Selective Hydroboration of Equilibrating Allylic Azides

Ruzhang Liu,* Yuanyuan Zhang, Jun Xu

College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China

liurzh@yzu.edu.cn

Table S1. Screening ligands for the hydroboration using [Ir(COD)CI]2 catalyst	S2
Table S2. Vaska-type catalysts screening	S4
Table S3. Expanded optimization table	S6
Table S4. Addition sequence optimization	S7
Table S5. Ratio of allylic azide isomers	S8
Experimental Procedures	S9
Mechanistic investigations	S41
References	S44
Copies of ¹ H NMR and ¹³ C NMR	S45

Bn N3	1. [lr(COD)Cl] ₂ (5 mol%) HBpin (4.0 eqiv.) Ligands, toluene, 90 °C , 2		N ₃ → +	H • Bn、人	~
N ₃ Bn	2. NaBO ₃ • 4H ₂ O, THF/H ₂ O		3a COH	3b	`ОН
mixture (60:10:30 ratio)					
Entry	Ligands	Ligands (mol%)	Conv. (%) ^b	Ratio ^b 3a/3b	_
1	PPh ₃	10	>98%	67:33	_
2	PPh ₃	15	>98%	78:22	
3	PPh ₃	20	>98%	77:23	
4	P(t-Bu) ₃	15	>98%	53:47	
5	P(OPh) ₃	15	>98%	67:33	
6	P(o-toluene) ₃	15	>98%	74:26	
7	PCy ₃	20	>98%	62:38	
8	S-Phos	20	>98%	57:43	
9	Davephos	20	>98%	83:17	
10	dppm	10	>98%	54:46	
11	dppe	5	>98%	74:26	
12	dppe	10	>98%	53:47	
13	dppp	10	>98%	72:28	
14	dppb	10	>98%	77:23	
15	dppz	10	<5%	-	
16	dppf	10	>98%	66:34	
17	DCyPE	10	<5%	-	
18	DIOP	10	>98%	65:35	
19	Xantphos	10	>98%	79:21	
20	DPEphos	10	>98%	80:20	
21	t-BuPHOX	10	>98%	75:25	
22	Duphos	10	>98%	53:47	

Table S1. Screening ligands for the hydroboration using [Ir(COD)Cl]₂ catalyst.^a

23	Josiphos	10	>98%	62.5: 37.5
24	BINAP	10	>98%	64.5: 35.5
25	DTBM-SEGPHOS	10	>98%	78:22
26	<i>i</i> -PrDOX	10	>98%	50:50
27	t-BuBOX	10	>98%	61:39
28	<i>i</i> -PrPyBOX	10	>98%	59:41
29	<i>i</i> -PrPyOX	10	>98%	67:33
30	6,6'-Dimethyl-2,2'-bipyridyl	10	>98%	69:31
31	4,4'-Di-tert-butyl-2,2'-bipyridyl	10	>98%	48:52
32	$P(4\text{-}ClC_6H_4)_3$	15	>98%	78:22°
33	P(4-FC ₆ H ₄) ₃	15	>98%	89:11 °
34	$P(4-CF_3C_6H_4)_3$	15	>98%	92:8 °
35	P(4-CH ₃ C ₆ H ₄) ₃	15	>98%	87.5:12.5 °
36	$P(4-OCH_3C_6H_4)_3$	15	>98%	70:30 °

^a Conditions: 1. Catalyst (5 mol%), ligand, toluene (1 mL), room temperature, 10 min; then allylic azide **1** (0.2 mmol), HBpin (4.0 equiv.), toluene (2 mL), 90 °C, 20 h; 2. NaBO₃•4H₂O (5.0 equiv.), THF/H₂O (2:1, 3 mL). ^b Determined by ¹H NMR. ^c a/b ratio determined by HPLC (Elite SinoChrom ODS-AP C18 4.6 mm × 250 mm, 5 μ m column, MeOH/H₂O: 45:55, 1.0 mL/min, 40 °C, 254 nm).

Structures of ligands:

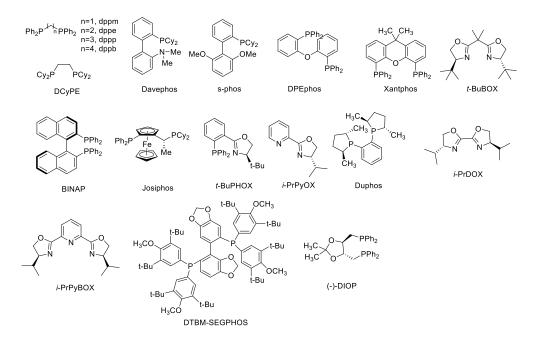
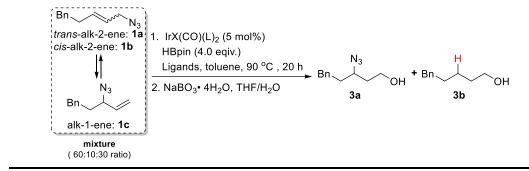



Table S2. Vaska-type catalysts screening.^a

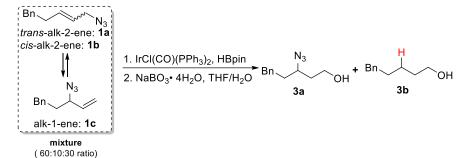
Entry	L of IrX(CO)(L) ₂	X of $IrX(CO)(L)_2$	Conv. (%) ^b	Ratio ^c 3a/3b	Isolated Yield (%)
1	PPh ₃	Br	>98%	94:6	67%
2	P(4-CH ₃ OC ₆ H ₄) ₃	Cl	<5%	-	-
3	PCy ₃	Cl	>98%	87:13	-
4	$P(C_6F_5)_3$	Cl	>98%	29:71	-
5	$P(4-CH_3C_6H_4)_3$	Cl	>98%	86:14	60%
6	$P(4-ClC_6H_4)_3$	Cl	>98%	94:6	44%
7	P(4-FC ₆ H ₄) ₃	Cl	>98%	89:11	51%
8	P(4-CF ₃ C ₆ H ₄) ₃	Cl	>98%	89:11	-
9	$P(2-CH_3C_6H_4)_3$	Cl	>98%	74:26	-
10	$P(t-Bu)_3$	Cl	>98%	66:34	-

^a Conditions: 1. Allylic azide **1** (0.2 mmol), HBpin (4.0 equiv.), catalyst (5 mol%), toluene (2 mL), 90 °C, 20 h (Sequence A in Table S4); 2. NaBO₃•4H₂O (5.0 equiv.), THF/H₂O (2:1, 3 mL). ^b Determined by ¹H NMR. ^c a/b ratio determined by HPLC (Elite SinoChrom ODS-AP C18 4.6 mm × 250 mm, 5 μm column, MeOH/H₂O: 45:55, 1.0 mL/min, 40 °C, 254 nm).

Preparation of IrBr(CO) (PPh₃)₂:

$$IrCl(CO)(Ph_3)_2 \xrightarrow{LiBr} IrBr(CO)(Ph_3)_2$$

THF

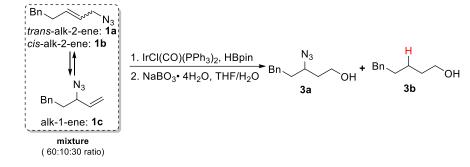

An oven-dried flask was charged with $[Ir(COD)Cl]_2$ (1.0 equiv.), LiBr (10 equiv.), and THF (50 mL/1mmol) under argon. The solution was stirred at room temperature for 1 h. The solvent was removed, and the residue was washed with H₂O (3 mL). The cake was dried, and recrystallized in toluene, and dried under vacuum to give the corresponding iridium complex as yellow solid.

Preparation of IrCl(CO)(L)₂:

$$[Ir(COD)CI]_{2} + PR_{3} \xrightarrow{CO} IrCI(CO)(PR_{3})_{2}$$

R = Cy, C₆F₅, *t*-Bu, OPh, 2-CH₃C₆H₄, 4-CH₃OC₆H₄,
4-CH₃C₆H₄, 4-CIC₆H₄, 4-FC₆H₄, 4-CF₃C₆H₄

An oven-dried flask was charged with $[Ir(COD)Cl]_2$ (1.0 equiv.), phosphane (4.0 equiv.), and C₆H₅CF₃(4 mL) under argon. The solution was stirred at room temperature for 15 min, and CO was added. After 2 h, the solvent was removed, the residue was washed with hexane (3 mL). After the filtration, the solid was collected and dried under vacuum to give the corresponding iridium complex. The spectral data of all the catalysts matched with the reported.^{S1}


Table S3. Expanded optimization table.^a

Entry	IrCl(CO)(PPh ₃) ₃ (mol%)	HBpin (equiv.)	Temp.(°C)	Solvent	Conv. (%) ^b	Ratio ^c 3a/3b	Isolated Yield (%)
1	5	4.0	90	toluene	>98%	95:5	67%
2	5	4.0	90	dry THF	>98%	91:9	55%
3	5	4.0	90	DCE	>98%	91:9	69%
4	5	4.0	90	hexane	70%	91:9	48%
5	5	4.0	90	heptane	>98%	73:27	-
6	5	4.0	90	chlorobenzene	>98%	90:10	37%
7	5	4.0	90	toluene	>98%	95:5	67%
8	5	3.0	90	toluene	>98%	94:6	59%
9	5	2.0	90	toluene	>98%	95:5	60%
10	5	1.5	90	toluene	60%	97:3	-
11	5	1.1	90	toluene	45%	-	-
12	5	4.0	80	toluene	70%	97:3	-
13	5	4.0	90	toluene	>98%	95:5	59%
14	5	4.0	120	toluene	>98%	93:7	57%
15	5	4.0	90	toluene	>98%	96:4	67%
16	2.5	4.0	90	toluene	44%	-	-
17	1	4.0	90	toluene	30%	-	-
18	0.5	4.0	90	toluene	<5%	-	-

^a Conditions: 1. IrCl(CO)(PPh₃)₃, allylic azide **1** (0.2 mmol), HBpin, solvent (2 mL), T, 20 h (Sequence F in Table S4); 2. NaBO₃•4H₂O (5.0 equiv.), THF/H₂O (2:1, 3 mL). ^b Determined by ¹H NMR; ^c a/b ratio determined by HPLC (Elite SinoChrom ODS-AP C18 4.6 mm × 250 mm, 5 µm column, MeOH/H₂O: 45:55, 1.0 mL/min, 40 °C, 254 nm).

Table S4. Addition sequence optimization.

Sequence A: A solution of allylic azide 1 (0.2 mmol) in toluene (1 mL), HBpin (4.0 equiv.), toluene (1 mL), stirred for 1-3min; Catalyst (5 mol%), toluene (1 mL), heated to 90 °C for 20 h; standard oxidation. Result: poor reproducibility (5 runs).

Sequence B: A solution of allylic azide **1** (0.2 mmol) in toluene (1 mL), Catalyst (5 mol%), toluene (1 mL), stirred for 1-3min; HBpin (4.0 equiv.), toluene (1 mL), heated to 90 °C for 20 h; standard oxidation. **Result**: Conv. >98%, Isolated yield: 66% (86:14).

Sequence C: Catalyst (10 mol%), a solution of allylic azide 1 (0.2 mmol) in toluene (1 mL), toluene (1 mL, used to rinse the flask), stirred for 1-3min; HBpin (4.0 equiv.), toluene (1 mL), heated to 90 °C for 20 h; standard oxidation. Result: Conv. >98%, Isolated yield: 37% (94:6).

Sequence D: Catalyst (5 mol%); a solution of allylic azide 1 (0.2 mmol) in toluene (1 mL) and HBpin (4.0 equiv.), toluene (1 mL), heated to 90 °C for 20 h; standard oxidation. **Result**: poor reproducibility (5 runs).

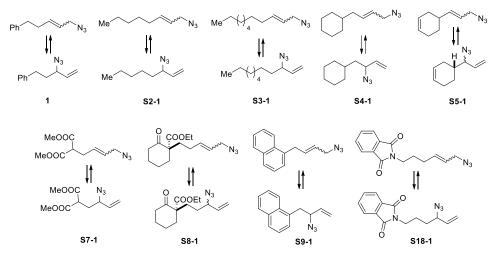
Sequence E: Catalyst (5 mol%), HBpin (4.0 equiv.), toluene (1 mL), stirred for 0.5 h, 1h, 2 h; a solution of allylic azide 1 (0.2 mmol) in toluene (1 mL), toluene (1 mL, used to rinse the flask), heated to 90 °C for 20 h; standard oxidation. Result: Conv.60% (0.5h); NR (1h); NR (2h).

Sequence F: Catalyst (5 mol%), a solution of allylic azide **1** (0.2 mmol) in toluene (1 mL), toluene (1 mL, used to rinse the flask), stirred for 30 min; HBpin (4.0 equiv.), toluene (1 mL), heated to 90 °C for 20 h; standard oxidation. **Result**: Conv.>98%, Isolated yield:67% (95:5).

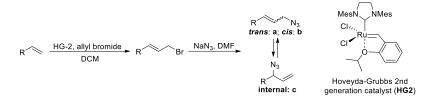
 Table S5. Ratio of allylic azide isomers.

		$R \sim N_3 = R$	-N3 -	$\rightarrow N_3$	
		trans-Alk-2-ene cis-All isomer a isom	k-2-ene her b	Alk-1-ene isomer c	
Entry	Isomer a	Ratio of isomers a : b : c ^a	Entry	Isomer a	Ratio of isomers a : b : c ^a
1	Ph N ₃	60:10:30	2	Me N ₃ S2-1a	61:7:32
3	Me N ₄ S3-1a	62:10:28	4	S4-1a	67:11:22
5	S5-1a	82:6:6:6 ^b	6	BzO N ₃ S6-2a	54:5:41
7	MeOOC MeOOC N ₃ \$7-1a	68:10:22	8	S8-1a	63:7:15:15 ^b
9	S9-1a	73:9:18	10	0N ₃ S10-2a	67:6:27
11	F S11-2a	67:6:27	12	CI S12-2a	67:6:27
13	Br S13-2a	68:7:25	14	O H S14-3a	68:7:25
15	BocHN S15-3a	86:4:10	16	Ph 0 N ₃ S16-3a	54:12:34
17	о N ₃ 517-За	61:10:29	18	518-1a	60:9:31
19	S N S 19-3a	68:7:25	20	S20-3a	69:6:25
21	S21-3 a	70:6:24	22	S22-2a	52:16:32
23	N ₃ S23-2a	65:1:34			

^a Determined by ¹H NMR in CDCl₃. ^b Ratio of isomers *trans*-alk-2-ene : *cis*-alk-2-ene : alk-1-ene 1 : alk-1-ene 2. Two internal isomers

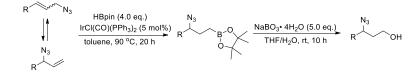

 $(alk\mbox{-}1\mbox{-}nember s\mbox{-}1\mbox{-}and\mbox{-}2)$ are presented due to the additional stereocenter(s) in the molecule.

General information

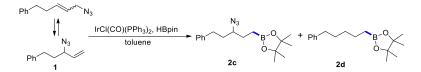

NMR spectra was recorded on a Bruker Advance 600 MHz or Agilent DD2 400 MHz spectrometer in deuterated solvents (400 or 600 MHz for ¹H and 101 or 150 MHz for ¹³C). Chemical shifts in ¹H NMR spectra are reported in ppm on the δ scale from an internal standard of TMS. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant in hertz (Hz), and integration. Chemical shifts of ¹³C NMR spectra are reported in ppm from the central peak of deuterated solvents on the δ scale. High resolution mass spectrometry (HRMS) was performed on Bruker UHR-TOF maXis and are reported as m/z. Infrared spectrometry (IR) was performed on Bruker Tensor 27 and are reported as cm⁻¹. Thin layer chromatography (TLC) was performed using TLC silica gel plates HSG F254 (Jiangyou) and visualized using UV light, or potassium permanganate. Silica gel column chromatography was carried out using 200-300 mesh silica gel (Jiangyou) on Biotage Isolera one.

Dichloromethane, DMF, THF and toluene were purified by passage through solvent purification columns. Unless otherwise noted, all other purchased reagents and solvents were used as received, without further purification.

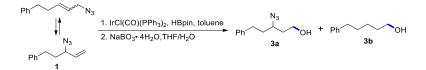
Compounds 1, S2-1, S3-1, S4-1, S5-1, S7-1, S8-1, S9-1, S18-1 were prepared according to the reported procedure.⁸²



General procedure A: Preparation of allyllic azides.

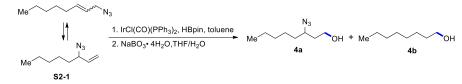

To a stirred solution of the Hoveyda-Grubbs 2nd generation catalyst (HG-2) (2 mol%) in dichloromethane (1 mL/mmol) under an argon atmosphere was added a pre-mixed solution of alkene (1.0 equiv) and allyl boromide (5.0 equiv) in dichloromethane (2 mL/mmol) at room temperature. The reaction mixture was stirred for 6 h. The crude product was purified by silica gel column chromatography to afford the corresponding allylic bromide. To a solution of the above allylic bromide in dry DMF (2 mL/mmol) was added sodium azide (1.5 equiv) portionwise. The resulting reaction mixture was stirred for 15 h. The resulting mixture was partitioned between ethyl acetate and water, and the aqueous layer was extracted with ethyl acetate three times. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to afford the corresponding allylic acides.

General procedure B: Selective hydroboration of allyllic azides.

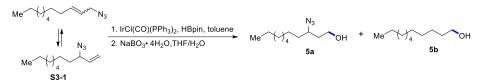


Under argon atmosphere, to an oven-dried flask was added $IrCl(CO)(PPh_3)_2$ (5 mol%), allylic azides (1.0 equiv.) and toluene (2 mL) successively. The reaction mixture was stirred for 30 min at room temperature, and then HBpin(4.0 equiv.) and toluene(1 mL) were added. The reaction mixture was heated at 90 °C for 20 h. The solvent was removed under the reduced pressure to afford the crude product. A mixture of the above crude product, NaBO₃·4H₂O (5.0 equiv.) in THF (2 mL) and H₂O (1 mL) was stirred at room temperature for 10 h. The reaction mixture was poured into water and extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and filtered. The concentrated residue was purified by chromatography to afford the desired product.

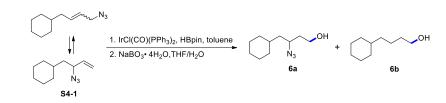
Scheme S1. Preparation of compound 3a.



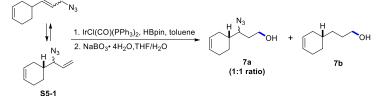
2-(3-Azido-5-phenylpentyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**2c**) and **4,4,5,5-tetramethyl -2-(5-phenyl pentyl)-1,3,2-dioxaborolane** (**2d**). According to General procedure B, a mixture of **S1-1** (46.6 mg, 0.247 mmol), HBpin (63.2 mg, 0.494 mmol), and IrCl(CO)(PPh₃)₂ (9.6 mg, 5 mol%) in toluene (3 mL) afforded **2c** (24.9 mg, 34%) as a yellow oil and **2d** (1.5 mg, 2 %) as a yellow oil after column chromatography (2~5% EtOAc/PE). Azide **2c**: R_f = 0.42 (5% EtOAc/PE), ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.22 (m, 2H), 7.21 – 7.13 (m, 3H), 3.20 (td, *J* = 7.7, 3.9 Hz, 1H), 2.77 (ddd, *J* = 14.5, 8.7, 6.1 Hz, 1H), 2.71 – 2.60 (m, 1H), 1.90 – 1.73 (m, 2H), 1.70 – 1.60 (m, 2H), 1.21 (s, 12H), 0.85 (q, *J* = 8.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 141.29, 128.42, 128.39, 125.94, 83.14, 63.96, 35.75, 32.35, 28.91, 24.77, 24.75. Compound **2d**: R_f = 0.45 (5% EtOAc/PE), ¹H NMR (400 MHz, CDCl₃) δ 7.24 (t, *J* = 7.3 Hz, 2H), 7.19 – 7.11 (m, 3H), 2.58 (t, *J* = 7.7 Hz, 2H), 1.60 (p, *J* = 9.0 Hz, 2H), 1.47 – 1.37 (m, 2H), 1.38 – 1.28 (m, 2H), 1.21 (s, 12H), 0.76 (t, *J* = 7.7 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 142.90, 128.36, 128.13, 125.44, 82.82, 35.82, 31.96, 31.17, 24.82, 24.77, 23.82.


3-Azido-5-phenylpentan-1-ol (3a). According to General procedure B, a mixture of **1** (99.3 mg, 0.530 mmol), HBpin (136 mg, 1.06 mmol), and IrCl(CO)(PPh₃)₂ (20.8 mg, 5 mol%) in toluene (2 mL) afforded the hydroboration products. A mixture of the above products and NaBO₃·4H₂O (406 mg, 2.64 mmol) in THF (2 mL) and H₂O (1 mL) afforded a mixture of **3a** and **3b** (69 mg, 64%, 19:1 ratio) as a yellow oil after column chromatography (10~25% EtOAc/PE). $R_f = 0.3$ (20% EtOAc/PE); IR (KBr): 3329, 2937, 2100, 1257, 1050, 745, 698 cm⁻¹; HRMS (ESI) m/z calculated for C₁₁H₁₅N₃NaO (M+Na)⁺: 228.1107, Found: 228.1198. Azide **3a**: ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.25 (m, 2H), 7.24 – 7.13 (m, 3H), 3.78 (td, *J* = 5.7, 1.8 Hz, 2H), 3.51 (td, *J* = 9.8, 8.4, 4.8 Hz, 1H), 2.87 – 2.75 (m, 1H), 2.76 – 2.64 (m, 1H), 1.94 – 1.70 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 141.00, 128.52, 128.36, 126.11, 59.68, 59.38, 36.89, 36.35, 32.32. Alcohol **3b** (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 3.64 (t, *J* = 6.6 Hz, 2H), 2.65 – 2.59 (m, 2H).

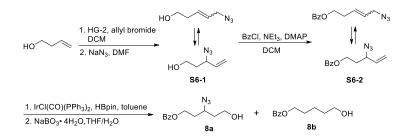
Scheme S2. Preparation of compound 4a.


3-Azidooctan-1-ol (**4a**). According to General procedure B, a mixture of **S2-1** (34.0 mg, 0.222 mmol), HBpin (60.8 mg, 0.472 mmol), and IrCl(CO)(PPh₃)₂ (8.8 mg, 5 mol%) in toluene (2 mL) afforded the hydroboration products. A mixture of the above products and NaBO₃·4H₂O (171 mg, 1.11 mmol) in THF (2 mL) and H₂O (1 mL) afforded a mixture of **4a** and **4b** (20.1 mg, 49%, 25:1 ratio) as a yellow oil after column chromatography (10~25% EtOAc/PE). $R_f = 0.3$ (20% EtOAc/PE); IR (KBr): 3182, 2929, 2861, 2100, 1252, 1052, 806 cm⁻¹; HRMS (ESI) m/z calculated for C₁₂H₁₃N₃NaO₂ (M+Na)⁺: 254.0900, Found: 254.0898. Azide **4a**: ¹H NMR (400 MHz, CDCl₃) δ 3.76 (t, *J* = 5.6 Hz, 2H), 3.54 – 3.44 (m, 1H), 1.83 – 1.73 (m, 1H), 1.72 – 1.62 (m, 1H), 1.62 – 1.50 (m, 10H), 1.50 – 1.35 (m, 2H), 1.35 – 1.22 (m, 5H), 0.89 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 60.17, 59.83, 36.79, 34.51, 31.55, 25.69, 22.51, 13.96. Alcohol **4b** (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 3.63 (t, *J* = 6.7 Hz, 2H).

Scheme S3. Preparation of compound 5a.


