Supporting Information

Selective oxidative intermolecular carbosulphenylation of aryl alkenes

with thiols and nucleophiles via 1,2-dithioethane intermediate

Yuna Wang,^{a,b} Zaojuan Qi,^a Yannig Niu,^c Feng Hua,^{*b} Enrico Benassi,^{*a,d} and Bo Qian^{*a}

^aState Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China. E-mail: <u>ebenassi3@gmail.com; boqian@licp.cas.cn</u>

^bAddress here. Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China. E-mail: <u>hfeng@nwnu.edu.cn</u>

^cDepartment of Teaching and Research, Nanjing Forestry University, Huaian, 223003, P. R. China.

^dNovosibirsk State University, Novosibirsk 630090, Russian Federation

Contents

1	General experimental details and materialsS2
2	Optimization of reaction conditionsS3
3	General procedure for the carbosulfuration of alkeneS8
4	Preliminary mechanistic studies
5	Synthetic applicationS15
6	Experimental characterization data for productsS17
7	Computational details and results
8	References
9	Copies of NMR spectra of the products

1. General experiment details and materials

All non-aqueous reactions and manipulations were used by standard Schlenk techniques. All solvents before used were dried by standard methods and stored under nitrogen atmosphere. All reactions were monitored by TLC with silica gel-coated plates. NMR spectra were recorded on BRUKER AvanceIII (400 MHz) spectrometers. Chemical shifts were reported in parts per million (ppm) down field from tetramethylsilane (TMS) with the solvent resonance as the internal standard. Coupling constants (J) were reported in Hz and refered to apparent peak multiplications. High resolution mass spectra (HRMS) were recorded on Bruker Micro TOF-QII mass instrument (ESI). Gaschromatograph/massspectrometer (GC/MS) were recorded on Agilent 7890A/5975C system. Styrene derivates, thiophenol derivates and arene derivates used here were known compounds and commercially available.

2. Optimization of reaction conditions

Table S1. Screening of oxidant^a

		OMe
	+	oxidant 100 °C, 12 h
1a	2a 3a	4aa
Entry	Oxidant	Yield of 4aa (%) ^b
1	air	trace
2	O_2	trace
3	PhI(OAc) ₂	trace
4	TBHP	0
5	DDQ	trace
6	NFSI	trace
7	NaIO ₄	0
8	NaCr ₂ O ₇ ·2H ₂ O	0
9	NaClO	0
10	KIO ₄	0
11	LiClO ₄	6
12	LiIO ₄ ·2H ₂ O	67

^{*a*}Reaction conditions: **1a** (0.75 mmol, 1.5 equiv), **2a** (0.5 mmol, 1 equiv), oxidant (0.25 mmol, 50 mol %), anisole **3a** (2.0 mL), 100 °C, 12 h, air. ^{*b*}Yield was determined by GC using 1,3,5-trimethoxybenzene as the internal standard.

				OMe
	*	MeO	LilO ₄ .2H ₂ O	S S
1a	2a	3a		4aa 4aa
Entry		LiIO ₄ ·2H ₂ O (mmol)		Yield of 4aa (%) ^b
1		0.05		trace
2		0.1		20
3		0.15		37
4		0.2		54
5		0.25		67
6		0.3		61
7		0.5		54

Table S2. Screening of amount of oxidant^a

^{*a*}Reaction conditions: **1a** (0.75 mmol, 1.5 equiv), **2a** (0.5 mmol, 1 equiv), anisole **3a** (2.0 mL), 100 °C, 12 h, air. ^{*b*}Yield was determined by GC using 1,3,5-trimethoxybenzene as the internal standard.

Table S3. Controlled variable experiment^a

^{*a*}Reaction conditions: **1a** (0.75 mmol, 1.5 equiv), **2a** (0.5 mmol, 1 equiv), anisole **3a** (2.0 mL), I_2O_5 (0.05 mmol, 10 mol %), LiIO₄·2H₂O (0.25 mmol, 50 mol %), 100 °C, 12 h, air. ^{*b*}Yield was determined by GC using 1,3,5-trimethoxybenzene as the internal standard. ^{*c*}Isolated yield.

Table S4. Screening of solvent^a

	+ SH + MeO	OMe LiIO ₄ ·2H ₂ O (50 mol %) I ₂ O ₅ (10 mol %) 100 °C, 12 h, air Solvent (1.0 mL)
1a	2a 3a	4aa
Entry	Solvent (1.0 mL)	Yield of 4aa (%) ^b
1	DMSO	0
2	DMF	0
3	DCE	64
4	benzotrifluoride	63
5	nitrobenzene	62
6	chlorobenzene	55
7	<i>m</i> -xylene	28
8	1,2-dichlorobenzen	e 65
9	mesitylene	23
10	fluorobenzene	70
11	anisole	72

^{*a*}Reaction conditions: **1a** (0.75 mmol, 1 equiv), **2a** (0.5 mmol, 1 equiv), **3a** (7.5 mmol, 15 equiv), I_2O_5 (0.05 mmol, 10 mol %), LiIO₄·2H₂O (0.25 mmol, 50 mol %), slovent (1.0 mL), 100 °C, 12 h, air. ^{*b*}Yield was determined by GC using 1,3,5-trimethoxybenzene as the internal standard.

Table S5. Screening of temperature^a

^{*a*}Reaction conditions: **1a** (0.75 mmol, 1.5 equiv), **2a** (0.5 mmol, 1 equiv), **3a** (2.0 mL), I_2O_5 (0.05 mmol, 10 mol %), LiIO₄·2H₂O (0.25 mmol, 50 mol %), 12 h, air. ^{*b*}Yield was determined by GC using 1,3,5-trimethoxybenzene as the internal standard.

3. General procedure for the carbosulfuration of alkene

Under air atmosphere, styrene **1a** (86 μ L, 0.75 mmol, 1.5 equiv), thiol **2a** (62.1 mg, 0.5 mmol, 1 equiv), LiIO₄ 2H₂O (58.5 mg, 0.25 mmol, 50 mol %), I₂O₅ (16.7 mg, 0.05 mmol, 10 mol %) and anisole **3a** (2.0 mL) were added into the reaction tube, and the mixture was stirred at 100 °C for 12 hours. After cooling to room temperature, the solvent was removed under reduced. Then the reaction mixture was purified by flash column chromatography on silica gel to give the desired product **4aa**.

4. Preliminary mechanistic studies

(1) Radical trap experiments

Under air atmosphere, **1a** (0.75 mmol, 1.5 equiv), **2a** (0.5 mmol, 1 equiv), LiIO₄ $2H_2O$ (58.5 mg, 0.25 mmol, 50 mol %), I_2O_5 (16.7 mg, 0.05 mmol, 10 mol %), TEMPO (156 mg, 1.0 mmol, 2 equiv) and **3a** (2.0 mL) were added into the reaction tube, and the mixture was stirred at 100 °C for 12 hours. After cooling to room temperature, the solvent was detected by TLC and GC/MS. The product **4aa** could not be detected.

Under air atmosphere, **1a** (0.75 mmol, 1.5 equiv), **2a** (0.5 mmol, 1 equiv), LiIO₄ $2H_2O$ (58.5 mg, 0.25 mmol, 50 mol %), I_2O_5 (16.7 mg, 0.05 mmol, 10 mol %), 1,1diphenylethylene (180 mg, 1.0 mmol, 2 equiv) and anisole **3a** (2.0 mL) were added into the reaction tube, and the mixture was stirred at 100 °C for 12 hours. After cooling to room temperature, the reaction mixture was detected by GC using 1,3,5trimethoxybenzene as the internal standard, giving 33% yield of product **4aa**.

Above results suggest that radical process might be involved into the reation.

Under air atmosphere, **1a** (0.75 mmol, 1.5 equiv), **2a** (0.5 mmol, 1 equiv), LiIO₄ 2H₂O (58.5 mg, 0.25 mmol, 50 mol %), I₂O₅ (16.7 mg, 0.05 mmol, 10 mol %), CH₃OH (40.5 μ L, 1.0 mmol, 2 equiv) and anisole **3a** (2.0 mL) were added into the reaction tube, and the mixture was stirred at 100 °C for 12 hours. After cooling to room temperature, the reaction mixture was detected by ¹H NMR using 1,3,5-trimethoxybenzene as the internal standard, giving 28% yield of product **4aa** and 67% yield of **6**, respectively. The result suggests that cation species might be involved into the reaction.

(3) Possible intermediates:

Under air atmosphere, **1a** (0.75 mmol, 1.5 equiv), **S-1** (0.25 mmol, 1 equiv), LiIO₄ $2H_2O$ (58.5 mg, 0.25 mmol, 50 mol %), I_2O_5 (16.7 mg, 0.05 mmol, 10 mol %) and anisole **3a** (2.0 mL) were added into the reaction tube, and the mixture was stirred at 100 °C for 12 hours. After cooling to room temperature, the reaction mixture was detected by GC using 1,3,5-trimethoxybenzene as the internal standard, giving trace amount of product **4aa**.

Under air atmosphere, **1a** (0.75 mmol, 1.5 equiv), **S-2** (0.5 mmol, 1 equiv), LiIO₄ $2H_2O$ (58.5 mg, 0.25 mmol, 50 mol %), I_2O_5 (16.7 mg, 0.05 mmol, 10 mol %) and **3a** (2.0 mL) were added into the reaction tube, and the mixture was stirred at 100 °C for 12 hours. After cooling to room temperature, the reaction mixture was detected by GC using 1,3,5-trimethoxybenzene as the internal standard, giving trace amount of product **4aa**.

Under air atmosphere, 7 (0.5 mmol, 1 equiv), **3a** (15 mmol, 30 equiv), $LiIO_4 \cdot 2H_2O$ (0.25 mmol, 50 mol %) and I_2O_5 (0.05 mmol, 10 mol %) were added into the reaction tube, and the mixture was stirred at 100 °C for 12 hours. After cooling to room temperature, the reaction mixture was detected by GC using 1,3,5-trimethoxybenzene as the internal standard, giving 18% yield of product **4aa**.

(4) Reation profiles:

Figure S1. Reation profiles

Reaction profiles depicted in Figure S1 support the hypothesis of a consecutive reaction mechanism:

$$[R] \xrightarrow{k_1} [7] \xrightarrow{k_2} [4aa]$$

where R indicates the reactants (*i.e.* 1a, 2a and 3a), and which can be solved analytically:

$$[7] = \frac{k_1}{k_2 - k_1} [R]_0 (e^{-k_1 t} - e^{-k_2 t})$$

$$[4aa] = [R]_0 \left[1 - \frac{1}{k_2 - k_1} (k_2 e^{-k_1 t} - k_1 e^{-k_2 t}) \right] \cong [R]_0 \left[1 - e^{-k_2 t} \right]$$

The time where the intermediate's concentration is max is:

$$\tilde{t} = \frac{ln^{(n)}(\frac{k_1}{k_2})}{k_1 - k_2}$$

From the profile of concentration of the product **4aa**, the values of $[R]_0$ and of the kinetic constant k_2 (the rate determining step) can be readily determined upon nonlinear least-square regression, *viz.* $[R]_0 = (73.4 \pm 1.4)$ % and $k_2 = (19.8 \pm 1.2)$ min⁻¹ (Adj-R² = 0.99108; Figure S2).

Figure S2. Product formation profile (circles) and fitting model (solid line).

Procedure for reaction profiles:

Under air atmosphere, **1a** (0.75 mmol, 1.5 equiv), **2a** (0.5 mmol, 1 equiv), LiIO₄·2H₂O (0.25 mmol, 50 mol %), I₂O₅ (0.05 mmol, 10 mol %) and **3a** (2.0 mL) were added into the reaction tube, and the mixture was stirred at 100 °C for $0\sim16$ hours. After cooling to room temperature and then analyzed by GC (the yield of product **4aa** and intermediate **7** was determined by GC using 1,3,5-trimethoxybenzene as the internal standard).

5. Synthetic applications

(1) Gram scale experiment

Under air atmosphere, **1a** (1.0 mL, 9 mmol, 1.5 equiv), **2a** (745 mg, 6 mmol, 1 equiv), I_2O_5 (200 mg, 0.6 mmol, 10 mol %), $LiIO_4 \cdot 2H_2O$ (702 mg, 3 mmol, 50 mol %) and **3a** (24 mL) were added into the reaction tube, and the mixture was stirred at 100 °C for 24 hours. After cooling to room temperature, the solvent was removed under reduced. Then the reaction mixture was purified by flash column chromatography on silica gel to give the desired product **4aa** in 78% yield (1.53 g).

(2) Synthesis of sulfoxide

Under air atmosphere, **4am** (175 mg, 0.5 mmol, 1 equiv) and DCM (2.0 mL) were added into the reaction tube, *m*-CPBA (86.0 mg, 0.5 mmol, 1 equiv) was added under stirring at -15 °C. The mixture was stirred at 25 °C for 5 hours, then the reaction was quenched by 10 mL of NaOH saturated solution. The aqueous phase extracted with NaOH saturated solution (2×10 mL) and combined organic phases dried with Na₂SO₄. The solvent was removed under reduced pressure, then the reaction mixture was purified by flash column chromatography on silica gel and eluted with ethyl acetate/ petroleum ether (1/5~1/1) to give sulfoxide **8** (146 mg, 80% yield, a white solid).

