129.5 (CH), 118.9 (CH), 113.2 (CH), 75.3 (CH), 67.0 (CH₂) 45.9 (CH₂); IR (KBr) 3405, 3034, 2991, 2925, 1782, 1602, 1524, 1172, 1032, 749 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₀H₁₁NNaO₃ 216.0631, found 216.0636.

5-Hydroxy-3-(pyridin-2-ylmethyl)-1,3-oxazinan-2-one (3q). Prepared according to the general procedure using **1q** (40.0 mg, 0.20 mmol). Flash column chromatography (SiO₂: 7 g, EtOAc:MeOH:Et₃N = 200:1:1-200:10:1) yielded a pale yellow oil (39.3 mg, 95%). $R_f = 0.30$ (EtOAc:MeOH = 3:1) visualized with KMnO₄; ¹H NMR (300 MHz, CDCl₃) δ 8.48 (ddd, J = 5.1, 1.8, 0.9 Hz. 1H), 7.71 (td, J = 7.8, 1.8 Hz, 1H), 7.29-7.21 (m, 2H), 5.13 (d, J = 16.8 Hz, 1H), 4.41-4.32 (m, 2H), 4.22 (d, J = 16.8 Hz, 1H), 4.17 (qui, J = 2.7 Hz, 1H), 3.79 (dd, J = 12.6, 2.7 Hz, 1H), 3.46 (dtd, J = 12.6, 2.7, 1.2 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 155.8 (C), 153.2 (C), 148.5 (CH), 137.4 (CH), 122.7 (CH), 122.2 (CH), 72.7 (CH₂), 61.5 (CH), 52.33 (CH₂), 52.28 (CH₂); IR (KBr) 3369, 2924, 1677, 1596, 1491, 1439, 1263, 1158, 1109, 1011, 841, 762 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₀H₁₂N₂NaO₃ 231.0740, found 231.0729.

Electronic Supplementary Information

tert-Butyl [2-(5-hydroxy-2-oxo-1,3-oxazinan-3-yl)ethyl]carbamate (3r). Prepared according to the general procedure using 1r (50.5 mg, 0.20 mmol). Flash column chromatography (SiO₂: 7 g, EtOAc:MeOH = 100:1-5:1) yielded a white solid (44.1 mg, 85%). $R_f = 0.40$ (EtOAc:MeOH = 10:1) visualized with KMnO₄; mp 103-105 °C; ¹H NMR (500 MHz, CDCl₃) δ 5.35 (t, J = 5.5 Hz. 1H), 4.27-4.23 (m, 2H), 4.15-4.13 (m, 1H), 3.71 (ddd, J = 12.5, 7.5, 3.5 Hz, 1H), 12.5 (dd, J = 12.5, 3.5 Hz, 1H), 3.47-3.40 (m, 1H), 3.26-3.14 (m, 1H), 1.41 (s, 9H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 157.2 (C), 153.7 (C), 79.8 (C), 70.9 (CH₂), 61.0 (CH), 51.6 (CH₂), 49.1 (CH₂), 37.7 (CH₃); IR (KBr) 3371, 2979, 2942, 1680, 1521, 1487, 1368, 1254, 1174 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₁H₂₀N₂NaO₅ 283.1264, found 283.1279.

3-Benzyl-5-hydroxy-5-methyl-1,3-oxazinan-2-one (3s). Prepared according to the general procedure using **1s** (64.1 mg, 0.30 mmol). Flash column chromatography (SiO₂: 15 g, Hexane:EtOAc = 10:1– EtOAc) yielded a white solid (27.2 mg, 41%). $R_f = 0.25$ (EtOAc) visualized with KMnO4; mp 145-146 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.38-7.27 (m, 5H), 4.64 (d, *J* = 15.0 Hz, 1H), 4.48 (d, *J* = 15.0 Hz, 1H), 4.10 (d, *J* = 11.1 Hz, 1H), 4.04 (dd, *J* = 11.1, 2.7 Hz, 1H), 3.21 (d, *J* = 12.0 Hz, 1H), 3.10 (ddd, *J* = 12.0, 2.7, 0.6 Hz, 1H), 2.73 (br s, 1H), 1.25 (s, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 153.1 (C), 136.2 (C), 128.8 (CH), 128.1 (CH), 127.8 (CH), 74.3 (CH₂), 64.8 (C), 56.2 (CH₂), 52.8 (CH₂), 22.5 (CH₃); IR (KBr) 3386, 3250, 2929, 1685, 1486, 1231, 1107, 752, 703 cm⁻¹; HRMS (ESI/TOF) m/z: [M+Na]⁺ calcd for C₁₂H₁₅NNaO₃ 244.0944, found 244.0945.

Appendix

Table S1. Solvent Effect^a

entry	solvent	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ (\%)^{b} \end{array} $	yield of $3a$ $(\%)^c$	selectivity 3a/2a ^b
1	MeCN	>98	88	11:1
2	MeOH	>98	85	14:1
3	acetone	14	13	>20:1
4	THF	20	24	>20:1
5	PhCN	>98	91	>20:1
6	PhCF ₃	73	71	>20:1
7	PhCl	64	64	>20:1
8	toluene	21	17	>20:1
9	MeCN/toluene	>98	93	>20:1

^{*a*}Unless otherwise noted, all reactions were carried out with **1a** (0.3 mmol) and Et₃N (1.5 mmol) under a balloon of CO₂ in 0.3 M solution at 50 °C for 24 h. ^{*b*}Determined by ¹H NMR. ^{*c*}Isolated yield.

