Supporting Information

Metal-free dearomative [5+2]/[2+2] cycloaddition of $\mathbf{1 H}$ indoles with ortho-(trimethylsilyl)aryl triflates

Xinyu Chen, ${ }^{\dagger}$ Na Yang, ${ }^{\dagger}$ Wen Zeng, ${ }^{\dagger}$ Lei Wang, ${ }^{*}+, \hbar, \S$ Pinhua Li, ${ }^{\dagger}$ and Hongji Li*, ${ }^{\dagger}$

\dagger Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China; E-mail: hongjili@chnu.edu.cn
\ddagger Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China; E-mail: leiwang88@hotmail.com
${ }^{\text {§ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, }}$ Shanghai 200032, People's Republic of China
Table of Contents for Supporting Information

1. General Considerations 1
2. Typical Procedure for the Synthesis of 3a 1
3. Mechanistic Experiments. 2
4. Gram-scale Synthesis of 3a 8
5. Characterization Data for the Products 8
6. References 24
7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of the Products 24
8. HRMS Analysis Reports for All Compounds 59
9. Crystallographic Data for 3a and 4a 68

1. General Considerations

All ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 600 MHz Bruker FTNMR spectrometer (600 MHz and 150 MHz , respectively). All chemical shifts are given as δ value (ppm) with reference to tetramethylsilane (TMS) as an internal standard. The peak patterns are indicated as follows: s, singlet; d , doublet; t , triplet; m , multiplet; q, quartet. The coupling constants, J, are reported in Hertz (Hz). High resolution mass spectroscopy data of the products were collected on an Agilent Technologies 6540 UHD Accurate-Mass Q-TOF LC/MS (ESI) and a Thermo Fisher Scientific LTQ FTICR-MS instrument. Melting points were determined in open capillary tube using WRS-1B digital melting point apparatus.

The starting materials, such as $1 H$-indoles and 2(trimethylsilyl)aryltrifluoromethanesulfonates, were prepared according to the reported methods ${ }^{[1-2]}$. All the solvents were dried and freshly distilled prior to use. Products were purified by flash chromatography on silica gels, eluting with petroleum ether/ethyl acetate (20:1 to 100:1).

2. Typical Procedure for the Synthesis of 3a

In a 10 mL oven-dried quartz equipped with a magnetic stirrer bar was charged with 2-phenyl-1 H-indole (1a, $36.4 \mathrm{mg}, 0.20 \mathrm{mmol}$), CsF ($121.5 \mathrm{mg}, 0.80 \mathrm{mmol}$), 2(trimethylsilyl)phenyltrifluoromethanesulfonate ($\mathbf{2 a}, 149.0 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 18-crown-6 ($132.16 \mathrm{mg}, 0.50 \mathrm{mmol})$. Then freshly distilled acetonitrile $(1.0 \mathrm{~mL})$ was added to the resulted mixture. The reaction was stirred at room temperature for 0.5 h . After that, the mixture in reaction tube was detected by TLC. The crude product was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate $=20: 1$ to 100:1), affording the desired product 3a as a pale green solid ($40.9 \mathrm{mg}, 76 \%$ yield).

3. Mechanistic Experiments

Control experiments for [5+2] cycloaddition

(a)

(b)

Isotope-labeling experiment
(c)

Control experiments for [2+2] cycloaddition

(d)

Scheme S1 Mechanistic experiments.

3.1 Control Experiments for [5+2] Cycloaddition

In a 10 mL oven-dried quartz equipped with a magnetic stirrer bar was charged with 3-bromo-2-phenyl-1H-indole ($54.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), CsF ($121.5 \mathrm{mg}, 0.8 \mathrm{mmol}$), 2(trimethylsilyl)phenyltrifluoromethanesulfonate (2a, $149.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 18-crown-6 ($132.1 \mathrm{mg}, 0.5 \mathrm{mmol})$. Then freshly distilled acetonitrile (1.0 mL) was added to the resulted mixture. The reaction was stirred at room temperature for 0.5 h . After that, the mixture in reaction tube was detected by TLC. The crude product was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate $=20: 1$), affording the desired product $\mathbf{6}$ as a white solid ($65.2 \mathrm{mg}, 94 \%$ yield).

3-Bromo-1,2-diphenyl-1 \boldsymbol{H}-indole (6): White solid; $65.2 \mathrm{mg}, 94 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.37(\mathrm{~m}$, $3 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 137.94,137.91,137.35,130.59,129.87,129.42,128.29,128.06,127.83$, 126.59, 124.62, 120.80, 117.09, 113.65, 92.80, 77.21, 77.00, 76.79. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{BrN}[\mathrm{M}+\mathrm{H}]^{+}$348.0382, found 348.0385.