(3) Synthesis of sulfone

Under air atmosphere, **4am** (175.0 mg, 0.5 mmol, 1 equiv) and DCM (2.0 mL) were added into the reaction tube, *m*-CPBA (258 mg, 1.5 mmol, 3 equiv) was added under stirring at -4 °C. The mixture was stirred at 25 °C for 5 hours, then the reaction was quenched by 10 mL of NaOH saturated solution. The aqueous phase extracted with NaOH saturated solution (2×10 mL) and combined organic phases dried with Na₂SO₄. The solvent was removed under reduced pressure, then the reaction mixture was purified by flash column chromatography on silica gel and eluted with ethyl acetate/ petroleum ether ($1/10 \sim 2/1$) to give sulfone **9** (174 mg, 91% yield, a white solid).

6. Experimental characterization data for products

(2-(4-Methoxyphenyl)-2-phenylethyl)(*p*-tolyl)sulfane (4aa): A yellow oil, 125 mg, 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.20 (t, *J* = 7.6 Hz, 2H), 7.15-7.11 (m, 5H), 7.06 (d, *J* = 8.5 Hz, 2H), 7.00 (d, *J* = 7.9 Hz, 2H), 6.75 (d, *J* = 8.6 Hz, 2H), 4.05 (t, *J* = 7.9 Hz, 1H), 3.68 (s, 3H), 3.44 (d, *J* = 7.9 Hz, 2H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 143.6, 136.3, 135.3, 132.8, 130.3, 129.8, 129.0, 128.6, 127.9, 126.6, 113.9, 55.3, 49.8, 40.6, 21.1; HRMS (ESI) calcd for C₂₂H₂₃OS [M+H]: 335.1464, found: 335.1455.

(2-(4-Fluorophenyl)-2-(4-methoxyphenyl)ethyl)(*p*-tolyl)sulfane (4ba): A yellow oil, 146 mg, 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.20 (m, 2H), 7.17-7.13 (m, 2H), 7.12-7.08 (m, 4H), 6.98-6.94 (m, 2H), 6.85-6.81 (m, 2H), 4.10 (t, *J* = 7.9 Hz, 1H), 3.76 (s, 3H), 3.53-3.43 (m, 2H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.6 (d, *J* = 243.3 Hz), 158.4, 139.2 (d, *J* = 3.3 Hz), 136.4, 135.2, 132.5, 130.4, 129.8, 129.4 (d, *J* = 7.8 Hz), 128.8, 115.4 (d, *J* = 21.1 Hz), 114.0, 55.3, 49.0, 40.8, 21.1, ¹⁹F NMR (376 MHz, CDCl₃) δ -116.4; HRMS (ESI) calcd for C₂₂H₂₂FOS [M+H]: 353.1370, found: 353.1363.

(2-(4-Chlorophenyl)-2-(4-methoxyphenyl)ethyl)(*p*-tolyl)sulfane (4ca): A yellow oil, 138 mg, 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.13-7.09 (m, 4H), 7.02-6.96 (m, 6H), 6.71 (d, *J* = 8.5 Hz, 2H), 3.98 (t, *J* = 7.9 Hz, 1H), 3.62 (s, 3H), 3.41-3.31 (m, 2H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 142.0, 136.5, 134.9, 132.5, 132.4, 130.5, 129.9, 129.4, 128.9, 128.7, 114.1, 55.3, 49.2, 40.5, 21.2; HRMS (ESI) calcd for C₂₂H₂₁ClNaOS [M+Na]: 391.0894, found: 391.0887.

(2-(3-Chlorophenyl)-2-(4-methoxyphenyl)ethyl)(*p*-tolyl)sulfane (4da): A yellow oil, 65.5 mg, 36% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.17 (m, 3H), 7.12 (d, *J* = 5.3 Hz, 2H), 7.08-7.03 (m, 5H), 6.79 (d, *J* = 8.3 Hz, 2H), 4.06 (t, *J* = 7.9 Hz, 1H), 3.68 (s, 3H), 3.44 (d, *J* = 8.0 Hz, 2H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 145.8, 136.6, 134.6, 134.4, 132.6, 130.6, 130.0, 129.9, 129.0, 128.2, 126.9, 126.3, 114.2, 55.3, 49.7, 40.5, 21.2; HRMS (ESI) calcd for C₂₂H₂₁ClNaOS [M+Na]: 391.0894, found: 391.0897.

(2-(2-Chlorophenyl)-2-(4-methoxyphenyl)ethyl)*(p*-tolyl)sulfane (4ea): A yellow oil, 117 mg, 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.20 (m, 4H), 7.16-7.11 (m,

3H), 7.07-7.02 (m, 3H), 6.78 (d, J = 8.0 Hz, 2H), 4.68 (t, J = 6.2 Hz, 1H), 3.66 (s, 3H), 3.52-3.39 (m, 2H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 140.9, 136.6, 134.4, 133.9, 132.7, 130.9, 130.0, 129.9, 129.5, 128.8, 128.0, 127.1, 114.1, 55.3, 46.0, 40.1, 21.3; HRMS (ESI) calcd for C₂₂H₂₁ClNaOS [M+Na]: 391.0894, found: 391.0894.

(2-(4-Bromophenyl)-2-(4-methoxyphenyl)ethyl)(*p*-tolyl)sulfane (4fa): A yellow oil, 143 mg, 69% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 7.8 Hz, 2H), 7.04 (q, *J* = 7.6 Hz, 2H), 6.79 (d, *J* = 8.3 Hz, 2H), 4.05 (t, *J* = 7.8 Hz, 1H), 3.69 (s, 3H), 3.48-3.39 (m, 2H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 142.7, 136.5, 134.9, 132.6, 131.7, 130.5, 130.0, 129.9, 129.0, 120.6, 114.2, 55.3, 49.4, 40.5, 21.2; HRMS (ESI) calcd for C₂₂H₂₁BrNaOS [M+Na]: 435.0389, found: 435.0391.

(2-(4-Methoxyphenyl)-2-(3-

(trifluoromethyl)phenyl)ethyl)(*p*-tolyl)sulfane (4ga): A yellow oil, 48.1 mg, 24% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.38 (m, 4H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.04 (dd, *J*₁ = 8.6 Hz, *J*₂ = 12.3 Hz, 4H), 6.84 (d, *J* = 8.7 Hz, 2H), 4.16 (t, *J* = 7.8 Hz, 1H), 3.77 (s, 3H), 3.56-3.46 (m, 2H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 144.4, 136.7, 134.4, 132.1, 131.3, 130.9, 130.7, 130.6, 129.8, 129.7, 129.0, 128.9, 124.1 (dd, *J*₁ = 75.9 Hz, *J*₂ = 197.9 Hz), 55.3, 49.7, 40.5, 21.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.3; HRMS (ESI) calcd for C₂₃H₂₂F₃OS [M+H]: 403.1338, found: 403.1330.

(2-(4-(Chloromethyl)phenyl)-2-(4-methoxyphenyl)ethyl)(*p*-tolyl)sulfane (4ha): A yellow oil, 39.1 mg, 20% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.07 (m, 10H), 6.82 (d, *J* = 8.2 Hz, 2H), 4.53 (s, 2H), 4.12 (t, *J* = 7.9 Hz, 1H), 3.75 (s, 3H), 3.49 (d, *J* = 7.8 Hz, 2H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.4, 143.9, 136.4, 135.7, 135.0, 132.6, 130.4, 129.8, 128.9, 128.9, 128.3, 114.0, 55.3, 49.5, 46.1, 40.5, 21.1; HRMS (ESI) calcd for C₂₃H₂₃ClNaOS [M+Na]: 405.1050, found: 405.1038.

(2-(4-Methoxyphenyl)-2-(*m*-tolyl)ethyl)(*p*-tolyl)sulfane (4ia): A yellow oil, 128 mg, 74% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, J = 8.2 Hz, 2H), 7.17-7.13 (m, 3H), 7.07 (d, J = 7.9 Hz, 2H), 7.03-6.99 (m, 3H), 6.82 (d, J = 8.7 Hz, 2H), 4.09 (t, J = 7.9 Hz, 1H), 3.75 (s, 3H), 3.54-3.48 (m, 2H), 2.30 (d, J = 5.5 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 143.5, 138.1, 136.2, 135.4, 132.9, 130.2, 129.7, 129.0, 128.7, 128.5, 127.4, 124.8, 113.9, 55.3, 49.8, 40.6, 21.6, 21.1; HRMS (ESI) calcd for C₂₃H₂₅OS [M+H]: 349.1621, found: 349.1621.

(2-(4-Methoxyphenyl)-2-(*o*-tolyl)ethyl)(*p*-tolyl)sulfane (4ja): A yellow oil, 147 mg, 84% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, *J* = 7.6 Hz, 1H), 7.20 (t, *J* = 8.0 Hz,

3H), 7.14-7.06 (m, 6H), 6.79 (d, J = 8.6 Hz, 2H), 4.30 (t, J = 7.8 Hz, 1H), 3.73 (s, 3H), 3.53-3.42 (m, 2H), 2.30 (s, 3H), 2.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.2, 141.2, 136.4, 136.3, 134.9, 132.9, 130.7, 130.4, 129.8, 129.3, 126.6, 126.6, 126.1, 113.9, 55.3, 45.5, 40.8, 21.1, 19.8; HRMS (ESI) calcd for C₂₃H₂₅OS [M+H]: 349.1621, found: 349.1618.

(2-(4-(*tert*-Butyl)phenyl)-2-(4-methoxyphenyl)ethyl)(*p*-tolyl)sulfane (4ka): A yellow oil, 147 mg, 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, *J* = 8.4 Hz, 2H), 7.21 (d, *J* = 7.8 Hz, 2H), 7.16-7.12 (m, 4H), 7.06 (d, *J* = 7.8 Hz, 2H), 6.82 (d, *J* = 8.7 Hz, 2H), 4.11 (t, *J* = 7.8 Hz, 1H), 3.74 (s, 3H), 3.56-3.46 (m, 2H), 2.29 (s, 3H),1.27 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 149.3, 140.6, 136.1, 135.4, 133.0, 130.2, 129.7, 129.0, 127.4, 125.5, 113.9, 55.3, 49.5, 40.7, 34.5, 31.5, 21.1; HRMS (ESI) calcd for C₂₆H₃₁OS [M+H]: 391.2090, found: 391.2081.

(4-Fluorophenyl)(2-(4-methoxyphenyl)-2-phenylethyl)sulfane (4ab): A yellow oil, 109 mg, 64% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.26 (m, 4H), 7.19 (d, *J* = 6.8 Hz, 3H), 7.13 (d, *J* = 8.7 Hz, 2H), 6.95 (t, *J* = 8.6 Hz, 2H), 6.82 (d, *J* = 8.7 Hz, 2H), 4.10 (t, *J* = 7.9 Hz, 1H), 3.75 (s, 3H), 3.50 (d, *J* = 7.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 161.8 (d, *J* = 244.9 Hz), 158.4, 143.4, 135.0, 132.6 (d, *J* = 7.8 Hz), 131.4 (d, *J* = 3.3 Hz), 128.9, 128.6, 127.9, 126.7, 116.1 (d, *J* = 21.9 Hz), 114.0, 55.3, 49.9, 41.3, ¹⁹F NMR (376 MHz, CDCl₃) δ -115.4; HRMS (ESI) calcd for C₂₁H₁₉FNaOS [M+Na]: 361.1033, found: 361.1021.

(4-Chlorophenyl)(2-(4-methoxyphenyl)-2-phenylethyl)sulfane (4ac): A yellow oil, 108 mg, 61% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.26 (m, 2H), 7.21-7.17 (m, 7H), 7.13 (d, *J* = 8.2 Hz, 2H), 6.82 (d, *J* = 8.6 Hz, 2H), 4.12 (t, *J* = 7.9 Hz, 1H), 3.75 (s, 3H), 3.52 (d, *J* = 8.0 Hz, 2H), ¹³C NMR (100 MHz, CDCl₃) δ 158.4, 143.3, 135.2, 134.9, 132.0, 130.8, 129.1, 128.9, 128.7, 127.8, 126.8, 114.0, 55.3, 49.8, 40.2; HRMS (ESI) calcd for C₂₁H₁₉ClNaOS [M+Na]: 377.0737, found: 377.0732.

(3-Chlorophenyl)(2-(4-methoxyphenyl)-2-phenylethyl)sulfane (4ad): A yellow oil, 98.3 mg, 56% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.15 (m, 6H), 7.14-7.05 (m, 5H), 6.81-6.77 (m, 2H), 4.13 (t, *J* = 7.9 Hz, 1H), 3.67 (s, 3H), 3.50 (d, *J* = 7.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 143.4, 139.3, 135.0, 134.8, 130.1, 129.1, 128.8, 128.5, 128.0, 127.0, 127.0, 126.1, 114.2, 53.3, 49.9, 39.6; HRMS (ESI) calcd for C₂₁H₁₉ClNaOS [M+Na]: 377.0737, found: 377.0739.

(2-Chlorophenyl)(2-(4-methoxyphenyl)-2-phenylethyl)sulfane (4ae): A yellow oil,
57.3 mg, 32% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.21 (m, 6H), 7.19-7.11 (m,
4H), 7.06-7.02 (m, 1H), 6.83-6.79 (m, 2H), 4.20 (t, J = 7.9 Hz, 1H), 3.71 (s, 3H), 3.53

(d, J = 7.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 143.4, 136.1, 135.0, 134.0, 129.8, 129.2, 129.0, 128.7, 127.9, 127.2, 126.8, 126.8, 114.1, 55.3, 49.7, 38.9; HRMS (ESI) calcd for C₂₁H₁₉ClNaOS [M+Na]: 377.0737, found: 377.0737.