Scheme S1. Reaction of 1m in MeOH.

DFT Studies

Quantum mechanical calculations were performed using Gaussian 16 (Revision B.01).⁸ All geometries were optimized using the ω B97X-D density functional,⁹ the 6-31+G(d) basis set, and an ultrafine integration grid within the IEFPCM model in acetonitrile.¹⁰ Single point energies were calculated using ω B97X-D, the polarized, triple- ζ valence quality def2-TZVPP basis set of Weigend and Ahlrichs¹¹ and an ultrafine integration grid within the IEFPCM model in acetonitrile. The resulting energies were used to correct the energies obtained from the ω B97X-D optimizations. The free energy corrections were calculated at 1 atm and 298.15 K.

ωB97X-D/def2-TZVPP-IEFPCM(MeCN)//ωB97X-D/6-31+G(d)-IEFPCM(MeCN)

 \mathbf{R}_1

K]		
basis set	6-31+G(d)	def2-TZVPP
<i>E</i> (a.u.)	-922.965385	-923.167079
G_corr (a.u.)	0.22688	-
G (a.u.)	-922.738504	-922.940199
freq (cm ⁻¹)	22.81	-

C.	-0.369985539,	-0.2914183652,	-0.3424117094
H,	0.7257685586,	-0.2395641112,	-0.4233450678
C.	-0.9762532944,	0.9655609405,	-0.9684961391
H,	-0.7029304908,	1.8448488883,	-0.3846314092
C,	-0.8471554447,	-1.5762474605,	-1.0022749794
H,	-0.5983407424,	-1.5580062575,	-2.0695183662
H,	-1.9502083038,	-1.6228841122,	-0.9213385495
0,	-0.7561379532,	-0.3191579287,	1.0175935333
N,	-0.1990084872,	-2.7275649635,	-0.3931788548
С,	-0.6870709162,	-3.9906985995,	-0.9322077797
H,	-0.221081094,	-4.822306538,	-0.3957546418
H,	-0.4078095618,	-4.0696617928,	-1.9888126285
H,	-1.783301145,	-4.1005343803,	-0.8625368293
N,	1.2870367278,	1.0123271092,	2.2862633996
С,	0.8671535045,	1.3553953508,	3.6424606564
H,	1.6710769352,	1.8586065506,	4.2059911141
H,	0.5815923541,	0.4456251614,	4.1785142085
H,	0.0002280839,	2.0211557193,	3.5999669206
С,	2.4052720386,	0.0727636378,	2.3062876039
Н,	2.1080077085,	-0.8383015492,	2.8335925242
H,	3.2907193439,	0.4988716475,	2.8078829106
Н,	2.6802793294,	-0.1941175999,	1.2815570014
С,	1.6230484872,	2.2119306117,	1.5245141138
Н,	2.4696013947,	2.759675822,	1.972212654
Н,	0.7570200545,	2.8798340785,	1.4906787736
Н,	1.8921343893,	1.93610751,	0.5001203387
Н,	-0.063446122,	0.1829559867,	1.5336702271
Н,	-2.0636039021,	0.8929732513,	-1.0310563602
Cl,	-0.3667434945,	1.2600903275,	-2.6479893799
H.	-0.3841641292	-2.6934885646.	0.6062111149

TS1-1

basis set	6-31+G(d)	def2-TZVPP
<i>E</i> (a.u.)	-922.924430	-923.120226
G_corr (a.u.)	0.226611	-
G (a.u.)	-922.697818	-922.940199
freq (cm ⁻¹)	-541.73	-

С,	-0.6407321807,	0.0010249641,	-1.3053233349
H,	0.4310808886,	0.1084913635,	-1.522576277
С,	-1.4408382521,	1.1833081346,	-1.620712852
H,	-0.9961398063,	2.1555722869,	-1.4656820439
С,	-1.1438969053,	-1.3559281687,	-1.7489891454
H,	-0.9162106855,	-1.4991620865,	-2.8121909614
H,	-2.2436807764,	-1.3881533203,	-1.6354238825
0,	-0.9875408663,	0.3368222946,	0.0138685479
N,	-0.4758824854,	-2.3933947343,	-0.975869089
С,	-0.9578413256,	-3.7302860757,	-1.3006568064
H,	-0.4768068665,	-4.4628624343,	-0.6460135319
H,	-0.6909214203,	-3.9725657115,	-2.3352834303
H,	-2.0519162212,	-3.8358506059,	-1.1994572839
N,	0.9687137676,	1.2124138685,	1.4923816265
С,	0.4022585791,	1.2559961471,	2.8624447632
H,	1.1727685606,	1.5784279787,	3.5662813452
H,	0.0469048134,	0.2594940591,	3.1271251326
H,	-0.4325015914,	1.9576106751,	2.8752804159
С,	2.0576291819,	0.2112051103,	1.3842446017
H,	1.6611493492,	-0.768497816,	1.6531978115
H,	2.8729967982,	0.4836199884,	2.0581123077
H,	2.4176013091,	0.1892284637,	0.3551336511
С,	1.4065590781,	2.5546926964,	1.0398420032
Н,	2.2016148156,	2.9187879945,	1.6943692894
H,	0.5536035361,	3.2332456957,	1.0762213957
H,	1.7732347392,	2.4817701167,	0.015356193
H,	0.1650827539,	0.8837021004,	0.8370272445
H,	-2.5168317146,	1.0977489107,	-1.5592771329
Cl,	-1.5069990214,	1.509307613,	-3.9333583217
Н,	-0.6504580718,	-2.205768499,	0.0089277441