3-Azidoundecan-1-ol (**5a**). According to General procedure B, a mixture of **S3-1** (39.6 mg, 0.202 mmol), HBpin (51.9 mg, 0.406 mmol), and IrCl(CO)(PPh₃)₂ (8.0 mg, 5 mol%) in toluene (2 mL) afforded the borohydride product. A mixture of the above products and NaBO₃· 4H₂O (155 mg, 1.01 mmol) in THF (2 mL) and H₂O (1 mL) afforded a mixture of **5a** and **5b** (22.8 mg, 53%, 25:1 ratio) as a yellow oil after column chromatography (10~25% EtOAc/PE). $R_f = 0.3$ (20% EtOAc/PE); IR (KBr): 3319, 2927, 2857, 2100, 1461, 1256, 1051 cm⁻¹; HRMS (ESI) m/z calculated for C₈H₁₇N₃NaO (M+Na)⁺: 194.1264, Found: 194.1260. Azide **5a**: ¹H NMR (400 MHz, CDCl₃) δ 3.77 (t, *J* = 5.6 Hz, 2H), 3.55 – 3.41 (m, 1H), 1.85 – 1.72 (m, 1H), 1.73 – 1.52 (m, 3H), 1.48 – 1.21 (m, 12H), 0.87 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 60.17, 59.83, 36.79, 34.56, 31.82, 29.44, 29.39, 29.19, 26.02, 22.63, 14.08. Alcohol **5b** (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 3.63 (t, *J* = 6.6 Hz, 2H).

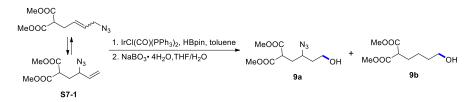
Scheme S4. Preparation of compound 6a.


3-Azido-4-cyclohexylbutan-1-ol (**6a**). According to General procedure B, a mixture of **S4-1** (103 mg, 0.574 mmol), HBpin (150 mg, 1.17 mmol), and IrCl(CO)(PPh₃)₂ (22.6 mg, 5 mol%) in toluene (4 mL) afforded the hydroboration products. A mixture of the above products and NaBO₃·4H₂O (442 mg, 2.87 mmol) in THF (2 mL) and H₂O (1 mL) afforded a mixture of **6a** and **6b** (62.1 mg, 55%, 15:1 ratio) as a yellow oil after column chromatography (10~25% EtOAc/PE). $R_f = 0.3$ (16% EtOAc/PE); IR (KBr): 3358, 2925, 2851, 2102, 1257, 1052, 659 cm⁻¹; HRMS (ESI) m/z calculated for C₁₀H₁₉N₃NaO (M+Na)⁺: 220.1420, Found: 220.1413. Azide **6a**: ¹H NMR (400 MHz, CDCl₃) δ 3.76 – 3.67 (m, 2H), 3.60 – 3.49 (m, 1H), 2.41 (br, 1H), 1.85 – 1.57 (m, 7H), 1.47 – 1.38 (m, 2H), 1.37 – 1.26 (m, 1H), 1.25 – 1.08 (m, 3H), 0.97 – 0.80 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 59.66, 57.37, 42.17, 37.24, 34.45, 33.66, 32.81, 26.45, 26.22, 26.08. Alcohol **6b** (diagnostic peaks only):¹³C NMR (151 MHz, CDCl₃) δ 63.04, 37.61, 33.36, 33.05, 26.71, 26.40, 22.98.

Scheme S5. Preparation of compound 7a.

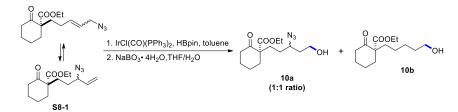
3-Azido-3-(cyclohex-3-en-1-yl)propan-1-ol (**7a**). According to General procedure B, a mixture of **S5-1** (80.0 mg, 0.490 mmol), HBpin (132 mg, 1.03 mmol), and IrCl(CO)(PPh₃)₂ (19.2 mg, 5 mol%) in toluene (4 mL) afforded the hydroboration products. A mixture of the above products and NaBO₃·4H₂O (378 mg, 2.46 mmol) in THF (2 mL) and H₂O (1 mL) afforded a mixture of **7a** and **7b** (47.9 mg, 54%, > 30:1 ratio) as a yellow oil after column chromatography (10~25% EtOAc/PE). $R_f = 0.3$ (20% EtOAc/PE); IR (KBr): 3346, 2923, 2099, 1257, 1050, 660 cm⁻¹; HRMS (ESI) m/z calculated for C₉H₁₅N₃NaO (M+Na)⁺: 204.1107, Found: 204.1093. Azide **7a** (1:1 ratio): ¹H NMR (600 MHz, CDCl₃) δ 5.73 – 3.63 (m, 2H), 3.86 – 3.75 (m, 2H), 3.50 (ddd, *J* = 10.2, 5.4, 3.4 Hz, 0.5H), 3.39 (ddd, *J* = 10.1, 6.5, 3.3 Hz, 0.5H), 2.16 – 2.04 (m, 2H), 1.98 – 1.75 (m, 5H), 1.70 (dq, *J* = 14.7, 5.1 Hz, 1H), 1.50 – 1.42 (m, 0.5H), 1.39 – 1.31 (m, 0.5H); ¹³C NMR (101 MHz, CDCl₃) δ 127.15, 126.90, 125.74, 125.55, 64.83, 64.66, 59.90, 59.87, 38.63, 38.44, 34.19, 33.86, 28.35, 27.12, 25.87, 25.16, 25.15, 24.96.

Scheme S6. Preparation of compound 8a.

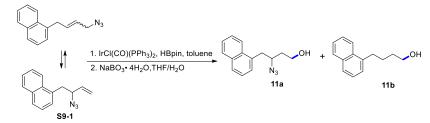

(*E*)-5-Azidopent-3-en-1-ol (S6-1a), (*Z*)-5-azidopent-3-en-1-ol (S6-1b), and 3-azidopent-4-en-1-ol (S6-1c). According to General procedure A, but-3-en-1-ol (7.2 g, 0.10 mol), allyl bromide (26 mL, 0.30 mol), HG-2 (206 mg, 0.330 mmol), and sodium azide (26 g, 0.40 mol) afforded a mixture of azides S6-1 (5.0 g, 40%, 75:7:18 ratio) as a colorless oil after silica gel column chromatography (5-20% EtOAc/hexanes). $R_f = 0.55$ (100% EtOAc/hexanes). Azide S6-1a: IR (neat) 3340, 2932, 2094, 1236 cm⁻¹; HRMS (ESI) *m*/*z* calculated for C₁₀H₁₉N₆O₂ (2M+H)⁺ 255.1569, Found: 255.1567; ¹H NMR (400 MHz, CDCl₃) δ 5.73-5.83 (m, 1H), 5.60-5.69 (m, 1H), 3.75 (d, *J* = 6.4 Hz, 2H), 3.69 (q, *J* = 6.0 Hz, 2H), 2.36 (q, *J* = 6.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 35.5, 52.7, 61.7, 125.7, 132.6. Azide S6-1b (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 3.86 (d, *J* = 7.2 Hz, 1H). Azide S6-1c: IR (neat) 3342, 2931, 2094, 1236 cm⁻¹; HRMS (ESI) *m*/*z* calculated for C₁₀H₁₉N₆O₂ (2M+H)⁺ 255.1569, Found: 255.1552; ¹H NMR (400 MHz, CDCl₃) δ 5.80 (ddd, *J* = 17.2, 10.2, 7.7 Hz, 1H), 5.34 (dt, *J* = 11.1, 1.0 Hz, 1H), 5.31 (dt, *J* = 4.1, 0.9 Hz, 1H), 4.10 (q, *J* = 7.4 Hz, 1H), 3.68-3.80 (m, 2H), 2.00 (t, *J* = 4.5 Hz, 1H), 1.75-1.81 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 36.7, 59.3, 62.3, 118.5, 135.3.

(E)-5-Azidopent-3-en-1-yl benzoate (S6-2a), (Z)-5-azidopent-3-en-1-yl benzoate (S6-2b), and 3-azidopent-4-en-1-yl benzoate (S6-2c). Under argon atmosphere, to a solution of S6-1 (119 mg, 0.933 mmol), Et₃N (280 mg, 2.75 mmol), DMAP (11.8 mg, 10 mol%) in DCM (5 mL) was added dropwise a solution of benzoyl chloride (196 mg, 1.39 mmol) in DCM (5 mL) at 0 °C. The reaction mixture was warmed to room temperature naturally and stirred for 10 h. The concentrated residue was purified by chromatography to afford S6-2 (202 mg, 94%, 54:5:41 ratio) as a yellow oil after column chromatography (2~10% EtOAc/PE). $R_f = 0.3$ (5% EtOAc/PE); IR (KBr): 2959, 2100, 1719, 1452, 1272, 1110, 973, 710 cm⁻¹; HRMS (ESI) m/z calculated for C₁₂H₁₃N₃NaO₂ (M+Na)⁺: 254.0900, Found: 254.0898. Azide S6-2a: ¹H NMR (400 MHz, CDCl₃) δ 8.05 - 8.00 (m, 2H), 7.59 - 7.51 (m, 1H), 7.47 - 7.40 (m, 2H), 5.87 - 5.74 (m, 1H), 5.73 - 5.63 (m, 1H), 4.43 - 4.32 (m, 2H), 3.72 (d, J = 6.6 Hz, 2H), 2.56 (q, 2H), 5.87 - 5.74 (m, 2H) J = 6.5 Hz, 1H), 2.03 – 1.93 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 166.45, 132.95, 131.70, 129.54, 128.39, 128.34, 125.85, 63.75, 52.56, 31.70. Azide **S6-2b** (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 3.85 (d, J = 7.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 133.01, 130.75, 130.01, 129.53, 128.37, 125.11, 47.10, 27.14. Azide

S6-2c (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 5.39 – 5.28 (m, 2H), 4.08 (q, J = 7.3 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.33, 134.86, 133.04, 130.14, 128.37, 119.00, 61.97, 61.31, 33.37.

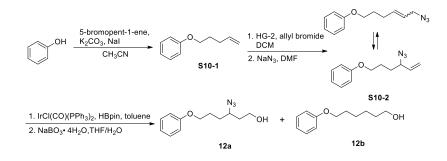

3-Azido-5-hydroxypentyl benzoate (**8a**). According to General procedure B, a mixture of **S6-3** (58.0 mg, 0.251 mmol), HBpin (134 mg, 1.05 mmol), and IrCl(CO)(PPh₃)₂ (9.8 mg, 5 mol%) in toluene (3 mL) afforded the hydroboration products. A mixture of the above products and NaBO₃·4H₂O (195 mg, 1.27 mmol) in THF (2 mL) and H₂O (1 mL) afforded a mixture of **8a** and **8b** (36.4 mg, 58%, 5:1 ratio) as a yellow oil after column chromatography (20~35% EtOAc/PE). $R_f = 0.4$ (25% EtOAc/PE); IR (KBr): 3728, 2944, 2102, 1719, 1275, 1068, 765 cm⁻¹; HRMS (ESI) m/z calculated for C₁₂H₁₅N₃NaO₃ (M+Na)⁺: 272.1006, Found: 272.1009. Azide **8a**: ¹H NMR (400 MHz, CDCl₃) δ 8.06 – 8.00 (m, 2H), 7.59 – 7.51 (m, 1H), 7.48 – 7.39 (m, 2H), 4.53 – 4.39 (m, 2H), 3.86 – 3.74 (m, 3H), 2.12 – 1.93 (m, 2H), 1.91 – 1.74 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.45, 133.09, 129.57, 128.41, 61.60, 59.37, 57.09, 36.92, 33.66. Alcohol **8b** (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 4.32 (t, *J* = 6.6 Hz, 2H), 3.67 (t, *J* = 6.4 Hz, 2H), 1.70 – 1.46 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 132.85, 129.93, 129.51, 128.32, 64.87, 62.73, 32.31, 28.53, 22.34.

Scheme S7. Preparation of compound 9a.


Dimethyl 2-(2-azido-4-hydroxybutyl)malonate (9a). According to General procedure B, a mixture of **S7-1** (38.8 mg, 0.171 mmol), HBpin (45.2 mg, 0.353 mmol), and IrCl(CO)(PPh₃)₂ (6.8 mg, 5 mol%) in toluene (2 mL) afforded the hydroboration products. A mixture of the above products and NaBO₃·4H₂O (132 mg, 0.858 mmol) in THF (2 mL) and H₂O (1 mL) afforded a mixture of **9a** and **9b** (20.7 mg, 48%, 20:1 ratio) as a yellow oil after column chromatography (15~30% EtOAc/PE). $R_f = 0.4$ (20% EtOAc/PE); IR (KBr): 3375, 2978, 2100, 1735, 1452, 1145, 710 cm⁻¹; HRMS (ESI) m/z calculated for C₉H₁₅N₃NaO₅ (M+Na)⁺: 268.0904, Found: 268.0909. Azide **9a**: ¹H NMR (400 MHz, CDCl₃) δ 3.80 (t, *J* = 6.0 Hz, 2H), 3.77 (s, 3H), 3.75 (s, 3H), 3.62 (dd, *J* = 9.1, 5.5 Hz, 1H), 3.62 – 3.55 (m, 1H), 2.22 (m, 1H), 2.00 (m, 1H), 1.85 – 1.77 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 169.40, 169.35, 59.07, 57.79, 52.83, 52.81, 48.72, 36.94, 33.55. Alcohol **9b** (diagnostic peaks only): ¹³C NMR (101 MHz, CDCl₃) δ 62.32, 61.10, 57.49, 36.27, 32.13, 28.47.

Scheme S8. Preparation of compound 10a.

Ethyl 1-(3-azido-5-hydroxypentyl)-2-oxocyclohexane-1-carboxylate (**10a**). According to General procedure B, a mixture of **S8-1** (44.7 mg, 0.160 mmol), HBpin (82.6 mg, 0.645 mmol), and IrCl(CO)(PPh₃)₂ (6.3 mg, 5 mol%) in toluene (2 mL) afforded the hydroboration products. A mixture of the above products and NaBO₃·4H₂O (123 mg, 0.799 mmol) in THF (2 mL) and H₂O (1 mL) afforded a mixture of **10a** and **10b** (21.4 mg, 45%, 15:1 ratio) as a yellow oil after column chromatography (10~25% EtOAc/PE). $R_f = 0.3$ (16% EtOAc/PE); IR (KBr): 2959, 2100, 1710, 1452, 1241, 1020, 730 cm⁻¹; HRMS (ESI) m/z calculated for C₁₄H₂₃N₃NaO₄ (M+Na)⁺: 320.1581, Found: 320.1592. Azide **10a** (1:1 ratio): ¹H NMR (400 MHz, CDCl₃) δ 4.32 – 4.12 (m, 2H), 3.77 – 3.70 (m, 2H), 3.52 – 3.42 (m, 1H), 2.52 – 2.38 (m, 1H), 2.05 – 1.82 (m, 4H), 1.82 – 1.52 (m, 7H), 1.50 – 1.32 (m, 2H), 1.27 (t, *J* = 7.9, 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 208.00, 207.83, 171.85(2C), 61.41, 61.38, 60.44, 60.41, 60.10, 59.97, 59.49, 59.47, 41.03(2C), 36.67, 36.52(2C), 36.20, 31.22, 30.93, 29.21, 29.03, 27.59, 27.50, 22.54, 22.50, 14.13, 14.12. Alcohol **10b** (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 3.63 (t, *J* = 6.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 208.04, 34.57, 32.40, 29.12, 26.07, 23.95, 23.89, 21.03.


Scheme S9. Preparation of compound 11a.

3-Azido-4-(naphthalen-1-yl)butan-1-ol (11a). According to General procedure B, a mixture of **S9-1** (115 mg, 0.517 mmol), HBpin (263 mg, 2.06 mmol), and IrCl(CO)(PPh₃)₂ (20.6 mg, 5 mol%) in toluene (4 mL) afforded the hydroboration products. A mixture of the above products and NaBO₃·4H₂O (398 mg, 2.59 mmol) in THF (2 mL) and H₂O (1 mL) afforded a mixture of **11a** and **11b** (89.8 mg, 72%, 5:1 ratio) as a yellow oil after column chromatography (10~25% EtOAc/PE). $R_f = 0.3$ (16% EtOAc/PE); IR (KBr): 3741, 2932, 2099, 1260, 1046, 779 cm⁻¹; HRMS (ESI) m/z calculated for C₁₄H₁₅N₃NaO (M+Na)⁺: 264.1107, Found: 264.1104. Azide **11a**: ¹H NMR

(400 MHz, CDCl₃) δ 8.01 (d, J = 8.8 Hz, 1H), 7.87 (d, J = 8.6 Hz, 1H), 7.79 (d, J = 7.8 Hz, 1H), 7.57 – 7.46 (m, 2H), 7.46 – 7.37 (m, 2H), 4.00 – 3.91 (m, 1H), 3.80 – 3.72 (m, 2H), 3.34 (dd, J = 7.0, 3.2 Hz, 2H), 1.98 – 1.55 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 133.94, 133.42, 131.85, 129.01, 127.89, 127.80, 126.26, 125.68, 125.47, 123.26, 60.54, 59.77, 38.35, 36.84. Alcohol **11b** (diagnostic peaks only): ¹H NMR (400 MHz, Chloroform-d) δ 7.71 (d, J =8.1 Hz, 2H), 7.32 (dd, J = 7.0, 1.3 Hz, 2H), 3.66 (t, J = 6.5 Hz, 2H), 3.10 (t, J = 7.6 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 131.81, 128.75, 126.57, 125.94, 125.71, 125.49, 125.40, 123.77, 62.82, 32.74, 32.73, 26.88.

Scheme S10. Preparation of compound 12a.

(Pent-4-en-1-yloxy)benzene (S10-1). Under argon atmosphere, to an oven-dried flask was added alcohol (1.00 g, 10.6 mmol), K₂CO₃ (2.20 g, 15.9 mmol), NaI (317 mg, 2.12 mmol), 5-bromopent-1-ene (3.14 g, 21.1 mmol) and acetonitrile (30 mL). The reaction mixture was heated to reflux for 12 h. After the filtration, the concentrated residue was purified by chromatography to afford target product S10-1 (1.50 g, 87%) as a yellow oil after column chromatography (0~5% EtOAc/PE). $R_f = 0.5$ (5% EtOAc/PE). ¹H NMR (600 MHz, CDCl₃) δ 7.29 – 7.25 (m, 2H), 6.97 – 6.87 (m, 3H), 5.85 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 5.06 (dq, J = 17.1, 1.7 Hz, 1H), 5.00 (dq, J = 10.2, 1.6 Hz, 1H), 3.97 (t, J = 6.5 Hz, 2H), 2.27 – 2.22 (m, 2H), 1.92 – 1.86 (m, 2H).

(*E*)-((6-Azidohex-4-en-1-yl)oxy)benzene (S10-2a), (*Z*)-((6-azidohex-4-en-1-yl)oxy)benzene (S10-2b), and ((4-azidohex-5-en-1-yl)oxy)benzene (S10-2c). According to General procedure A, a mixture of HG-2 (145 mg, 2 mol%), S10-1 (1.50 g, 9.25 mmol) and allyl bromide (3.33 g, 27.5 mmol) in dichloromethane (15 mL) afforded the corresponding allylic bromide (1.41 g, 60%). A mixture of the above bromide and sodium azide (536 mg, 8.26 mmol) in dry DMF (10 mL) afforded S10-2 (1.02 g, 85%, 67:6:27 ratio) as a yellow oil after column chromatography (100% PE). $R_f = 0.3$ (2% EtOAc/PE); IR (KBr): 3329, 2939, 2872, 2099, 1596, 1243, 1038, 754 cm⁻¹; HRMS (ESI) m/z calculated for C₁₂H₁₅N₃NaO (M+Na)⁺: 240.1107, Found: 240.1102. Azide S10-2a: ¹H NMR (600 MHz, CDCl₃) δ 7.22 - 7.17 (m, 2H), 6.89 - 6.84 (m, 1H), 6.84 - 6.80 (m, 2H), 5.69 - 5.60 (m, 1H), 5.48 - 5.40 (m, 1H), 3.82 (t, *J* = 6.3 Hz, 2H), 3.54 (d, *J* = 6.7 Hz, 2H), 2.19 - 2.12 (m, 2H), 1.81 - 1.72 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ

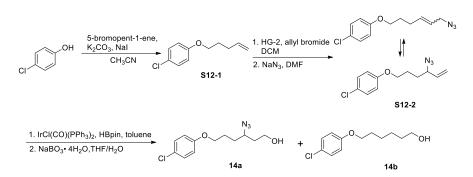
159.21, 135.78, 129.56, 123.84, 120.72, 114.63, 66.86, 52.70, 28.83, 28.81. Azide **S10-2b** (diagnostic peaks only): ¹H NMR (600 MHz, CDCl₃) δ 3.66 (d, *J* = 7.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 134.86, 123.28, 118.27,114.60, 66.59, 47.08, 29.08, 23.97. Azide **S10-2c** (diagnostic peaks only): ¹H NMR (600 MHz, CDCl₃) δ 5.69 – 5.62 (m, 1H), 5.22 – 5.16 (m, 2H), 3.84 – 3.78 (m, 2H), 3.75 (q, *J* = 7.1 Hz, 1H), 1.72 – 1.64 (m, 2H), 1.62 – 1.56 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 159.12, 135.81, 129.57, 123.28, 120.78, 114.59, 67.17, 47.08, 31.08, 25.80.

3-Azido-6-phenoxyhexan-1-ol (**12a**). According to General procedure B, a mixture of **S10-2** (66.9 mg, 0.308 mmol), HBpin (84.1 mg, 0.657 mmol), and IrCl(CO)(PPh₃)₂ (12.0 mg, 5 mol%) in toluene (3 mL) afforded the hydroboration products. A mixture of the above products and NaBO₃·4H₂O (237 mg, 1.54 mmol) in THF (2 mL) and H₂O (1 mL) afforded a mixture of **12a** and **12b** (52.2 mg, 72%, 7:1 ratio) as a yellow oil after column chromatography (10~25% EtOAc/PE). $R_f = 0.2$ (16% EtOAc/PE); IR (KBr): 3348, 2938, 2100, 1597, 1247, 1041, 753, 660 cm⁻¹; HRMS (ESI) m/z calculated for C₁₂H₁₇N₃NaO₂ (M+Na)⁺: 258.1213, Found: 258.1209. Azide **12a**: ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.23 (m, 2H), 6.97 – 6.85 (m, 3H), 4.04 – 3.95 (m, 2H), 3.83 – 3.74 (m, 2H), 3.64 – 3.56 (m, 1H), 2.02 – 1.65 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 158.79, 129.45, 120.73, 114.42, 67.16, 59.82, 59.62, 36.87, 31.31, 25.90. Alcohol **12b** (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 3.95 (d, *J* = 6.5 Hz, 2H), 3.64 (t, *J* = 6.5 Hz, 1H), 1.60 (p, *J* = 6.8 Hz, 2H), 1.54 – 1.46 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 129.39, 120.48, 114.45, 67.67, 62.88, 32.65, 29.24, 25.52.

Scheme S11. Preparation of compound 13a.

Fluoro-4-(pent-4-en-1-yloxy)benzene (S11-1). According to the synthetic method of compound **S10-1**, a mixture of 4-fluorophenol (2.01 g, 18.0 mmol), K₂CO₃ (3.73 g, 15.9 mmol), NaI (543 mg, 3.62 mmol), and 5-bromopent-1-ene (5.38 g, 36.1 mmol) in acetonitrile (30 mL) afforded **S11-1** (2.80 g, 88%) as a yellow oil after column chromatography (0~5% EtOAc/PE). $R_f = 0.5$ (5% EtOAc/PE). ¹H NMR (600 MHz, CDCl₃) δ 6.97 – 6.91 (m,

2H), 6.83 – 6.78 (m, 2H), 5.84 (ddt, *J* = 16.9, 10.2, 6.7 Hz, 1H), 5.05 (dq, *J* = 17.2, 1.7 Hz, 1H), 5.02 – 4.97 (m, 1H), 3.90 (t, *J* = 6.5 Hz, 2H), 2.24 – 2.19 (m, 2H), 1.89 – 1.81 (m, 2H).