(4-Bromophenyl)(2-(4-methoxyphenyl)-2-phenylethyl)sulfane (4af): A yellow oil, 122 mg, 61% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 8.4 Hz, 2H), 7.26-7.22 (m, 2H), 7.19-7.14 (m, 3H), 7.09 (t, J = 8.8 Hz, 4H), 6.79 (d, J = 8.5 Hz, 2H), 4.11 (t, J= 7.8 Hz, 1H), 3.69 (s, 3H), 3.49 (d, J = 7.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 143.2, 135.9, 134.8, 131.9, 130.7, 128.9, 128.6, 127.8, 126.7, 119.7, 114.0, 55.2, 49.7, 39.8; HRMS (ESI) calcd for C₂₁H₁₉BrNaOS [M+Na]: 421.0232, found: 421.0223.

(2-Bromophenyl)(2-(4-methoxyphenyl)-2-phenylethyl)sulfane (4ag): A yellow oil, 39.4 mg, 29% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (dd, J_1 = 1.3 Hz, J_2 = 8.0 Hz, 1H), 7.30-7.14 (m, 9H), 6.99-6.95 (m, 1H), 6.82 (d, J= 8.7 Hz, 2H), 4.22 (t, J = 7.8 Hz, 1H), 3.73 (s, 3H), 3.54 (d, J = 7.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 143.4, 138.2, 135.0, 133.1, 129.0, 128.9, 128.7, 127.9, 127.8, 126.9, 126.8, 124.2, 114.1, 55.3, 49.6, 39.3; HRMS (ESI) calcd for C₂₁H₁₉BrNaOS [M+Na]: 421.0232, found: 421.0226.

Methyl 2-((2-(4-methoxyphenyl)-2-phenylethyl)thio)benzoate (4ah): A yellow solid, 113 mg, 60% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 7.7 Hz, 1H), 7.42-7.34 (m, 2H), 7.31-7.25 (m, 4H), 7.22-7.18 (m, 3H), 7.13 (t, J = 7.6 Hz, 1H), 6.83 (d, J = 8.6 Hz, 2H), 4.27 (t, J = 7.7 Hz, 1H), 3.83 (s, 3H), 3.74 (s, 3H), 3.55 (d, J = 7.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 158.4, 143.6, 141.7, 135.2, 132.3, 131.2, 128.9, 128.7, 128.2, 127.8, 126.7, 126.2, 124.1, 114.0, 55.3, 52.1, 49.2, 38.6; HRMS (ESI) calcd for C₂₃H₂₃O₃S [M+H]: 379.1362, found: 379.1361.

(2-(4-Methoxyphenyl)-2-phenylethyl)(*m*-tolyl)sulfane (4ai): A yellow oil, 131 mg, 78% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.24 (m, 2H), 7.22-7.17 (m, 3H), 7.16-7.08 (m, 5H), 6.97-6.94 (m, 1H), 6.83-6.79 (m, 2H), 4.15 (t, *J* = 7.9 Hz, 1H), 3.72 (s, 3H), 3.54 (d, *J* = 8.0 Hz, 2H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.4, 143.6, 138.8, 136.6, 135.3, 130.1, 129.0, 128.9, 128.7, 128.0, 127.0, 126.7, 126.4, 114.0, 55.3, 49.9, 39.9, 21.5; HRMS (ESI) calcd for C₂₂H₂₃OS [M+H]: 335.1464, found: 335.1463.

(2-(4-Methoxyphenyl)-2-phenylethyl)(o-tolyl)sulfane (4aj): A yellow oil, 117 mg,

70% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.16 (m, 5H), 7.15-7.06 (m, 5H), 7.04-6.99 (m, 1H), 6.77 (d, J = 8.6 Hz, 2H), 4.14 (t, J = 7.8 Hz, 1H), 3.63 (s, 3H), 3.47 (d, J = 8.0 Hz, 2H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 143.9, 138.1, 136.3, 135.5, 130.4, 129.2, 128.8, 128.6, 128.1, 126.7, 126.7, 126.1, 114.2, 55.4, 50.0, 39.4, 20.7; HRMS (ESI) calcd for C₂₂H₂₂NaOS [M+Na]: 357.1284, found: 357.1280.

(3,5-Dimethylphenyl)(2-(4-methoxyphenyl)-2-phenylethyl)sulfane (4ak): A yellow solid, 108 mg, 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.17 (m, 4H), 7.15-7.09 (m, 3H), 6.90 (s, 2H), 6.76 (t, J = 8.6 Hz, 3H), 4.15 (t, J = 7.8 Hz, 1H), 3.64 (s, 3H), 3.51 (d, J = 7.8 Hz, 2H), 2.20 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 143.9, 143.9, 138.7, 136.6, 136.6, 135.5, 129.2, 128.8, 128.1, 127.2, 126.8, 114.2, 55.3, 50.2, 50.2, 40.0, 21.5; HRMS (ESI) calcd for C₂₃H₂₅OS [M+H]: 349.1621, found: 349.1623.

(4-(*tert*-Butyl)phenyl)(2-(4-methoxyphenyl)-2-phenylethyl)sulfane (4al): A yellow oil, 115 mg, 61% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.11 (m, 10H), 6.79 (d, J = 8.6 Hz, 2H), 4.15 (t, J = 7.8 Hz, 1H), 3.68 (s, 3H), 3.51 (d, J = 7.7 Hz, 2H), 1.27 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 149.4, 143.8, 135.4, 133.3, 129.8, 129.1, 128.7, 128.1, 126.8, 126.2, 114.1, 55.3, 50.1, 40.5, 34.6, 31.5; HRMS (ESI) calcd for C₂₅H₂₉OS [M+H]: 377.1934, found: 377.1931.

(4-Methoxyphenyl)(2-(4-methoxyphenyl)-2-phenylethyl)sulfane (4am): A yellow oil, 131 mg, 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.27 (dd, $J_1 = 8.5$ Hz, $J_2 = 15.1$ Hz, 4H), 7.18 (d, J = 7.6 Hz, 3H), 7.12 (d, J = 8.5 Hz, 2H), 6.81 (d, J = 8.6 Hz, 4H), 4.08 (t, J = 7.9 Hz, 1H), 3.74 (d, J = 9.0 Hz, 6H), 3.45 (d, J = 7.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 158.3, 143.6, 135.3, 133.4, 129.0, 128.6, 127.9, 126.6, 126.6, 114.7, 114.0, 55.4, 55.3, 49.9, 42.0; HRMS (ESI) calcd for C₂₂H₂₃O₂S [M+H]: 351.1413, found: 351.1410.

(2-(4-Methoxyphenyl)-2-phenylethyl)(4-(methylthio)phenyl)sulfane (4an): A yellow solid, 135 mg, 74% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.12 (m, 11H), 6.82 (d, *J* = 8.2 Hz, 2H), 4.12 (t, *J* = 7.9 Hz, 1H), 3.74 (s, 3H), 3.51 (d, *J* = 7.9 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 143.4, 136.7, 135.1, 132.9, 130.6, 128.9, 128.6, 127.9, 127.2, 126.7, 114.0, 55.3, 49.8, 40.5, 16.0; HRMS (ESI) calcd for C₂₂H₂₂NaOS₂ [M+Na]: 389.1004, found: 389.1006.

2-((2-(4-Methoxyphenyl)-2-phenylethyl)thio)thiophene (4ao): A yellow oil, 50.6 mg,

31% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.26 (m, 3H), 7.23-7.19 (m, 3H), 7.13 (d, *J* = 8.5 Hz, 2H), 7.05-7.03 (m, 1H), 6.96-6.94 (m, 1H), 6.83 (d, *J* = 8.6 Hz, 2H), 4.15 (t, *J* = 7.9 Hz, 1H), 3.76 (s, 3H), 3.44 (d, *J* = 7.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 143.2, 134.9, 134.6, 133.6, 129.3, 129.0, 128.6, 127.9, 127.6, 126.7, 114.0, 55.3, 49.8, 44.8; HRMS (ESI) calcd for C₁₉H₁₉OS₂ [M+H]: 327.0872, found: 327.0868.

Benzyl(2-(4-methoxyphenyl)-2-phenylethyl)sulfane (4ap): A yellow oil, 65.4 mg, 39% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.21 (m, 7H), 7.16-7.11 (m, 3H), 7.05 (d, *J* = 8.6 Hz, 2H), 6.77 (d, *J* = 8.6 Hz, 2H), 4.00 (t, *J* = 7.8 Hz, 1H), 3.66 (s, 3H), 3.57 (s, 2H), 3.02 (d, *J* = 7.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.4, 144.0, 138.6, 135.6, 129.1, 129.1, 128.6, 128.6, 128.0, 127.2, 126.7, 114.0, 53.3, 50.6, 37.5, 37.2; HRMS (ESI) calcd for C₂₂H₂₃OS [M+H]: 335.1464, found: 335.1460.

(2-(4-Methoxyphenyl)-2-phenylethyl)(phenethyl)sulfane (4aq): A yellow oil, 104 mg, 60% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.15 (m, 7H), 7.14-7.10 (m, 4H), 6.81 (d, *J* = 8.6 Hz, 2H), 4.10 (t, *J* = 7.8 Hz, 1H), 3.70 (s, 3H), 3.15 (d, *J* = 7.8 Hz, 2H), 2.83-2.79 (m, 2H), 2.69-2.65 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.4, 144.0, 140.7, 135.7, 129.0, 128.7, 128.6, 128.6, 128.0, 126.7, 126.5, 114.1, 53.3, 50.9, 38.6, 36.5, 34.6; HRMS (ESI) calcd for C₂₃H₂₅OS [M+H]: 349.1621, found: 349.1622.

Methyl3-((2-(4-methoxyphenyl)-2-phenylethyl)thio)propanoate (4ar): A yellow oil, 115 mg, 70% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.26 (m, 2H), 7.23-7.14 (m, 5H), 6.82 (d, *J* = 8.8 Hz, 2H), 4.12 (t, *J* = 7.9 Hz, 1H), 3.73 (s, 3H), 3.65 (s, 2H), 3.18 (d, *J* = 7.9 Hz, 2H), 2.72 (t, *J* = 7.2 Hz, 2H), 2.55 (t, *J* = 7.3 Hz, 2H);¹³C NMR (100 MHz, CDCl₃) δ 172.4, 158.3, 143.7, 135.4, 128.9, 128.6, 127.8, 126.6, 114.0, 55.2, 51.8, 50.6, 38.4, 34.7, 27.8; HRMS (ESI) calcd for C₁₉H₂₃O₃S [M+H]: 331.1362, found: 331.1357.

(2-(4-Methoxyphenyl)-2-phenylethyl)(propyl)sulfane (4as): A yellow oil, 76.4 mg, 53% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.22 (m, 4H), 7.19-7.15 (m, 3H), 6.82 (d, *J* = 8.5Hz, 2H), 4.12 (t, *J* = 7.9 Hz, 1H), 3.73 (s, 3H), 3.15 (d, *J* = 7.9 Hz, 2H), 2.43 (t, *J* = 7.2 Hz, 2H), 1.61-1.52 (m, 2H), 0.93 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 144.0, 135.7, 128.9, 128.6, 127.9, 126.6, 113.9, 55.3, 50.8, 38.3, 35.1, 23.0, 12.6; HRMS (ESI) calcd for C₁₈H₂₃OS [M+H]: 287.1464, found: 287.1464.

Sec-butyl(2-(4-methoxyphenyl)-2-phenylethyl)sulfane (4at): A yellow oil, 98.6 mg, 66% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.22 (m, 4H), 7.20-7.16 (m, 3H), 6.83

(d, J = 8.6 Hz, 2H), 4.12 (t, J = 7.9 Hz, 1H), 3.75 (s, 3H), 3.16 (d, J = 7.9 Hz, 2H), 2.62 (q, J = 6.6 Hz, 1H), 1.62-1.41 (m, 2H), 1.23 (d, J = 6.7 Hz, 3H), 0.92 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.2, 144.1, 144.0, 135.8, 135.7, 128.9, 128.9, 128.5, 127.8, 127.8, 126.5, 113.9, 55.2, 51.1, 42.7, 36.4, 29.8, 20.9, 20.9, 11.5, 11.5; HRMS (ESI) calcd for C₁₉H₂₅OS [M+H]: 301.1621, found: 301.1619.

(2-(4-Methoxyphenyl)-2-phenylethyl)(octyl)sulfane (4au): A yellow oil, 107 mg, 60% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.22 (m, 4H), 7.21-7.15 (m, 3H), 6.83 (d, *J* = 8.7Hz, 2H), 4.12 (t, *J* = 7.8 Hz, 1H), 3.75 (s, 3H), 3.16 (d, *J* = 7.8 Hz, 2H), 2.44 (t, *J* = 7.4 Hz, 2H), 1.58-1.50 (m, 2H), 1.34-1.25 (m, 10H), 0.88 (t, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.2, 144.0, 135.7, 128.9, 128.5, 127.8, 126.5, 113.9, 55.2, 50.8, 38.3, 33.0, 31.9, 29.7, 29.2, 29.0, 22.7, 14.2; HRMS (ESI) calcd for C₂₃H₃₃OS [M+H]: 357.2247, found: 357.2240.

(2-(4-Ethoxyphenyl)-2-phenylethyl)(*p*-tolyl)sulfane (5a): A yellow oil, 146 mg, 84% yield (1a (0.75 mmol, 1.5 equiv), 2a (0.5 mmol, 1 equiv), 3b (7.5 mmol, 15 equiv), fluorobenzene (1.0 mL)). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (t, *J* =7.5 Hz, 2H), 7.22-7.18 (m, 5H), 7.11 (d, *J* = 8.7Hz, 2H), 7.06 (d, *J* = 7.9 Hz, 2H), 6.80 (d, *J* = 8.6 Hz, 2H), 4.16 (t, *J* = 7.9 Hz, 1H), 3.96 (q, *J* = 7.0 Hz, 2H), 3.51 (d, *J* = 7.9 Hz, 2H), 2.30 (s, 3H), 1.36 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.7, 143.6, 136.2, 135.1, 132.9, 130.3, 129.8, 129.0, 128.6, 128.0, 126.6, 114.5, 63.4, 49.8, 40.6, 21.1, 15.0; HRMS (ESI) calcd for C₂₃H₂₅OS [M+H]: 349.1621, found: 349.1619.