IN	т		
114		л	-]

basis set	6-31+G(d)	def2-TZVPP
<i>E</i> (a.u.)	-476.221987	-476.404205
G_corr (a.u.)	0.106032	-
G (a.u.)	-476.115955	-476.298173
freq (cm ⁻¹)	9.10	-

С,	1.4454344154,	0.6426035078,	1.4886652351
Н,	1.1612859894,	0.3083250429,	2.4879403035
С,	2.5866685302,	1.5523243697,	1.3721741379
H,	3.1045896989,	1.889365098,	2.2673338467
С,	0.3367739193,	0.6348373177,	0.4582525596
H,	0.7721275056,	0.8538217835,	-0.5255562043
H,	-0.3592426772,	1.4480821017,	0.6956518416
О,	2.7321932273,	0.1605066712,	1.0761822569
N,	-0.4340805435,	-0.5970547839,	0.359997844
С,	0.3538353519,	-1.7804669797,	0.0323709483
H,	-0.3167454804,	-2.6384634741,	-0.0689760647
H,	1.1271623607,	-2.0250105505,	0.7760449606
H,	0.8492616953,	-1.6219222014,	-0.9316329724
С,	-2.2770655501,	-0.1329028177,	-1.6299816894
О,	-2.5476040962,	0.9201093359,	-1.2070717178
О,	-2.0802404279,	-1.1653536718,	-2.1351163227
H,	2.6553347728,	2.2118516596,	0.5082837275
H,	-0.9446507915,	-0.7508662789,	1.2253607495

TS1-2

basis set	6-31+G(d)	def2-TZVPP
<i>E</i> (a.u.)	-476.219154	-476.397951
G_corr (a.u.)	0.109755	-
G (a.u.)	-476.109399	-476.288196
freq (cm ⁻¹)	-176.26	-

1.4808001942, 1.	2457539197,	-0.0547491742
1.0746289053, 0.	9890633862,	0.9244885875
2.6910122594, 2.	0679200749,	-0.1008404938
3.1406626792, 2.	4160250331,	0.8260274668
0.486029083, 1.	2626978708,	-1.1894903742
1.0138988916, 1.	4238601486,	-2.1361298878
-0.2044521684, 2.	0995579998,	-1.0428790526
2.759598182, 0.	6551748742,	-0.3142967426
-0.318979734, 0.	0450914069,	-1.3164204415
0.4463213499, -1.1	1691245738,	-1.6045995579
-0.2496440703, -1.9	9975218257,	-1.7502244718
1.1477668334, -1.4	4229270992,	-0.8019263823
1.0090413057, -1.0	020135575,	-2.5300060295
-1.8405218442, 0.	3693111289,	-2.7594423527
-2.2281239913, 1.	4491847538,	-2.460545086
-1.8162154199, -0.6	5315327254,	-3.3920536398
2.8915104066, 2.	6728944722,	-0.9834478979
-0.8617440122, -0.0	08825144,	-0.4648120996
	1.4808001942, 1. 1.0746289053, 0. 2.6910122594, 2. 3.1406626792, 2. 0.486029083, 1. 1.0138988916, 1. -0.2044521684, 2. 2.759598182, 0. -0.318979734, 0. 0.4463213499, -1. -0.2496440703, -1.9 1.1477668334, -1.4 1.0090413057, -1.0 -1.8405218442, 0. -2.2281239913, 1. -1.8162154199, -0.0 2.8915104066, 2. -0.8617440122, -0.0	1.4808001942,1.2457539197,1.0746289053,0.9890633862,2.6910122594,2.0679200749,3.1406626792,2.4160250331,0.486029083,1.2626978708,1.0138988916,1.4238601486,-0.2044521684,2.0995579998,2.759598182,0.6551748742,-0.318979734,0.0450914069,0.4463213499,-1.1691245738,-0.2496440703,-1.9975218257,1.1477668334,-1.4229270992,1.0090413057,-1.020135575,-1.8405218442,0.3693111289,-2.2281239913,1.4491847538,-1.8162154199,-0.6315327254,2.8915104066,2.6728944722,-0.8617440122,-0.08825144,

INI	т		
LIN.		1-2	
_	_	_	

basis set	6-31+G(d)	def2-TZVPP
<i>E</i> (a.u.)	-650.683139	-650.919629
G_corr (a.u.)	0.227098	-
G (a.u.)	-650.456040	-650.692531
freq (cm ⁻¹)	15.77	-