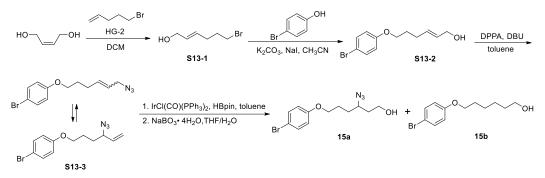

(E)-1-((6-Azidohex-4-en-1-yl)oxy)-4-fluorobenzene

(S11-2a),

(**Z**)-1-((**6**-azidohex-4-en-1-yl)oxy)-4-fluorobenzene (S11-2b), and 1-((**4**-azidohex-5-en-1-yl)oxy)-4-fluorobenzene (S11-2c). According to General procedure A, a mixture of HG-2 (243 mg, 2 mol%), S11-1 (2.80 g, 15.5 mmol) and allyl bromide (5.60 g, 46.3 mmol) in dichloromethane (15 mL) afforded the corresponding allylic bromide (1.47 g, 35%). A mixture of the above bromide and sodium azide (528 mg, 8.13 mmol) in dry DMF (10 mL) afforded S11-2 (1.16 g, 91%, 67:6:27 ratio) as a yellow oil after column chromatography (100% PE). R_f = 0.3 (2% EtOAc/PE); IR (KBr): 3731, 2942, 2100, 1399, 1210, 1037, 935, 8294 cm⁻¹; HRMS (ESI) m/z calculated for C₂₄H₂₈F₂N₆NaO₂ (2M+Na)⁺: 493.2134, Found: 491.2127. Azide S11-2a: ¹H NMR (600 MHz, CDCl₃) δ 6.82 – 6.76 (m, 2H), 6.67 – 6.62 (m, 2H), 5.63 – 5.54 (m, 1H), 5.42 – 5.34 (m, 1H), 3.82 – 3.64 (m, 2H), 3.50 (d, *J* = 6.7 Hz, 2H), 2.08 (q, *J* = 7.8 Hz, 2H), 1.71 – 1.64 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 157.13 (d, *J* = 237.6 Hz), 155.23 (d, *J* = 2.2 Hz), 135.56, 123.77, 115.66 (d, *J* = 22.9 Hz), 115.40 (d, *J* = 7.9 Hz), 67.46, 52.56, 28.61, 28.59. Azide S11-2b (diagnostic peaks only): ¹H NMR (600 MHz, CDCl₃) δ 3.61 (d, *J* = 7.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 156.2 – 5.54 (m, 1H), 5.15 – 5.09 (m, 2H), 1.65 – 1.09 (m, 2H), 1.52 (q, *J* = 7.5 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 157.16 (d, *J* = 2.7 Hz), 67.77, 64.73, 30.88, 25.63.

3-Azido-6-(4-fluorophenoxy)hexan-1-ol (13a). According to General procedure B, a mixture of **S11-2** (63.2 mg, 0.269 mmol), HBpin (78.1 mg, 0.610 mmol), and IrCl(CO)(PPh₃)₂ (10.6 mg, 5 mol%) in toluene (3 mL) afforded the hydroboration products. A mixture of the above products and NaBO₃·4H₂O (208 mg, 1.35 mmol) in THF (2 mL) and H₂O (1 mL) afforded a mixture of **13a** and **13b** (39.9 mg, 49%, > 30:1 ratio) as a yellow oil after column chromatography (10~25% EtOAc/PE). $R_f = 0.4$ (20% EtOAc/PE); IR (KBr): 3440, 2925, 2101, 1508, 1467, 1211, 1048, 828 cm⁻¹; HRMS (ESI) m/z calculated for C₁₂H₁₆FN₃NaO₂ (M+Na)⁺: 276.1119, Found: 276.1115. ¹H NMR (400 MHz, CDCl₃) δ 6.99 – 6.91 (m, 2H), 6.85 – 6.77 (m, 2H), 3.94 (td, *J* = 6.1, 2.4 Hz, 2H), 3.83 – 3.74 (m, 2H), 3.60 (tt, *J* = 8.9, 4.7 Hz, 1H), 1.97 – 1.67 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 157.22 (d, *J* = 238.2 Hz), 154.93, 115.76 (d, *J* = 23.0 Hz), 115.38 (d, *J* = 7.7 Hz), 67.93, 59.77, 59.60, 36.86, 31.26, 25.89.

Scheme S12. Preparation of compound 14a.

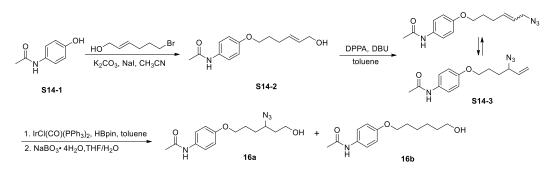

1-Chloro-4-(pent-4-en-1-yloxy)benzene (S12-1). According to the synthetic method of compound **S10-1**, a mixture of 4-chlorophenol (2.01 g, 15.7 mmol), K₂CO₃ (3.25 g, 23.5 mmol), NaI (468 mg, 3.12 mmol), 5-bromopent-1-ene (4.68 g, 31.4 mmol) in acetonitrile (30 mL) afforded **S12-1** (2.60 g, 84%) as a yellow oil after column chromatography (0~5% EtOAc/PE). $R_f = 0.5$ (5% EtOAc/PE). ¹H NMR (600 MHz, CDCl₃) δ 7.21 – 7.18 (m, 2H), 6.82 – 6.77 (m, 2H), 5.83 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 5.05 (dq, J = 17.1, 1.6 Hz, 1H), 4.99 (ddt, J = 10.2, 2.2, 1.3 Hz, 1H), 3.90 (t, J = 6.5 Hz, 2H), 2.24 – 2.18 (m, 2H), 189 – 1.81 (m, 2H).

(E)-1-((6-Azidohex-4-en-1-yl)oxy)-4-chlorobenzene (S12-2a), (\mathbf{Z}) -1-((6-azidohex-4-en-1-yl)oxy) -4-chlorobenzene (S12-2b), and 1-((4-azidohex-5-en-1-yl)oxy)-4-chlorobenzene (S12-2c). According to General procedure A, a mixture of HG-2 (212 mg, 2 mol%), S12-1 (2.60 g, 13.2 mmol) and allyl bromide (4.91 g, 40.6 mmol) in dichloromethane (15 mL) afforded the corresponding allylic bromide (1.34 g, 35%). A mixture of the above bromide and sodium azide (452 mg, 6.96 mmol) in dry DMF (10 mL) afforded S12-2 (990 mg, 85%, 68:7:25 ratio) as a yellow oil after column chromatography (100% PE). $R_f = 0.3$ (2% EtOAc/PE); IR (KBr): 3322, 2942, 2873, 2100, 1671, 1596, 1244, 824, 509 cm⁻¹; HRMS (ESI) m/z calculated for C₂₄H₂₈Cl₂N₆NaO₂ (2M+Na)⁺: 525.1543, Found: 525.1534. Azide S12-2a: ¹H NMR (400 MHz, CDCl₃) § 7.13 - 7.06 (m, 2H), 6.73 - 6.67 (m, 2H), 5.73 -5.61 (m, 1H), 5.52 - 5.40 (m, 1H), 3.80 (t, J = 6.3 Hz, 2H), 3.59 (d, J = 6.6 Hz, 2H), 2.20 - 2.12 (m, 2H), 1.80 - 2.12 (m 1.68 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 157.60, 135.57, 129.25, 125.36, 123.82, 115.75, 67.22, 52.66, 28.62, 28.51. Azide **S12-2b** (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 3.69 (d, J = 7.3 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 134.66, 125.43, 123.23, 66.96, 47.01, 28.81, 23.81. Azide S12-2c (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 5.24 – 5.16 (m, 2H), 1.63 – 1.55 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 157.51, 135.51, 129.27, 125.45, 118.40, 115.71, 67.55, 64.71, 30.90, 25.57.

3-Azido-6-(4-chlorophenoxy)hexan-1-ol (14a). According to General procedure B, a mixture of **S12-2** (69.3 mg, 0.275 mmol), HBpin (76.4 mg, 0.597 mmol), and IrCl(CO)(PPh₃)₂ (10.9 mg, 5 mol%) in toluene (3 mL) afforded the hydroboration products. A mixture of the above products and NaBO₃·4H₂O (212 mg, 1.38 mmol) in THF (2 mL)

and H₂O (1 mL) afforded a mixture of **14a** and **14b** (43.0 mg, 58%, > 30:1 ratio) as a yellow oil after column chromatography (10~25% EtOAc/PE). $R_f = 0.4$ (20% EtOAc/PE); IR (KBr): 3731, 2941, 2101, 1595, 1391, 1243, 1049, 824, 560 cm⁻¹; HRMS (ESI) m/z calculated for C₁₂H₁₆ClN₃NaO₂ (M+Na)⁺: 292.0823, Found: 292.0822. ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.18 (m, 2H), 6.84 – 6.77 (m, 2H), 3.95 (td, J = 6.1, 2.2 Hz, 2H), 3.82 – 3.74 (m, 2H), 3.59 (tt, J = 9.0, 4.7 Hz, 1H), 2.00 – 1.65 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 157.42, 129.30, 125.56, 115.69, 67.61, 59.75, 59.59, 36.86, 31.24, 25.81.

Scheme S13. Preparation of compound 15a.


(*E*)-6-Bromohex-2-en-1-ol (S13-1). According to General procedure A, a mixture of (*Z*)-but-2-ene-1,4-diol (682 mg, 7.74mmol), HG-2 (48.5 mg, 2mol%) and 5-bromopent-1-ene (577 mg, 3.87 mmol) in DCM (10 mL) afforded S13-1 (222 mg, 32%) as a yellow oil after column chromatography (10~20% EtOAc/PE). $R_f = 0.3$ (16% EtOAc/PE). ¹H NMR (400 MHz, CDCl₃) δ 5.66 – 5.50 (m, 2H), 4.00 (d, *J* = 5.3 Hz, 2H), 3.34 (t, *J* = 6.7 Hz, 2H), 2.59 (br, 1H), 2.20 – 2. 09 (m, 2H), 1.93 – 1.81 (m, 2H).

(*E*)-6-(4-Bromophenoxy)hex-2-en-1-ol (S13-2). According to the synthetic method of compound S10-1, a mixture of 4-bromophenol (216 mg, 1.25 mmol), K₂CO₃ (258 mg, 1.87 mmol), NaI (38.0 mg, 0.254 mmol), S13-1 (222 mg, 1.24 mmol) in acetonitrile (5 mL) afforded S13-2 (305 mg, 91%) as a yellow oil after column chromatography (20~40% EtOAc/PE). $R_f = 0.3$ (25% EtOAc/PE). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 8.5 Hz, 2H), 6.72 (d, J = 8.5 Hz, 2H), 5.71 – 5.56 (m, 2H), 4.02 (d, J = 4.8 Hz, 2H), 3.86 (t, J = 6.0 Hz, 2H), 2.18 (p, J = 7.4, 6.5 Hz, 2H), 1.81 (p, J = 6.9 Hz, 2H).

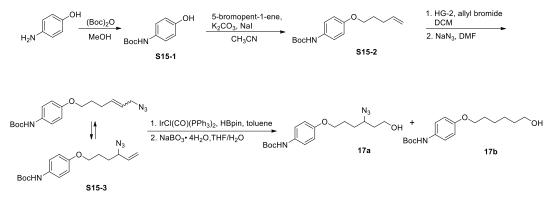
(*E*)-1-((6-Azidohex-4-en-1-yl)oxy)-4-bromobenzene (S13-3a), (*Z*)-1-((6-azidohex-4-en-1-yl)oxy) -4-bromobenzene (S13-3b), and 1-((4-azidohex-5-en-1-yl)oxy)-4-bromobenzene (S13-3c). Under argon atmosphere, to an oven-dried flask was added S13-2 (305 mg, 1.13 mmol), DPPA (622 mg, 2.26 mmol), DBU (421 mg, 2.76 mmol), and toluene (10 mL). The reaction mixture was heated to reflux for 12 h. The concentrated residue was purified by chromatography to afford S13-3 (291 mg, 87%) as a yellow oil after column chromatography (2~10% EtOAc/PE). $R_f = 0.3$ (5% EtOAc/PE); IR (KBr): 3318, 2942, 2873, 2099, 1588, 1243, 1030, 822 cm⁻¹; HRMS (ESI) m/z calculated for C₁₂H₁₄BrN₃NaO (M+Na)⁺: 318.0212, Found: 318.0218. Azide **S13-3a**: ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.32 (m, 2H), 6.79 – 6.72 (m, 2H), 5.83 – 5.71 (m, 1H), 5.56 (dtt, *J* = 14.8, 6.6, 1.4 Hz, 1H), 3.97 – 3.87 (m, 2H), 3.70 (d, *J* = 6.7 Hz, 2H), 2.31 – 2.22 (m, 2H), 1.92 – 1.80 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 158.09, 135.55, 132.20, 123.84, 116.30, 116.26, 112.70, 67.17, 52.68, 28.63, 28.51. Azide **S13-3b** (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 3.79 (d, *J* = 7.3 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 158.01, 134.66, 123.25, 112.78, 66.92, 47.03, 28.80, 23.82. Azide **S13-3c** (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 5.34 – 5.26 (m, 2H), 1.73 – 1.67 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 157.99, 135.50, 132.22, 118.43, 116.26, 112.78, 67.51, 64.70, 30.90, 25.56.

3-Azido-6-(4-bromophenoxy)hexan-1-ol (15a). According to General procedure B, a mixture of **S13-3** (76.6 mg, 0.296 mmol), HBpin (157 mg, 1.22 mmol), and IrCl(CO)(PPh₃)₂ (11.5 mg, 5 mol%) in toluene (3 mL) afforded the hydroboration products. A mixture of the above products and NaBO₃·4H₂O (228 mg, 1.48 mmol) in THF (2 mL) and H₂O (1 mL) afforded a mixture of **15a** and **15b** (37.2 mg, 40%, > 30:1 ratio) as a yellow oil after column chromatography (15~30% EtOAc/PE). $R_f = 0.4$ (20% EtOAc/PE); IR (KBr): 3688, 2970, 2100, 1482, 1241, 1050, 710 cm⁻¹; HRMS (ESI) m/z calculated for C₁₂H₁₆BrN₃NaO₂ (M+Na)⁺: 336.0318, Found: 336.0323. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.33 (m, 2H), 6.79 – 6.73 (m, 2H), 3.95 (td, *J* = 6.1, 2.3 Hz, 2H), 3.83 – 3.75 (m, 2H), 3.59 (tt, *J* = 9.0, 4.7 Hz, 1H), 2.00 – 1.66 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 157.92, 132.23, 116.22, 112.86, 67.55, 59.74, 59.60, 36.86, 31.22, 25.79.

(*E*)-*N*-(4-((6-Hydroxyhex-4-en-1-yl)oxy)phenyl)acetamide (S14-2). According to the synthetic method of compound S10-1, a mixture of *N*-(4-hydroxyphenyl)acetamide (S14-1, 2.24 g, 14.8 mmol), K_2CO_3 (2.54 g, 18.4 mmol), NaI (457 mg, 3.05 mmol), (*E*)-6-bromohex-2-en-1-ol (S13-1, 1.32 g, 7.36 mmol) in acetonitrile (30 mL)

(Z)-N-(4-((6-azidohex)

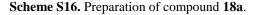
afforded **S14-2** (1.50 g, 84%) as a yellow oil after column chromatography (60~100% EtOAc/PE). $R_f = 0.4$ (100% EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 9.0 Hz, 2H), 7.07 (br, 1H), 6.83 (d, J = 9.1 Hz, 2H), 5.76 – 5.62 (m, 2H), 4.12 – 4.04 (m, 2H), 3.93 (t, J = 6.3 Hz, 2H), 2.22 (q, J = 6.8 Hz, 2H), 2.13 (s, 3H), 1.90 – 1.81 (m, 2H).

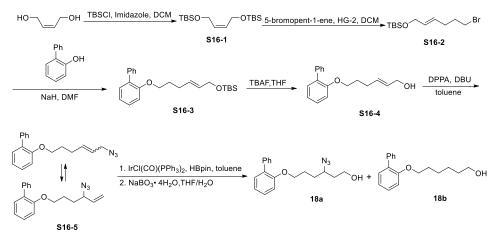

(E)-N-(4-((6-Azidohex-4-en-1-yl)oxy)phenyl)acetamide (S14-3a),

-4-en-1-yl)oxy)phenyl)acetamide (S14-3b), and N-(4-((4-azidohex-5-en-1-yl)oxy)phenyl) acetamide (S14-3c). Under argon atmosphere, to an oven-dried flask was added S14-2 (1.50 g, 6.02 mmol), DPPA (3.31 g, 12.0 mmol), DBU (2.22 g, 14.6 mmol), and toluene (30 mL). The reaction mixture was heated to reflux for 12 h. The

concentrated residue was purified by chromatography to afford **S14-3** (1.25 g, 76%, 85:4:11 ratio) as a yellow oil after column chromatography (25~60% EtOAc/PE). $R_f = 0.5$ (50% EtOAc/PE); IR (KBr): 3317, 2920, 2084, 1654, 1521, 1234, 964, 822, 708 cm⁻¹; HRMS (ESI) m/z calculated for C₁₄H₁₈N₄NaO₂ (M+Na)⁺: 297.1322, Found: 297.1324. Azide **S14-3a**: ¹H NMR (400 MHz, CDCl₃) δ 7.63 (bri, 1H), 7.35 (d, *J* = 9.0 Hz, 2H), 6.80 (d, *J* = 9.0 Hz, 2H), 5.82 – 5.68 (m, 1H), 5.60 – 5.50 (m, 1H), 3.91 (t, *J* = 6.3 Hz, 2H), 3.69 (d, *J* = 6.6 Hz, 2H), 2.29 – 2.21 (m, 2H), 2.10 (s, 3H), 1.96 – 1.78 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 168.67, 155.73, 135.73, 131.10, 123.67, 121.99, 114.67, 67.20, 52.69, 28.63, 28.58, 24.13. Azide **S14-3b** (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 155.62, 134.79, 123.08, 66.92, 47.04, 28.86, 23.83. Azide **S14-3c** (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 5.32 – 5.24 (m, 2H), 1.73 – 1.65 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 5.32 – 5.24 (m, 2H), 1.73 – 1.65 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 5.32 – 5.24 (m, 2H), 1.73 – 1.65 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 5.32 – 5.24 (m, 2H), 1.73 – 1.65 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 5.32 – 5.24 (m, 2H), 1.73 – 1.65 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 5.32 – 5.24 (m, 2H), 1.73 – 1.65 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 5.32 – 5.24 (m, 2H), 1.73 – 1.65 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 5.32 – 5.24 (m, 2H), 1.73 – 1.65 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 5.32 – 5.24 (m, 2H), 1.73 – 1.65 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 5.32 – 5.24 (m, 2H), 1.73 – 1.65 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 5.32 – 5.24 (m, 2H), 1.73 – 1.65 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 5.562, 135.48, 131.18, 118.41, 114.63, 67.50, 64.73, 30.91, 25.61.

N-(4-((4-Azido-6-hydroxyhexyl)oxy)phenyl)acetamide (16a). According to General procedure B, a mixture of **S14-2** (38.8 mg, 0.171 mmol), HBpin (45.2 mg, 0.353 mmol), and IrCl(CO)(PPh₃)₂ (6.8 mg, 5 mol%) in toluene (2 mL) afforded the hydroboration products. A mixture of the above products and NaBO₃·4H₂O (132 mg, 0.858 mmol) in THF (2 mL) and H₂O (1 mL) afforded a mixture of **16a** and **16b** (20.7 mg, 48%, 5:1 ratio) as a yellow oil after column chromatography (15~30% EtOAc/PE). R_f = 0.4 (20% EtOAc/PE); IR (KBr): 3735, 3284, 2931, 2099, 1663, 1472, 1240, 1030, 800, 539 cm⁻¹; HRMS (ESI) m/z calculated for C₁₄H₂₁N₄O₃ (M+H)⁺: 293.1608, Found: 293.1609. Azide **16a**: ¹H NMR (400 MHz, CDCl₃) δ 7.77 (br, 1H), 7.34 (d, *J* = 9.0 Hz, 2H), 6.79 (d, *J* = 9.0 Hz, 2H), 3.97 – 3.85 (m, 2H), 3.77 – 3.71 (m, 2H), 3.56 (dt, *J* = 8.5, 4.1 Hz, 1H), 2.08 (s, 3H), 1.95 – 1.65 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 168.49, 155.65, 131.06, 121.98, 114.69, 67.56, 59.74, 59.47, 36.91, 31.23, 25.85, 24.24. Alcohol **16b** (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 3.61 (t, *J* = 6.6 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 121.95, 68.07, 62.80, 53.43, 32.63, 29.19, 25.51.


tert-Butyl (4-hydroxyphenyl)carbamate (S15-1). Under argon atmosphere, a solution of 4-aminophenol (3.00 g, 27.5 mmol) and (Boc)₂O (7.12 g, 32.6 mmol) in methanol (30 mL) was heated to reflux for 12 h. The concentrated residue was purified by chromatography to afford S15-1 (5.30 g, 92%) as a white solid after column chromatography (10~25% EtOAc/PE). $R_f = 0.5$ (16% EtOAc/PE); ¹H NMR (400 MHz, DMSO- d_6) δ 8.99 (br, 1H), 8.93 (br, 1H), 7.18 (d, J = 8.3 Hz, 2H), 6.61 (d, J = 8.9 Hz, 2H), 1.42 (s, 9H).


tert-Butyl (4-(pent-4-en-1-yloxy)phenyl)carbamate (S15-2). According to the synthetic method of compound S10-1, a mixture of S15-1 (2.00 g, 9.56 mmol), K₂CO₃ (1.98 g, 14.3 mmol), NaI (277 mg, 1.85 mmol), 5-bromopent-1-ene(2.89 g, 19.4 mmol) in acetonitrile (30 mL) afforded S15-2 (2.10 g, 81%) as a yellow oil after column chromatography (5~10% EtOAc/PE). $R_f = 0.4$ (10% EtOAc/PE). ¹H NMR (600 MHz, CDCl₃) δ 7.24 (d, J = 8.5 Hz, 2H), 6.86 – 6.82 (m, 2H), 6.32 (br, 1H), 5.84 (ddt, J = 16.9, 10.1, 6.7 Hz, 1H), 5.05 (dq, J = 17.1, 1.7 Hz, 1H), 5.02 – 4.96 (m, 1H), 3.93 (t, J = 6.4 Hz, 2H), 2.26 – 2.20 (m, 2H), 1.88 – 1.82 (m, 2H), 1.51 (s, 9H).

tert-Butyl (E)-(4-((6-azidohex-4-en-1-yl)oxy)phenyl)carbamate (S15-3a), *tert*-butyl (Z)-(4-((6-azidohex -4-en-1-yl)oxy)phenyl)carbamate (S15-3b), and *tert*-butyl (4-((4-azidohex-5-en-1-yl)oxy)phenyl)carbamate (S15-3c). According to General procedure A, a mixture of HG-2 (119 mg, 2 mol%), S15-1 (2.10 g, 7.57 mmol) and allyl bromide (2.90 g, 23.9 mmol) in dichloromethane (15 mL) afforded the corresponding allylic bromide (1.90 g, 68%). A mixture of the above bromide and sodium azide (406 mg, 6.24 mmol) in dry DMF (10 mL) afforded S15-3 (1.35 g, 79%, 86:4:10 ratio) as a yellow oil after column chromatography (100% PE). Rf = 0.3 (2% EtOAc/PE); IR (KBr): 3366, 2940, 2872, 2090, 1696, 1517, 1240, 1161, 1048, 775, 459 cm-1; HRMS (ESI) m/z calculated for C17H24N4NaO3 (M+Na)+: 355.1441, Found: 355.1453. Azide S15-3a: 1H NMR (400 MHz, CDCl₃) δ 7.28 – 7.18 (m, 2H), 6.79 (d, J = 9.0 Hz, 2H), 6.61 (br, 1H), 5.81 – 5.67 (m, 1H), 5.59 – 5.47 (m, 1H), 3.90 (t, J = 6.3 Hz, 2H), 3.67 (d, J = 6.6 Hz, 2H), 2.24 (q, J = 7.6 Hz, 2H), 1.87 – 1.75 (m, 2H), 1.48 (s, 9H); 13C NMR (101 MHz, CDCl₃) δ 154.93, 153.24, 135.77, 131.53, 123.64, 120.51, 114.82, 80.07, 67.23, 52.67, 28.64, 28.60, 28.35. Azide S15-3b