(2-(2,5-Dimethoxyphenyl)-2-phenylethyl)(*p*-tolyl)sulfane (5b): A yellow oil, 106 mg, 58% yield (1a (0.75 mmol, 1.5 equiv), 2a (0.5 mmol, 1 equiv), 3c (7.5 mmol, 15 equiv), fluorobenzene (2.0 mL)). ¹H NMR (400 MHz, CDCl₃) δ , 7.27-7.22 (m, 6H), 7.20-7.17 (m, 1H), 7.07 (d, *J* = 7.5 Hz, 2H), 6.77-6.67 (m, 3H), 4.62 (t, *J* = 8.1 Hz, 1H), 3.70 (d, *J* = 4.8 Hz, 6H), 3.57 (dd, *J*₁ = 7.3 Hz, *J*₂ = 12.8 Hz, 1H), 3.44 (dd, *J*₁ = 8.6 Hz, *J*₂ = 12.8 Hz, 1H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.5, 151.4, 142.5, 136.0, 133.2, 133.0, 130.1, 129.6, 128.4, 128.4, 126.5, 115.3, 111.8, 111.2, 56.1, 55.6, 43.9, 39.1, 21.1; HRMS (ESI) calcd for C₂₃H₂₅O₂S [M+H]: 365.1570, found: 365.1566.

(2-Phenyl-2-(2,4,6-trimethoxyphenyl)ethyl)(*p*-tolyl)sulfane (5c): A yellow oil, 105 mg, 53% yield (1a (0.75 mmol, 1.5 equiv), 2a (0.5 mmol, 1 equiv), 3d (0.75 mmol, 1.5 equiv), fluorobenzene (2.0 mL)). ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, *J* =7.6 Hz, 2H), 7.22-7.19 (m, 4H), 7.10 (t, *J* = 7.3 Hz, 1H), 7.03 (d, *J* = 7.8 Hz, 2H), 6.09 (s, 2H), 4.85 (t, *J* = 7.8 Hz, 1H), 3.83 (dd, *J*₁ = 9.1 Hz, *J*₂ = 12.6 Hz, 1H), 3.74 (s, 3H), 3.69 (d, *J* = 7.1 Hz, 1H), 3.67 (s, 6H), 2.27(s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.0, 159.3, 143.9, 135.6, 133.7, 130.1, 129.4, 128.0, 127.8, 125.7, 112.0, 91.2, 55.7, 55.3, 39.5, 37.7, 21.1; HRMS (ESI) calcd for C₂₄H₂₇O₃S [M+H]: 395.1675, found: 395.1675.

(2-(2-Methoxynaphthalen-1-yl)-2-phenylethyl)(*p*-tolyl)sulfane (5d): A yellow solid, 119 mg, 62% yield (1a (0.75 mmol, 1.5 equiv), 2a (0.5 mmol, 1 equiv), 3e (0.75 mmol, 1.5 equiv), fluorobenzene (2.0 mL)). ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.68 (m, 3H), 7.32-7.09 (m, 10H), 6.97 (d, *J* = 7.8 Hz, 2H), 5.25 (s, 1H), 3.98-3.88 (m, 2H), 3.65 (s, 3H), 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.7, 143.4, 136.1, 133.3, 130.4, 129.8, 129.8, 129.4, 129.0, 128.2, 128.0, 126.6, 126.1, 124.6, 123.7, 123.4, 114.5, 56.5, 41.9, 38.1, 21.2; HRMS (ESI) calcd for C₂₆H₂₄NaOS [M+Na]: 407.1440, found: 407.1433.

N,N-Dimethyl-4-(1-phenyl-2-(*p*-tolylthio)ethyl)aniline (5e): A yellow solid, 13.8 mg, 8% yield (1a (0.75 mmol, 1.5 equiv), 2a (0.5 mmol, 1 equiv), 3f (0.75 mmol, 1.5 equiv), fluorobenzene (2.0 mL)). ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.25 (m, 2H), 7.23-7.21 (m, 4H), 7.19-7.16 (m, 1H), 7.11-7.06 (m, 4H), 4.09 (t, *J* = 7.9 Hz, 1H), 3.52 (d, *J* = 7.6 Hz, 2H), 2.90 (s, 6H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.4, 143.9, 136.0, 133.1, 131.2, 130.1, 129.7, 128.6, 128.5, 127.9, 126.4, 112.7, 49.7, 10.7, 40.6, 21.1; HRMS (ESI) calcd for C₂₃H₂₆NS [M+H]: 348.1780, found: 348.1775.

1-(3-(1-Phenyl-2-(p-tolylthio)ethyl)-1*H***-indol-1-yl)ethan-1-one (5f):** A white solid, 19.9 mg, 8% yield (1a (0.75 mmol, 1.5 equiv), 2a (0.5 mmol, 1 equiv), 3e (0.75 mmol, 1.5 equiv), fluorobenzene (2.0 mL), LiIO₄ 2H₂O (50 mol %), I₂O₅ (10 mol %)). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.3 Hz, 1H), 7.66 (d, *J* = 8.1 Hz, 2H), 7.45 (s, 1H), 7.18-7.09 (m, 10H), 7.05-6.94 (m, 4H), 4.09 (t, *J* = 7.9 Hz, 1H), 3.55-3.50 (m, 1H), 3.37-3.32 (m, 1H), 2.22 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 144.9, 141.7, 136.8, 135.6, 135.1, 132.5, 130.7, 130.4, 129.9, 129.8, 128.7, 127.9, 127.1, 126.9, 124.8, 124.6, 123.6, 123.2, 120.0, 113.8, 42.5, 40.6, 21.6, 21.1; HRMS (ESI) calcd for $C_{30}H_{27}NNaO_2S_2$ [M+Na]: 520.1375, found: 520.1372.

3-(1-Phenyl-2-(p-tolylthio)ethyl)-1-tosyl-1*H***-indole (5g): A white solid, 25.0 mg, 13% yield (1a (0.75 mmol, 1.5 equiv), 2a** (0.5 mmol, 1 equiv), **3e** (0.75 mmol, 1.5 equiv), fluorobenzene (2.0 mL), LiIO₄ 2H₂O (50 mol %), I₂O₅ (10 mol %)). ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.22-7.11 (m, 10H), 7.05-6.97 (m, 3H), 4.28 (t, *J* = 7.5 Hz, 1H), 3.56 (dd, *J*₁ = 7.5 Hz, *J*₂ = 13.0 Hz, 1H), 3.38 (dd, *J*₁ = 7.4 Hz, *J*₂ = 13.0 Hz, 1H), 2.48 (s, 3H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 141.9, 136.7, 136.1, 132.6, 130.7, 130.0, 129.9, 128.8, 128.0, 127.1, 125.4, 124.3, 123.5, 122.4, 119.5, 116.6, 42.7, 40.6, 24.1, 21.1; HRMS (ESI) calcd for C₂₅H₂₄NOS [M+H]: 386.1573, found: 386.1574.

(2-Phenoxy-2-phenylethyl)(p-tolyl)sulfane (5h): A yellow oil, 84.8 mg, 53% yield. (1a (0.75 mmol, 1.5 equiv), 2a (0.5 mmol, 1 equiv), 3i (7.5 mmol, 15 equiv), fluorobenzene (2.0 mL)). ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.19 (m, 7H), 7.08 (t, J = 7.7 Hz, 2H), 7.01 (d, J = 7.9 Hz, 2H), 6.79 (t, J = 7.3 Hz, 1H), 6.71 (d, J = 8.1 Hz, 2H), 5.12 (dd, $J_1 =$ 4.9 Hz, $J_2 =$ 8.0 Hz, 1H), 3.39 (dd, $J_1 =$ 8.1 Hz, $J_2 =$ 13.7 Hz, 1H), 3.16 (dd, $J_1 =$ 4.9 Hz, $J_2 =$ 13.7 Hz, 1H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.89, 140.32, 136.60, 132.37, 130.74, 129.78, 129.32, 128.70, 128.11, 126.27, 121.06, 116.09, 79.23, 42.80, 21.09; HRMS (ESI) calcd for C₂₁H₂₀NaOS [M+Na]: 343.1127, found: 343.1112.

(2-Phenoxy-2-phenylethyl)(p-tolyl)sulfane (5i): A yellow oil, 65.3 mg, 41% yield (1a (0.75 mmol, 1.5 equiv), 2a (0.5 mmol, 1 equiv), 3j (7.5 mmol, 15 equiv), fluorobenzene (2.0 mL)). ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.21 (m, 7H), 7.06 (dd, $J_I = 7.4$ Hz, $J_2 = 14.6$ Hz, 4H), 6.65 (t, J = 7.3 Hz, 1H), 6.45 (d, J = 8.0 Hz, 2H), 4.54 (br, 1H), 4.32 (dd, $J_I = 4.3$ Hz, $J_2 = 9.4$ Hz, 1H), 3.32 (dd, $J_I = 4.4$ Hz, $J_2 = 13.6$ Hz, 1H), 3.07 (dd, $J_I = 9.4$ Hz, $J_2 = 13.6$ Hz, 1H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.35, 142.61, 137.27, 131.52, 131.14, 130.01, 129.10, 128.89, 127.58, 126.43, 117.87, 113.89, 57.31, 43.47, 21.18; HRMS (ESI) calcd for C₂₁H₂₂NS [M+H]: 320.1467, found: 320.1458.

(2-Phenoxy-2-phenylethyl)(p-tolyl)sulfane (5j): A yellow oil, 34.9 mg, 20% yield (1a (0.75 mmol, 1.5 equiv), 2a (0.5 mmol, 1 equiv), 3k (0.75 mmol, 1.5 equiv), fluorobenzene (2.0 mL). ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.15 (m, 7H), 7.00 (d, J = 7.8 Hz, 2H), 6.70-6.67 (m, 1H), 6.54 (t, J = 3.9 Hz, 2H), 6.13-6.11 (m, 1H), 5.11 (br, 1H), 4.28 (dd, J_I = 4.6 Hz, J_2 = 9.0 Hz, 1H), 3.80 (s, 3H), 3.26 (dd, J_I = 4.6 Hz, J_2 = 13.4 Hz, 1H), 3.16 (dd, J_I = 9.0 Hz, J_2 = 13.5 Hz, 1H), 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.13, 142.67, 137.12, 136.94, 131.57, 131.26, 129.86, 128.78, 127.48, 126.46, 121.01, 116.90, 111.36, 109.39, 57.27, 55.57, 43.34, 21.12; HRMS (ESI) calcd for C₂₂H₂₄NOS [M+H]: 350.1573, found: 350.1567.

2-Methoxy-2-phenylethyl-(*p***-tolyl)sulfane (6)**¹: A yellow oil, 106 mg, 82% yield (1a (0.75 mmol, 1.5 equiv), 2a (0.5 mmol, 1 equiv), methanol (0.75 mmol, 1.5 equiv), fluorobenzene (2.0 mL)). ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.27 (m, 7H), 7.08 (d, *J* = 7.9 Hz, 2H), 4.26 (dd, *J*₁ = 4.9 Hz, *J*₂ = 8.2 Hz, 1H), 3.27 (dd, *J*₁ = 8.2 Hz, *J*₂ = 13.3 Hz, 1H), 3.23 (s, 3H), 3.08 (dd, *J*₁ = 5.0 Hz, *J*₂ = 13.3 Hz, 1H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.6, 136.2, 132.7, 130.2, 129.7, 128.6, 128.1, 126.8. 82.5, 57.1, 42.3, 21.1.

1-Phenylethane-1,2-diyl-bis(*p*-tolylsulfane) (7)³: A yellow solid, ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.21 (m, 5H), 7.16 (d, *J* = 8.0 HZ, 2H), 7.08-7.01 (m, 6H), 4.17 (dd, *J*₁ = 4.9 Hz, *J*₂ = 10.2 Hz, 1H), 4.17 (dd, *J*₁ = 4.9 Hz, *J*₂ = 10.2 Hz, 1H), 3.44 (dd, *J*₁ = 4.9 Hz, *J*₂ = 13.5 Hz, 1H), 3.29 (dd, *J*₁ = 10.2 Hz, *J*₂ = 13.6 Hz, 1H), 2.31 (d, *J* = 2.2 HZ, 6H), ¹³C NMR (100 MHz, CDCl₃) δ 139.8, 137.8, 136.5, 133.4, 131.8, 130.6, 130.4, 129.7, 129.6, 128.5, 128.1, 127.7, 52.6, 40.0, 21.2, 21.1.

1-Methoxy-4-((2-(4-methoxyphenyl)-2-phenylethyl)sulfinyl)benzene (8): A white solid, 146 mg, 80% yield (dr = 50:50, which was determined by ¹H NMR according to the crude reaction). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.3 Hz, 2H), 7.35-7.18 (m, 6H), 7.14 (d, *J* = 8.3 Hz, 1H), 7.00 (d, *J* = 8.4 Hz, 2H), 6.87 (d, *J* = 8.2 Hz, 1H),

6.81 (d, J = 8.2 Hz, 1H), 4.49-4.40 (m, 1H), 3.84 (s, 3H), 3.77 (d, J = 11.6 Hz, 3H), 3.52-3.46 (m, 1H), 3.36-3.29 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.1, 162.1, 158.6, 158.4, 142.8, 141.9, 135.2, 135.1, 134.4, 133.5, 129.2, 128.9, 128.7, 128.7, 128.0, 127.6, 127.1, 126.8, 126.1, 126.1, 114.8, 114.1, 114.1, 64.9, 64.8, 55.6, 55.3, 44.8, 44.7; HRMS (ESI) calcd for C₂₂H₂₃O₃S [M+H]: 367.1362, found: 367.1361.