N,	-0.2325011217,	1.7241474411,	0.8350028864
С,	-1.204601811,	2.7924776918,	0.6856350606
H,	-0.8244184982,	3.689048237,	1.1843920352
H,	-2.1482888632,	2.5050936634,	1.1517784156
H,	-1.4051711399,	3.0398906389,	-0.3667006174
С,	1.1720787568,	2.0877778349,	0.8203306857
H,	1.75834516,	1.2632173952,	1.2291997466
H,	1.3130298417,	2.9618310519,	1.4678149555
С,	1.6763373044,	2.4153756015,	-0.5703826809
H,	1.1638485861,	3.2302020596,	-1.0828900167
С,	2.3571352424,	1.4126544731,	-1.389477641
О,	3.0981805778,	2.4488016752,	-0.7282645369
С,	-0.6210907706,	0.41323366,	0.5765818871
О,	-1.8367493329,	0.1739542176,	0.3699236047
О,	0.3041651642,	-0.4753428348,	0.5923651328
H,	-0.3506486354,	-1.8318311979,	0.2714143244
N,	-0.7768966639,	-2.7989026403,	0.0253463304
С,	-1.3568119842,	-2.673718581,	-1.3322806712
H,	-1.8200750519,	-3.6199463261,	-1.6217767417
H,	-0.5595774756,	-2.4197080888,	-2.0323763551
H,	-2.0954863982,	-1.8723033723,	-1.3109799048
С,	0.3211829826,	-3.7912477128,	0.0688957047
H,	0.7498656548,	-3.7993612928,	1.0718160825
H,	1.0862932071,	-3.5020957032,	-0.6528385509
H,	-0.0686891531,	-4.7816408798,	-0.1772019243
H,	-2.2990715471,	-4.0385525741,	0.812084724
С,	-1.8214736852,	-3.0819800502,	1.0371832995
H,	-1.3543606872,	-3.1207455078,	2.0223671866
Н,	-2.5476013715,	-2.2694885894,	1.0077679688
H,	2.5016520875,	0.4151635392,	-0.9810817467
H.	2.3358482655.	1.491878581,	-2.4743011936

TS1-3

basis set	6-31+G(d)	def2-TZVPP
<i>E</i> (a.u.)	-650.643269	-650.877007
G_corr (a.u.)	0.227719	-
G (a.u.)	-650.415550	-650.649288
freq (cm ⁻¹)	-594.16	-

N,	-0.2262828359,	0.6958316118,	0.2202373057
С.	-1.091130856,	1.6593170512,	0.863799425
H.	-0.7971861088.	1.8313089669.	1.9091976665
H,	-2.1160168755,	1.2877910934,	0.8412301878
H.	-1.0439080818.	2.6114128993.	0.3264059229
C.	1.1781949779.	1.0275548606.	0.0595435368
H.	1.6744057149.	1.1440717656.	1.0352343553
H.	1.2634785672,	1.9737062546.	-0.4808093743
C.	1.839510191.	-0.0836070289.	-0.7226406896
H.	1.5794990597.	-0.1799132385.	-1.7696144453
С.	3.1675195326.	-0.5555196628.	-0.3454835267
Ó.	3.6118146194.	0.6220350843.	-0.9366725711
С.	-0.5020778737,	-0.6486655453,	0.2335092079
Э.	-1.5996949414,	-1.1203678447,	0.5714665823
Э,	0.5095431677,	-1.3626068115,	-0.1783738361
H,	0.0617951281,	-2.9569665615,	-0.2805368893
N,	-0.2771622587,	-3.9523637339,	-0.3453827109
С,	-1.4167590899,	-3.9481467272,	-1.2985341056
H,	-1.8245112424,	-4.957847764,	-1.37424939
H,	-1.0577012311,	-3.6142062578,	-2.2725407191
H,	-2.1685619346,	-3.2542637456,	-0.9223516052
С,	0.8534108136,	-4.7818255803,	-0.8327379136
H,	1.6778861064,	-4.7049466021,	-0.1234330409
H,	1.1690521563,	-4.407243761,	-1.8069410903
Η,	0.5268239597,	-5.8198992124,	-0.9170063209
H,	-1.1017211733,	-5.3669224875,	0.988769818
С,	-0.712942546,	-4.3472794813,	1.0186160761
H,	0.1438330304,	-4.291362973,	1.6907187325
H,	-1.4836346618,	-3.6477308525,	1.3421037994
Η,	3.3335769704,	-0.6344440796,	0.7421188925
H.	3.4893186458.	-1.4894697464.	-0.8332284797

R ₂		
basis set	6-31+G(d)	def2-TZVPP
<i>E</i> (a.u.)	-937.052241	-937.270273
G_corr (a.u.)	0.115098	-
G (a.u.)	-936.937143	-937.155175
freq (cm ⁻¹)	2.87	-

С,	1.0003121964,	0.0901408576,	0.7008 478668
H,	0.6822746497,	-0.3957006853,	1.635057682
С,	1.4446406783,	1.5152593637,	1.0103083311
Н,	0.6492068259,	2.0792425514,	1.4985080571
C,	-0.1872609489,	0.1300617825,	-0.2747518894
Н,	0.2113145771,	0.2921548569,	-1.2842967283
H,	-0.8150567173,	0.995125312,	-0.0337626225
О,	2.0433144954,	-0.6582824044,	0.0958742349
N,	-1.0587210893,	-1.0331737382,	-0.3016731931
С,	-0.4407193628,	-2.2939206117,	-0.6977570465
H,	-1.2220201232,	-3.0551186793,	-0.7832148327
H,	0.3323447166,	-2.6533022956,	-0.0046936055
H,	0.0210967156,	-2.1695088658,	-1.6829500716
C,	-3.0559413044,	-0.4669755365,	-2.101592876
О,	-2.9819436085,	0.6813616043,	-1.9096295313
0,	-3.2134621154,	-1.5910224952,	-2.3697889115
Н,	2.7490282213,	-0.7890234339,	0.744323731
H,	1.7700079338,	2.0323232237,	0.1057541888
Cl,	2.854347548,	1.5340279976,	2.1475601879
Н,	-1.5145811983,	-1.1401517937,	0.6002678089

basis set	6-31+G(d)	def2-TZVPP
<i>E</i> (a.u.)	-937.049459	-937.264178
G_corr (a.u.)	0.120359	-
G (a.u.)	-936.929100	-937.143819
freq (cm ⁻¹)	-163.00	-