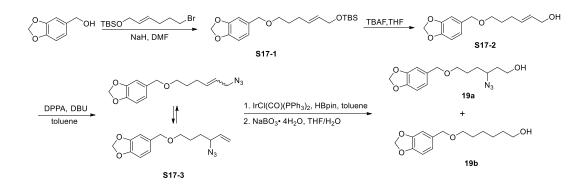
(diagnostic peaks only): 1H NMR (400 MHz, CDCl₃) δ 3.77 (d, J = 7.3 Hz, 2H); 13C NMR (101 MHz, CDCl₃) δ 134.82, 123.06, 66.95, 47.01, 28.88, 23.83. Azide S15-3c (diagnostic peaks only): 1H NMR (400 MHz, CDCl₃) δ 5.31 – 5.23 (m, 2H), 1.72 – 1.62 (m, 2H); 13C NMR (101 MHz, CDCl₃) δ 154.83, 135.52, 131.60, 118.36, 114.77, 67.54, 64.73, 30.90, 28.88, 25.63.

tert-Butyl (4-((4-azido-6-hydroxyhexyl)oxy)phenyl)carbamate (17a). According to General procedure B, a mixture of **S15-3** (80.0 mg, 0.241 mmol), HBpin (76.4 mg, 0.597 mmol), and IrCl(CO)(PPh₃)₂ (10.9 mg, 5 mol%), in toluene (3 mL) afforded the hydroboration products. A mixture of the above products and NaBO₃·4H₂O (187 mg, 1.21 mmol) in THF (2 mL) and H₂O (1 mL) afforded a mixture of **17a** and **17b** (43.0 mg, 58%, 15:1 ratio) as a yellow oil after column chromatography (10~25% EtOAc/PE). $R_f = 0.4$ (20% EtOAc/PE); IR (KBr): 3337, 2938, 2100, 1699, 1602, 1522, 1245, 1051, 831 cm⁻¹; HRMS (ESI) m/z calculated for C₁₇H₂₆N₄NaO₄ (M+Na)⁺: 373.1846, Found: 373.1848. Azide **17a**: ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.16 (m, 2H), 6.80 (d, *J* = 9.0 Hz, 2H), 6.48 (br, 1H), 3.93 (td, *J* = 6.1, 2.2 Hz, 2H), 3.77 – 3.71 (m, 2H), 3.61 – 3.52 (m, 1H), 2.07 (br, 1H), 1.97 – 1.63 (m, 6H), 1.48 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 154.89, 153.25, 131.48, 120.63, 114.82, 80.24, 67.64, 59.75, 59.44, 36.86, 31.21, 28.34, 25.86, 24.78. Alcohol **17b** (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 3.62 (t, *J* = 6.6 Hz, 2H), 2.18 (br, 1H), 1.57 (p, *J* = 6.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 68.15, 62.77, 32.59, 29.21, 25.82, 25.49.

(Z)-2,2,3,3,10,10,11,11-Octamethyl-4,9-dioxa-3,10-disiladodec-6-ene (S16-1). Under argon atmosphere, to a solution of (Z)-but-2-ene-1,4-diol (5.04 g, 57.3 mmol) and imidazole (11.7 g, 172 mmol) in DCM (20 mL) at 0 °C was added dropwise a solution of TBSCl (20.1 g, 133 mmol) in DCM (10 mL). The reaction mixture was warmed

and stirred for 10 h at room temperature. The solvent was removed under the reduced pressure and purified by silica gel column chromatography (100% PE) to afford **S16-1**. ¹H NMR (400 MHz, CDCl₃) δ 5.63 – 5.48 (m, 2H), 4.30 – 4.15 (m, 4H), 0.88 (s, 18H), 0.04 (s, 12H).

(*E*)-6-((*tert*-Butyldimethylsilyl)oxy)hex-2-en-1-ol (S16-2). To a stirred solution of the Hoveyda-Grubbs 2nd generation catalyst (HG-2) (89.0 mg, 2 mol%) in DCM (2 mL) under an argon atmosphere was added a pre-mixed solution of S16-1 (4.51 g, 14.3 mmol) and 5-bromopent-1-ene (1.06 g, 7.12 mmol) in DCM (2 mL) at room temperature. The reaction mixture was stirred for 12 h. The concentrated residue was purified by silica gel column chromatography to afford S16-2 (1.25 g, 60%) as a yellow oil after column chromatography (0~2% EtOAc/PE). R_f = 0.5 (2% EtOAc/PE). ¹H NMR (400 MHz, CDCl₃) δ 6.15 – 5.65 (m, 2H), 4.13 – 4.07 (m, 2H), 3.42 – 3.34 (m, 2H), 2.17 (ddd, J = 5.3, 2.7, 1.3 Hz, 2H), 1.97 – 1.85 (m, 2H), 0.88 (s, 9H), 0.04 (s, 6H).


(*E*)-((6-([1,1'-Biphenyl]-2-yloxy)hex-2-en-1-yl)oxy)(*tert*-butyl)dimethylsilane (S16-3). Under argon atmosphere, to a suspension of NaH (60% in mineral oil, 512 mg, 12.8 mmol) in DMF (20 mL) at 0 °C was added dropwise a solution of [1,1'-biphenyl]-2-ol (2.07 g, 12.2 mmol) in DMF (20 mL). The mixture was allowed of stir for 30 min and was added dropwise a solution of S16-2 (8.94 g, 30.5 mmol) in DMF (10 mL). The reaction mixture was warmed and stirred for 10 h at room temperature. The reaction was quenched by saturated aq. NH₄Cl, and the mixture was poured into water and extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and filtered. The concentrated residue was purified by chromatography to afford S16-2 (859 mg, 19%) as a yellow oil after column chromatography (0~2% EtOAc/PE). R_f = 0.5 (2% EtOAc/PE). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 7.2 Hz, 2H), 7.45 – 7.27 (m, 5H), 7.08 – 6.93 (m, 2H), 5.70 – 5.48 (m, 2H), 4.12 (q, J = 5.7, 4.8 Hz, 2H), 4.02 – 3.91 (m, 2H), 2.21 – 2.03 (m, 2H), 1.90 – 1.70 (m, 2H), 0.92 (s, 9H), 0.08 (s, 6H).

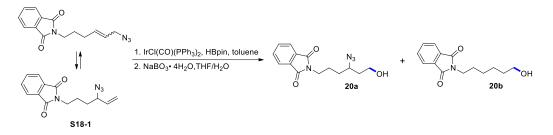
(*E*)-6-([1,1'-Biphenyl]-2-yloxy)hex-2-en-1-ol (S16-4). Under argon atmosphere, to a solution of S16-3 (859 mg, 2.25 mmol) in tetrahydrofuran (30 mL) was added TBAF (608 mg, 2.33 mmol) at 0 °C. The reaction mixture was stirred overnight at room temperature. The concentrated residue was purified by chromatography to afford S16-4 (455 mg, 75%) as a yellow oil after column chromatography (15~30% EtOAc/PE). $R_f = 0.3$ (20% EtOAc/PE). ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.48 (m, 2H), 7.36 (t, J = 7.5 Hz, 2H), 7.32 – 7.22 (m, 3H), 7.03 – 6.96 (m, 1H), 6.92 (d, J = 9.4 Hz, 1H), 5.65 – 5.48 (m, 2H), 3.97 (d, J = 5.1 Hz, 2H), 3.90 (t, J = 6.3 Hz, 2H), 2.13 – 2.05 (m, 2H), 1.99 (br, 1H), 1.74 (p, J = 6.7 Hz, 2H).

(*E*)-2-((6-Azidohex-4-en-1-yl)oxy)-1,1'-biphenyl (S16-5a), (*Z*)-2-((6-azidohex-4-en-1-yl)oxy) -1,1'-biphenyl (S16-5b), and 2-((4-azidohex-5-en-1-yl)oxy)-1,1'-biphenyl (S16-5c). Under argon atmosphere, to an oven-dried flask was added S16-4 (455 mg, 1.69 mmol), DPPA (945 mg, 3.44 mmol), DBU (619 g, 4.07 mmol), and toluene (10 mL). The reaction mixture was heated to reflux for 12 h. The concentrated residue was purified by chromatography to afford S16-5 (382 mg, 77%, 54:12:34 ratio) as a yellow oil after column chromatography (2~10% EtOAc/PE). $R_f = 0.3$ (5% EtOAc/PE); IR (KBr): 3321, 2934, 2750, 2099, 1595, 1479, 1389, 936, 610 cm⁻¹; HRMS (ESI) m/z calculated for C₁₈H₁₉N₃NaO (M+Na)⁺: 316.1420, Found: 316.1415. Azide S16-5a: ¹H NMR (400 MHz, CDCl₃) δ 7.68 (t, *J* = 8.5 Hz, 2H), 7.53 (t, *J* = 7.6 Hz, 2H), 7.49 – 7.37 (m, 3H), 7.15 (t, *J* = 7.5 Hz, 1H), 7.07 (t, *J* = 7.9 Hz, 1H), 5.85 – 5.73 (m, 1H), 5.63 – 5.52 (m, 1H), 4.06 (t, *J* = 6.3 Hz, 2H), 3.73 (d, *J* = 6.9 Hz, 2H), 2.28 (q, *J* = 7.1 Hz, 2H), 1.95 – 1.83 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 155.86, 134.73, 131.19, 123.27, 121.08, 112.51, 67.18, 47.05, 29.12, 24.07. Azide S16-5c (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 3.570 – 3.68 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 155.86, 134.73, 131.19, 123.27, 121.08, 112.51, 67.18, 47.05, 29.12, 24.07. Azide S16-5c (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 155.91, 138.69, 135.70, 131.12, 130.95, 129.71, 128.00, 126.97, 121.18, 118.31, 112.74, 67.95, 64.60, 31.06, 25.61.

6-([1,1'-Biphenyl]-2-yloxy)-3-azidohexan-1-ol (18a). According to General procedure B, a mixture of **S16-4** (54.3 mg, 0.185 mmol), HBpin (98.1 mg, 0.766 mmol), and IrCl(CO)(PPh₃)₂ (7.4 mg, 5 mol%) in toluene (3 mL) afforded the hydroboration products. A mixture of the above products and NaBO₃·4H₂O (142 mg, 0.923 mmol) in THF (2 mL) and H₂O (1 mL) afforded a mixture of **18a** and **18b** (30.5 mg, 53%, 7:1 ratio) as a yellow oil after column chromatography (20~35% EtOAc/PE). $R_f = 0.4$ (25% EtOAc/PE); Azide **18a**: ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.50 (m, 2H), 7.43 – 7.38 (m, 2H), 7.35 – 7.27 (m, 3H), 7.03 (td, J = 7.5, 1.1 Hz, 1H), 6.97 (d, J = 8.1 Hz, 1H), 4.06 – 3.92 (m, 2H), 3.75 – 3.63 (m, 2H), 3.46 (tt, J = 8.1, 5.2 Hz, 1H), 1.93 – 1.76 (m, 2H), 1.76 – 1.50 (m, 4H).; ¹³C NMR (101 MHz, CDCl₃) δ 155.70, 138.56, 131.05, 130.88, 129.57, 128.60, 127.84, 126.80, 121.08, 112.62, 67.86, 59.57(2C), 36.65, 31.11, 25.72. Alcohol **18b** (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 3.59 (t, J = 6.6 Hz, 2H), 1.45 – 1.30 (m, 2H)i; ¹³C NMR (101 MHz, CDCl₃) δ 155.95, 138.62, 130.83, 129.59, 129.54, 128.52, 127.76, 126.70, 120.78, 112.54, 68.30, 62.83, 32.61, 29.07, 25.90, 25.34.

Scheme S17. Preparation of compound 19a.

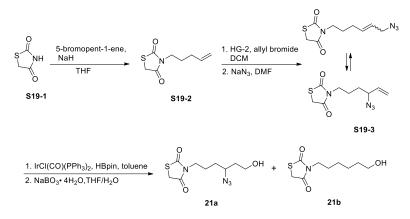
(*E*)-((6-(Benzo[*d*][1,3]dioxol-5-ylmethoxy)hex-2-en-1-yl)oxy)(*tert*-butyl)dimethyl -silane (S17-1). According to the synthetic method of compound S16-3, a mixture of NaH (60% in mineral oil, 585 mg, 14.6 mmol), benzo[d][1,3]dioxol-5-ylmethanol (2.00 g, 13.2 mmol), S16-2 (11.5 g, 39.2 mmol) in DMF (40 mL) afforded S17-1 (922 mg, 19%) as a yellow oil after column chromatography (0~2% EtOAc/PE). $R_f = 0.5$ (2% EtOAc/PE). ¹H NMR (400 MHz, CDCl₃) δ 6.82 (s, 1H), 6.78 – 6.71 (m, 2H), 5.89 (s, 2H), 5.68 – 5.58 (m, 1H), 5.58 – 5.47 (m, 1H), 4.36 (s, 2H), 4.10 (d, *J* = 5.1 Hz, 2H), 3.41 (t, *J* = 6.5 Hz, 2H), 2.11 (q, *J* = 6.5 Hz, 2H), 1.67 (dt, *J* = 13.4, 6.6 Hz, 2H), 0.90 (s, 9H), 0.05 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 147.71, 146.98, 132.48, 130.39, 129.69, 121.05, 108.32, 107.94, 100.86, 72.70, 69.43, 63.88, 29.24, 28.75, 25.97, 18.38, -5.12.


(*E*)-6-(Benzo[*d*][1,3]dioxol-5-ylmethoxy)hex-2-en-1-ol (S17-2). According to the synthetic method of compound S16-4, a mixture of S17-1 (922 mg, 2.53 mmol), TBAF (1.0 M in THF, 2.5 mL, 2.50 mmol) in tetrahydrofuran (30 mL) afford S17-2 (601 mg, 95%) as a yellow oil after column chromatography (15~30% EtOAc/PE). $R_f = 0.3$ (20% EtOAc/PE). ¹H NMR (400 MHz, CDCl₃) δ 6.78 (s, 1H), 6.74 – 6.66 (m, 2H), 5.85 (s, 2H), 5.66 – 5.49 (m, 2H), 4.32 (s, 2H), 3.97 (d, J = 4.6 Hz, 2H), 3.38 (t, J = 6.5 Hz, 2H), 2.63 (br, 1H), 2.14 – 2.02 (m, 2H), 1.68 – 1.56 (m, 2H).

(*E*)-5-(((6-Azidohex-4-en-1-yl)oxy)methyl)benzo[d][1,3]dioxole (S17-3a), (*Z*)-5-(((6-azidohex-4-en-1-yl)oxy) methyl)benzo[d][1,3]dioxole (S17-3b), and 5-(((4-azidohex-5-en-1-yl)oxy)methyl)benzo[d][1,3]dioxole (S17-3c). According to the synthetic method of compound S16-4, a mixture of S17-2 (601 mg, 2.40 mmol), DPPA (1.32 g, 4.81 mmol), DBU (880 g, 5.78 mmol), in toluene (20 mL) afford S17-3 (546 mg, 83%, 61:10:29 ratio) as a yellow oil after column chromatography (2~10% EtOAc/PE). $R_f = 0.3$ (5% EtOAc/PE); IR (KBr): 3318, 2936, 2862, 2100, 1494, 1443, 1247, 1100, 1040, 932, 809 cm⁻¹; HRMS (ESI) m/z calculated for C₂₈H₅N₆O₆ (2M+H)⁺: 551.2613., Found: 551.2617. Azide S17-3a: ¹H NMR (400 MHz, CDCl₃) δ 6.81 (s, 1H), 6.77 – 6.70 (m, 2H), 5.88 (s, 2H), 5.77 – 5.66 (m, 1H), 5.54 – 5.43 (m, 1H), 4.35 (s, 2H), 3.64 (d, *J* = 6.7 Hz, 2H), 3.41 (t, *J* = 6.4 Hz, 2H), 2.15 (q, *J* = 8.0 Hz, 2H), 1.72 – 1.62 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 147.72, 147.01, 136.16, 132.44, 123.34, 121.09, 108.32, 107.93, 100.93, 72.67, 69.04, 52.67, 29.04, 28.83. Azide S17-3b (diagnostic peaks only): ¹H NMR (400

MHz, CDCl₃) δ 3.76 (d, J = 7.4 Hz, 2H),; ¹³C NMR (101 MHz, CDCl₃) δ 135.24, 132.36, 122.69, 72.71, 68.92, 47.03, 29.42, 24.04. Azide **S17-3c** (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 6.80 (s, 1H), 5.27 – 5.20 (m, 2H), 3.80 (q, J = 7.2 Hz, 2H), 1.63 – 1.55 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 147.74, 147.03, 135.72, 132.33, 121.07, 118.06, 108.28, 107.94, 72.65, 69.29, 64.79, 31.02, 26.01.

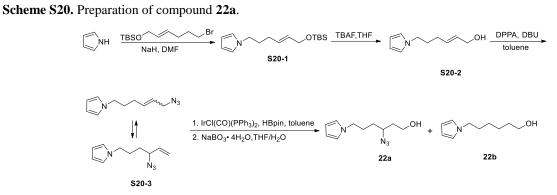
3-Azido-6-(benzo[*d*][**1,3**]**dioxol-5-ylmethoxy)hexan-1-ol** (**19a**). According to General procedure B, a mixture of IrCl(CO)(PPh₃)₂ (8.4 mg, 5 mol%), **S17-3** (57.6 mg, 0.209 mmol), and HBpin (106 mg, 0.825 mmol) in toluene (3 mL) afforded the hydroboration products. A mixture of the above products and NaBO₃·4H₂O (162 mg, 1.05 mmol) in THF (2 mL) and H₂O (1 mL) afforded a mixture of **19a** and **19b** (35.4 mg, 58%, 5:1 ratio) as a yellow oil after column chromatography (20~35% EtOAc/PE). $R_f = 0.4$ (25% EtOAc/PE); IR (KBr): 3424, 2936, 2866, 2101, 1495, 1444, 1248, 1096, 1040 cm⁻¹; HRMS (ESI) m/z calculated for C₁₄H₁₉N₃NaO₄ (M+Na)⁺: 316.1268, Found: 316.1278. Azide **19a**: ¹H NMR (400 MHz, CDCl₃) δ 6.82 (s, 1H), 6.80 – 6.72 (m, 2H), 5.93 (s, 2H), 4.38 (s, 2H), 3.75 (t, *J* = 5.7 Hz, 2H), 3.52 (td, *J* = 8.3, 4.4 Hz, 1H), 3.48 – 3.38 (m, 2H), 1.85 – 1.52 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 147.72, 147.06, 132.20, 121.21, 108.37, 108.03, 100.94, 72.79, 69.40, 59.89, 59.67, 36.82, 31.33, 26.23. Alcohol **19b** (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 3.61 (t, *J* = 6.6 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 121.15, 108.19, 107.93, 100.90, 72.71, 70.05, 62.91, 32.66, 29.66, 25.97, 25.54.


Scheme S18. Preparation of compound 20a.

2-(4-Azido-6-hydroxyhexyl)isoindoline-1,3-dione (20a). According to General procedure B, a mixture of **S18-1** (72.0 mg, 0.267 mmol), HBpin (142 mg, 1.11 mmol), and IrCl(CO)(PPh₃)₂ (10.4 mg, 5 mol%) in toluene (3 mL) afforded the hydroboration products. A mixture of the above products and NaBO₃·4H₂O (206 mg, 1.34 mmol) in THF (2 mL) and H₂O (1 mL) afforded a mixture of **20a** and **20b** (63.4 mg, 82%, 6:1 ratio) as a yellow oil after column chromatography (20~40% EtOAc/PE). $R_f = 0.3$ (33% EtOAc/PE); IR (KBr): 2970, 2099, 1707, 1359, 1051, 718 cm⁻¹; HRMS (ESI) m/z calculated for C₁₄H₂₃N₃NaO₄ (M+Na)⁺: 311.1115, Found: 311.1122. Azide **20a**: ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.81 (m, 2H), 7.74 – 7.68 (m, 2H), 3.80 – 3.66 (m, 4H), 3.64 – 3.54 (m, 1H), 1.93

- 1.65 (m, 4H), 1.65 - 1.53 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 168.41, 133.99, 132.00, 123.26, 59.50, 59.36, 37.36, 36.83, 31.63, 25.20. Alcohol **20b** (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 3.68 - 3.65 (m, 2H), 3.65 - 3.61 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 133.85, 123.15, 62.71, 37.82, 32.51, 28.50, 26.46, 25.14.

Scheme S19. Preparation of compound 21a.



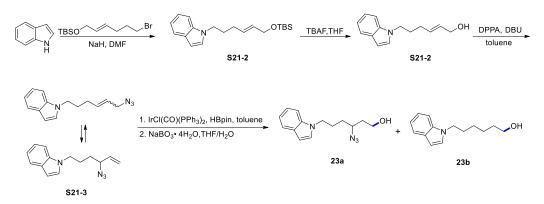
3-(Pent-4-en-1-yl)thiazolidine-2,4-dione (**S19-2**). According to the synthetic method of compound **S10-1**, a mixture of **S19-1** (2.00 g, 17.08 mmol), K₂CO₃ (3.54 g, 25.6 mmol), NaI (512 mg, 3.42 mmol), 5-bromopent-1-ene (5.09 g, 34.2 mmol) in acetonitrile (30 mL) afforded **S19-2** (2.57 g, 80%) as a yellow oil after column chromatography (2~10% EtOAc/PE). $R_f = 0.4$ (5% EtOAc/PE). ¹H NMR (400 MHz, CDCl₃) δ 5.73 – 5.57 (m, 1H), 4.96 – 4.80 (m, 2H), 3.83 (s, 2H), 3.48 (dt, J = 7.8, 3.4 Hz, 2H), 2.00 – 1.87 (m, 2H), 1.62 – 1.49 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 171.66, 171.36, 136.96, 115.29, 41.43, 33.66, 30.65, 26.38.

(*E*)-3-(6-Azidohex-4-en-1-yl)thiazolidine-2,4-dione (S19-3a), (*Z*)-3-(6-azidohex-4-en-1-yl)thiazolidine-2,4-dione (S19-3b), and 3-(4-azidohex-5-en-1-yl)thiazolidine-2,4-dione (S19-3c). According to General procedure A, a mixture of Hoveyda-Grubbs 2nd generation catalyst (HG-2) (150 mg, 2.5 mol%), S19-2 (2.57 g, 13.9 mmol) and allyl bromide (5.03 g, 41.6 mmol) in dichloromethane (20 mL) afforded the allylic bromide (1.34 g, 35%). A mixture of the above bromide and sodium azide (351 mg, 5.40 mmol) in dry DMF (10 mL) afforded the title product (1.08 g, 40%, 68:7:25 ratio) as a yellow oil after column chromatography (5-15% EtOAc/PE). $R_f = 0.3$ (10% EtOAc/PE); IR (KBr): 3731, 3415, 2927, 2827, 2099, 1749, 1688, 1238, 896 cm⁻¹; HRMS (ESI) m/z calculated for C₉H₁₂N₄NaO₂S (M+Na)⁺: 263.0573, Found: 263.0570. Azide S19-3a: ¹H NMR (400 MHz, CDCl₃) δ 5.63 – 5.48 (m, 1H), 5.45 – 5.33 (m, 1H), 3.79 (s, 2H), 3.54 (d, *J* = 5.5 Hz, 2H), 3.47 – 3.39 (m, 2H), 1.93 (q, *J* = 6.9, 6.4 Hz, 2H), 1.52 (p, *J* = 7.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 171.73, 171.39, 134.66, 123.99, 52.49, 41.28, 33.69 (2C), 29.18, 26.61. Azide S19-3b (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 3.64 (q, *J* = 6.0 Hz, 2H); ¹³C

NMR (101 MHz, CDCl₃) δ 170.89, 134.06, 123.28, 46.97, 27.13, 24.59. Azide **S19-3c** (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 3.71 (q, *J* = 7.1 Hz, 2H), 1.38 – 1.30 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 171.37, 170.89, 135.12, 118.58, 64.27, 41.23, 31.14, 23.84.