1-Methoxy-4-((2-(4-methoxyphenyl)-2-phenylethyl)sulfonyl)benzene (9): A white solid, 174 mg, 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.9 Hz, 2H), 7.21-7.17 (m, 2H), 7.14-7.10 (m, 3H), 7.02 (d, *J* = 8.7 Hz, 2H), 6.77 (d, *J* = 8.9 Hz, 2H), 6.71 (d, *J* = 8.7 Hz, 2H), 4.55 (t, *J* = 7.2 Hz, 1H), 3.85 (d, *J* = 7.2 Hz, 2H), 3.81 (s, 3H), 3.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.3, 158.4, 141.9, 133.46, 131.2, 130.1, 128.7, 128.7. 127.5, 126.8, 114.1, 61.9, 55.6, 55.2, 45.6; HRMS (ESI) calcd for C₂₂H₂₃O₄S [M+H]: 383.1312, found: 383.1305.

1,2-di-*p*-**Tolyldisulfane (S-1)**²: A white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.2 HZ, 4H), 7.09 (d, J = 8.0 HZ, 4H), 2.30 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 137.5, 133.9, 129.8, 128.6, 21.1.

4-Methoxyphenyl-(*p***-tolyl)sulfane** (S-2)²: A yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.34 (m, 2H), 7.13 (d, *J* = 8.2 HZ, 2H), 7.06 (d, *J* = 8.0 HZ, 2H), 6.88-6.84 (m, 2H), 3.80 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 136.1, 134.4, 129.8, 129.4, 125.6, 114.9, 55.4. 21.0.

1-Tosyl-1*H***-indole (S-2)⁴:** A colorless solid. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.2 Hz, 1H), 7.80 (d, *J* = 8.5 Hz, 2H), 7.61 (d, *J* = 3.7 Hz, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.28 (t, *J* = 7.4 Hz, 1H), 7.23 (d, *J* = 8.1 Hz, 2H), 6.69 (d, *J* = 3.1 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.0, 135.3, 134.9, 130.8, 129.9, 126.8, 126.4, 124.6, 123.3, 121.4, 113.6, 109.1, 21.5.

1-(1*H***-indol-1-yl)ethan-1-one (3h)⁵:** A pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, J = 8.4 Hz, 1H), 7.61 (d, J = 7.5 Hz, 1H), 7.41-7.30 (m, 3H), 6.63 (d, J = 3.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 135.6, 130.5, 125.4, 125.1, 123.7, 120. 9, 116.6, 109.1, 23.9.

The compouds were not attained under the optimal reaction conditions:

X-ray crystal structure determination of 5d:

Diffraction data for the complexes were collected with a Bruker SMART APEX II area detector at low temperature (100 K) with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). An empirical absorption correction using SADABS⁶ was applied for all data. The structure was solved by direct methods using the SHELXS program. All non-hydrogen atoms were refined anisotropically by full-matrix leastsquares on F^2 by the use of the program SHELXL⁷. Crystallographic data for the complexes are summarized in Table S6. CCDC 2076131 contain the supplementary crystallographic data for the structures reported in this paper. Copies of the data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Figure S3. The X-ray Diffraction Configuration of **5d**. Thermal ellipsoids are set at 50% probability. Crystal of compound **5d** was grown by slow evaporation of its solution with petroleum ether/ethyl acetate under -20 °C.

compound	5d
formula	C ₂₆ H ₂₄ OS
Fw	384.51
crystal system	orthorhombic
space group	<i>P</i> 2(1)/ <i>c</i>
<i>a</i> /Å	7.6661(19)
b /Å	13.863(3)
c /Å	19.578(5)
α /°	90

Table S6. Crystallographic data for compound 5d.

β /°	90
γ /°	90
$V/Å^3$	2080.7(9)
Ζ	4
$D_{ m calc}/{ m g~cm^{-3}}$	1.227
<i>F</i> (000)	816
μ /mm ⁻¹	0.169
heta range /°	1.800~28.965
refine collected (\mathbf{D}_{-})	17187
Terms concered (K _{int})	(17187)
independent reflns	5153
observed reflns $[I > 2\sigma(I)]$	3389
$P \cdot \dots P [I > 2 \sigma(I)]$	0.0442,
$K_1, WK_2 [I > 2O(I)]$	0.0998
R_{\cdot} w R_{\cdot} (all data)	0.0802,
n_1 , w n_2 (all uata)	0.1155
GOF (F^2)	1.000

7. Computational details and results

The molecular geometry of each system in solution was fully optimised and harmonic frequencies were subsequently computed along with the thermochemical quantities at T = 298.15 K and p = 1.00 atm. No imaginary frequencies were found for minima and one negative frequency was found for transition states. The calculations were performed at the Density Functional Theory (DFT) level, by using M06-2X⁸ hybrid functional coupled with the triple- ζ 6-311++G** basis set for all the elements, except for Iodine, for which the DGDZVP basis set was adopted. The differences in thermochemicals describing the possible reactions were calculated (Table S7).

Solvent effects were taken into account via the implicit polarizable continuum model in its integral equation formalism (IEF–PCM)⁹. Truhlar and coworkers' SMD solvation model¹⁰ was used to build up the cavity and compute the non-electrostatic terms. The solvent used was anisole, and its standard values for dielectric constant and refractive index were always assumed.

The full Natural Bond Orbital (NBO) analysis¹¹ of the total density was systematically performed at the same level of theory. Natural Atomic Charges were also computed.

For all calculations integration grid for the electronic density was set to 250 radial shells and 974 angular points all the atomic species. Accuracy for the two-electron integrals and their derivatives was set to 10^{-14} a.u. The Self-Consistent Field (SCF) algorithm used was the quadratically convergent procedure designed by Bacskay¹², a method which is acknowledged to be slower but more reliable than regular SCF with DIIS extrapolation. The convergence criteria for SCF were set to 10^{-12} for root mean square (RMS) change in density matrix and 10^{-10} for maximum change in density matrix. Convergence criteria for geometry optimizations were set to 2×10^{-6} a.u. for maximum displacement and 4×10^{-6} a.u. for RMS displacement.

All calculations were performed using GAUSSIAN G16.A03 package¹³.

Plausible pathways	Δ <i>H</i> / (kJ/mol)	$\Delta G / (kJ/mol)$
$2\text{ToISH} + 10_4^{-} = 2\text{ToIS}^{\bullet} + 10_3^{-} + \text{H}_2\text{O}$	-168.2	-208.8
2TolS*+ IO ₄ ⁻ + 2H ₃ O*= 2TolS* + IO ₃ ⁻ + 3H ₂ O	-321.3	-361.3
Ph-CH=CH ₂ + TolS [•] = [Ph-CH-CH ₂ -STol] [•] (linear)	-25.4	25.5
$Ph-CH=CH_2 + TolS^+ = [Ph-CH-CH_2-STol]^+_{(cycl)}$	-203.5	-142.1
$[Ph-CH-CH_2-STol]^+_{(cycl)} + IO_3^- + TolSH = Tol_2S_2CHCH_2Ph + HIO_3$	-244.4	-201.5
$2[Ph-CH-CH_2-STol]^{\bullet}_{(linear)} + 2H^{+} + IO_4^{-} = 2[Ph-CH-CH_2-STol]^{+}_{(cycl)} + IO_3^{-} + H_2^{-}$	-677.6	-696.6
$TolS^{\bullet} + [Ph-CH-CH_2-STol]^{\bullet}_{(linear)} = Tol_2S_2CHCH_2Ph$	-220.1	-162.7
$[Ph-CH-CH_2-SToI]^+_{(cycl)} + IO_3^- + AniH = ToISAniCHCH_2Ph + HIO_3$	-248.7	-205.2
AniH + $Tol_2S_2CHCH_2Ph = TolSAniCHCH_2Ph + TolSH$	-4.3	-3.7

Table S7. Differences in thermochemicals computed at T = 298.15 K and p = 1.00 atm, for plausible pathways.

Cartesian Coordinates of the Optimised Geometries

[Ani]⁻

6	-1.221616	-0.216035	-0.006976
6	-2.460754	-0.855752	-0.027298
6	-3.633257	-0.098268	0.013813
6	-3.689945	1.317421	0.076860
6	-2.401158	1.886238	0.093722
6	-1.188209	1.173351	0.054324
1	-2.482181	-1.941582	-0.075236
1	-4.564202	-0.668267	-0.005412
1	-2.298397	2.972475	0.141152
1	-0.245656	1.709953	0.071996
6	1.147833	-0.389529	-0.029957
1	1.292274	0.190256	0.888385
1	1.893682	-1.183040	-0.069906
1	1.280760	0.269229	-0.895251
8	-0.110123	-1.024789	-0.049963

AniH

6	-1.223045	-0.205879	-0.017042
6	-2.460675	-0.857686	-0.046363
6	-3.633041	-0.119975	-0.026706
6	-3.593150	1.274691	0.022317
6	-2.362409	1.915366	0.051211
6	-1.171614	1.187317	0.031990
1	-2.475588	-1.940701	-0.084347
1	-4.586541	-0.635557	-0.049765
1	-4.511451	1.849026	0.037591
1	-2.314438	2.997879	0.089351
1	-0.225323	1.711383	0.055307
6	1.144578	-0.389479	-0.011018
1	1.281592	0.192029	0.905530
1	1.872694	-1.197835	-0.035479
1	1.291000	0.254630	-0.883182
8	-0.129970	-1.008789	-0.039397

[Ani]⁺

6 -1.229646 -0.207047 -0.0	06526
6 -2.467913 -0.873678 -0.0	28045
6 -3.691190 -0.174780 0.0	10799
6 -3.338328 1.101633 0.0	65034

6	-2.357663	1.980231	0.097602
6	-1.174399	1.191303	0.055031
1	-2.512515	-1.956423	-0.075697
1	-4.668801	-0.639359	-0.003458
1	-2.371987	3.060701	0.145534
1	-0.241963	1.742327	0.073407
6	1.134910	-0.372774	-0.029132
1	1.273926	0.194579	0.894715
1	1.854056	-1.186404	-0.069800
1	1.262331	0.274083	-0.900939
8	-0.151764	-0.992731	-0.048273

[Ani]'

6	5	-1.232188	-0.203567	-0.007075
6	5	-2.465785	-0.866757	-0.030041
6	5	-3.651712	-0.141247	0.010623
6	5	-3.551278	1.231421	0.073194
6	5	-2.371434	1.926050	0.097940
6	5	-1.178624	1.189984	0.056745
1		-2.473599	-1.949651	-0.079840
1		-4.608667	-0.650670	-0.006961
1		-2.338890	3.008696	0.147576
1		-0.232309	1.714721	0.075101
6	5	1.137172	-0.382838	-0.029854
1		1.284092	0.188572	0.891652
1		1.865793	-1.190103	-0.071484
1	-	1.273127	0.270897	-0.896696
8	}	-0.136645	-1.003850	-0.050630

HIO_3

53	-0.034625	-0.059213	0.283115
8	1.517541	-0.387266	1.177762
8	0.582858	1.328993	-0.982219
8	-0.288711	-1.452176	-0.861842
1	1.360490	0.992172	-1.459939

$LiIO_3$

-0.216686	-0.068577	0.125224
1.572436	-0.133367	0.688393
0.225355	1.175513	-1.208626
-0.521655	-1.646202	-0.746726
	-0.216686 1.572436 0.225355 -0.521655	-0.216686 -0.068577 1.572436 -0.133367 0.225355 1.175513 -0.521655 -1.646202

[IO₃]⁻

53	0.000462	-0.000681	-0.231558
8	-1.624894	0.487764	0.511985
8	1.234737	1.164938	0.511371
8	0.390616	-1.653215	0.511178

HIO_4

53	0.071839	-0.023406	-0.137014
8	0.263164	-0.200843	1.785994
8	-0.050392	-1.768194	-0.558504
8	-1.432579	0.951561	-0.339559
8	1.583872	0.818367	-0.647627
1	0.347932	0.675061	2.206710

$LiIO_4$

53	0.043666	-0.069716	0.000046
8	-0.651666	1.632546	-0.102457
8	-1.375195	-1.194199	0.074409
8	1.049097	-0.310124	-1.492194
8	1.051947	-0.120218	1.508523
3	-0.146129	3.328557	-0.181273

[IO₄]⁻

53	0.00000	0.000000	0.000000
8	0.00000	0.000000	1.825018
8	0.00000	-1.720643	-0.608339
8	-1.490121	0.860322	-0.608339
8	1.490121	0.860322	-0.608339

МеОН

0.000145	0.016899	0.014459
-0.000210	-1.017271	-0.329120
-0.891247	0.514537	-0.380880
0.891493	0.514128	-0.381494
0.000626	-0.014479	1.433121
0.000948	0.891120	1.754369
	0.000145 -0.000210 -0.891247 0.891493 0.000626 0.000948	0.000145 0.016899 -0.000210 -1.017271 -0.891247 0.514537 0.891493 0.514128 0.000626 -0.014479 0.000948 0.891120

