Electronic Supplementary Information

MAPbI₃ microcrystals integrated with Ti₃C₂T_x MXene nanosheets for efficient visible-light photocatalytic H₂ production

Wenbo Li,^{a,b,c} Fang Wang, ^{a,b,c} Zhengguo Zhang^{a,b,c} and Shixiong Min*^{a,b,c}

^a School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan,

750021, P. R. China. E-mail: sxmin@nun.edu.cn.

^b Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs

Commission, North Minzu University, Yinchuan, 750021, P. R. China.

^c Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu

University, Yinchuan 750021, P. R. China.

*Corresponding author: <u>sxmin@nun.edu.cn</u>

1. Experimental section

1.1 Chemicals and materials

All chemicals were of analytical grade and used as received without further purification. Methylammonium iodine (MAI, \geq 99.5%) and PbI₂ (\geq 99.99%) were obtained from Xi'an Polymer Light Technology Corp. HI (55~57 wt.% in water) was purchased from Shanghai Titan Scientific Co. Ltd. H₃PO₂ (50 wt.% in water) was received from Shanghai Aladdin Biochemical Technology Co. Ltd. Ti₃AlC₂ powders were purchased from Beijing Dk Nano technology Co., Ltd. LiF was purchased from Aladdin Industrial Corporation. All solutions used throughout the experiments were prepared with ultrapure water (18.2 M Ω cm).

1.2 Preparation of Ti₃C₂T_x nanosheets (Ti₃C₂T_x NSs)

Ti₃C₂T_x NSs were synthesized according to a reported procedure. 2.4 g of LiF was added into 30 mL of 9 M HCl and the solution was allowed to mix thoroughly at room temperature for 10 min. After that, 1.5 g of Ti₃AlC₂ powder was slowly added to aboveprepared LiF-HCl aqueous solution to avoid initial overheating due to exothermic nature of the reaction. Then, the temperature was increased to 35 °C and the reaction allowed to proceed under continuous stirring for 24 h. The powder was repeatedly washed with water until almost neutral pH (\geq 6). The freshly produced powder was then dispersed in 100 mL of water and exfoliated with an aid of ultrasonication for 1 h under continuous N₂ bubbling to minimize oxidation. Then, the resulted suspension solution was centrifuged at 3500 rpm for 1 h and the supernatant was collected and freeze-dried to obtain Ti₃C₂T_x NSs powders.

1.3 Preparation of MAPbI₃ and MAPbI₃-saturated HI-H₃PO₂ solution

MAPbI₃ was synthesized by the reaction of MAI (2.56 g) and PbI₂ (7.43 g) in a 25mL of aqueous solution of H₃PO₂ (50 wt %) and HI (57 wt %) at a volume ratio of 1:4. The solution was then heated at 100 °C for 1 h and cooled to room temperature to obtain the saturated solution with MAPbI₃ precipitates. The MAPbI₃ precipitates were separated from the MAPbI₃-saturated solution by centrifugation and dried at 60 °C for 48 h in a vacuum oven to get MAPbI₃ powders, and the obtained MAPbI₃-saturated HI-H₃PO₂ solution was preserved for photocatalytic experiments and photoelectrochemical measurements.

1.4 Preparation of MAPbI₃-Ti₃C₂T_x NS composite photocatalysts

MAPbI₃-Ti₃C₂T_x NS composite photocatalysts were synthesized by a simple in-situ integration method as follows: 100 mg of MAPbI₃ powder and a certain amount of $Ti_3C_2T_x$ NSs (2, 4, 6, 8, 10, or 12 mg) were added to a reaction cell (65 mL) containing 5 mL of MAPbI₃-saturated HI-H₃PO₂ solution. The resulting mixture were ultrasonicated for 5 min. The MAPbI₃-Ti₃C₂T_x NS composite photocatalysts were then either collected by centrifugation for further characterizations or directly used for following photocatalytic H₂ evolution experiment.