3-(4-Azido-6-hydroxyhexyl)thiazolidine-2,4-dione (21a). According to General procedure B, a mixture of **S19-3** (52.4 mg, 0.218 mmol), HBpin (111 mg, 0.867 mmol), and IrCl(CO)(PPh₃)₂ (8.6 mg, 5 mol%) in toluene (3 mL) afforded the hydroboration products. A mixture of the above products and NaBO₃·4H₂O (167 mg, 1.08 mmol) in THF (2 mL) and H₂O (1 mL) afforded a mixture of **21a** and **21b** (25.0 mg, 44%, >30:1 ratio) as a yellow oil after column chromatography (15~30% EtOAc/PE). $R_f = 0.4$ (20% EtOAc/PE); IR (KBr): 3731, 2938, 2101, 1677, 1349, 1051, 665 cm⁻¹; HRMS (ESI) m/z calculated for C₃H₁₄N₄NaO₃S (M+Na)⁺: 281.0679, Found: 281.0672. ¹H NMR (400 MHz, CDCl₃) δ 3.94 (s, 2H), 3.80 – 3.72 (m, 2H), 3.65 (t, *J* = 7.3 Hz, 2H), 3.60 – 3.51 (m, 1H), 1.83 – 1.66 (m, 4H), 1.62 – 1.50 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 171.81, 171.43, 59.45, 59.29, 41.42, 36.78, 33.76, 31.48, 24.23.

(*E*)-1-(6-((*tert*-Butyldimethylsilyl)oxy)hex-4-en-1-yl)-1*H*-pyrrole (S20-1). According to the synthetic method of compound S16-3, a mixture of NaH (60% in mineral oil, 206 mg, 5.15 mmol), 1*H*-pyrrole (580 mg, 8.65 mmol), S16-2 (1.25 g, 4.25 mmol) in DMF (30 mL) afforded S20-1(321 mg, 27%) as a yellow oil after column chromatography (0~2% EtOAc/PE). $R_f = 0.5$ (2% EtOAc/PE). ¹H NMR (400 MHz, CDCl₃) δ 6.70 (t, *J* = 2.1 Hz, 2H), 6.21 (t, *J* = 2.2 Hz, 2H), 5.75 – 5.60 (m, 2H), 4.21 (dd, *J* = 4.7, 1.1 Hz, 2H), 3.93 (t, *J* = 7.1 Hz, 2H), 2.10 (q, *J* = 6.5, 6.0 Hz, 2H), 1.97 – 1.86 (m, 1H), 1.01 (s, 9H), 0.16 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 130.55, 129.43, 120.46, 107.98, 63.81, 48.84, 30.98, 29.19, 26.07, 18.49, -5.03.


(*E*)-6-(1*H*-Pyrrol-1-yl)hex-2-en-1-ol (S20-2). According to the synthetic method of compound S16-4, a mixture of S20-1 (321 mg, 1.15 mmol), TBAF (335 mg, 1.28 mmol) in tetrahydrofuran (10 mL) afford S20-2 (184 mg, 97%) as

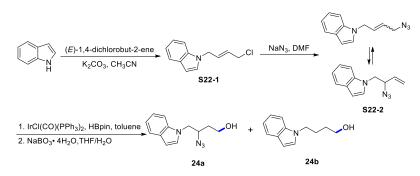
a yellow oil after column chromatography (15~30% EtOAc/PE). $R_f = 0.3$ (20% EtOAc/PE). ¹H NMR (400 MHz, CDCl₃) δ 6.66 (t, J = 2.1 Hz, 2H), 6.16 (t, J = 2.1 Hz, 2H), 5.70 – 5.59 (m, 2H), 4.05 (dd, J = 3.2, 1.4 Hz, 2H), 3.89 (t, J = 7.0 Hz, 2H), 2.24 (br, 1H), 2.12 – 2.03 (m, 2H), 1.87 (p, J = 7.1 Hz, 2H).

(*E*)-1-(6-Azidohex-4-en-1-yl)-1*H*-pyrrole (S20-3a), (*Z*)-1-(6-azidohex-4-en-1-yl)-1*H*-pyrrole (S20-3b), and 1-(4-azidohex-5-en-1-yl)-1*H*-pyrrole (S20-3c). According to the synthetic method of compound S16-5, a mixture of S20-2 (512 mg, 3.11 mmol), DPPA (1.72 g, 6.31 mmol), DBU (1.37 g, 7.47 mmol) in toluene (10 mL) afford S20-3 (470 mg, 80%, 69:6:25 ratio) as a yellow oil after column chromatography (2~10% EtOAc/PE). $R_f = 0.3$ (5% EtOAc/PE); IR (KBr): 3729, 2931, 2871, 2098, 1673, 1278, 930, 724 cm⁻¹; HRMS (ESI) m/z calculated for C₁₀H₁₄N₄Na (M+Na)⁺: 213.1103, Found: 213.1111. Azide S20-3a: ¹H NMR (400 MHz, CDCl₃) δ 6.72 (t, *J* = 2.1 Hz, 2H), 6.23 (t, *J* = 2.2 Hz, 2H), 5.84 – 5.73 (m, 1H), 5.67 – 5.57 (m, 1H), 3.97 – 3.92 (m, 2H), 3.77 (d, *J* = 6.6 Hz, 2H), 2.18 – 2.11 (m, 2H), 1.95 (p, *J* = 7.3 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 135.37, 124.14, 120.50, 108.09, 52.72, 48.69, 30.79, 29.27. Azide S20-3b (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 3.82 (d, *J* = 7.6 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 134.50, 123.42, 120.48, 108.20, 47.12, 31.22, 24.45. Azide S20-3c (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 5.37 – 5.30 (m, 2H), 3.84 (q, *J* = 7.4 Hz, 1H), 1.92 – 1.81 (m, 2H), 1.62 – 1.52 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 135.48, 120.45, 118.55, 108.22, 64.68, 49.15, 31.52, 27.86.

3-Azido-6-(1*H***-pyrrol-1-yl)hexan-1-ol (22a)**. According to General procedure B, a mixture of **S20-3** (543.4 mg, 0.228 mmol), HBpin (120 mg, 0.935 mmol), and IrCl(CO)(PPh₃)₂ (9.0 mg, 5 mol%) in toluene (3 mL) afforded the hydroboration products. A mixture of the above products and NaBO₃·4H₂O (176 mg, 1.14 mmol) in THF (2 mL) and H₂O (1 mL) afforded a mixture of **22a** and **22b** (24.8 mg, 52%, 3:1 ratio) as a yellow oil after column chromatography (20~35% EtOAc/PE). $R_f = 0.4$ (25% EtOAc/PE); IR (KBr): 3729, 2933, 2100, 1277, 1055, 725 cm⁻¹; HRMS (ESI) m/z calculated for C₁₀H₁₆N₄NaO (M+Na)⁺: 231.1216, Found: 231.1209. Azide **22a**: ¹H NMR (400 MHz, CDCl₃) δ 6.64 (t, *J* = 2.2 Hz, 2H), 6.13 (t, *J* = 2.1 Hz, 2H), 3.95 – 3.85 (m, 2H), 3.78 – 3.67 (m, 2H), 3.50 – 3.42 (m, 1H), 2.00 – 1.82 (m, 2H), 1.80 – 1.64 (m, 2H), 1.63 – 1.48 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 6.12 (t, *J* = 2.1 Hz, 2H), 3.86 (t, *J* = 7.1 Hz, 2H), 3.61 (t, *J* = 6.5 Hz, 2H), 1.42 – 1.28 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 120.44, 107.79, 62.78, 49.50, 32.53, 31.48, 26.52, 25.33.

Scheme S21. Preparation of compound 23a.

(*E*)-1-(6-((*tert*-Butyldimethylsilyl)oxy)hex-5-en-1-yl)-1*H*-indole (S21-1). According to the synthetic method of compound S16-3, a mixture of NaH (60 % in mineral oil, 795 mg, 19.0 mmol), 1*H*-indole (1.98 g, 16.9 mmol), S16-2 (14.7 g, 50.2 mmol) in DMF (60 mL) afforded S21-1(2.89 g, 52%) as a yellow oil after column chromatography (0~2% EtOAc/PE). *R_f* = 0.5 (2% EtOAc/PE). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.5 Hz, 1H), 7.36 (d, *J* = 8.2 Hz, 1H), 7.28 – 7.19 (m, 1H), 7.15 (d, *J* = 8.1 Hz, 1H), 7.10 (d, *J* = 3.1 Hz, 1H), 6.52 (d, *J* = 3.1 Hz, 1H), 5.73 – 5.56 (m, 2H), 4.31 – 4.10 (m, 4H), 2.12 – 2.05 (m, 2H), 2.02 – 1.90 (m, 2H), 0.97 (s, 9H), 0.13 (s, 6H).

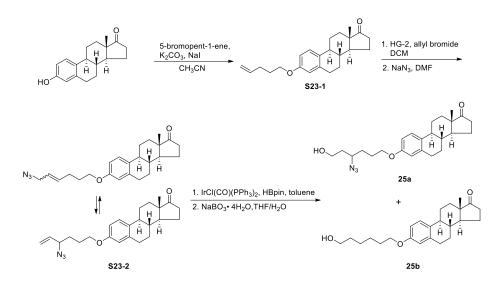

(*E*)-6-(1*H*-Indol-1-yl)hex-1-en-1-ol (S21-2). According to the synthetic method of compound S16-4, a mixture of S21-1 (2.89 g, 8.78 mmol), TBAF (1.0 M in THF, 9 mL, 9.00 mmol) in tetrahydrofuran (20 mL) afford S21-2 (888 mg, 47%) as a yellow oil after column chromatography (15~30% EtOAc/PE). $R_f = 0.3$ (20% EtOAc/PE). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.9 Hz, 1H), 7.41 (d, J = 1.1 Hz, 1H), 7.36 – 7.27 (m, 1H), 7.23 (t, J = 7.4 Hz, 1H), 7.14 (d, J = 3.2 Hz, 1H), 6.60 (d, J = 3.1 Hz, 1H), 5.65 (td, J = 3.3, 2.9, 1.4 Hz, 2H), 4.17 – 4.05 (m, 4H), 2.64 (br, 1H), 2.13 – 2.05 (m, 2H), 2.00 – 1.89 (m, 2H).

(*E*)-1-(6-Azidohex-4-en-1-yl)-1*H*-indole (S21-3a), (*Z*)-1-(6-azidohex-4-en-1-yl)-1*H*-indole (S21-3b), and 1-(4-azidohex-5-en-1-yl)-1*H*-indole (S21-3c). According to the synthetic method of compound S16-5, a mixture of S21-2 (888 mg, 4.13 mmol), DPPA (2.27 g, 8.25 mmol), DBU (1.52 g, 9.98 mmol) in toluene (20 mL) afford S21-3 (875 mg, 88%, 70:6:24 ratio) as a yellow oil after column chromatography (2~10% EtOAc/PE). $R_f = 0.3$ (5% EtOAc/PE); IR (KBr): 3318, 3051, 2934, 2872, 2098, 1576, 1313, 1240, 972, 741 cm⁻¹; HRMS (ESI) m/z calculated for C₁₄H₁₆N₄Na (M+Na)⁺: 263.1267, Found: 263.1262. Azide S21-3a: ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 6.1 Hz, 1H), 7.57 – 7.48 (m, 1H), 7.47 (t, *J* = 7.0 Hz, 1H), 7.37 (d, *J* = 6.1 Hz, 1H), 7.22 (dd, *J* = 11.2, 3.1 Hz, 1H), 6.74 (d, *J* = 2.9 Hz, 1H), 5.87 – 5.74 (m, 1H), 5.69 – 5.60 (m, 1H), 4.19 (t, *J* = 6.9 Hz, 2H), 3.80 (d, *J* = 6.7 Hz, 2H), 2.19 (q, *J* = 7.1 Hz, 2H), 2.04 (p, *J* = 7.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 136.22, 135.38, 128.93, 128.02, 124.22, 121.67, 121.24, 119.56, 109.68, 101.35, 52.80, 45.60, 29.56 (2C). Azide S21-3b (diagnostic peaks only): ¹³C

NMR (101 MHz, CDCl₃) δ 134.60, 123.54, 121.71, 109.62, 47.23, 30.00, 24.73. Azide **S21-3c** (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 5.41 (d, *J* = 10.1 Hz, 1H), 5.37 (d, *J* = 17.1 Hz, 1H), 4.16 (t, *J* = 7.1 Hz, 2H), 3.88 - 3.80 (m, 1H), 2.00 - 1.88 (m, 2H), 1.71 - 1.56 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 136.17, 135.53, 127.90, 121.74, 121.28, 119.60, 118.68, 109.60, 101.46, 64.81, 45.95, 31.76, 26.69.

3-Azido-6-(1*H***-indol-1-yl)hexan-1-ol (23a)**. According to General procedure B, a mixture of **S21-3** (58.5 mg, 0.243 mmol), HBpin (124 mg, 0.967 mmol), and IrCl(CO)(PPh₃)₂ (9.7 mg, 5 mol%) in toluene (3 mL) afforded the hydroboration products. A mixture of the above products and NaBO₃·4H₂O (189 mg, 1.23 mmol) in THF (2 mL) and H₂O (1 mL) afforded a mixture of **23a** and **23b** (36.4 mg, 58%, 4:1 ratio) as a yellow oil after column chromatography (20~35% EtOAc/PE). $R_f = 0.4$ (25% EtOAc/PE); IR (KBr): 3326, 2934, 2106, 1708, 1462, 1264, 743 cm⁻¹; HRMS (ESI) m/z calculated for C₁₄H₁₈N₄NaO (M+Na)⁺: 281.1373, Found: 281.1371. Azide **23a**: ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 7.9 Hz, 1H), 7.34 (d, *J* = 8.3 Hz, 1H), 7.24 – 7.18 (m, 1H), 7.14 – 7.05 (m, 2H), 6.50 (d, *J* = 7.2 Hz, 1H), 4.15 (td, *J* = 7.0, 2.0 Hz, 2H), 3.73 – 3.63 (m, 2H), 3.51 – 3.40 (m, 1H), 2.10 – 1.84 (m, 2H), 1.71 – 1.62 (m, 2H), 1.59 – 1.47 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 135.87, 128.59, 127.61, 121.52, 121.04, 119.34, 109.24, 101.30, 59.56, 59.33, 45.91, 36.81, 31.89, 26.77, 24.81. Alcohol **23b** (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 6.48 (d, *J* = 7.2 Hz, 1H), 4.11 (t, *J* = 7.1 Hz, 2H), 3.58 (t, *J* = 6.5 Hz, 2H), 1.87 – 1.80 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 135.89, 128.53, 127.78, 121.30, 120.93, 119.16, 109.35, 100.86, 75.08, 62.71, 46.28, 32.50, 30.19, 25.38.

Scheme S22. Preparation of compound 24a.

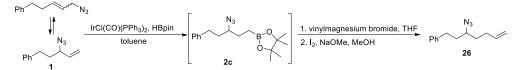

(*E*)-1-(4-Chlorobut-2-en-1-yl)-1*H*-indole (S22-1). According to the synthetic method of compound S10-1, a mixture of 1*H*-indole (2.01 g, 17.2 mmol), K₂CO₃ (2.87 g, 20.9 mmol), (*E*)-1,4-dichlorobut-2-ene (3.23 g, 25.8 mmol) in acetonitrile (30 mL) afforded S22-1 (1.37 g, 40%) as a yellow oil after column chromatography (2~10% EtOAc/PE). $R_f = 0.4$ (5% EtOAc/PE). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 7.8 Hz, 1H), 7.34 (d, *J* = 8.2 Hz,

1H), 7.24 (t, J = 7.6 Hz, 2H), 7.15 (t, J = 7.4 Hz, 2H), 7.10 (d, J = 2.2 Hz, 1H), 6.54 (s, 1H), 6.01 – 5.69 (m, 2H), 4.82 (d, J = 6.5 Hz, 2H), 4.19 (d, J = 7.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 135.92, 130.02, 128.78, 128.11, 127.35, 121.73, 121.09, 119.65, 109.30, 101.82, 42.90, 38.43.

(*E*)-1-(4-Azidobut-2-en-1-yl)-1*H*-indole (S22-2a), (*Z*)-1-(4-azidobut-2-en-1-yl)-1*H*-indole (S22-2b), and 1-(2-azidobut-3-en-1-yl)-1*H*-indole (S22-2c). According to General procedure A, a mixture of S22-1 (793 mg, 3.86 mmol) and NaN₃ (251 mg, 3.86 mmol) in DMF (10 mL) afforded S22-2 (508 mg, 62%, 52:16:32 ratio) as a yellow oil after column chromatography (2~10% EtOAc/PE). $R_f = 0.3$ (5% EtOAc/PE); IR (KBr): 3407, 3052, 2927, 2866, 2101, 2020, 1673, 1460, 1259, 745 cm⁻¹. Azide S22-2a: ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 7.8 Hz, 1H), 7.31 (d, *J* = 8.3 Hz, 1H), 7.28 - 7.19 (m, 1H), 7.19 - 7.04 (m, 2H), 6.54 (d, *J* = 3.7 Hz, 1H), 6.00 - 5.85 (m, 1H), 5.82 - 5.68 (m, 1H), 4.80 (d, *J* = 6.4 Hz, 2H), 3.94 (d, *J* = 7.1 Hz, 2H), Azide S22-2b (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 5.59 - 5.47 (m, 1H), 4.76 (d, *J* = 5.2 Hz, 2H), 3.74 (d, *J* = 6.2 Hz, 2H). Azide S22-2c (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 5.43 - 5.32 (m, 2H), 4.35 - 4.27 (m, 1H), 4.24 - 4.07 (m, 2H).

3-Azido-4-(1*H***-indol-1-yl)butan-1-ol (24a)**. According to General procedure B, a mixture of **S22-2** (102 mg, 0.480 mmol), HBpin (247 mg, 1.93 mmol), and IrCl(CO)(PPh₃)₂ (18.7 mg, 5 mol%) in toluene (3 mL) afforded the hydroboration products. A mixture of the above products and NaBO₃·4H₂O (369 mg, 2.40 mmol) in THF (2 mL) and H₂O (1 mL) afforded a mixture of **24a** and **24b** (64.1 mg, 58%, 5:1 ratio) as a yellow oil after column chromatography (20~35% EtOAc/PE). $R_f = 0.4$ (25% EtOAc/PE); IR (KBr): 3720, 2936, 2102, 1462, 1313, 1045, 741 cm⁻¹; HRMS (ESI) m/z calculated for C₉H₁₅N₃NaO (M+Na)⁺: 253.1060, Found: 253.1055. Azide **24a**: ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 7.3 Hz, 1H), 7.37 – 7.28 (m, 1H), 7.24 – 7.12 (m, 1H), 7.14 – 7.04 (m, 2H), 6.52 (d, *J* = 3.2 Hz, 1H), 4.26 (dd, *J* = 14.4, 4.3 Hz, 1H), 4.16 – 4.03 (m, 2H), 4.00 (dq, *J* = 10.2, 6.1, 5.1 Hz, 1H), 3.78 – 3.69 (m, 1H), 1.94 – 1.72 (m, 1H), 1.70 – 1.45 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 136.07, 128.75, 128.05, 121.88, 121.20, 119.72, 109.04, 102.26, 59.90, 59.17, 50.34, 34.57. Alcohol **24b** (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 6.52 (d, *J* = 3.2 Hz, 1H), 3.56 (t, *J* = 6.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 135.90, 128.56, 127.70, 121.37, 120.95, 119.21, 109.31, 101.03, 62.37, 46.12, 30.00, 26.67.

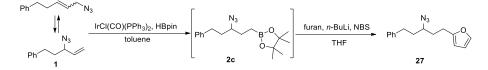
Scheme S23. Preparation of compound 25a.



(8R,9S,13S,14S)-13-Methyl-3-(pent-4-en-1-yloxy)-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phen anthren-17-one (S23-1). According to the synthetic method of compound S10-1, a mixture of estrone (2.00 g, 7.41 mmol), K₂CO₃ (1.54 g, 11.1 mmol), NaI (229 mg, 1.53 mmol), 5-bromopent-1-ene (2.21 g, 14.8 mmol) in acetonitrile (30 mL) afforded S23-1 (2.10 g, 84%) as a white solid after column chromatography (10~20% EtOAc/PE). $R_f = 0.4$ (16% EtOAc/PE). ¹H NMR (600 MHz, CDCl₃) δ 7.19 (d, J = 8.7 Hz, 1H), 6.71 (dd, J = 8.6, 2.7Hz, 1H), 6.64 (d, J = 2.7 Hz, 1H), 5.85 (ddt, J = 17.0, 10.2, 6.6 Hz, 1H), 5.06 (dd, J = 17.1, 1.8 Hz, 1H), 4.99 (dd, J = 10.2, 1.7 Hz, 1H), 3.94 (t, J = 6.4 Hz, 2H), 2.93 - 2.86 (m, 2H), 2.50 (ddd, J = 19.1, 8.9, 1.0 Hz, 1H), 2.42 - 2.36 (m, 1H), 2.28 - 2.20 (m, 3H), 2.14 (dt, J = 19.0, 9.0 Hz, 1H), 2.07 - 2.03 (m, 1H), 2.03 - 1.98 (m, 1H), 1.97 - 1.93 (m, 1H), 1.97 -(m, 1H), 1.87 – 1.83 (m, 2H), 1.66 – 1.55 (m, 2H), 1.55 – 1.46 (m, 3H), 1.48 – 1.40 (m, 1H), 0.91 (s, 3H). (8R,9S,13S,14S)-3-(((E)-5-Azidopent-4-en-1-yl)oxy)-13-methyl-6,7,8,9,11,12, 13,14,15,16-decahydro-17H-(S23-2a), cyclopenta[*a*]phenanthren-17-one (8**R**,9**S**, *13S*,*14S*)-**3**-(((*Z*)-**6**-azidohex-**4**-en-**1**-yl)oxy) -13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (S23-2b), and (8R,9S,13S,14S)-3-((4-azidohex-5-en-1-yl)oxy)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta [a]phenanthren-17-one (S23-2c). According to General procedure A, a mixture of HG-2 (98.1 mg, 2 mol%), S23-1 (2.10 g, 6.20 mmol) and allyl bromide (2.27 g, 18.8 mmol) in dichloromethane (15 mL) afforded the corresponding allylic bromide (1.28 g, 40%). A mixture of the above bromide and sodium azide (232 mg, 3.71 mmol) in dry DMF (20 mL) afforded S23-2 (559 mg, 48%, 65:1:34 ratio) as a white solid after column chromatography (5% EtOAc/PE). *R*_f = 0.3 (5% EtOAc/PE); IR (KBr): 3729, 2932, 2319, 2096, 1738, 1247, 934, 754 cm⁻¹; HRMS (ESI) m/z calculated for C₂₄H₃₁N₃NaO₂ (M+Na)⁺: 416.2308, Found: 416.2313. Azide **S23-2a**: ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, J = 8.6 Hz, 1H), 6.69 (dt, J = 8.6, 3.0 Hz, 1H), 6.63 (d, J = 2.9 Hz, 1H), 5.85 - 5.70 (m, 1H), 5.61 - 5.52

(m, 1H), 3.94 (t, J = 6.3 Hz, 2H), 3.70 (d, J = 6.6 Hz, 2H), 2.92 – 2.83 (m, 2H), 2.49 (dd, J = 18.8, 8.6 Hz, 1H), 2.41 – 2.35 (m, 1H), 2.30 – 2.20 (m, 2H), 2.19 – 2.10 (m, 1H), 2.10 – 1.90 (m, 3H), 1.90 – 1.80 (m, 2H), 1.76 – 1.39 (m, 7H), 0.90 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 220.94, 156.94, 137.71, 135.84, 131.99, 126.29, 123.64, 114.52, 112.10, 66.82, 52.74, 50.39, 48.00, 43.96, 38.35, 35.86, 31.56, 29.63, 28.68, 28.67, 26.54, 25.90, 21.57, 13.84. Azide **S23-2b** (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 3.80 (d, J = 7.3 Hz, 2H). Azide **S23-2c** (diagnostic peaks only): ¹H NMR (400 MHz, CDCl₃) δ 5.32 – 5.25 (m, 2H), 3.89 (q, J = 7.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 156.87, 137.74, 135.56, 132.08, 126.31, 118.36, 114.49, 112.04, 67.15, 64.75, 30.96, 25.68.