3.2 Isotope-labeling Experiment

In a 10 mL oven-dried quartz equipped with a magnetic stirrer bar was charged with 2-phenyl-1 H-indole (1a, $36.4 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{CsF}(121.5 \mathrm{mg}, 0.80 \mathrm{mmol}$), 2(trimethylsilyl)phenyltrifluoromethanesulfonate (2a, $149.0 \mathrm{mg}, 0.50 \mathrm{mmol}$), $\mathrm{D}_{2} \mathrm{O}(5.5$ $\mu \mathrm{L}, 0.30 \mathrm{mmol}$) and 18 -crown-6 ($132.1 \mathrm{mg}, 0.50 \mathrm{mmol}$). Then freshly distilled acetonitrile (1.0 mL) was added to the resulted mixture. The reaction was stirred at room temperature for 0.5 h . After that, the mixture in reaction tube was detected by TLC. The crude product was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate $=50: 1$), affording the desired product $\mathbf{3 a}$ and $\mathbf{D}_{\mathbf{1}} \mathbf{- 3 a}$ as a Pale green solid ($22.2 \mathrm{mg}, 41 \%$ yield). The ratio of $\mathbf{3 a} / \mathbf{D}_{\mathbf{1}}-\mathbf{3 a}$ was determined as 0.54 by ${ }^{1} \mathrm{H}$ NMR analysis.

3.3 Control Experiments for [2+2] Cycloaddition

In a 10 mL oven-dried quartz equipped with a magnetic stirrer bar was charged with 2-methyl-1-phenyl-1 H-indole ($41.4 \mathrm{mg}, 0.20 \mathrm{mmol}$), CsF ($121.5 \mathrm{mg}, 0.80 \mathrm{mmol}$), 2-(trimethylsilyl) phenyl trifluoromethanesulfonate ($\mathbf{2 a}, 149.0 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 18-crown-6 ($132.1 \mathrm{mg}, 0.50 \mathrm{mmol}$). Then freshly distilled acetonitrile $(1.0 \mathrm{~mL})$ was added to the resulted mixture. The reaction was stirred at room temperature for 1 h . After that, the mixture in reaction tube was detected by TLC. The crude product was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate $=100: 1$), affording the desired product $\mathbf{4 c}$ as a Pale green liquid. ($51.0 \mathrm{mg}, 90 \%$ yield).

3.4 Conditional controlled experiments for the $[5+2] /[2+2]$ cycloaddition

To get a deeper understanding of the reaction mechanism, some representative 2substitued indoles with steric group, such as $\mathbf{1 y}, \mathbf{1 z}$ and $\mathbf{1 u}$, were tested their reactions with 2a under the conditions a in table 2, indicating that only [2+2] cycloaddition products were achieved in lower yields and [5+2] products were not observed (Scheme 1a-c). Similarly, we tested the reaction of 2 -arylindoles, such as $\mathbf{1 a}, \mathbf{1 g}$ and $\mathbf{1 s}$, with $\mathbf{2 a}$ under the conditions b in table 3, and found that only according [5+2] products were observed, and no [2+2] products were isolated (Scheme 1d-f).

In addition, we performed the pure [5+2] product 3a under the conditions b for exploring the possible transformation into [2+2] cycloaddition product, but no desired product was observed (Scheme 1g).

Finally, the results from the above control experiments further support the mechanism proposal for the $[5+2]$ and $[2+2]$ cycloaddition that listed in the main text of the manuscript.

Condition a for [2+2] cycloaddition:
(a)

(c)

Scheme S2 Conditional controlled experiments.

4. Gram-scale Synthesis of 3a

In a 50 mL oven-dried quartz equipped with a magnetic stirrer bar was charged with 2-phenyl-1 H-indole ($\mathbf{1 a}, 1.16 \mathrm{~g}, 6.0 \mathrm{mmol}$), CsF ($3.64 \mathrm{~g}, 24.0 \mathrm{mmol}$), 2(trimethylsilyl)phenyltrifluoromethanesulfonate (2a, $4.47 \mathrm{~g}, 15.0 \mathrm{mmol}$) and 18-crown-6 ($3.96 \mathrm{~g}, 15.0 \mathrm{mmol}$). Then freshly distilled acetonitrile (20 mL) was added to the resulted mixture. The reaction was stirred under room temperature for 4 h . After that, the mixture in reaction tube was detected by TLC. The crude product was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate $=20: 1$ to 100:1), affording the desired product 3a as a pale green solid ($1.02 \mathrm{~g}, 63 \%$ yield).