1.5 Characterization

X-ray diffraction (XRD) patterns were investigated with a Rigaku Smartlab diffractometer with a nickel filtrated Cu $K\alpha$ radiation. Scanning electron microscopy (SEM) images were taken with a ZEISS EVO 10 scanning electron microscope. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) images

were taken with a Tecnai-G²-F30 field emission transmission electron microscope. Atomic force microscopy (AFM) was carried out on a AFMWorkshop TT2-AFM atomic force microscope in tapping mode. X-ray photoelectron spectroscopy (XPS) measurements of the samples were performed on a Thermo Scientific Escalab-250Xi electron spectrometer using an Al Ka X-ray source. Binding energies were referenced to the C 1s peak (set at 284.8 eV) of the sp² hybridized (C=C) carbon from the sample. UVvis diffuse reflectance spectra were recorded on a PerkinElmer Lambda-750 UV-visnear-IR spectrometer equipped with an integrating sphere and BaSO₄ powders were used as a reflectance standard. UV-vis absorption spectra were taken with a Thermo Scientific Evolution 220 spectrophotometer. Photoluminescence spectra were determined by a Horiba Scientific FluoroMax-4 spectrofluorometer spectrometer.

1.6 Photocatalytic H₂ evolution experiments

Photocatalytic H₂ evolution experiments were performed with a PCX50C Discover multichannel photocatalytic reaction system (Beijing Perfectlight Technology Co. Ltd.) with white-light LED lamps (10 W×9, 370 nm $\leq\lambda\leq$ 780 nm) as the light source. Then, the reaction solution was thoroughly degassed by repeated evacuation N₂ filling, and finally refilled with N₂ to reach ambient pressure. After that, the reaction solution was irradiated under continuous stirring. The amount of H₂ produced was manually taken out by a gastight syringe (Agilent, 1.0 mL) and analyzed at given time intervals with a precalibrated gas chromatography (Tech comp; GC-7900) with a thermal conductivity detector, a 5 Å molecular sieve column (4 mm×5 m), and with N₂ as carrying gas.

1.7 Determination of solar-to-hydrogen energy conversion efficiency

The solar HI splitting efficiency, so-called solar-to-hydrogen (STH) conversion

efficiency, is the ratio of solar light converted to break the chemical bonding of HI. The standard hydrogen reduction potential is 0 V vs. NHE, and the I⁻ oxidation potential to I_3^- is 0.53 V vs. NHE. Because the concentration of I_3^- ion in the 5.7 M HI aqueous solution was 1.9 M and the pH of the solution was 0.4, the redox potential could be determined from the Nernst equation as follows:¹

$$E (2H^{+}+2e^{-} \rightarrow H_{2}) = 0 - 0.0592 \times 2 \times \log\left(\frac{1}{[H^{+}]^{2}}\right) = 0 - 0.0592 \times pH = 0.0236 \text{ V vs. RHE}$$
$$E (3I^{-} \rightarrow I_{3}^{-}+2e^{-}) = 0.53 + \frac{0.0592}{2} \times \log\left(\frac{[I_{3}^{-}]}{[I^{-}]^{3}}\right) = 0.53 + \frac{0.0592}{2} \times \log\left(\frac{1.9}{5.7^{3}}\right) = -0.47 \text{ V vs. RHE}$$

For this reason, the total potential for the HI splitting in 5.7 M of HI solution could be calculated as 0.0236 V+0.47 V=0.493 V, thus the STH of photocatalytic HI splitting can be calculated as follows:

STH (%)=
$$\frac{\text{Evolved H}_2 \text{ (mol)} \times 6.02 \times 10^{23} \times 2 \times 0.493 \text{ (eV)} \times 1.6 \times 10^{-19}}{P_{\text{sol}} \text{ (W cm}^{-2}) \times S \text{ (cm}^2) \times t \text{ (s)}} \times 100\%$$

where the P_{sol} (W cm⁻²) is the light irradiation flux, the *S* (cm²) represents the irradiation area, and the *t* (s) is irradiation time for H₂ evolution.

According to above equations, in the case of the MAPbI₃ (100 mg)/Ti₃C₂T_x (10 mg), 314.2 μ mol of H₂ was evolved after 6 h of light irradiation at 95 mW cm⁻². The light irradiation area was 9.62 cm², the STH was calculated to be 0.15%.

1.8 Electrochemical and photoelectrochemical measurements

The electrochemical and photoelectrochemical measurements were carried out in a standard three-electrode electrochemical set-up using a CS3103 (Wuhan Corrtest Instruments Corp., Ltd) electrochemical workstation. For the fabrication of working electrode, the catalyst suspension was prepared by dispersing 40 mg of catalyst into 5 mL