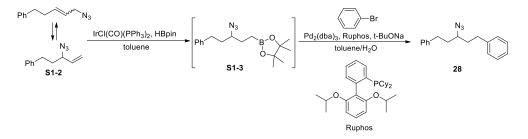
(*8R*,*9S*,*13S*,*14S*)-3-((4-Azido-6-hydroxyhexyl)oxy)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-cyclope nta[*a*]phenanthren-17-one (25a). According to General procedure B, a mixture of S23-2 (79.5 mg, 0.202 mmol), HBpin (103 mg, 0.807 mmol), and IrCl(CO)(PPh₃)₂ (8.0 mg, 5 mol%) in toluene (3 mL) afforded the hydroboration products. A mixture of the above products and NaBO₃·4H₂O (187 mg, 1.21 mmol) in THF (2 mL) and H₂O (1 mL) afforded a mixture of 25a and 25b (54.5 mg, 67%, >30:1 ratio) as a yellow oil after column chromatography (10~25% EtOAc/PE). $R_f = 0.4$ (20% EtOAc/PE); IR (KBr): 3731, 2928, 2098, 1734, 1249, 1053, 573 cm⁻¹; HRMS (ESI) m/z calculated for C₂₄H₃₃N₃NaO₃ (M+Na)⁺: 434.2414, Found: 434.2413. ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, *J* = 8.6 Hz, 1H), 6.70 (dd, *J* = 8.6, 2.8 Hz, 1H), 6.63 (d, *J* = 2.7 Hz, 1H), 3.97 (t, *J* = 8.4, 3.5 Hz, 2H), 3.79 (t, *J* = 2.4 Hz, 2H), 3.59 (tt, *J* = 8.98, 4.76 Hz, 1H), 2.92 – 2.83 (m, 2H), 2.49 (dd, *J* = 18.8, 8.6 Hz, 1H), 2.42 – 2.35 (m, 1H), 2.31 – 2.20 (m, 1H), 2.12 (dd, *J* = 18.8, 8.8 Hz, 1H), 2.07 – 1.66 (m, 7H), 1.65 – 1.40 (m, 8H), 0.90 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 220.93, 156.84, 137.76, 132.13, 126.33, 114.51, 112.06, 67.23, 59.82, 59.67, 50.39, 48.00, 43.96, 38.35, 36.88, 35.86, 31.56, 31.31, 29.63, 26.53, 25.92 (2C), 21.57, 13.84.


Scheme S24. Preparation of compound 26.

(3-Azidohept-6-en-1-yl) benzene (26). According to the reported procedure,^{S3} under argon atmosphere, to an oven-dried flask was added IrCl(CO)(PPh₃)₂ (17.7 mg, 5 mol%), **1** (85.0 mg, 0.454 mmol) and toluene (2 mL) successively. The reaction mixture was stirred for 30 min at room temperature, and then HBpin (232 mg, 1.82 mmol) and toluene (1 mL) were added. The reaction mixture was heated at 90 °C for 20 h. The solvent was removed under the reduced pressure to afford the crude product. To a 50-mL oven-dried flask charged with the above crude product (**2c**, 0.454 mmol), THF (2 mL), vinylmagnesium bromide (1.0 M in THF, 1.8 mL) was added dropwise. The resulted

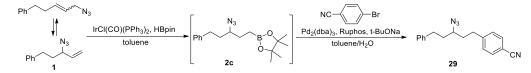
mixture was allowed to stir as room temperature for 1 h. To the above solution at -78 °C, a solution of iodine (466 mg, 1.82 mmol) in methanol (5 mL) was added dropwise. The reaction mixture was allowed to stir 1 h at the same temperature followed by dropwise addition of a solution of NaOMe (196 mg, 3.62 mmol) in methanol (5 mL). After warming to room temperature, the resultant mixture was allowed to stir for 10 h. The reaction was quenched by saturated aq. Na₂S₂O₃ (5 mL), and the mixture was poured into water and extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and filtered. The concentrated residue was purified by chromatography to afford **26** (50.8 mg, 52% yield for two steps) as a yellow oil after column chromatography (0~5% EtOAc/PE). $R_f = 0.4$ (2% EtOAc/PE); IR (KBr): 3731, 2928, 2318, 2100, 1339, 745, 444 cm⁻¹; HRMS (ESI) m/z calculated for C₂₄H₃₆N₆Na (2M+Na)⁺: 453.2737, Found: 453.2751. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.24 (m, 2H), 7.22 – 7.15 (m, 3H), 5.77 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.09 – 4.95 (m, 2H), 3.28 (p, J = 6.6 Hz, 1H), 2.i79 (dt, J = 14.6, 7.6 Hz, 1H), 2.66 (dt, J = 13.8, 8.1 Hz, 1H), 2.27 – 2.08 (m, 1H), 1.82 (td, J = 8.1, 6.3 Hz, 2H), 1.70 – 1.58 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 141.16, 137.32, 128.48, 128.37, 126.04, 115.48, 61.61, 36.18, 33.72, 32.35, 30.24.

Scheme S25. Preparation of compound 27.

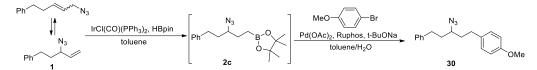


2-(3-Azido-5-phenylpentyl) furan (27). According to the reported procedure,^{S3} under argon atmosphere, to an oven-dried flask was added IrCl(CO)(PPh₃)₂ (11.3 mg, 5 mol%), **1** (54.3 mg, 0.290 mmol) and toluene (2 mL) successively. The reaction mixture was stirred for 30 min at room temperature, and then HBpin (148 mg, 1.16 mmol) and toluene (1 mL) were added. The reaction mixture was heated at 90 °C for 20 h. The solvent was removed under the reduced pressure to afford the crude product. To a 50-mL oven-dried flask charged with furan (194mg, 2.90 mmol) and THF (4 mL) was added *n*-BuLi (2.5 M in hexanes, 1.2 mL, 2.90 mmol) at -78 °C. The reaction was then allowed to warm to room temperature and stir at this temperature for additional 2 h. The mixture was then cooled to -78 °C again and a solution of the above crude product (**2c**, 0.290 mmol) in THF (3 mL) was added dropwise. The mixture was allowed to stir at -78 °C for 2 h. A solution of an NBS (103 mg, 0.580 mmol) in THF (2 mL) was added dropwise. After 2 h at -78 °C, the reaction was quenched by saturated aq. Na₂S₂O₃ (5 mL), and the mixture was poured into water and extracted three times with ethyl acetate. The combined organic layers were washed with brine,

dried over anhydrous Na₂SO₄ and filtered. The concentrated residue was purified by chromatography to afford **27** (48.2 mg, 65% yield for two steps) as a yellow oil after column chromatography (0~5% EtOAc/PE). $R_f = 0.4$ (2% EtOAc/PE); IR (KBr): 3954, 3453, 2929, 2853, 2097, 1504, 1339, 1266, 921, 797, 733 cm⁻¹; HRMS (ESI) m/z calculated for C₃₀H₃₄N₆NaO₂ (2M+Na)⁺: 533.2635 Found: 533.2618. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.26 (m, 3H), 7.23 – 7.13 (m, 3H), 6.29 – 6.24 (m, 1H), 6.01 – 5.97 (m, 1H), 3.28 (dt, *J* = 13.1, 6.8 Hz, 1H), 2.85 – 2.61 (m,

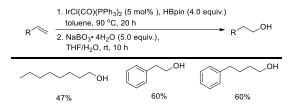

4H), 1.96 – 1.80 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 154.62, 141.13, 141.04, 128.49, 128.36, 126.06, 110.14, 105.38, 61.42, 36.15, 32.89, 32.29, 24.63.

Scheme S26. Preparation of compound 28.

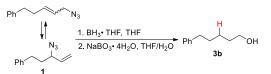

(3-Azidopentane-1,5-diyl)dibenzene (28). According to the reported procedure,⁸⁴ under argon atmosphere, to an oven-dried flask was added IrCl(CO)(PPh₃)₂ (11.3 mg, 5 mol%), **1** (52.1 mg, 0.278 mmol) and toluene (2 mL) successively. The reaction mixture was stirred for 30 min at room temperature, and then HBpin (142 mg, 1.11 mmol) and toluene (1 mL) were added. The reaction mixture was heated at 90 °C for 20 h. The solvent was removed under the reduced pressure to afford the crude product. To a 50-mL oven-dried flask charged with the above crude product (**2c**, 0.278 mmol), Pd₂(dba)₃(5.2 mg, 2 mol%), Ruphos (5.4 mg, 4 mol%), bromobenzene (38.4 mg, 0.222 mmol), *t*-BuONa (82.4 mg, 0.834 mmol), toluene (4 mL) and H₂O(1 mL). The reaction mixture was heated to 100 °C for 24 h. The reaction mixture was diluted with EtOAc and water. The combined ethereal solution was dried over anhydrous Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica using PE/EtOAc (50 : 1) as the eluent to afford target product as a yellow oil (27.6 mg, 47% yield for two steps). *R_f* = 0.5 (5% EtOAc/PE); IR (KBr): 3954, 3714, 2929, 2096, 1505, 1352, 1260, 1050, 767, 746 cm⁻¹; HRMS (ESI) m/z calculated for C₁₇H₁₉N₃Na (M+Na)⁺: 288.1471, Found: 288.1470. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.28 (m, 4H), 7.26 – 7.15 (m, 6H), 3.30 (p, *J* = 6.5 Hz, 1H), 2.81 (dt, *J* = 15.0, 7.7 Hz, 2H), 2.75 – 2.64 (m, 2H), 1.88 (q, *J* = 8.0, 7.3 Hz, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 141.15, 128.53, 128.41, 126.10, 61.51, 36.26, 32.37.

Scheme S27. Preparation of compound 29.

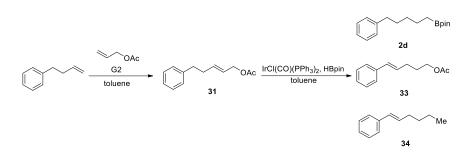
4-(3-Azido-5-phenylpentyl)benzonitrile (29). According to the synthetic method of compound **28**, a mixture of **1** (prepared in situ from allylic azides **1** (88.6 mg, 0.281 mmol)), $Pd_2(dba)_3$ (5.2 mg, 2 mol%), Ruphos (5.4 mg, 4 mol%), 4-bromobenzonitrile (43.6 mg, 0.225 mmol), *t*-BuONa (83.4 mg, 0.843 mmol), toluene(4 mL) and $H_2O(1 mL)$ afforded **29** (34.5 mg, 53% yield for two steps) as a yellow oil after column chromatography (2~10% EtOAc/PE). $R_f = 0.5$ (5% EtOAc/PE); IR (KBr): 3830, 3453, 2929, 2095, 1506, 1339, 1042, 797, 733 cm⁻¹; HRMS (ESI) m/z calculated for C₁₈H₁₈N₄Na (M+Na)⁺: 313.1424, Found: 313.1425. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.2 Hz, 2H), 7.32 – 7.14 (m, 5H), 7.22 – 7.14 (m, 2H), 3.24 (p, J = 6.7 Hz, 1H), 2.89 – 2.64 (m, 4H), 1.95 – 1.77 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 146.76, 140.81, 132.33, 129.18, 128.56, 128.36, 126.19, 118.92, 110.06, 61.15, 36.12, 35.67, 32.49, 32.26.


Scheme S28. Preparation of compound 30.^{S5}

1-(3-Azido-5-phenylpentyl)-4-methoxybenzene (**30**). According to the synthetic method of compound **28**, a mixture of **1** (prepared in situ from allylic azides **1** (93.6 mg, 0.297 mmol)), Pd(OAc)₂ (5.2 mg, 2.5 mol%), Ruphos (7.4 mg, 5 mol%), 1-bromo-4-methoxybenzene (68.2 mg, 0.356 mmol), *t*-BuONa (87.4 mg, 0.873 mmol), toluene (5 mL) and H₂O (0.5 mL) afforded **30** (45.2 mg, 43% yield for two steps) as a yellow oil after column chromatography (2~10% EtOAc/PE). $R_f = 0.5$ (5% EtOAc/PE); IR (KBr): 3736, 2929, 2097, 1504, 1268, 797, 733 cm⁻¹; HRMS (ESI) m/z calculated for C₁₈H₂₁N₃NaO (M+Na)⁺: 318.1577, Found: 318.1570. ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.27 (m, 2H), 7.24 – 7.16 (m, 3H), 7.10 (d, *J* = 8.6 Hz, 2H), 6.85 (d, *J* = 8.7 Hz, 2H), 3.80 (s, 3H), 3.27 (p, *J* = 6.6 Hz, 1H), 2.87 – 2.55 (m, 4H), 1.92 – 1.77 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 157.95, 141.18, 133.15, 129.30, 128.51, 128.40, 126.07, 113.93, 61.45, 55.26, 36.46, 36.25, 32.37, 31.42.

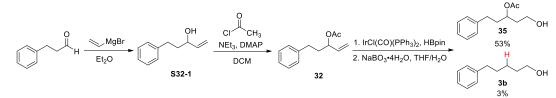

Mechanistic investigations

Scheme S29. Hydroboration of olefins using Vaska's catalyst.


Under argon atmosphere, to an oven-dried flask was added $IrCl(CO)(PPh_3)_2$ (5 mol%), olefins (1.0 equiv.) and toluene (2 mL) successively. The reaction mixture was stirred for 30 min at room temperature, and then HBpin (4.0 equiv.) and toluene(1 mL) were added. The reaction mixture was heated at 90 °C for 20 h. The solvent was removed under the reduced pressure to afford the crude product. A mixture of the above crude product, NaBO₃·4H₂O (5.0 equiv.) in THF (2 mL) and H₂O (1 mL) was stirred at room temperature for 10 h. The reaction mixture was poured into water and extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and filtered. The concentrated residue was purified by chromatography to afford the desired product. The spectral data of all alcohols matched with the reported.^{S6-S8}

Scheme S30. Hydroboration with borane.

Under argon atmosphere, to an oven-dried flask was added **1** (1.0 equiv.), BH_3 ·THF (2.0/3.0 equiv.) and THF (3 mL). The reaction mixture was heated at 90 °C for 20 h. The solvent was removed under the reduced pressure to afford the crude product. A mixture of the above crude product, $NaBO_3·4H_2O$ (5.0 equiv.) in THF (2 mL) and H_2O (1 mL) was stirred at room temperature for 10 h. The reaction mixture was poured into water and extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 and filtered. The concentrated residue was purified by chromatography. **Result**: 2.0 equiv. $BH_3·THF$: **3b** (45% yield).

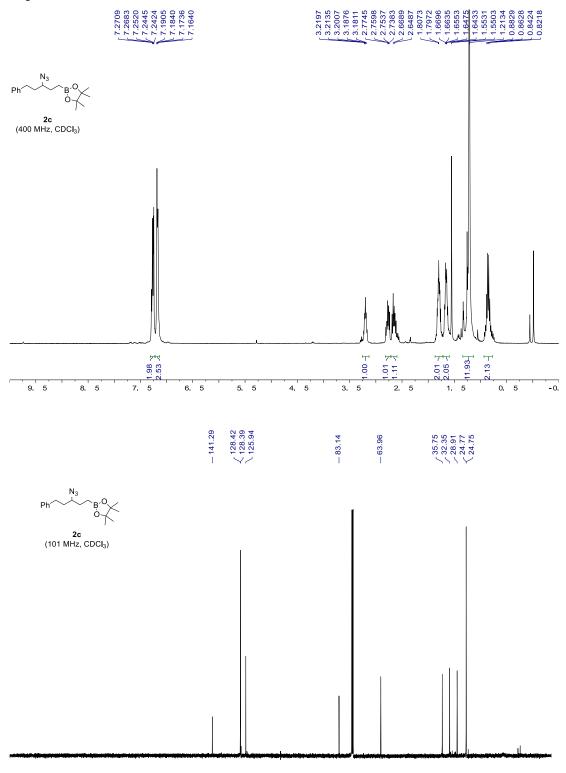

Scheme S31. Hydroboration of allylic acetate.

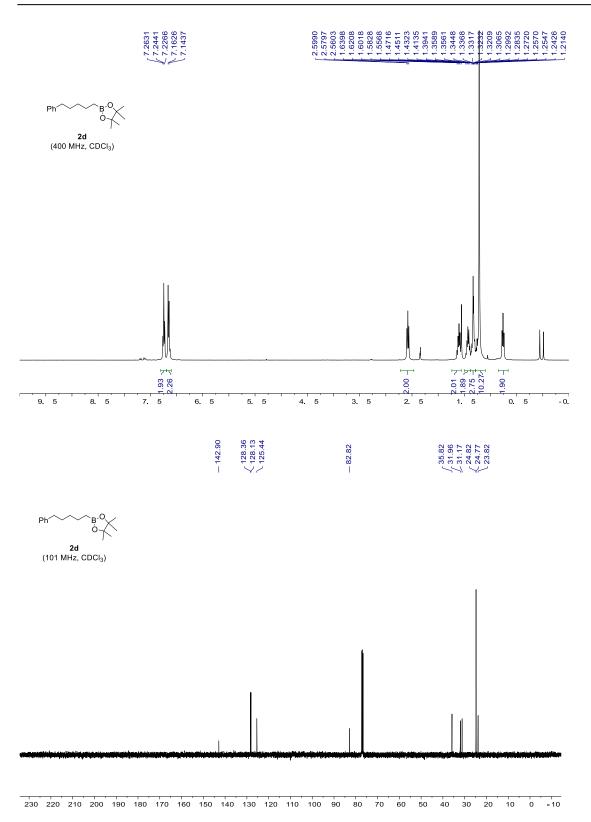
According to General procedure A, but-3-en-1-ylbenzene (243 mg, 1.83 mol), allyl acetate (733 mg, 7.32 mol), G-2 (39.2 mg, 2.5 mol%), and toluene (15 mL) afforded **31** (223 mg, 60%) as a colorless oil after silica gel column chromatography (2-10% EtOAc/PE). $R_f = 0.3$ (5% EtOAc/PE). ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.28 (m, 2H), 7.25 – 7.16 (m, 3H), 5.89 – 5.77 (m, 1H), 5.69 – 5.57 (m, 1H), 4.54 (d, J = 6.3 Hz, 2H), 2.73 (dd, J = 9.1, 6.6 Hz, 2H), 2.44 – 2.36 (m, 2H), 2.06 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.76, 141.50, 135.36, 128.42, 128.35, 125.93, 124.50, 65.11, 35.32, 34.08, 21.01.

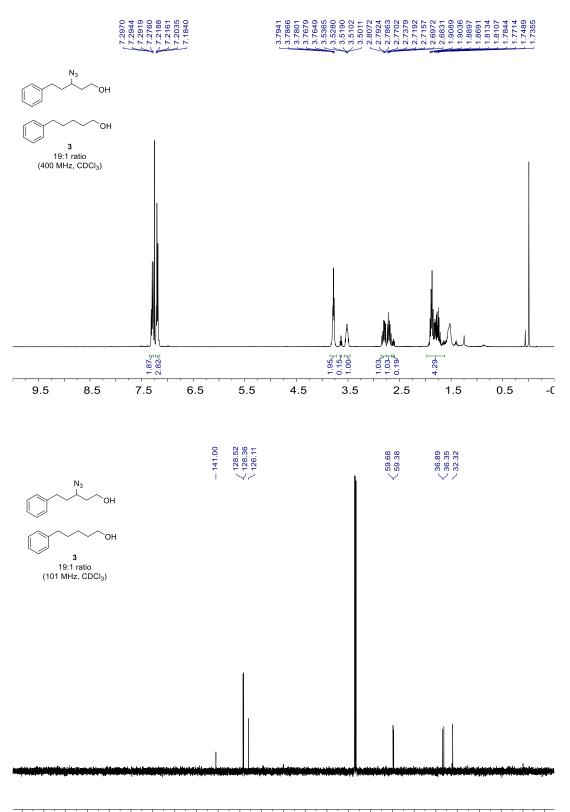
According to General procedure B, a mixture of **31** (36.3 mg, 0.178 mmol), HBpin (94.7 mg, 0.740 mmol), and $IrCl(CO)(PPh_3)_2$ (7.0 mg, 5 mol%) in toluene (3 mL) afforded **2d** (15.7 mg, 43%), **33** (3.4 mg, 9%) and **34** (0.8 mg, 3%) as a yellow oil after preparative TLC (5% EtOAc/PE). The spectral data of **33** and **34** matched with the reported. ^{S9-S10}

Scheme S32. Hydroboration of allylic acetate.

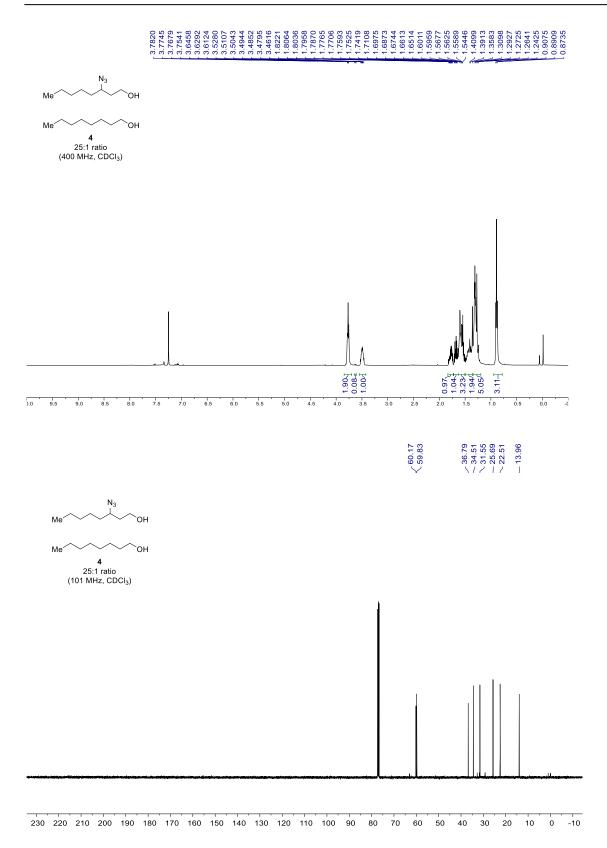
Under argon atmosphere, to a 50-mL oven-dried flask charged with 3-phenylpropanal (503 mg, 3.75 mmol), Et₂O (20 mL), vinylmagnesium bromide (1.0 M in THF, 9.5 mL, 9.5 mmol) was added dropwise at 0 °C. The resulted mixture was allowed to stir at room temperature for 10 h. The reaction was quenched by saturated aq. NH₄Cl, and the mixture was poured into water and extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and filtered. The concentrated residue was purified by chromatography to afford **S32-1** (434 mg, 71%) as a yellow oil after column chromatography (10~20% EtOAc/PE). $R_f = 0.3$ (16% EtOAc/PE). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.35 (m, 2H), 7.33 – 7.26 (m, 3H), 5.99 (ddd, J = 17.0, 10.4, 6.2 Hz, 1H), 5.34 (d, J = 17.2 Hz, 1H), 5.22 (d, J = 10.4 Hz, 1H), 4.20 (q, J = 6.4 Hz, 1H), 3.05 (s, 1H), 2.91 – 2.73 (m, 2H), 2.03 – 1.88 (m, 2H).