[MeOPhCHPhCH₂STol]⁺

6	1.365291	0.370118	-0.234969
6	0.390101	1.379324	0.049425
6	-0.891952	1.048617	0.579271
6	-1.186978	-0.242549	0.833866
6	-0.277911	-1.353361	0.477431
6	1.043040	-0.923894	-0.018275
1	2.337726	0.643693	-0.620836
1	-1.576839	1.857499	0.799068
1	-2.151851	-0.504958	1.257825
1	1.766325	-1.702245	-0.244829
8	0.599935	2.641187	-0.145580
6	1.858519	3.119400	-0.669784
1	2.036528	2.689370	-1.655147
1	1.740739	4.195975	-0.744357
1	2.663991	2.875213	0.022499
1	-0.769284	-1.803229	-0.411475
6	-0.212079	-2.531158	1.508782
1	-1.237907	-2.676612	1.862736
6	0.676288	-2.211992	2.710250
1	0.715554	-3.081722	3.368045
1	1.693425	-1.961951	2.403285
6	0.208058	-3.814290	0.808126
6	1.521091	-4.285849	0.817250
6	-0.760551	-4.538388	0.107521
6	1.857400	-5.454290	0.135514
1	2.294021	-3.756418	1.363294
6	-0.427557	-5.703268	-0.572503
1	-1.789049	-4.189208	0.105042
6	0.886901	-6.164109	-0.561388
1	2.880693	-5.810763	0.156725
1	-1.194582	-6.255577	-1.102890
1	1.148993	-7.075129	-1.086330
16	0.017285	-0.797808	3.667429
6	1.298920	-0.680069	4.907586
6	2.494192	-0.016377	4.627402
6	1.104119	-1.244404	6.166366
6	3.485770	0.067664	5.596944
1	2.644122	0.434483	3.652102
6	2.101058	-1.147731	7.132256
1	0.176880	-1.759590	6.389276
6	3.303993	-0.493004	6.864755
1	4.413443	0.583333	5.370296

1	1.940118	-1.590958	8.109372
6	4.367827	-0.366181	7.921116
1	5.366451	-0.436229	7.486002
1	4.294535	0.602696	8.423713
1	4.264477	-1.142990	8.680150

[MeOPhCHPhCH₂STol]⁺ - TS

6	1.324881	0.766712	1.289079
6	0.275728	1.406594	0.574926
6	-0.737476	0.650939	-0.098788
6	-0.685771	-0.693884	-0.075450
6	0.393604	-1.445086	0.602457
6	1.329831	-0.588185	1.360336
1	2.079808	1.344551	1.804251
1	-1.523216	1.195574	-0.607319
1	-1.442487	-1.276282	-0.592643
1	2.122270	-1.073577	1.922625
8	0.149826	2.693886	0.487375
6	1.095959	3.573403	1.130660
1	2.091102	3.415219	0.714340
1	0.749144	4.577237	0.904957
1	1.086549	3.403690	2.207545
1	1.033771	-1.802976	-0.231723
6	-0.139772	-2.743294	1.314512
1	-1.229437	-2.662771	1.329251
6	0.320781	-2.873181	2.772165
1	-0.087985	-3.796515	3.183090
1	1.407352	-2.922398	2.850301
6	0.218014	-4.006828	0.554613
6	1.555177	-4.323550	0.296736
6	-0.778342	-4.887023	0.137536
6	1.887382	-5.495707	-0.371046
1	2.342910	-3.646937	0.619746
6	-0.447302	-6.062904	-0.533161
1	-1.819262	-4.654612	0.339174
6	0.884279	-6.368677	-0.788645
1	2.927363	-5.730690	-0.565607
1	-1.231933	-6.737507	-0.855592
1	1.142775	-7.282570	-1.310388
16	-0.276288	-1.457287	3.765584
6	1.182344	-0.975319	4.669718
6	2.051745	-1.908247	5.231123
6	1.423994	0.387709	4.853974

6	3.170237	-1.475763	5.938028
1	1.854108	-2.969897	5.132939
6	2.531876	0.804441	5.581527
1	0.741310	1.117852	4.431938
6	3.431184	-0.117929	6.124507
1	3.841997	-2.211876	6.367005
1	2.706178	1.866283	5.726137
6	4.644904	0.350269	6.881168
1	5.155835	-0.484776	7.361966
1	5.355719	0.839963	6.209690
1	4.370602	1.074200	7.651739

PhTolSCHCH₂Ani

6	-1.848432	2.594913	0.105006
1	-2.300479	2.193942	-0.807796
1	-2.204220	1.981486	0.936753
6	-2.332480	4.048823	0.261886
1	-1.815120	4.666760	-0.473749
6	-3.819272	4.233750	0.090623
6	-4.737923	3.326492	0.624769
6	-4.299223	5.351863	-0.594613
6	-6.105284	3.533803	0.475289
1	-4.387070	2.455593	1.168313
6	-5.666626	5.560109	-0.745839
1	-3.592793	6.063212	-1.011967
6	-6.574570	4.651100	-0.210760
1	-6.806281	2.821396	0.895592
1	-6.022129	6.431673	-1.283985
1	-7.640282	4.811258	-0.327466
16	-1.794852	4.734329	1.906691
6	-0.772312	6.105507	1.393732
6	0.527188	5.886423	0.927617
6	-1.260012	7.408888	1.471457
6	1.315119	6.960739	0.534155
1	0.917454	4.874354	0.876010
6	-0.457534	8.478524	1.082704
1	-2.269953	7.584107	1.824474
6	0.837945	8.273339	0.607777
1	2.320650	6.777693	0.168012
1	-0.849423	9.488896	1.144751
6	1.710764	9.433776	0.211653
1	1.111609	10.282749	-0.121749
1	2.315670	9.768202	1.059757

1	2.394928	9.156556	-0.592165
6	-0.346511	2.519025	0.006131
6	0.443011	2.117848	1.077570
6	0.300036	2.932504	-1.165260
6	1.837647	2.129061	1.005870
1	-0.031396	1.796051	1.998620
6	1.680967	2.955935	-1.256303
1	-0.292822	3.248477	-2.018969
6	2.461455	2.558457	-0.164779
1	2.414712	1.808273	1.862952
1	2.179757	3.276009	-2.163903
8	3.806428	2.615384	-0.342519
6	4.632125	2.234237	0.744158
1	5.657132	2.355700	0.399701
1	4.464750	2.876768	1.613785
1	4.465824	1.189225	1.022030
Stv			
6	-1.001482	-0.422552	0.00000
6	0.000274	0.557327	0.000000
6	1.336002	0.141908	0.00000
6	1.667441	-1.209678	0.00000
6	0.663326	-2.171387	0.00000
6	-0.672556	-1.770974	0.00000
1	-2.045776	-0.131870	0.00000
1	2.122093	0.890338	0.00000
1	2.709242	-1.509267	0.00000
1	0.915766	-3.225441	0.00000
1	-1.460495	-2.515717	0.00000
6	-0.294059	2.003341	0.00000
1	0.583593	2.645567	0.000000
6	-1.499412	2.571608	0.00000
1	-2.419597	1.997145	0.00000
1	-1.599073	3.650796	0.00000
ТЕМРОН			
6	-1.276553	0.080036	-0.058156
6	1.287476	0.079812	-0.057810
6	1.250589	-1.380636	-0.530970

6

6 1

S47

-1.626730

0.005269 -2.126730 -0.062673

-1.239794 -1.380419 -0.531305

-1.387872

1.277246

1	2.161308	-1.874619	-0.178923
1	0.005235	-3.141464	-0.469573
1	0.005114	-2.229218	1.026812
1	-1.266156	-1.387650	-1.627072
1	-2.150694	-1.874243	-0.179504
6	2.398250	0.812711	-0.816505
1	2.531809	1.827455	-0.436050
1	3.344527	0.278702	-0.696075
1	2.161162	0.863874	-1.882266
6	1.592795	0.169171	1.446407
1	2.653420	-0.040996	1.609960
1	1.387250	1.175248	1.816961
1	1.022698	-0.543937	2.040477
6	-1.582261	0.169448	1.445980
1	-1.376639	1.175490	1.816590
1	-2.642967	-0.040533	1.609247
1	-1.012450	-0.543760	2.040203
6	-2.386994	0.813130	-0.817149
1	-3.333397	0.279286	-0.696974
1	-2.520479	1.827896	-0.436730
1	-2.149610	0.864251	-1.882847
7	0.005572	0.706089	-0.470047
8	0.005627	2.053755	-0.001401
1	0.005781	2.577959	-0.808625

TEMPO

6	1.315309	0.674382	-0.265589
6	-1.320936	0.641166	-0.269231
6	-1.225523	-0.822116	0.177686
6	0.022306	-1.526882	-0.340831
6	1.254373	-0.793271	0.174271
1	-1.218393	-0.853955	1.273359
1	-2.135155	-1.330749	-0.154749
1	0.034966	-2.562206	0.008430
1	0.022244	-1.564962	-1.434776
1	1.251283	-0.828848	1.269821
1	2.174634	-1.279550	-0.162003
6	-2.364312	1.367906	0.578289
1	-2.536002	2.379521	0.211169
1	-3.304854	0.812963	0.536702
1	-2.039198	1.426219	1.619662
6	-1.707027	0.747405	-1.750737
1	-2.756390	0.465904	-1.871331

1	-1.585057	1.776809	-2.094720
1	-1.109656	0.091093	-2.384931
6	1.702856	0.806070	-1.744218
1	1.610225	1.847644	-2.059353
1	2.742992	0.496275	-1.875144
1	1.082778	0.189682	-2.396102
6	2.338397	1.418029	0.592055
1	3.293748	0.889437	0.543336
1	2.482547	2.438977	0.239524
1	2.011910	1.452165	1.634102
7	-0.011282	1.325761	-0.046657
8	-0.026784	2.595577	-0.115115

$\text{Tol}_2\text{S}_2\text{CHCH}_2\text{Ph}$

6	0.040519	-0.042788	0.202989
6	1.141647	-0.818186	-0.178867
6	0.991595	-2.174680	-0.422137
6	-0.253839	-2.801588	-0.306041
6	-1.340775	-2.018684	0.073540
6	-1.203753	-0.655511	0.334059
1	2.115908	-0.354082	-0.290784
1	1.857528	-2.758818	-0.718658
1	-2.319251	-2.477024	0.176440
1	-2.073636	-0.089777	0.643513
16	0.345357	1.677168	0.537340
6	-0.399339	-4.273614	-0.586096
1	-0.125105	-4.505239	-1.618730
1	0.252089	-4.862269	0.065048
1	-1.426479	-4.604961	-0.426721
6	-1.333059	2.385236	0.425749
1	-1.820064	1.973460	-0.460858
1	-1.910657	2.111348	1.310362
6	-1.263068	3.903369	0.272622
1	-0.631161	4.145795	-0.584212
6	-2.628014	4.510996	0.062209
6	-3.664302	4.310079	0.978277
6	-2.854699	5.324637	-1.047138
6	-4.905337	4.902230	0.778538
1	-3.493424	3.706539	1.863672
6	-4.097155	5.922479	-1.246599
1	-2.049606	5.498928	-1.753994
6	-5.125320	5.711578	-0.335072
1	-5.701706	4.738158	1.495715

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	257369	1
16 -0.429997 4.624782 1.7 6 -0.529845 6.348667 1.3 6 0.401601 6.898142 0.42 6 -1.557162 7.148475 1.8 6 0.296466 8.230762 0.04 1 1.204866 6.280511 0.04 6 -1.649714 8.482356 1.42 1 -2.289234 6.722285 2.4 6 -0.727261 9.043606 0.5 1 1.023565 8.647920 -0.6 1 -2.456201 9.094909 1.8 6 -0.811562 10.495420 0.1 1 -1.835099 10.865967 0.2 1 -0.186174 11.105287 0.8 1 -0.462511 10.650797 -0.8	092791	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	429997	16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	529845	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	401601	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	557162	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	296466	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	204866	1
1 -2.289234 6.722285 2.4 6 -0.727261 9.043606 0.5 1 1.023565 8.647920 -0.6 1 -2.456201 9.094909 1.8 6 -0.811562 10.495420 0.1 1 -1.835099 10.865967 0.2 1 -0.186174 11.105287 0.8 1 -0.462511 10.650797 -0.8	649714	6
6 -0.727261 9.043606 0.5 1 1.023565 8.647920 -0.6 1 -2.456201 9.094909 1.8 6 -0.811562 10.495420 0.1 1 -1.835099 10.865967 0.2 1 -0.186174 11.105287 0.8 1 -0.462511 10.650797 -0.8	289234	1
1 1.023565 8.647920 -0.6 1 -2.456201 9.094909 1.8 6 -0.811562 10.495420 0.1 1 -1.835099 10.865967 0.2 1 -0.186174 11.105287 0.8 1 -0.462511 10.650797 -0.8	727261	6
1-2.4562019.0949091.86-0.81156210.4954200.11-1.83509910.8659670.21-0.18617411.1052870.81-0.46251110.650797-0.8	023565	1
6-0.81156210.4954200.11-1.83509910.8659670.21-0.18617411.1052870.81-0.46251110.650797-0.8	456201	1
1-1.83509910.8659670.21-0.18617411.1052870.81-0.46251110.650797-0.8	811562	6
1 -0.186174 11.105287 0.8 1 -0.462511 10.650797 -0.8	835099	1
1 -0.462511 10.650797 -0.8	186174	1
	462511	1

$TolSAniCHCH_2Ph$

6	-0.038655	0.302315	0.125176
6	1.156026	-0.252483	-0.345194
6	1.280248	-1.626579	-0.493652
6	0.222077	-2.489073	-0.192688
6	-0.962968	-1.923609	0.273983
6	-1.099018	-0.546961	0.439040
1	1.988738	0.395491	-0.597664
1	2.216445	-2.037727	-0.858348
1	-1.799505	-2.568737	0.523599
1	-2.031487	-0.150875	0.821372
16	-0.087040	2.066122	0.339864
6	0.355181	-3.975257	-0.394163
1	0.176848	-4.243252	-1.439855
1	1.357937	-4.320123	-0.133729
1	-0.365764	-4.521849	0.216093
6	-1.879240	2.399692	0.358152
1	-2.335747	1.865331	-0.477904
1	-2.302509	2.034658	1.296036
6	-2.108027	3.908349	0.215390
1	-1.594026	4.234808	-0.694608
6	-3.580395	4.261520	0.043522
6	-4.621389	3.381488	0.335832
6	-3.899594	5.546528	-0.408069
6	-5.950770	3.777295	0.182276