С,	1.7782261088,	1.1635363128,	-0.112 5197469
H,	1.2927930638,	0.8779793027,	0.8322457906
С,	2.3614691667,	2.5656154034,	0.0392400484
H,	1.5909907159,	3.2870492785,	0.3128620817
C,	0.731322242,	1.1816247005,	-1.2286386654
H,	1.2379836264,	1.2633514506,	-2.1966232741
H,	0.1001634878,	2.0674857233,	-1.1077772355
О,	2.7755854091,	0.2167651031,	-0.4526276871
N,	-0.1663348289,	0.0279939425,	-1.2808206149
C,	0.4213119798,	-1.2360036474,	-1.7320067428
H,	-0.3806715988,	-1.9685575937,	-1.8444296577
H,	1.1765867688,	-1.6159643969,	-1.0387827541
H,	0.8865214861,	-1.0782660183,	-2.7087755805
C,	-1.8665365864,	0.5208186574,	-2.4550250986
О,	-2.02867497,	1.6645096824,	-2.1869337342
0,	-2.1152346124,	-0.5053661259,	-2.99200414
Н,	3.376938728,	0.1131208215,	0.2978978187
H,	2.8659947952,	2.883472263,	-0.8747255167
Cl,	3.6004061414,	2.6146310887,	1.3558908687
H,	-0.5978565736,	-0.1045365381,	-0.3677202195

basis set	6-31+G(d)	def2-TZVPP
<i>E</i> (a.u.)	-1111.517467	-1111.789632
G_corr (a.u.)	0.239225	-
G (a.u.)	-1111.278242	-1111.550407
freq (cm ⁻¹)	18.46	-

C.	-2.3424854537.	-0.9177145269,	-1.1130180505
H.	-2.6949960522.	-0.3084047217.	-1.9575455381
Ċ.	-2.3018974842.	-0.0536656619.	0.1369653736
H.	-1.6069367519.	0.7766120966.	0.0192626223
C.	-0.9444224191.	-1.4616667663.	-1.4334886034
H.	-1.0520564822.	-2.1809499754.	-2.2547171572
H.	-0.5556653918.	-1.9958110031.	-0.5641784624
0.	-3.1811564597.	-2.0498386563.	-0.9473793697
N.	-0.0100026967.	-0.427480486.	-1.8228712952
C.	0.0484414804.	-0.0926404321,	-3.2330560293
H.	0.5059108601.	0.8880894462,	-3.3601606994
H,	-0.9652859552,	-0.0623944515,	-3.6446472958
H,	0.631263358,	-0.8297566611,	-3.804903499
С,	0.9873645711,	0.004723599,	-0.9574115646
Ο,	0.8992089564,	-0.3989073903,	0.2578547566
Ο,	1.8866012944,	0.7647721678,	-1.3942136806
N,	2.7603353611,	0.8058817242,	1.6646753264
С,	4.0823144678,	0.3898159744,	1.1415164038
H,	4.132765809,	0.6678234535,	0.0887159379
H,	4.1741961778,	-0.6927372511,	1.2402490771
H,	4.8727334102,	0.8848420594,	1.7106454086
С,	2.542546845,	2.2617901703,	1.4948081659
H,	2.616212013,	2.4913661732,	0.4316867964
H,	3.2939660676,	2.8135011358,	2.0645891679
H,	1.5432019452,	2.5106368483,	1.8550705495
С,	2.5592231339,	0.3751638854,	3.0671834926
H,	3.297201235,	0.8607276751,	3.7098060329
H,	2.6723424057,	-0.7083008791,	3.1227153117
H,	1.5521695294,	0.6538943135,	3.3803728403
H,	2.0098974299,	0.3068287943,	1.0627427807
H,	-4.0901261763,	-1.7480928324,	-0.8132928792
Н,	-2.0362464239,	-0.642003236,	1.0156128546
C1.	-3.9315883741.	0.6734679442.	0.4744541456

basis set	6-31+G(d)	def2-TZVPP
<i>E</i> (a.u.)	-1111.485459	-1111.754567
G_corr (a.u.)	0.241413	-
<i>G</i> (a.u.)	-1111.244046	-1111.513154
freq (cm ⁻¹)	-512.68	-