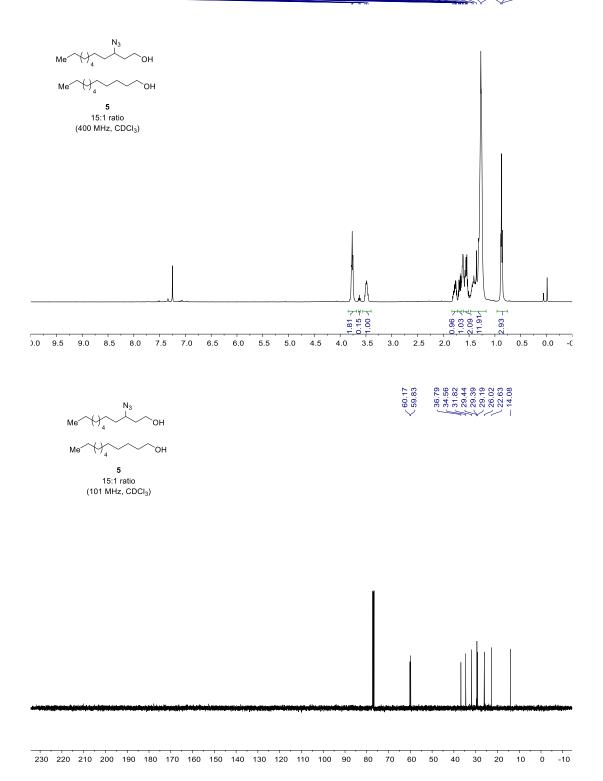

Under argon atmosphere, to a solution of **S32-1** (434 mg, 2.67 mmol), Et₃N (824 mg, 8.09 mmol), DMAP (32.8 mg, 10 mol%) in DCM (5 mL) was added dropwise a solution of acetyl chloride (343 mg, 4.37 mmol) in DCM (5 mL) at 0 °C. The reaction mixture was warmed to room temperature naturally and stirred for 10 h. The mixture was poured into water and extracted three times with DCM. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and filtered. The concentrated residue was purified by chromatography to afford **32** (362 mg, 66%) as a yellow oil after column chromatography (2~10% EtOAc/PE). $R_f = 0.3$ (5% EtOAc/PE). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.26 (m, 2H), 7.26 – 7.17 (m, 3H), 5.84 (ddd, J = 17.1, 10.5, 6.4 Hz, 1H), 5.35 – 5.29 (m, 1H), 5.34 – 5.25 (m, 1H), 5.24 – 5.20 (m, 1H), 2.75 – 2.62 (m, 2H), 2.07 (s, 3H), 2.04 – 1.89 (m, 2H).

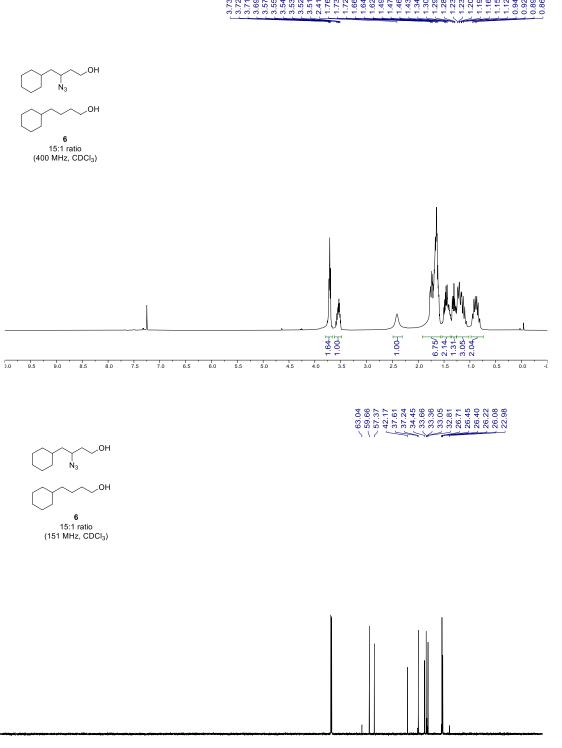

According to General procedure B, a mixture of **32** (77.8 mg, 0.381 mmol), HBpin (197 mg, 1.54 mmol), and IrCl(CO)(PPh₃)₂ (15.0 mg, 5 mol%) in toluene (3 mL) afforded the hydroboration products. A mixture of the above products and NaBO₃·4H₂O (294 mg, 1.91 mmol) in THF (2 mL) and H₂O (1 mL) afforded **35** (45.0 mg, 53%) and **3b** (1.5 mg, 8%) as a yellow oil after preparative TLC (25% EtOAc/PE). ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.26 (m, 2H), 7.21 – 7.14 (m, 3H), 4.36 (ddd, *J* = 11.1, 8.6, 5.0 Hz, 1H), 4.12 (dt, *J* = 11.4, 5.7 Hz, 1H), 3.73 – 3.66 (m, 1H), 2.86 – 2.74 (m, 1H), 2.73 – 2.65 (m, 1H), 2.04 (s, 3H), 1.88 – 1.71 (m, 4H).


References

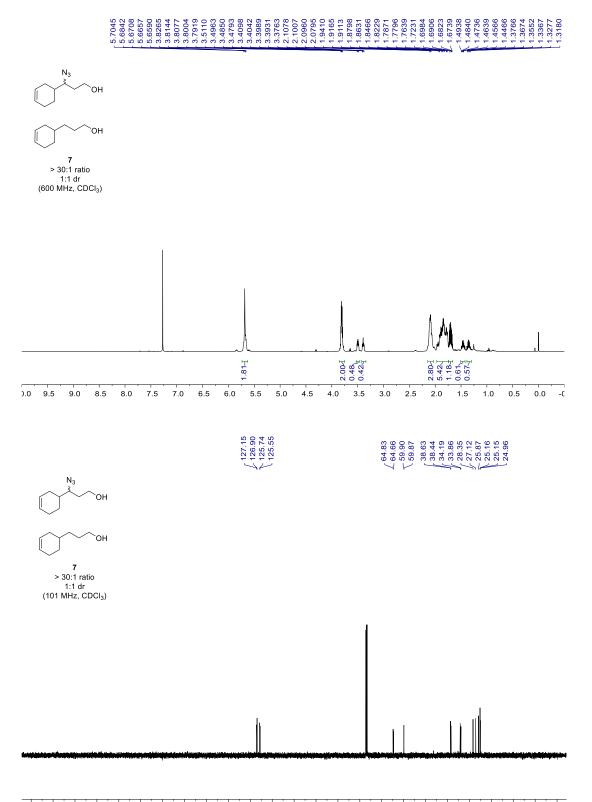
- [S1] D. Sinou, D. Maillard, A. Aghmiz, and A. Masdeu i-Bultó, Adv. Synth. Catal., 2003, 345, 603-611.
- [S2] R. Liu, Z. Wei, J. Wang, Y. Liu and H. Xue, Chem. Commun., 2020, 56, 5038-5041.
- [S3] G. Wang, X. Liang, L. Chen, Q. Gao, J. Wang, P. Zhang, Q. Peng, and S. Xu, Angew. Chem. Int. Ed., 2019, 58, 8187-8191.
- [S4] M. Xu, W. Jiang, Y. Li, J. Am. Chem. Soc., 2019, 141, 7582-7588.
- [S5] D. Fiorito, C. Mazet, ACS Catal., 2018, 8, 9382-9387.
- [S6] R. Wang, Y. Tang, M. Xu, C. Meng, and F. Li, J. Org. Chem., 2018, 83, 2274-2281.
- [S7] Z. Wang, S. Patnaik, N. Eedugurala, J. Sebastian Manzano, I. Slowing, T. Kobayashi, A. Sadow, and M. Pruski, J. Am. Chem. Soc., 2020, 142, 2935-2947.
- [S8] Z. Wang, M. Wang, J. Gao, S. Shi and Y. Xu, Org. Chem. Front., 2019, 6, 2949-2953.
- [S9] C. Leveque, L. Chenneberg, V. Corce, C. Ollivier and L. Fensterbank, Chem. Commun., 2016, 52, 9877-9880.
- [S10] G. Cahiez, G. Lefèvre, A. Moyeux, O. Guerret, E. Gayon, L. Guillonneau, N. Lefèvre, Q. Gu, and E. Zhou,
- Org. Lett., 2019, 21, 2679-2683.

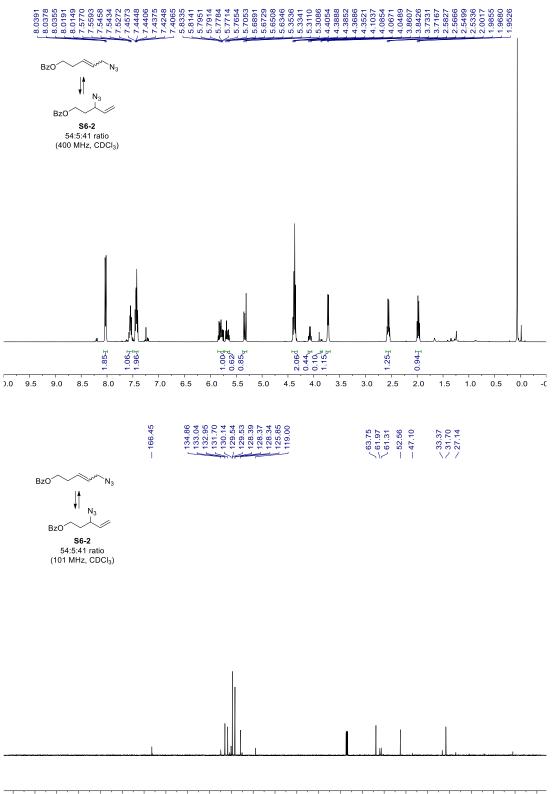

Copies of ¹H NMR and ¹³C NMR

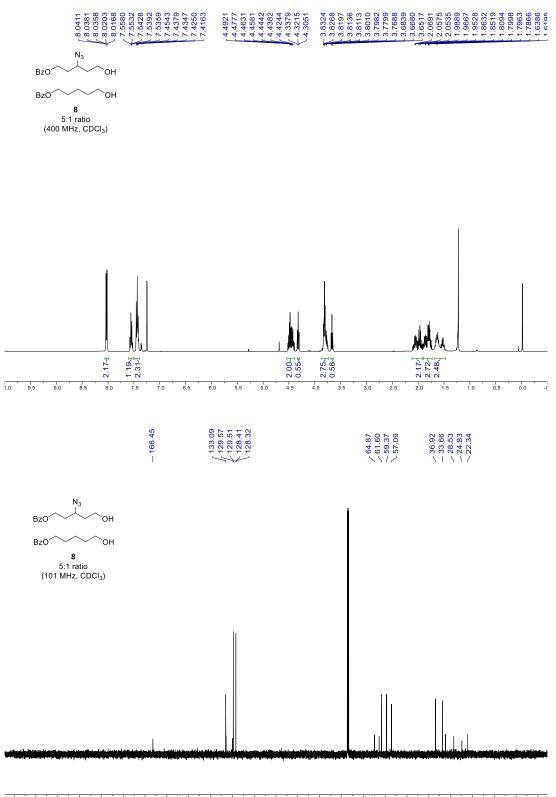


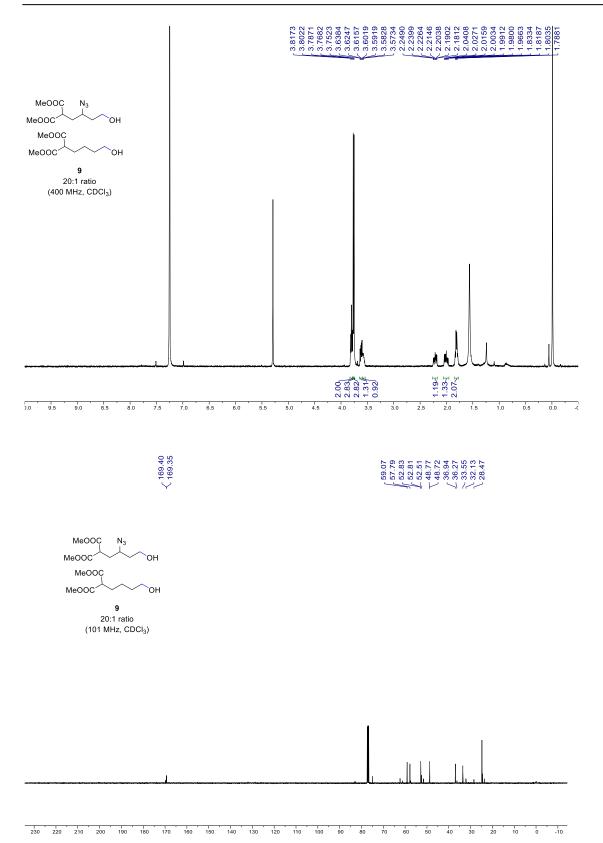


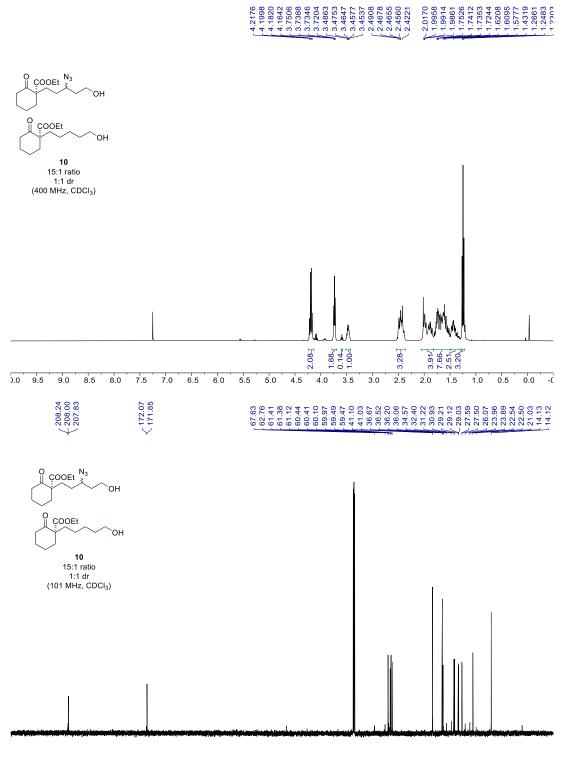
230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

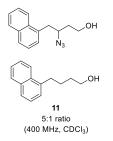


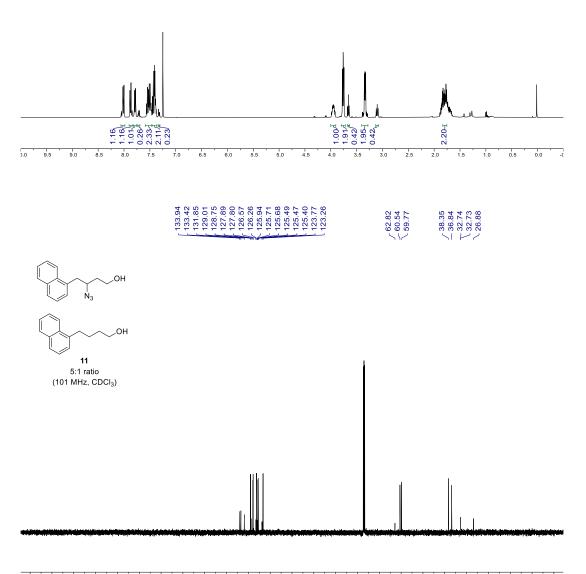


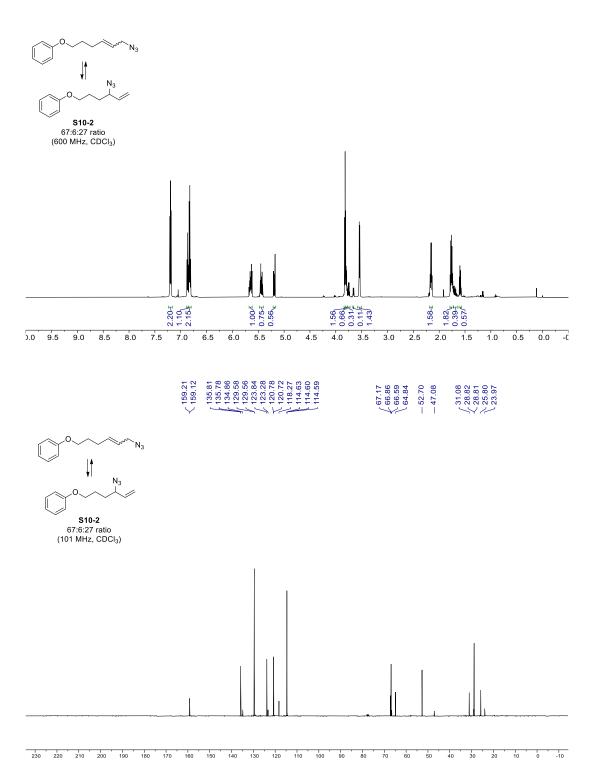


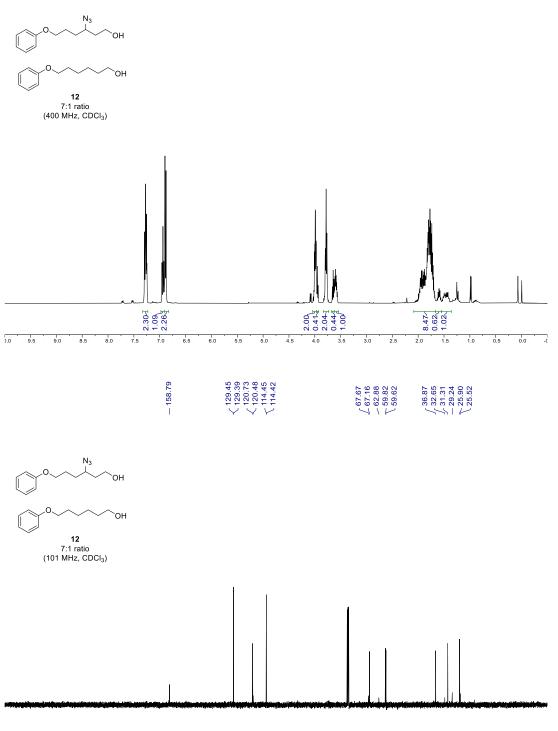



3.7307 3.5761 3.5761 3.5761 3.55761 3.55761 3.55761 3.55761 3.5545 3.55418 3.55418 1.74705 1.6966 1.6966 1.6466 1.6466 1.6406 1.6406 1.6406 1.6406 1.6406 1.4405 1.4405 1.4405 1.2949 1.2949 1.29755 1.29755 1.29755 1.29755 1.29755 1.29755 1.29755 1.29755 1