of toluene solution with a ultrasonication of 30 min. Afterward, the as-prepared catalyst suspension was drop-coated on one side of carbon paper (HESEN, HCP030P, thickness, 0.3 mm) in a glove box. Then, 20 µL of 0.5 wt% Nafion ethanol solution was drop-coated onto the surface of formed catalyst film and the resulted electrode was transferred to a vacuum oven and dried at 60 °C for 6 h. For photocurrent measurements, a saturated Ag/AgCl and a Pt mesh (1 cm×1 cm) were used as reference electrode and counter electrode, respectively. A 60 mL of dichloromethane (CH₂Cl₂) solution containing 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆) solution was used as the supporting electrolyte. A 300-W white Xe lamp equipped with a cut-off filter of 420 nm was used as the light source. Photocurrent response was recorded by using an amperometric currenttime technique at a bias of -0.423 V vs. Ag/AgCl. For electrochemical measurements, a saturated Ag/AgCl and a graphite rod (Diameter: 6 mm) were used as reference electrode counter electrode, respectively. Potentiostatic electrochemical impedance and spectroscopy (EIS) measurements were carried out at a bias of -0.423 V vs. Ag/AgCl with an AC amplitude of 5 mV in the frequency range of 10 mHz to 100 kHz in CH₂Cl₂ solution containing 0.1 M TBAPF₆ as electrolyte. Linear sweep voltammetry (LSV) measurements were carried out in a MAPbI₃-saturated aqueous HI/H₃PO₂ mixed solution at scan rate of 5 mV s⁻¹.

2. Additional figures and tables

Fig. S1 (a) TEM image of $Ti_3C_2T_x$ NSs. (b) AFM image and (c) the corresponding height

profiles of Ti₃C₂T_x NSs.

Fig. S2 (a) XRD patterns of Ti_3AlC_2 and $Ti_3C_2T_x$ NSs. The appearance of characteristic

diffraction peaks of the (002), (004), (006), (008), (0010), and (0012) planes in the XRD pattern $Ti_3C_2T_x$ NSs shows the successful transformation of Ti_3AlC_2 MAX into $Ti_3C_2T_x$ MXene nanosheets. (b) The easy dispersion of $Ti_3C_2T_x$ NSs in MAPbI₃-saturated HI-

H₃PO₂ solution showing an obvious Tyndall effect.

Fig. S3 (a) XRD patterns of Ti₃C₂T_x NSs, M-Ti₃C₂T_x, and bulk Ti₃AlC₂. (b) SEM image of M-Ti₃C₂T_x. (c) AFM image and (d) the corresponding height profiles of M-Ti₃C₂T_x. (e) Photocatalytic H₂ evolution on the Ti₃AlC₂ (10 mg), MAPbI₃ (100 mg)-M-Ti₃C₂T_x (10 mg), and MAPbI₃ (100 mg)-Ti₃C₂T_x NS (10 mg). Photocatalytic reaction conditions: MAPbI₃-saturated aqueous HI-H₃PO₂ mixed solution, 5 mL;

Light source, 10-W LED lamp, $370 \le \lambda \le 780$ nm; reaction time: 24 h.

In order to clarify the effect of the thickness of the $Ti_3C_2T_x$ on the photocatalytic HER activity, multilayer $Ti_3C_2T_x$ (M- $Ti_3C_2T_x$) was also prepared by etching bulk Ti_3AlC_2 crystals with a LiF/HCl mixed solution without exfoliation and integrated with MAPbI₃ microcrystals for photocatalytic H₂ evolution. The XRD patterns in Fig. S3a show that the Al-layer has been effectively removed from the M- $Ti_3C_2T_x$, but the M- $Ti_3C_2T_x$ is not fully exfoliated. SEM image of Fig. S3b indicates that the M-Ti₃C₂T_x is layered thick sheet. AFM (Fig. S3c) analysis shows that the thickness of the M-Ti₃C₂T_x is 332.1 nm, which corresponds to *ca*. 339 layers. As a result, the MAPbI₃-M-Ti₃C₂T_x shows much inferior photocatalytic H₂ evolution activity to MAPbI₃-Ti₃C₂T_x NS composite (Fig. S3d). This result clearly indicates that the ultrathin feature of the Ti₃C₂T_x NSs is crucial to enhance the photocatalytic performance of the MAPbI₃ microcrystals. The ultrathin Ti₃C₂T_x NSs cannot only supply large surface area to ensure an intimate contact with MAPbI₃ microcrystals for efficient electron transfer, but also greatly shorten the the electron transfer distance from excited MAPbI₃ to the active sites, all of which but also, all of which are beneficial for suppressing the charge recombination and thus enhancing the activity of photocatalytic H₂ evolution.

Fig. S4 Time courses of photocatalytic H_2 evolution on MAPbI₃ (100 mg) integrated with different amounts of $Ti_3C_2T_x$ NSs under visible light irradiation. The reaction conditions are kept same as employed for Fig. 1a.