5. Characterization Data for the Products

3a
6-Phenyl-11H-dibenzo $[\boldsymbol{b}, \boldsymbol{e}]$ azepine (3a) ${ }^{[3]}$: Pale green solid; $40.9 \mathrm{mg}, 76 \%$ yield; m.p.: $150 \sim 152{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.42$ (m, 3H), $7.40(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=33.0,12.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 166.96,145.66,143.61,141.08,132.86,131.56,131.05,130.11$, 129.84, 129.78, 128.10, 126.94, 126.92, 126.37, 126.03, 125.66, 125.53, 39.20. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$270.1277, found 270.1275.

6-(p-Tolyl)-11H-dibenzo[b,e]azepine (3b): Pale green solid; $41.9 \mathrm{mg}, 74 \%$ yield; m.p.: $132 \sim 134{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.37$ (m, 2H), $7.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.18 (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{td}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=36.0,13.2 \mathrm{~Hz}$, 2 H), $2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.79,145.84,143.65,140.36$, 138.36, 132.92, 131.66, 130.94, 129.89, 129.78, 128.82, 126.90, 126.32, 125.82, 125.62, 125.49, 39.25, 21.40. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$284.1434, found 284.1434.

6-(4-Ethylphenyl)-11H-dibenzo[b,e]azepine (3c): Pale green liquid; $46.9 \mathrm{mg}, 79 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69$ (dd, $J=7.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.31(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.14(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=36.6,13.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.19(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.77$, $146.65,145.85,143.62,138.58,132.88,131.64,130.92,129.89,129.84,127.62$, 126.88, 126.30, 125.80, 125.60, 125.49, 39.23, 28.76, 15.41. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 298.1590$, found 298.1589 .

6-(4-Pentylphenyl)-11H-dibenzo[b,e]azepine (3d): Pale green liquid; $48.8 \mathrm{mg}, 72 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H})$, $7.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{q}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.67$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.86,145.81,145.42,143.60,138.52,132.89$, 131.62, 130.94, 129.93, 129.74, 128.20, 126.88, 126.31, 125.81, 125.61, 125.48, 39.22, 35.79, 31.45, 31.01, 22.53, 14.03. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ 340.2060 , found 340.2061 .

3e

6-(4-Butylphenyl)-11H-dibenzo $[\boldsymbol{b}, \boldsymbol{e}]$ azepine (3e): Pale green liquid; $48.1 \mathrm{mg}, 74 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 2 \mathrm{H})$, $7.32(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=36.0,12.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 1.66-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{dd}, J=15.0,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.90,145.88,145.44,143.66,138.58,132.94$, $131.68,131.00,129.98,129.81,128.26,126.94,126.37,125.87,125.67,125.54$, 39.28, 35.58, 33.53, 22.39, 14.01. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$326.1903, found 326.1900.

6-(4-(tert-Butyl)phenyl)-11H-dibenzo[b,e]azepine (3f): Pale green liquid; 50.1 mg , 77% yield; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.33(\mathrm{dd}, J=15.0,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.17(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=18.6,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.62$ $(\mathrm{q}, J=30.0,12.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.73$, $153.47,148.76,147.99,145.85,143.60,142.90$, 139.47, 138.39, 132.86, 130.94, $130.24,130.20,130.17,129.94,129.89$, 129.53, 129.30, 128.91, 128.86, 128.81, 128.66, 128.43, 128.26, 128.24, 127.29, 126.88, 126.32, 125.81, 125.67, 125.61, 125.51, 125.06, 122.83, 39.22, 34.81, 31.25. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ 326.1903, found 326.1907.

6-(4-Methoxyphenyl)-11H-dibenzo[b,e]azepine (3g): Pale green liquid; $48.5 \mathrm{mg}, 81 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.37 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 3 \mathrm{H})$, $7.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{dd}, J=37.2,13.2$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.20,161.33,145.84,143.62,133.62$, $132.89,131.50,131.37,130.94,129.88$, $126.89,126.87,126.33,125.65,125.61$, 125.36, 113.42, 55.38, 39.22. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 300.1383$, found 300.1382 .