C.	-2.6105729248.	-0.9160733452,	-0.7909826713
H.	-3.1823734716.	-0.1139956801.	-1.2740150603
Ċ.	-1.9392928739.	-0.3304242031.	0.4352040109
H.	-1.6762778298.	0.7133162793.	0.4720160121
C.	-1.6107881272.	-1.4822552018.	-1.8094234282
H.	-2.1818539339.	-1.7861980885,	-2.6895915131
H,	-1.1494848179,	-2.3779800017,	-1.3771445336
0.	-3.452638329,	-1.9989438654,	-0.4554680096
N.	-0.609852258.	-0.5207293501.	-2.2164120932
C.	-0.4221407482,	-0.2427984937,	-3.6276967797
H,	0.2280482138,	0.6251746078,	-3.7352872559
H.	-1.3887318108.	-0.0222198033,	-4.0895618087
H,	0.0345854709,	-1.0929241287,	-4.151718252
C,	0.3382496589,	-0.1723389619,	-1.2887665023
Ο,	0.0497961957,	-0.5583624818,	-0.0763557928
Ο,	1.3643686568,	0.4665803895,	-1.5853065319
N,	1.7641925429,	0.6990429969,	1.5852465065
С,	3.1256160965,	0.1947317669,	1.2751259721
H,	3.3250519237,	0.3885177599,	0.221281118
H,	3.1531361433,	-0.878731561,	1.4654830042
H,	3.8524268807,	0.7069560358,	1.908480367
С,	1.6415312875,	2.1501657402,	1.29599798
H,	1.8897520312,	2.3090999806,	0.2467833819
H,	2.3229058817,	2.704132019,	1.9447484451
H,	0.6127369852,	2.4602744595,	1.4833905445
С,	1.3521903535,	0.3749428271,	2.973084199
Н,	2.0208326194,	0.8784550172,	3.6739222161
H,	1.4063229907,	-0.7048664867,	3.113681455
H,	0.3271824238,	0.7151017303,	3.1240806714
H,	1.0984732186,	0.1987178801,	0.9310784118
H,	-4.0902985629,	-1.6629189949,	0.1963923677
H,	-1.6838258271,	-0.967555732,	1.2674642681
C1,	-3.9092680495,	0.2461068696,	1.5562693009

. 1	r	•		
	L			
	r		ε.	

basis set	6-31+G(d)	def2-TZVPP
<i>E</i> (a.u.)	-650.709407	-650.948322
G_corr (a.u.)	0.231554	-
G (a.u.)	-650.477852	-650.716768
freq (cm ⁻¹)	18.30	-

С,	1.8487528128,	0.0959958368,	0.1391459951
H,	2.8503200025,	-0.0186624746,	0.5727933057
С,	1.2212319376,	-1.2789690152,	0.0293925831
H,	1.0219289627,	-1.7214693462,	1.0067261128
C.	1.9965678687.	0.6341777232,	-1.274485194
H,	2.8435609922,	0.1542244401,	-1.7809566906
H,	2.1904616464,	1.7106461051,	-1.2321758853
0,	1.0953494654,	0.9910626521,	0.9238821399
N,	0.7780840846,	0.4187901095,	-2.0533816014
С,	0.6228386092,	1.2583926851,	-3.2304260494
H,	0.3155722133,	2.2722386279,	-2.9475523394
H,	-0.1244645469,	0.8292475605,	-3.8961624984
H,	1.5824145959,	1.3127992539,	-3.752739153
С,	-0.2336774187,	-0.402103393,	-1.691143591
О,	-0.0560991807,	-1.2020866394,	-0.6160950428
О,	-1.3103071642,	-0.469869989,	-2.2775566856
N,	-1.2282554879,	0.164712433,	2.1414359437
С,	-2.2945454027,	0.6059454182,	1.2463563419
H,	-2.2821519139,	-0.0024484557,	0.3383427556
H,	-2.1284030045,	1.6509804954,	0.9674282521
H,	-3.2880197684,	0.5221499416,	1.7198156626
С,	-1.384573521,	-1.2451251274,	2.4826517848
H,	-1.3949476721,	-1.8425720904,	1.5670197088
H,	-2.3219530171,	-1.4317774249,	3.0346538425
H,	-0.5454267032,	-1.5682038993,	3.1068124106
С,	-1.1813351207,	0.9895581959,	3.3454754184
H,	-0.3486071846,	0.6678938724,	3.9780096529
H,	-2.1151238908,	0.9190886097,	3.9293158384
H,	-1.0222394626,	2.0357182883,	3.0674210211
H,	0.2821351922,	0.5644036882,	1.3183274697
H.	1.8733296467.	-1.9497251218.	-0.5402686688

TS2-3

basis set	6-31+G(d)	def2-TZVPP
<i>E</i> (a.u.)	-650.662773	-650.896118
G_corr (a.u.)	0.236319	-
G (a.u.)	-650.426454	-650.659799
freq (cm ⁻¹)	-207.20	-