Table S1	Comparison	of photo	ocatalytic H ₂	evolution	of MAPbI ₃	-Ti ₃ C ₂ T _x NS	composite
----------	------------	----------	---------------------------	-----------	-----------------------	---	-----------

Catalyst	Reactant solution	Light source	H_2 evolution activity (µmol h ⁻¹)	Stability	Ref.
MAPbI ₃ -Ti ₃ C ₂ T _x NS	HI solution	10 W LED Lamp (380 nm≤λ≤780 nm)	64.61	>120 h	This work
MAPbI ₃ /MoS ₂ NSs	HI solution	10 W LED Lamp (380 nm≤λ≤780 nm)	206.1	>150 h	2
MAPbI ₃ /Pt/C	HI solution	10 W LED Lamp (380 nm≤λ≤780 nm)	68.5	N/A	2
MAPbI ₃ /Pt	HI solution	Solar simulator ($\lambda \ge 475$ nm)	11.4	160 h	3
MAPbI ₃ /rGO	HI solution	300 W Xe lamp ($\lambda \ge 420 \text{ nm}$)	93.9	200 h	4
MAPbI ₃ /Ni ₃ C	HI solution	300 W Xe lamp (λ≥420 nm)	116.3	200 h	5
MAPbI ₃ /BP	HI solution	300 W Xe lamp (λ≥420 nm)	748.4	200 h	6
MAPbI ₃ /Pt/TiO ₂	HI solution	300 W Xe lamp (λ≥420 nm)	72.8	12 h	7

with other MAPbI₃-based photocatalysts under visible light.

Fig. S5 Enlarged XRD patterns of pristine Ti₃C₂T_x NSs, pristine MAPbI₃, and MAPbI₃-

 $Ti_3C_2T_x$ NS composite.

Fig. S6 XPS survey spectra of Ti₃C₂T_x NSs, MAPbI₃ and MAPbI₃-Ti₃C₂T_x NS composite.

Fig. S7 XPS spectra (a) C 1s of pristine $Ti_3C_2T_x$ NSs and MAPbI₃- $Ti_3C_2T_x$ NS composite

and (b) I 3d of pristine MAPbI₃ and MAPbI₃-Ti₃C₂T_x NS composite.

Fig. S8 LSV curves of HER over Pt/C and $Ti_3C_2T_x$ NSs coated on carbon paper (CP) recorded in a MAPbI₃-saturated aqueous HI-H₃PO₂ mixed solution at scan rate of 5 mV s⁻

1.

Fig. S9 SEM images of MAPbI₃-Ti₃C₂T_x NS composite after 120 h of photocatalytic H₂ evolution and the corresponding EDS elemental maps of N, Ti, Pb, and I elements.

Fig. S10 Comparison of XRD patterns of MAPbI₃-Ti₃C₂T_x NS composite before and

after stability test.

Fig. S11 XPS spectra (a) Pb 4f, (b) I 3d, (c) Ti 2p, and C 1s of MAPbI₃-Ti₃C₂T_x NS composite after stability test.

References

1. H. Wang, H. F. Zhang, J. H. Wang, Y. Y. Gao, F. T. Fan, K. F. Wu, X. Zong and C. Li, *Angew. Chem. Int. Ed.* 2021, **60**, 13.

2. F. Wang, X. Y. Liu, Z. G Zhang and S. X. Min, Chem. Commun., 2020, 56, 3281.

3. S. Park, W. J. Chang, C. W. Lee, S. Park, H.-Y. Ahn and K. T. Nam, Nat. Energy 2016,

2, 16185.

4. Y. Wu, P. Wang, X. Zhu, Q. Zhang, Z. Wang, Y. Liu, G. Zou, Y. Dai, M. H. Whangbo and B. Huang, *Adv. Mater.*, 2018, **30**, 1704342.

5. Z. Zhao, J. Wu, Y.-Z. Zheng, N. Li, X. Li and X. Tao, ACS Catal., 2019, 9, 8144.

6. R. Li, X. Li, J. Wu, X. Lv, Y.-Z. Zheng, Z. Zhao, X. Ding, X. Tao and J.-F. Chen, *Appl. Catal.*, *B*, 2019, **259**, 118075.

7. X. Wang, H. Wang, H. Zhang, W. Yu, X. Wang, Y. Zhao, X. Zong and C. Li, *ACS Energy Lett.*, 2018, **3**, 1159.