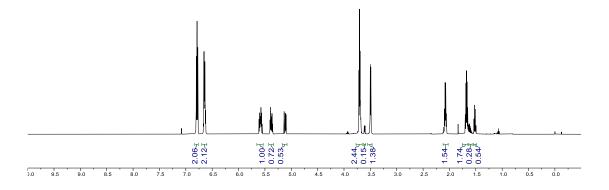





-10







-10

 158.34

 155.95

 155.24

 155.25

 155.25

 155.25

 155.25

 155.24

 155.25

 155.24

 155.25

 155.25

 155.24

 155.25

 115.57

 115.57

 115.57

 115.57

 115.57

 115.57

 115.57

 115.57

 115.57

 115.57

 115.57

 115.57

 115.57

 115.32

 115.32

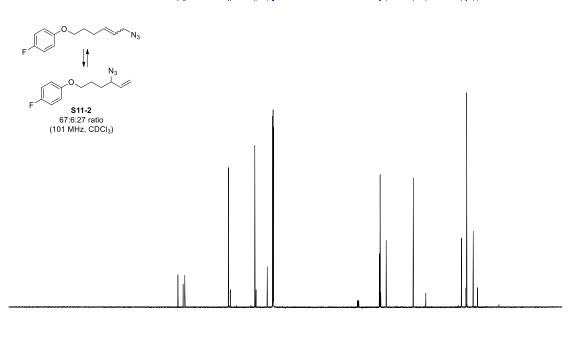
 667.19

 667.19

 667.19

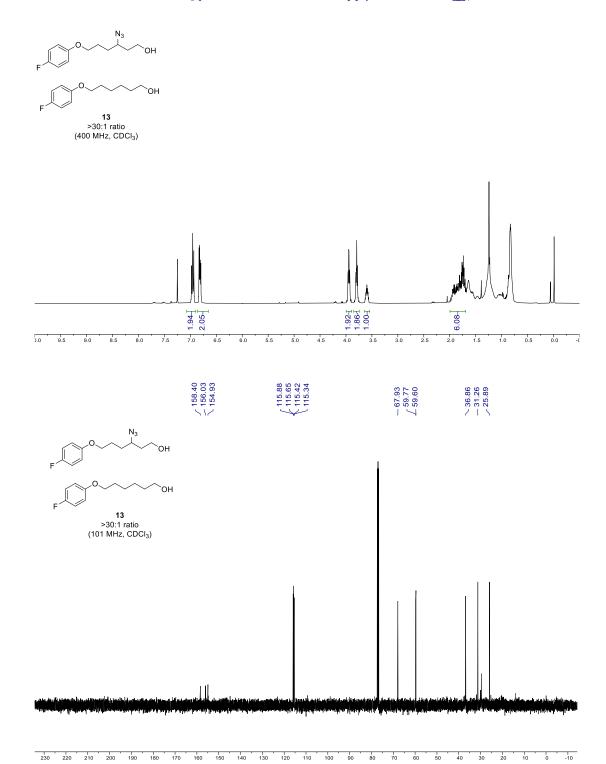
 667.19

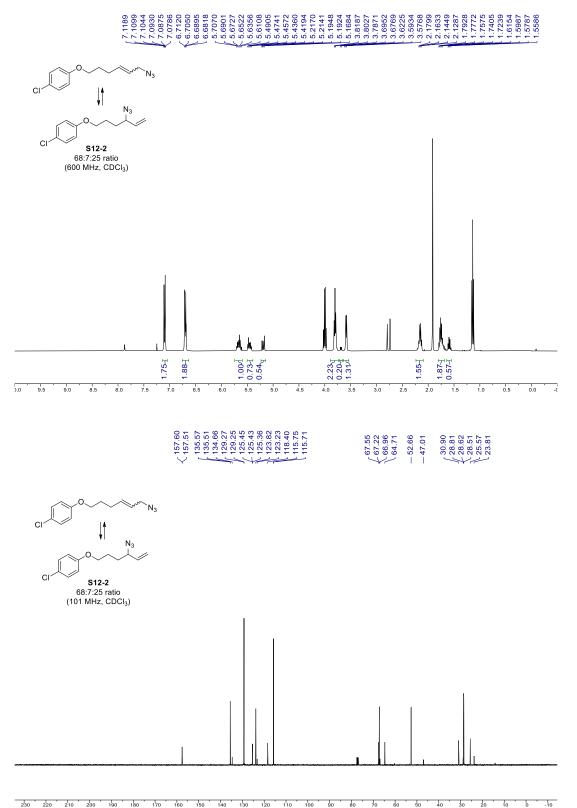
 667.19

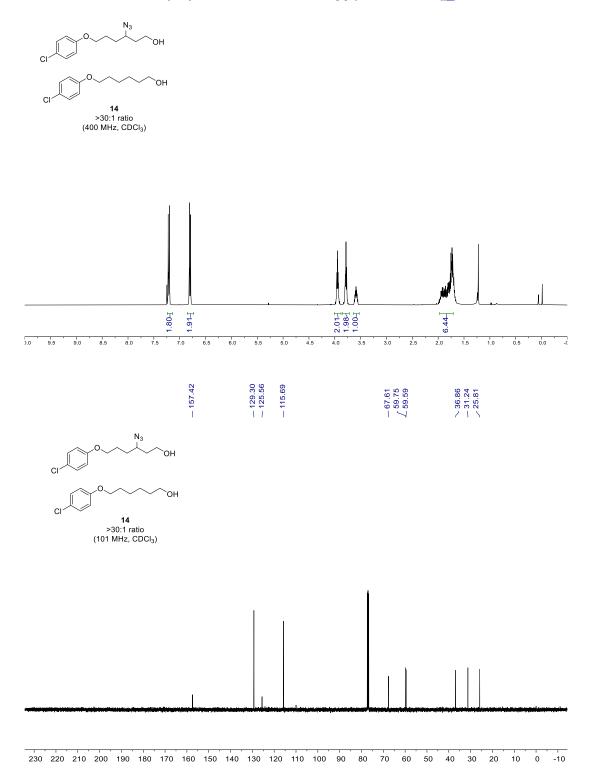

 667.13

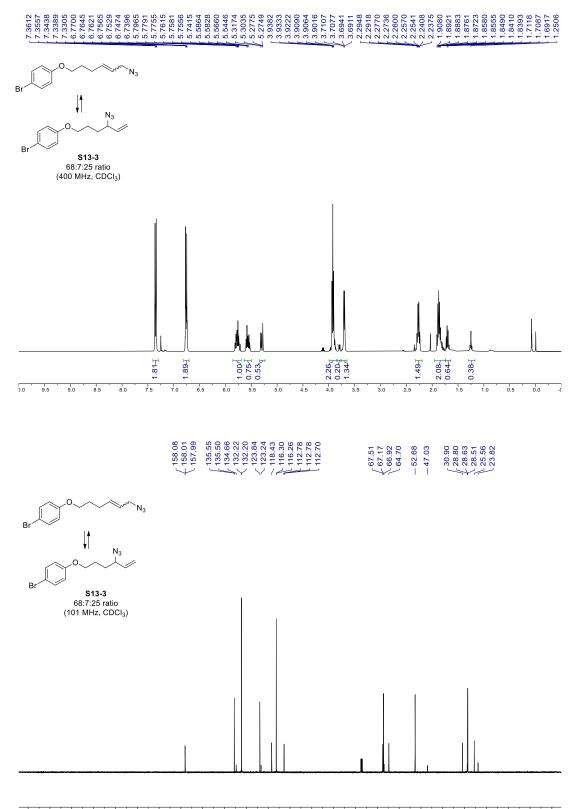
 20.88

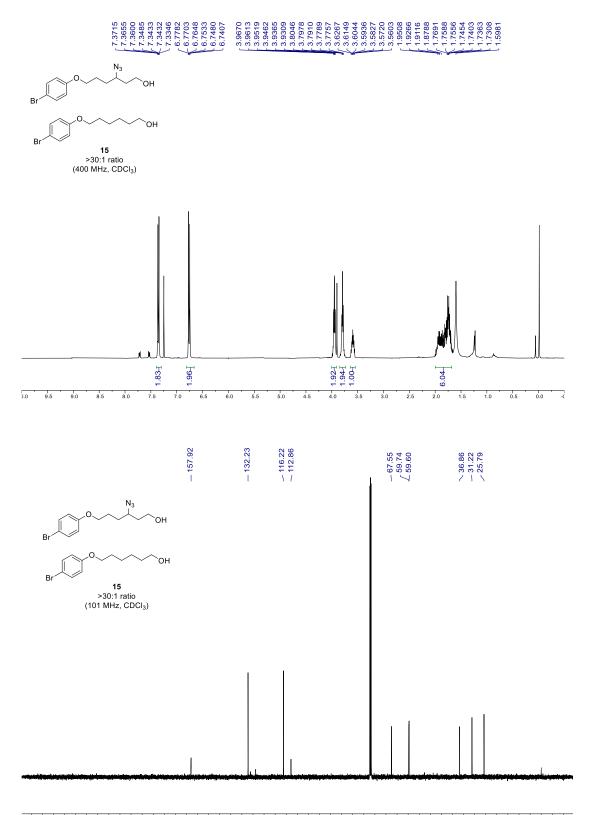
 215.63

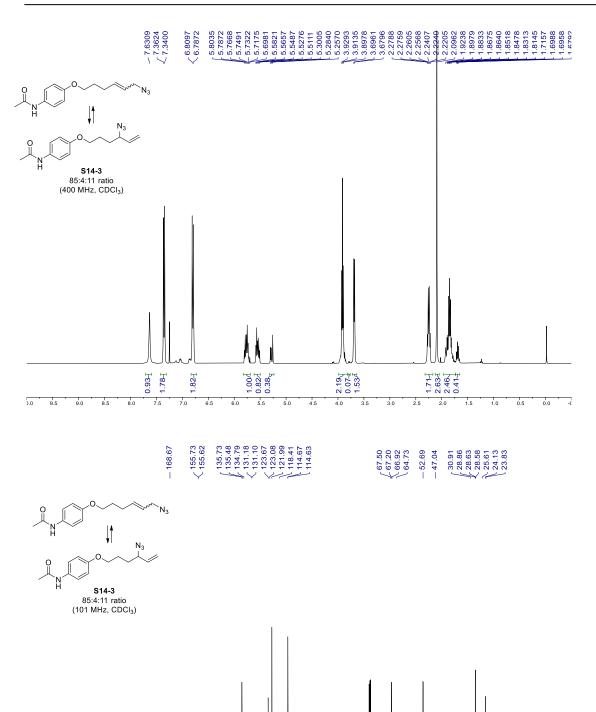

 22.65


 23.75

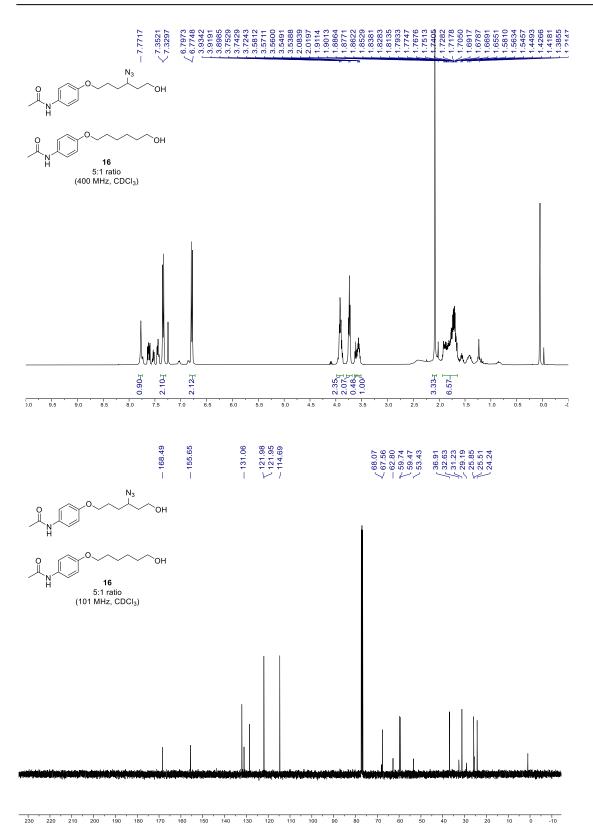

-10 220 210 200 190 180 170 160 150 140

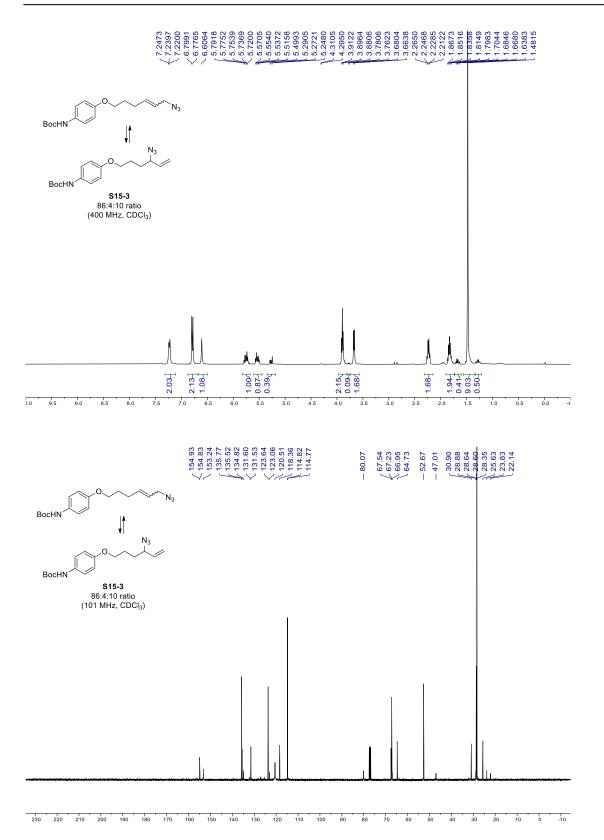

6.9761 6.9761 6.83303 6.81395 6.81395 6.81395 6.81395 6.81395 6.81395 6.81395 6.81395 6.81395 6.81395 7.3.9256 7.3.97323 7.3.9266 7.3.7926 7.1.7786

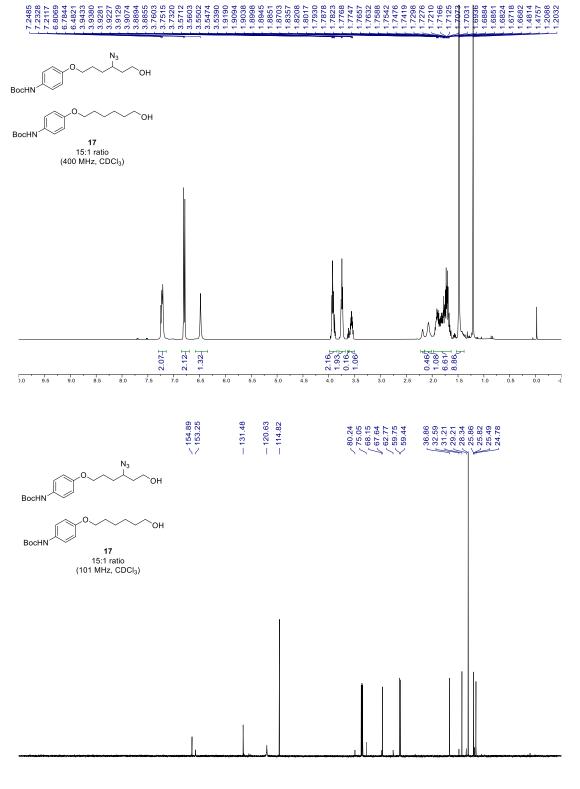


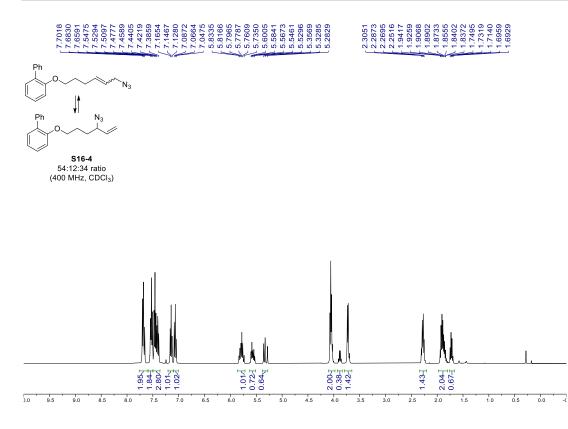


7.2227 7.2171 7.2277 6.8074 6.8074 6.8074 6.8075 6.8075 6.8075 7.2505 7.








-10

-10

 155.97

 155.91

 155.91

 138.77

 138.77

 138.77

 138.79

 138.79

 138.79

 138.79

 138.79

 138.79

 138.79

 138.79

 138.79

 138.79

 138.70

 138.70

 131.12

 131.12

 133.59

 133.50

 133.50

 133.51

 133.51

 133.51

 133.51

 133.55

 123.57

 123.57

 122.57

 122.57

 112.74

 112.75

 67.58

 67.58

 58.91

 28.91

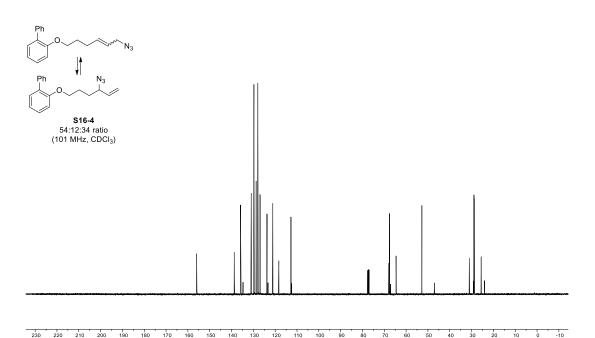
 28.91

 28.91

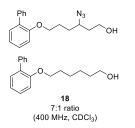
 28.91

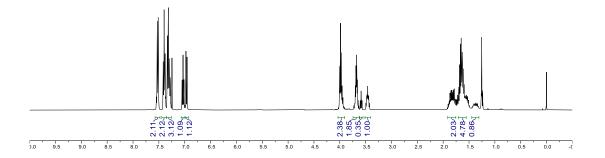
 28.91

 28.91

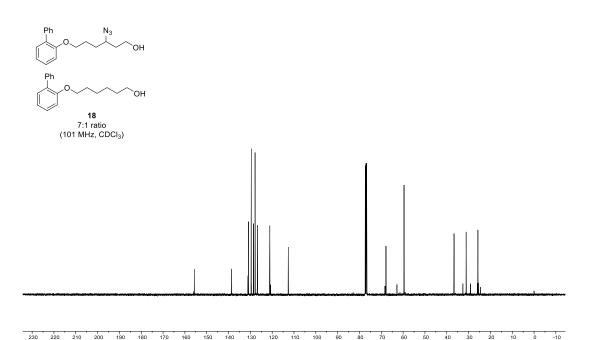

 28.91

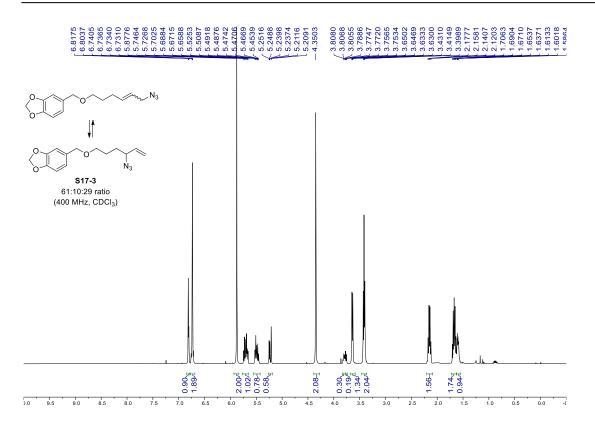
 28.91


 28.91

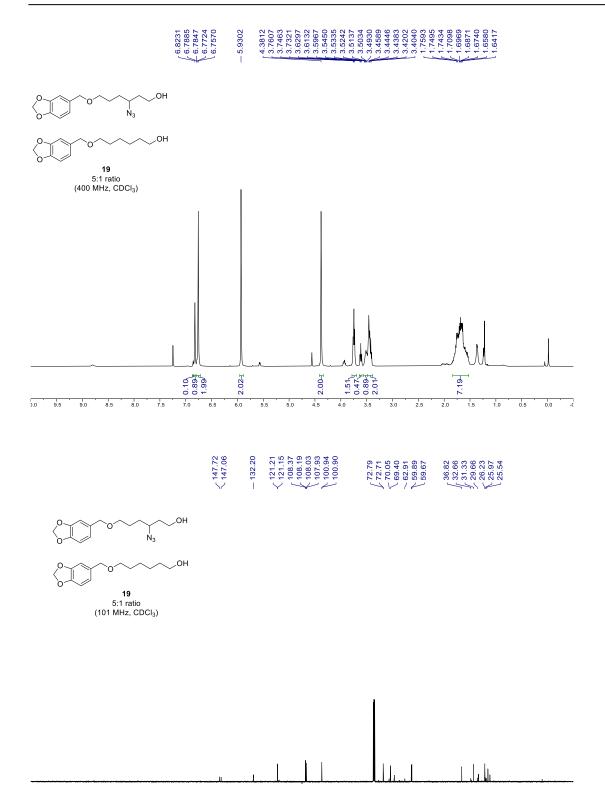

 28.91

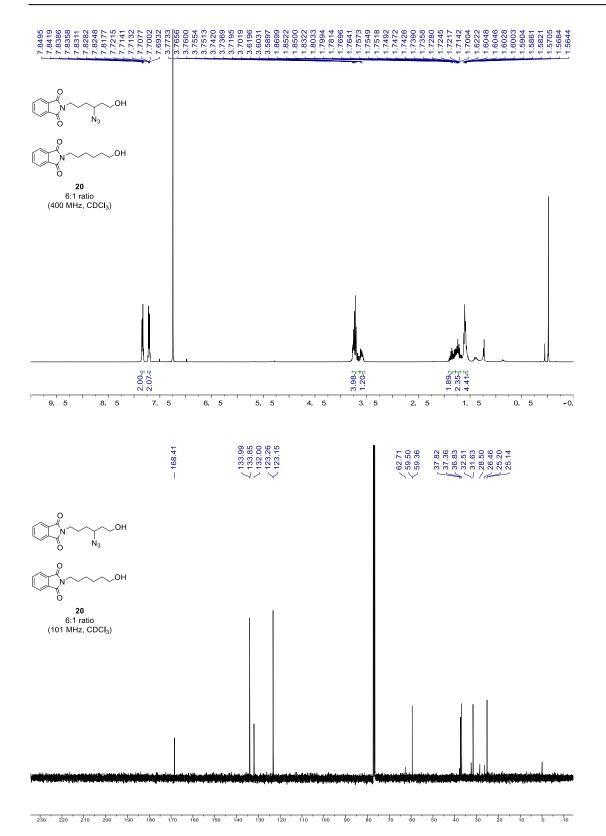
 28.91



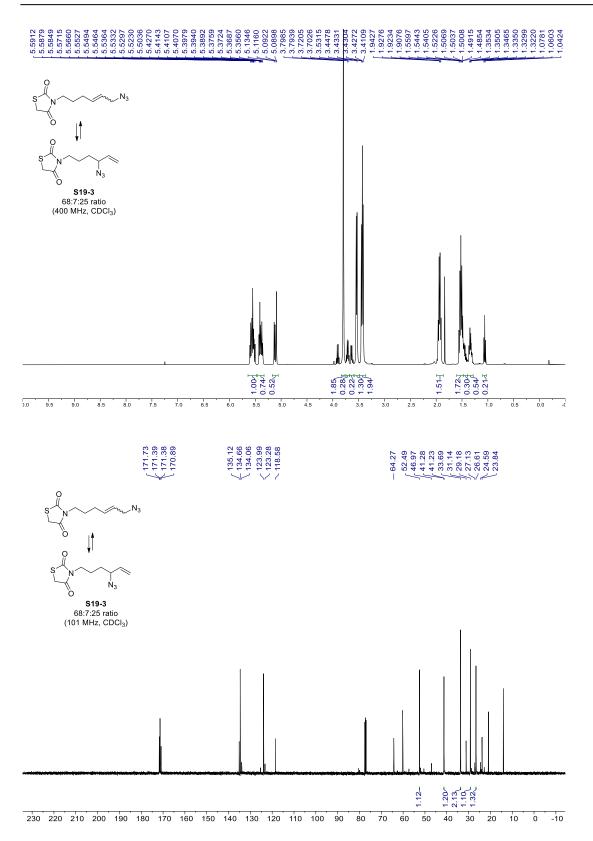

7.5338 7.55097 7.55097 7.55097 7.55097 7.55096 7.53388 7.53388 7.53388 7.53388 7.53388 7.53368 7.73310 7.735160 7.73310 7.735160 7.73310 7.73350 7.73310 7.73310 7.73311 7.23566 7.73311 7.70152 7.701

(155.36)
 (155.76)
 (155.76)
 (155.76)
 (155.76)
 (133.65)
 (120.83)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)
 (122.78)<

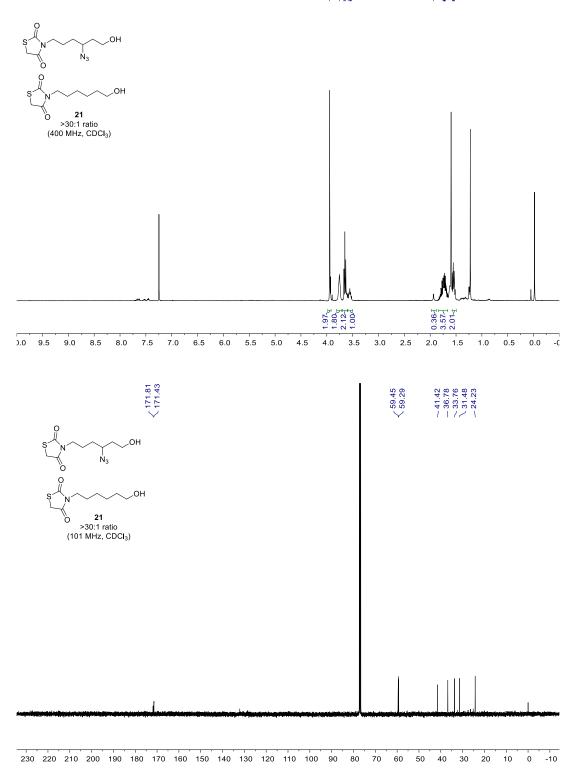


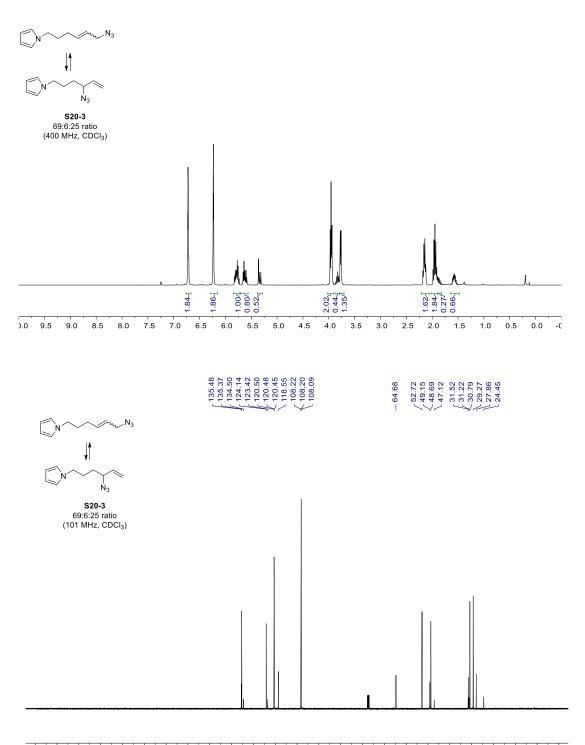


 $\begin{array}{c} 147.74\\ 1447.72\\ 135.16\\ 135.24\\ 135.24\\ 135.24\\ 135.24\\ 135.24\\ 135.24\\ 135.24\\ 132.33\\ 132.33\\ 132.33\\ 132.33\\ 132.33\\ 132.33\\ 132.33\\ 132.33\\ 132.33\\ 132.33\\ 107.98\\ 100.93$



-10




S73