1.9334869726,	0.1753975907,	-0.2501814256
0 5504465000		
2.5/84465832.	0.6980413636,	0.4592901902
1.8185910906,	-1.3330114149,	-0.0192676111
1.6621900084,	-1.5779148203,	1.0387247996
2.2998427729,	0.3984452749,	-1.7242381016
3.2035956337,	-0.1423655009,	-2.0263442293
2.4520128264,	1.4690377803,	-1.9128144254
0.593590124,	0.5973335551,	-0.2031566199
1.099364113,	-0.0822808831,	-2.4293388319
0.5731199433,	0.8702284687,	-3.3929927383
0.2850970419,	1.8291131987,	-2.9293584202
-0.3010969724,	0.4472272912,	-3.891126774
1.3423436942,	1.0681065534,	-4.1461790091
0.1345698145,	-0.497345669,	-1.4254211038
0.6402489808,	-1.6636342491,	-0.7511304769
-1.0883167073,	-0.5033852233,	-1.6693008799
-1.2804264176,	0.056725665,	1.617722347
-2.3960868278,	0.8716514949,	1.0730516352
-2.569752358,	0.5501604088,	0.0455792737
-2.1018830831,	1.921780298,	1.0876893281
-3.2857686651,	0.7219605127,	1.6884345161
-1.6108328534,	-1.3901621942,	1.5974169364
-1.835708484,	-1.6682587302,	0.5684784839
-2.466320542,	-1.5710025033,	2.2518931026
-0.7453490913,	-1.9537111918,	1.9471643888
-0.8625015234,	0.5128641241,	2.9649858426
-0.0193060801,	-0.0944204907,	3.2964336289
-1.6979288295,	0.4030340995,	3.6593890817
-0.5617571509,	1.5594119916,	2.9056614525
-0.461318341,	0.2097205384,	0.9566003211
2.6806203874,	-1.8949771387,	-0.3959673813
	2.5784465832, 1.8185910906, 1.6621900084, 2.2998427729, 3.2035956337, 2.4520128264, 0.593590124, 1.099364113, 0.5731199433, 0.2850970419, -0.3010969724, 1.3423436942, 0.1345698145, 0.6402489808, -1.0883167073, -1.2804264176, -2.3960868278, -2.569752358, -2.1018830831, -3.2857686651, -1.6108328534, -1.6108328534, -1.6108328534, -1.6108328534, -0.7453490913, -0.8625015234, -0.193060801, -1.6979288295, -0.5617571509, -0.461318341, 2.6806203874,	2.5784465832, 0.6980413656, 1.8185910906, -1.3330114149, 1.6621900084, -1.5779148203, 2.2998427729, 0.3984452749, 3.2035956337, -0.1423655009, 2.4520128264, 1.4690377803, 0.593590124, 0.5973335551, 1.099364113, -0.0822808831, 0.5731199433, 0.8702284687, 0.2850970419, 1.8291131987, -0.3010969724, 0.4472272912, 1.3423436942, 1.0681065534, 0.1345698145, -0.497345669, 0.6402489808, -1.6636342491, -1.0883167073, -0.5033852233, -1.2804264176, 0.056725665, -2.3960868278, 0.8716514949, -2.569752358, 0.5501604088, -2.1018830831, 1.921780298, -3.2857686651, 0.7219605127, -1.6108328534, -1.3901621942, -1.682587302, -2.466320542, -1.5710025033, -0.7453490913, -1.9537111918, -0.8625015234, 0.5128641241, -0.0193060801, -0.0944204907, -1.6979288295, 0.4030340995, -0.5617571509, 1.5594119916, -0.461318341, 0.2097205384, 2.6806203874, -1.8949771387,

P₂

basis set	6-31+G(d)	def2-TZVPP
E (a.u.)	-650.713449	-650.952645
G_corr (a.u.)	0.229629	-
G (a.u.)	-650.483820	-650.723016
freq (cm ⁻¹)	23.69	-

C.	1.4394305646,	-0.1046607022,	0.0461091009
H,	1.8708373831,	0.4296210087,	0.8949783773
C,	1.6771843296,	-1.6085591252,	0.1875495651
H,	1.2507614398,	-2.1246559329,	-0.6803432467
C,	1.9101468912,	0.46723666,	-1.2978218913
H,	2.6318099447,	-0.1922327535,	-1.7880220563
H,	2.350651907,	1.4675378904,	-1.2019496909
0,	0.0187200771,	0.1469480773,	0.0600971166
N,	0.657412623,	0.522307267,	-2.0269879142
С,	0.5742381651	1.0156511769,	-3.3827539908
H,	0.9026215698,	2.0607404484,	-3.4391782944
H,	-0.4608097239,	0.9458556204,	-3.7199591578
H,	1.206278794,	0.4072477754,	-4.0352254717
С,	-0.4056781878,	0.4532053954,	-1.193063828
0,	3.0531832486,	-1.8999508772,	0.2338886729
О,	-1.5858837032,	0.6179576897,	-1.4539555752
N,	3.8976820523,	-1.1611260766,	2.7643396399
C,	4.8380971181,	-2.1973356514,	3.1836576342
H,	5.6767990578,	-2.2366694253,	2.4824801064
H,	4.3365251051,	-3.1694865184,	3.1807764703
H,	5.2339402277,	-2.0075354559,	4.1958470223
С,	4.5518353349,	0.1425079339,	2.6992664604
H,	5.3854135764,	0.0997867196,	1.9923044874
H,	4.9388603948,	0.4578672642,	3.6831925866
H,	3.8399413488,	0.8966838982,	2.3502618864
С,	2.7372930965,	-1.1223914442,	3.6503143144
H,	2.025808353,	-0.3698195766,	3.2965502097
H,	3.0196097084,	-0.8734920488,	4.6875116853
H,	2.2414304544,	-2.0974813045,	3.6483327904
H,	3.3900278833,	-1.6329920573,	1.1344236539
H,	1.1549223959,	-1.9670383655,	1.085406437

References

(1) Chandler, B. D.; Roland, J. T.; Li, Y.; Sorensen, E. J. Seebach's Conjunctive Reagent Enables Double Cyclizations. *Org. Lett.* **2010**, *12*, 2746-2749.