1	-4.411769	2.376366	0.684081
6	-5.220842	5.942029	-0.565265
1	-3.096136	6.241916	-0.632284
6	-6.255133	5.055447	-0.267928
1	-6.747199	3.079425	0.415030
1	-5.445761	6.941578	-0.919769
1	-7.287842	5.361724	-0.388360
6	-1.501532	4.675478	1.380319
6	-2.021078	4.534796	2.673672
6	-0.412959	5.517073	1.198835
6	-1.464157	5.208248	3.744990
1	-2.881447	3.892994	2.839817
6	0.164518	6.210167	2.267084
1	0.008506	5.639816	0.205825
6	-0.362892	6.054117	3.550531
1	-1.866553	5.101519	4.745602
1	1.011728	6.855661	2.082405
8	0.111247	6.676232	4.667886
6	1.217091	7.553119	4.530680
1	1.422520	7.938935	5.527407
1	2.099619	7.023610	4.159851
1	0.980513	8.387007	3.863166

TolSAniCHCH₂Ph

6	-3.042355	-0.527293	-0.347303
6	-3.948804	-1.451903	-0.882107
6	-5.292463	-1.389299	-0.549955
6	-5.783586	-0.406345	0.317081
6	-4.873314	0.506349	0.841215
6	-3.516020	0.452648	0.522062
1	-3.596778	-2.220703	-1.562165
1	-5.978124	-2.115576	-0.975882
1	-5.222578	1.279137	1.518572
1	-2.845084	1.178532	0.962968
16	-1.339795	-0.719290	-0.816041
6	-7.248224	-0.350936	0.661461
1	-7.855740	-0.197559	-0.234388
1	-7.577735	-1.285193	1.123447
1	-7.458899	0.463467	1.356206
6	-0.576910	0.803279	-0.172515
1	-1.170797	1.657749	-0.503949
1	-0.573475	0.765113	0.919112
6	0.851360	0.914022	-0.718070

1	0.789070	0.878445	-1.810748
6	1.512751	2.238185	-0.354642
6	1.024462	3.097673	0.628357
6	2.686654	2.592765	-1.028043
6	1.694979	4.283198	0.932712
1	0.115742	2.857475	1.168726
6	3.353709	3.773022	-0.730337
1	3.079438	1.926711	-1.790573
6	2.858877	4.624894	0.256461
1	1.300785	4.938680	1.701111
1	4.260098	4.029962	-1.266835
1	3.378396	5.546402	0.492536
6	1.712260	-0.258320	-0.274389
6	2.055700	-0.420692	1.073606
6	2.163992	-1.204219	-1.184522
6	2.816956	-1.496058	1.491330
1	1.728018	0.313362	1.804034
6	2.937221	-2.296668	-0.782916
1	1.908906	-1.100914	-2.234753
6	3.263210	-2.444344	0.562531
1	3.085602	-1.623145	2.533531
1	3.270044	-3.011984	-1.523329
8	4.006212	-3.462715	1.064718
6	4.488892	-4.434401	0.153754
1	5.057666	-5.148334	0.746301
1	3.665367	-4.954846	-0.344456
1	5.146050	-3.982723	-0.595567
TolSAni			
6	-0.028490	0.339061	0.087387
6	1.217494	-0.259651	-0.114905
6	1.323770	-1.642063	-0.187043
6	0.199773	-2.463951	-0.068315
6	-1.035321	-1.849835	0.134752
6	-1.158632	-0.464827	0.215542
1	2.105565	0.355656	-0.216496
1	2.299929	-2.090844	-0.342178
1	-1.925361	-2.463030	0.236334

1

16

6

1

1

0.203313

-0.188945

-1.238299

0.228371

-2.133946 -0.021957 0.379077

-3.960061

-4.268158

-4.315961

-0.054270 2.122758

0.318244

1.262209

0.283887

1	-0.498712	-4.463464	0.330989
6	-1.796349	2.488742	0.166118
6	-2.481189	2.752537	1.346311
6	-2.486733	2.532503	-1.050815
6	-3.841536	3.058232	1.331029
1	-1.953651	2.717703	2.292575
6	-3.837020	2.827331	-1.077646
1	-1.958948	2.330441	-1.975966
6	-4.523509	3.092465	0.114476
1	-4.347705	3.260295	2.265312
1	-4.383718	2.863256	-2.012536
8	-5.839450	3.374209	-0.012325
6	-6.577049	3.645834	1.169200
1	-6.180732	4.523118	1.688408
1	-7.596558	3.847959	0.847563
1	-6.573269	2.784316	1.843032

${\tt TolSCH_2CH_2Ph}$

6	-0.094539	0.320425	-0.021106
6	1.194891	-0.227071	-0.037086
6	1.372763	-1.601005	-0.027394
6	0.281130	-2.476755	-0.001594
6	-0.993864	-1.919965	0.014066
6	-1.190508	-0.538486	0.004610
1	2.059645	0.428357	-0.057173
1	2.380513	-2.004986	-0.040102
1	-1.860901	-2.572677	0.034164
1	-2.201729	-0.153145	0.017545
16	-0.208669	2.092173	-0.035482
6	0.493731	-3.967345	0.008601
1	1.044524	-4.291184	-0.878541
1	1.073211	-4.275043	0.883124
1	-0.458324	-4.499853	0.028984
6	-2.002048	2.392210	-0.009027
1	-2.451512	1.926932	-0.888671
1	-2.422496	1.943259	0.893158
6	-2.225909	3.899593	-0.019194
1	-1.751861	4.329017	-0.907652
1	-1.723316	4.345079	0.845345
6	-3.680650	4.323641	0.000610
6	-4.742321	3.420043	0.026179
6	-3.973499	5.692193	-0.007163
6	-6.062411	3.871491	0.043539

1	-4.554443	2.352316	0.032905
6	-5.285901	6.145063	0.010058
1	-3.156436	6.407243	-0.027022
6	-6.339553	5.232452	0.035580
1	-6.873297	3.152025	0.063337
1	-5.488857	7.210078	0.003603
1	-7.365235	5.582471	0.049075

${\tt TolSCH_2CHOMePh}$

6	-0.035035	0.289727	0.292696
6	1.094297	-0.393805	-0.172551
6	1.122303	-1.780304	-0.177228
6	0.029238	-2.532012	0.266697
6	-1.089633	-1.840425	0.724337
6	-1.127123	-0.446924	0.748123
1	1.950142	0.164600	-0.536893
1	2.008082	-2.291145	-0.542478
1	-1.952000	-2.395368	1.079960
1	-2.009861	0.049584	1.132145
16	0.042797	2.066146	0.322463
6	0.076650	-4.036897	0.250583
1	0.245476	-4.413973	-0.761502
1	0.891468	-4.409136	0.877233
1	-0.856633	-4.464524	0.619984
6	-1.723553	2.520943	0.337486
1	-2.265134	1.843307	-0.324631
1	-2.127849	2.441929	1.348889
6	-1.885438	3.949437	-0.166366
1	-1.494347	4.013722	-1.191704
6	-3.356995	4.325629	-0.178310
6	-4.105913	4.202704	-1.346983
6	-3.980887	4.759027	0.992188
6	-5.466226	4.500760	-1.347143
1	-3.621237	3.874362	-2.261656
6	-5.338430	5.062166	0.992237
1	-3.393192	4.867895	1.897828
6	-6.084365	4.931930	-0.177334
1	-6.040369	4.403894	-2.261595
1	-5.815144	5.403151	1.904300
1	-7.141852	5.170037	-0.176987
8	-1.122677	4.779629	0.682597
6	-0.958574	6.089773	0.176468
1	-0.440527	6.070874	-0.789784

1	-1.920790	6.599880	0.055691
1	-0.352304	6.639086	0.895927

 $[TolSCHCH_2Ph]_{(cyc)}^+$

6	-0.820958	0.601370	-0.949644
6	0.061246	0.791899	0.109880
6	0.853539	-0.273578	0.516930
6	0.783955	-1.512958	-0.124632
6	-0.106620	-1.667816	-1.192064
6	-0.907559	-0.617796	-1.617270
1	0.128961	1.749913	0.613474
1	1.537966	-0.138225	1.346919
1	-0.171641	-2.623609	-1.700365
1	-1.588267	-0.750222	-2.451075
16	-1.771906	1.998028	-1.522047
6	1.667677	-2.649988	0.302914
1	2.569257	-2.677448	-0.316066
1	1.978844	-2.538348	1.342183
1	1.159650	-3.608641	0.188486
6	-3.513338	1.393484	-1.387350
1	-4.143236	1.837964	-2.149070
1	-3.555484	0.313890	-1.310150
6	-3.177672	2.162514	-0.194686
6	-3.643039	3.536331	0.068548
6	-4.244787	4.324286	-0.917748
6	-3.465411	4.048424	1.356699
6	-4.663106	5.611792	-0.611420
1	-4.390713	3.944975	-1.923059
6	-3.894626	5.333844	1.660390
1	-3.000225	3.431798	2.118622
6	-4.490436	6.116429	0.675892
1	-5.128011	6.222106	-1.376100
1	-3.763086	5.723931	2.662395
1	-4.823386	7.120620	0.910392
1	-2.854101	1.590423	0.670036

[TolSCHCH ₂ Ph] _(cyc) •				
6	-0.140551	1.243559	-1.413974	
6	-0.010049	1.249715	-0.023332	
6	-0.619391	0.262008	0.738888	
6	-1.363216	-0.756813	0.136210	
6	-1.460589	-0.771616	-1.255726	

6	-0.855460	0.216521	-2.027705
1	0.547890	2.045097	0.457739
1	-0.529109	0.287994	1.820556
1	-2.021883	-1.561732	-1.744145
1	-0.950399	0.198289	-3.108084
16	0.543649	2.574040	-2.386522
6	-2.055054	-1.792053	0.981094
1	-1.361502	-2.246090	1.692729
1	-2.863356	-1.333926	1.558697
1	-2.484064	-2.584582	0.366470
6	-0.938769	3.715991	-2.416423
1	-0.598385	4.542479	-3.042368
1	-1.740445	3.194276	-2.936952
6	-1.300174	4.174249	-1.061948
6	-2.264886	3.562191	-0.218313
6	-3.100137	2.496796	-0.638958
6	-2.383075	3.991629	1.128508
6	-3.971721	1.885723	0.245277
1	-3.045977	2.136559	-1.658722
6	-3.257339	3.373927	2.004444
1	-1.756543	4.808680	1.471615
6	-4.055438	2.311083	1.573267
1	-4.589202	1.062824	-0.098300
1	-3.319296	3.715287	3.031750
1	-4.735700	1.823814	2.261832
1	-0.696345	4.969474	-0.636589

[TolSCHCH₂Ph]_(lin)+

6	-1.484467	0.003731	-0.619282
6	-0.222882	0.557300	-0.411973
6	0.813890	-0.277561	-0.020945
6	0.610615	-1.650185	0.155768
6	-0.663326	-2.175305	-0.075020
6	-1.716629	-1.359704	-0.467474
1	-0.050508	1.618664	-0.552443
1	1.799508	0.143027	0.146124
1	-0.834004	-3.238992	0.047258
1	-2.697924	-1.783005	-0.652065
16	-2.789492	1.066211	-1.211868
6	1.740471	-2.533369	0.602369
1	2.665493	-2.275590	0.083696
1	1.917884	-2.407448	1.674301
1	1.517328	-3.584632	0.418739

6	-4.107372	0.848269	0.065484
1	-5.095510	0.949592	-0.367922
1	-3.941582	-0.041174	0.660991
6	-3.332049	2.044505	0.373077
6	-3.799721	3.422574	0.137152
6	-4.929760	3.706824	-0.636136
6	-3.071658	4.465645	0.715964
6	-5.322800	5.024632	-0.824239
1	-5.507144	2.911436	-1.094168
6	-3.474783	5.781909	0.532300
1	-2.197203	4.239193	1.316965
6	-4.598168	6.061549	-0.240037
1	-6.197586	5.244156	-1.424171
1	-2.912691	6.587138	0.989612
1	-4.912515	7.088169	-0.386602
1	-2.532730	1.925280	1.098733

[TolSCHCH₂Ph]_(lin)•

6	-0.133533	0.296672	-0.103169
6	1.173513	-0.206267	-0.135366
6	1.399385	-1.572127	-0.080614
6	0.340320	-2.482702	0.011414
6	-0.952574	-1.969608	0.044372
6	-1.197868	-0.597333	-0.013771
1	2.014184	0.476952	-0.199777
1	2.419959	-1.941867	-0.105382
1	-1.795415	-2.649768	0.116149
1	-2.221810	-0.248004	0.011193
16	-0.310184	2.061011	-0.193083
6	0.603985	-3.964139	0.060370
1	1.016624	-4.319022	-0.888249
1	1.326074	-4.209422	0.843046
1	-0.313419	-4.520795	0.257688
6	-2.099672	2.298083	0.032469
1	-2.634705	1.813632	-0.790201
1	-2.405062	1.811614	0.967327
6	-2.394587	3.760809	0.068537
6	-3.714545	4.277355	0.034895
6	-4.857551	3.441719	-0.023613
6	-3.925059	5.679451	0.061806
6	-6.131624	3.985018	-0.056026
1	-4.737639	2.364286	-0.038015
6	-5.201154	6.210110	0.027974

1	-3.062395	6.335987	0.107973
6	-6.315318	5.368175	-0.032517
1	-6.992500	3.327323	-0.099849
1	-5.336711	7.285552	0.047810
1	-7.314471	5.786362	-0.059524
1	-1.573562	4.463783	0.160318

TolSH

6	-0.002981	0.511963	-0.010081
6	1.204139	-0.188921	-0.050642
6	1.201922	-1.577111	-0.040107
6	0.008762	-2.303332	0.009769
6	-1.186910	-1.587710	0.051335
6	-1.201520	-0.195736	0.041557
1	2.145403	0.348821	-0.088706
1	2.148761	-2.107348	-0.071033
1	-2.129495	-2.123905	0.093071
1	-2.148821	0.331060	0.076141
16	0.062366	2.290545	-0.023407
1	-1.264240	2.491798	0.025114
6	0.024007	-3.808771	0.001296
1	0.326526	-4.189117	-0.978558
1	0.730744	-4.200081	0.736699
1	-0.963547	-4.213454	0.227553

TolSLi

6	-0.019713	0.520569	-0.014754
6	1.185258	-0.199861	-0.050718
6	1.198126	-1.588198	-0.038428
6	0.014333	-2.330445	0.009619
6	-1.184454	-1.620373	0.047855
6	-1.202968	-0.227593	0.035334
1	2.121326	0.346197	-0.087094
1	2.151037	-2.109403	-0.066678
1	-2.124884	-2.162013	0.089011
1	-2.163958	0.278032	0.067286
16	0.018207	2.294893	-0.031547
6	0.043255	-3.836516	0.002341
1	0.351924	-4.219302	-0.974936
1	0.750055	-4.222463	0.741039
1	-0.941370	-4.250552	0.226771
3	-2.127144	2.937566	0.044899

[TolS]⁻

6	0.013165	0.559493	-0.001603
6	1.205888	-0.186568	0.063605
6	1.207193	-1.579028	0.065947
6	0.022108	-2.313010	0.003388
6	-1.170700	-1.584903	-0.060992
6	-1.177771	-0.196122	-0.063673
1	2.149083	0.347248	0.113944
1	2.156622	-2.105961	0.118201
1	-2.117020	-2.118763	-0.110113
1	-2.123616	0.333010	-0.114218
16	0.003482	2.317615	-0.004917
6	0.016018	-3.820667	-0.001099
1	-0.398588	-4.216293	-0.933461
1	1.027953	-4.216895	0.106981
1	-0.588885	-4.220741	0.818011

[TolS]⁺

6	0.009275	0.522513	-0.009965
6	1.266942	-0.217574	0.020810
6	1.260963	-1.572983	0.039696
6	0.025391	-2.285228	0.030584
6	-1.218986	-1.585677	0.000606
6	-1.240380	-0.231402	-0.019706
1	2.191187	0.348670	0.029229
1	2.186300	-2.135292	0.064520
1	-2.138227	-2.158946	-0.004592
1	-2.170696	0.324292	-0.041980
16	0.002287	2.152200	-0.038638
6	0.024750	-3.756874	0.018357
1	-0.118810	-4.068473	-1.029271
1	0.967593	-4.176829	0.364469
1	-0.822655	-4.159984	0.575883

[TolS]

6	0.012067	0.527010	-0.005783
6	1.227201	-0.194525	0.039496
6	1.225661	-1.576980	0.048595
6	0.024053	-2.296714	0.012222
6	-1.186055	-1.585343	-0.031287

6	-1.199246	-0.205823	-0.041127
1	2.161462	0.353907	0.068725
1	2.166348	-2.115689	0.085089
1	-2.122291	-2.133365	-0.057445
1	-2.137547	0.335422	-0.074313
16	0.005263	2.243683	-0.016371
6	0.019097	-3.796691	0.001401
1	-0.268042	-4.166580	-0.987818
1	1.003176	-4.199918	0.241339
1	-0.706213	-4.189980	0.717277

TolSSTol

6	-1.901760	-0.360839	0.173431
6	-3.176643	-0.424453	0.740598
6	-4.125879	0.533881	0.414928
6	-3.837288	1.564726	-0.484424
6	-2.562284	1.604470	-1.045394
6	-1.593513	0.657175	-0.720937
1	-3.429031	-1.222848	1.430779
1	-5.113620	0.474832	0.861276
1	-2.311415	2.392646	-1.747765
1	-0.610692	0.716770	-1.173740
16	-0.741274	-1.611839	0.718987
16	0.740587	-1.615141	-0.707462
6	1.901398	-0.362075	-0.167365
6	3.176264	-0.428493	-0.734249
6	1.593416	0.659908	0.722555
6	4.125749	0.531006	-0.412760
6	2.562433	1.608357	1.042879
6	3.837426	1.565838	0.482088
1	3.428444	-1.229955	-1.420942
1	0.610610	0.721732	1.175093
1	5.113474	0.469755	-0.858846
1	2.311769	2.399654	1.741807
6	-4.885991	2.584533	-0.839837
1	-5.709264	2.120147	-1.389453
1	-5.308234	3.041260	0.058498
1	-4.469783	3.377744	-1.462275
6	4.886394	2.586912	0.833053
1	5.709546	2.124713	1.384689
1	5.308754	3.039608	-0.067266
1	4.470392	3.382938	1.452025

TolSSTol•Sty - TS

6	-0.450154	1.320606	-0.937962
6	-1.505664	1.410060	-0.031461
6	-1.293456	1.997459	1.211924
6	-0.042461	2.504718	1.560804
6	1.007491	2.402452	0.636302
6	0.818069	1.803698	-0.596523
1	-2.482499	1.020228	-0.294079
1	-2.113954	2.062436	1.918129
1	1.989565	2.779775	0.902588
1	1.650218	1.685103	-1.282981
16	-0.709512	0.423398	-2.436202
16	0.784735	-1.401591	-2.424923
6	0.115787	-1.869821	-0.826874
6	-1.051395	-2.628298	-0.714159
6	0.799106	-1.501412	0.336601
6	-1.530107	-2.996596	0.538479
6	0.315422	-1.877253	1.583787
6	-0.857973	-2.626241	1.705867
1	-1.586665	-2.924555	-1.609926
1	1.709134	-0.917162	0.256833
1	-2.440316	-3.583254	0.611036
1	0.855193	-1.581514	2.478377
6	0.193498	3.146724	2.899051
1	-0.699117	3.101457	3.523576
1	1.010756	2.649131	3.426979
1	0.475332	4.196041	2.778043
6	-1.367493	-3.031708	3.062743
1	-0.702819	-3.768498	3.522482
1	-1.415874	-2.171852	3.735146
1	-2.363468	-3.471725	2.996056
6	0.286255	1.240736	-3.875222
6	1.105836	0.212505	-4.495131
1	0.815704	2.067566	-3.405476
1	-0.526970	1.621560	-4.495161
1	0.620380	-0.433487	-5.217747
6	2.527627	0.139668	-4.401501
6	3.196830	-0.973130	-4.972311
6	3.334554	1.068350	-3.697149
6	4.568098	-1.140365	-4.849718
1	2.611453	-1.706194	-5.518769
6	4.705458	0.892863	-3.584173
1	2.886185	1.950834	-3.254148

6	5.341979	-0.210616	-4.155388
1	5.039506	-2.006721	-5.302091
1	5.290676	1.631895	-3.046438
1	6.413537	-0.339863	-4.062938

8. References

- 1. Y. Yuan, Y. X. Chen, S. Tang, Sci. Adv. 2018, 4, 5312-5318.
- 2. W. H. Li, H. Wang, S. P. Liu, Adv. Synth. Catal. 2020, 362, 2666-2671.
- 3. X. R. Wang, F. Chen, *Tetrahedron* **2011**, *67*, 4547-4551.
- I. A. MacKenzie, L. Wang, N. P. R. Onuska, O. F. Williams, K. Begam, A. M. Moran, B. D. Dunietz, D. A. Nicewicz, *Nature* 2020, 580, 76-80.
- I. Medina-Mercado, E. O. Asomoza-Solís, Eduardo Martínez-González, V. M. Ugalde-Saldívar, L. G. Ledesma-Olvera, J. E. Barquera-Lozada, V. Gjmez-Vidales, J. Barroso-Flores, B. A. Frontana-Uribe, S. Porcel, *Chem. Eur. J.* 2020, 26, 634-642.
- G. M. Sheldrick, Program SADABS: Area-Detector Absorption Correction, University of Gottingen, Germany, 1996.
- G. M. Sheldrick, SHELXS-97, SHELXL-97, Programs for Crystal Structure Analysis, University of Gottingen, Germany, 1997.
- 8. Y. Zhao, D. Truhlar, Theor. Chem. Acc. 2007, 120, 215-241.
- 9. J. Tomasi, B. Mennucci, E. Cancès, J. Mol. Struct: Theochem. 1999, 464, 211-226.
- a) J. P. Foster, F. Weinhold, J. Am. Chem. Soc. 1980, 102, 7211-7218; b) A. E. Reed, F. Weinhold, J. Chem. Phys. 1983, 78, 4066-4073; c) A. E. Reed, Weinstock, R. B.; F. Weinhold, J. Chem. Phys. 1985, 83, 735-746; d) A. E. Reed, F. Weinhold, J. Chem. Phys. 1985, 83, 1736-1740; e) J. E. Carpenter, "Extension of Lewis structure concepts to open-shell and excited-state molecular species," Ph.D. thesis, University of Wisconsin, Madison, WI, 1987; f) J. E. Carpenter, F. Weinhold, J. Mol. Struct. (Theochem), 1988, 139, 41-62; g) A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899-926; h) F. Weinhold, J. E. Carpenter, in "The Structure of Small Molecules and Ions," Ed. R. Naaman and Z. Vager (Plenum), 1988, pp. 227-236.
- a) A. D. Becke, K. E. Edgecombe, J. Chem. Phys. 1990, 92, 5397-5403; b) A.
 Savin, O. Jepsen, J. Flad, O. K. Andersen, H. Preuss, H. G. von Schnering, Angew.
 Chem. Int. Ed. 1992, 31, 187-188.

- 12. G. B. Bacskay, "A Quadratically Convergent Hartree-Fock (QC-SCF) Method. Application to Closed Systems," *Chem. Phys.* **1981**, *61*, 385-404.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, et al., Gaussian 16, Rev. A.03. Gaussian Inc., Wallingford CT, 2016.

9. Copies of NMR spectra of the products

Sep07-2020-OSSO_cJ.12.fid — WYN-X200907-1

Sep17-2020-OSSO_cJ.24.fid — WYN-X200917-1-F

S70

Nov12-2020-OSSO_cJ.11.fid — WYN-X201112-8

S72

S73

S74

S76

Nov25-2020-OSSO_cJ.46.fid — WYN-X201125-1

S78

Dec03-2020-OSSO_cJ.31.fid — WYN-X201203-4

Dec04-2020-OSSO_cJ.10.fid — WYN-X201204-4

3776	8888 3735 7228 9622 9622 9155 9155 8522 2800 0133 0133
158.	1435-1135-1135-1135-1132-1132-1132-1132-11

— 21.0983

Dec02-2020-OSSO_cJ.29.fid — WYN-X201202-1

S85

Nov30-2020-OSSO_cJ.14.fid WYN-X20	1130-6
- 163.0374 - 160.5883 - 158.3653	143.3567 135.0274 135.0274 135.6207 132.6302 131.4227 131.4227 131.4227 131.4227 131.4227 131.4286 131.4286 1228.6564 112.86457 126.7088 116.1628 116.1628 115.9443 1115.9433
$\gamma + \gamma$	

Nov16-2020-OSSO_cJ.3.fid — WYN-X201116-1

S94

— 55.3091 — 49.6004 ---- 39.3133

Nov13-2020-OSSO_cJ.33.fid WYN-	X2011	12-14-C
	4546	3497 3497 9989 9989 9812 9178 8887 8887 8887 8887 8231 1903 8231 1903 8233
	158.	143 133. 128. 128. 128. 127. 127. 126. 126. 126. 126. 126. 126. 126. 126
	1	

S109

158.9888 158.2876	143.6383	135.3040 133.4338 129.0127 128.5825 127.9395 126.6286 126.6045	114.6530 113.9613
52			52

T 55.3884 T 55.2637 - 49.9096 — 42.0180

S127

S129

	N	
0 - 0 - 4 - 0 4 0	9	
000-0000040	ø	
0007770000	0	
	o	
	Ĩ	

00000 —

2.2795

Nov27-2020-OSSO_cJ.12.fid — WYN-X201127-6	6				
√ 159.2946 √ 159.2946		135.5631 133.6588 130.0626 129.3983 128.0240 127.8387 125.7235	— 112.0222	— 91.1864	55.6922 55.2456

____39.5156 ___37.6840 — 21.0578

S137

Nov30-2020-OSSO_cJ.12.fid — WYN-X201130-4

AZUT150-4	
45	91 26 35 35 35 35 35 35 35 35 35 35 35 35 35
68	086702202200
57.	229. 16. 16.
\	

Sh Sh

- 79.2323

--- 42.8034

— 21.0905

Nov23-2020-OSSO_cJ.39.fid — WYN-X201123-3

S147

Dec04-2020-OSSO_cJ.72.fid --- wyn-x201204-6

Mar08-2021-OSSO_cJ.32.fid — wyn-x210308-2-C

Apr06-2021-OSSO_cJ.38.fid —

S161

Jun08-2021-OSSO_cJ.13.fid — WH-x210607-2-c