(2) Lee, Y.; Choi, J.; Kim, H. Stereocontrolled, Divergent, Al(lll)-Catalyzed Coupling of Chiral *N*-Aryl Epoxy Amines and CO₂. *Org. Lett.* **2018**, *20*, 5036-5039.

(3) Reddy, V. V. R. M. K.; Babu, K. K.; Ganesh, A.; Srinivasulu, P.; Madhududhan, G.; Mukkanti, K. Improved Process for the Preparation of 1-Benzhydrylazetidin-3-ol: Development of an Efficient Synthesis and Identification of Process-related Impurities and/or Intermediates. *Org. Process Res. Dev.* **2010**, *14*, 931-935.

(4) Williams, D. B. G.; Cullen, A. Al(OTf)₃-Mediated Epoxide Ring-Opening Reactions: Toward Piperazine-Derived Physiologically Active Products. *J. Org. Chem.* **2009**, *74*, 9509-9512.

(5) Rintjema, J.; Epping, R.; Fiorani, G.; Martín, E.; Escudero-Adán, E. C.; Kleij, A. W. Substrate-Controlled Product Divergence: Conversion of CO₂ into Heterocyclic Products. *Angew. Chem. Int. Ed.* **2016**, *55*, 3972-3976.

(6) Osa, Y.; Hikima, Y.; Sato, Y.; Takino, K.; Ida, Y.; Hirono, S.; Nagase, H. Convenient Synthesis of Oxazolidinones by the Use of Halomethyloxirane, Primary Amine, and Carbonate Salt. *J. Org. Chem.* **2005**, *70*, 5737-5740.

(7) Niemi, T.; Fernández, I.; Steadman, B.; Mannisto, J. K.; Repo, T. Carbon dioxide-based facile synthesis of cyclic carbamates from amino alcohols. *Chem. Commun.* **2018**, *54*, 3166-3169.

(8) Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

(9) Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. *Phys. Chem. Chem. Phys.* **2008**, *10*, 6615-6620.

(10) Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. *Chem. Rev.* **2005**, *105*, 2999.

(11) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297-3305.

Toda et al. Elect ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 1a

Toda et al. ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 1b

Toda et al.Elect.¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 1c

112 104 96 Chemical Shift (ppm)

Toda et al. ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 1f

17TK-5 cc.010.001.1r.esp

Toda et al. ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 1g

Toda et al.Electronic Supplementary Information¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 1h

Toda et al. ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 1i

Toda et al. Electronic Supplementary Information ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 1j

16MS121 cc3.010.001.1r.esp

112 104 96 Chemical Shift (ppm)

Toda et al. Elect ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 11

Toda et al. Electr ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 1m

Toda et al. Elect ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 1n

Toda et al. ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 10

Toda et al. Electri ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 1p

Toda et al. Electr ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 1q

Toda et al. Electr ¹H (500 MHz, CDCl₃) & ¹³C{¹H} NMR (125 MHz, CDCl₃) Spectra of 1r

Toda et al. ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 2a

Toda et al. ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 2b

Toda et al. ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 2c

Toda et al. ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 2d

Toda et al. ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 2e

Toda et al. ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 2f

16MS135 f5-8 2.010.001.1r.esp

Toda et al. Elect ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 2g

Electronic Supplementary Information

Toda et al. ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 2h

192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0 Chemical Shift (ppm)

Toda et al. ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 2i

.39

Toda et al. ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 2j

Toda et al. Elect ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 2k

16MS119 cc2 f20-28.010.001.1r.esp

Toda et al. Elect ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 2l

Toda et al. ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 2m

Toda et al. ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 2n

Toda et al. ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 20

Toda et al. ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 2p

Toda et al. ¹H (500 MHz, CDCl₃) & ¹³C{¹H} NMR (125 MHz, CDCl₃) Spectra of 2r

YT3-10 cc.010.001.1r.esp

Toda et al.Elect¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 2s

Toda et al. Elect ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 3a

Toda et al. Electro ¹H (300 MHz, CD₃OD) & ¹³C{¹H} NMR (75 MHz, CD₃OD) Spectra of 3a

Toda et al. ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 3b

Toda et al. Elect ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 3c

Toda et al. ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 3d

Toda et al. ¹H (300 MHz, CD₃OD) & ¹³C{¹H} NMR (75 MHz, CD₃OD) Spectra of 3e

Toda et al. Elec ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 3f

Toda et al. ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 3g

Electronic Supplementary Information

Toda et al. ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 3h

Toda et al. ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 3k

Toda et al. ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 3q

Toda et al. Electr ¹H (500 MHz, CDCl₃) & ¹³C{¹H} NMR (125 MHz, CDCl₃) Spectra of 3r

Toda et al. Electronic Supplementary Information ¹H (300 MHz, CDCl₃) & ¹³C{¹H} NMR (75 MHz, CDCl₃) Spectra of 3s

112 104 96 88 Chemical Shift (ppm)

ייייייי

72 64

Toda et al. HPLC Trace of 1d

Toda et al. HPLC Trace of 2d