6-(4-(Trifluoromethyl)phenyl)-11H-dibenzo[b,e]azepine (3h): Pale green liquid; $47.2 \mathrm{mg}, 70 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.70 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.53,145.34,144.35,143.67,132.69,131.73(\mathrm{q}, J=32.1 \mathrm{~Hz}), 131.43$, $131.10,130.07,129.46,127.12,127.09,126.76,126.66,126.62,125.87,125.73$, $125.08(\mathrm{q}, ~ J=3.3 \mathrm{~Hz}), 124.05(\mathrm{q}, J=270.4 \mathrm{~Hz}), 39.18 .{ }^{19} \mathrm{~F}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.61. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 338.1151$, found 338.1151.

4-(11H-Dibenzo[b,e]azepin-6-yl)benzonitrile (3i): Pale green liquid; $38.2 \mathrm{mg}, 65 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.49 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.02,145.26,145.12,143.78,132.64,131.98$, $131.62,130.78,130.33,129.25,127.22,127.19,126.93,126.83,125.97,125.83$, 118.66, 113.50, 39.20. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$295.1230, found 295.1231.

3j

6-(3-Chlorophenyl)-11H-dibenzo[b,e]azepine (3j): Pale green liquid; $41.2 \mathrm{mg}, 68 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dt}, \mathrm{dd}, J=7.8,1.2$ Hz, 1H), 7.45-7.42 (m, 2H), 7.39 (dd, $J=7.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (q, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.28-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{td}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.45,145.42,143.65,142.92,134.33,132.74,131.33$, $131.11,130.08,129.65,129.55,129.33,128.06,127.05,126.58,126.42,125.86$, 125.67, 39.20. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClN}[\mathrm{M}+\mathrm{H}]^{+} 304.0888$, found 304.0886.

3k

6-(m-Tolyl)-11H-dibenzo[b,e]azepine (3k): Pale solid; $41.9 \mathrm{mg}, 74 \%$ yield; m.p.: $138 \sim 140{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J$ $=18.0,8.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.17(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=$ $35.4,13.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 167.17, 145.82 , $143.65,141.19,137.88,132.93,131.77,131.04,130.97,130.19,129.94,128.00$, 127.29, 126.97, 126.37, 126.02, 125.70, 125.62, 39.29, 21.50. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$284.1434, found 284.1436.

31

1-Methoxy-6-phenyl-11H-dibenzo[b,e]azepine (3I): White solid; $31.1 \mathrm{mg}, 52 \%$ yield; m.p.: $151 \sim 153{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.49-7.42 (m, 3H), 7.41-7.37 (m, 2H), 7.23 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 2 \mathrm{H})$, $7.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}$, $3 \mathrm{H}), 3.20(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.18,155.29,147.11$, 144.06, 141.14, 132.13, 130.92, 130.12, 129.87, 129.70, 128.11, 126.65, 126.43, 125.51, 121.57, 118.02, 107.75, 56.04, 29.46. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+} 300.1383$, found 300.1382 .

3m
1-(Benzyloxy)-6-phenyl-11H-dibenzo[b,e]azepine (3m): White solid; $42.0 \mathrm{mg}, 56 \%$ yield; m.p.: $151 \sim 153{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.47-7.43 (m, 5H), 7.41-7.35 (m, 2H), 7.34 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.20(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 167.21, 154.40, 147.22, $143.98,141.08,137.44,132.10,130.93,130.13,129.86,129.72,128.60,128.09$, 127.88, 127.31, $126.60,126.45,125.53,121.99,118.30,109.24,70.74,29.69$. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 376.1696$, found 376.1699.

3n

2-Methyl-6-phenyl-11H-dibenzo[b,e]azepine (3n): White solid; 39.6 mg , 70% yield; m.p.: $147 \sim 149{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{dd}, J$ $=45.6,12.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.44,143.57$, $143.43,141.32,135.95,132.62,131.75,131.02,129.99,129.89,129.78,128.13$, $127.76,127.61,126.39,125.65,125.61,39.31,20.97$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}$ $[\mathrm{M}+\mathrm{H}]^{+}$284.1434, found 284.1433.

30

6-Phenyl-2-(trifluoromethyl)-11H-dibenzo[b,e]azepine (3o): White solid; 42.5 mg , 63% yield; m.p.: $141 \sim 143{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.51-7.48(\mathrm{~m}, 7 \mathrm{H}), 7.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{q}, J=13.2 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.61,148.45,143.06,140.50,133.17,131.51$, $131.37,130.69,129.96,129.92,128.23,127.55(\mathrm{q}, J=32.2 \mathrm{~Hz}), 126.57,126.14$, $125.61,124.34(\mathrm{q}, J=270 \mathrm{~Hz}), 123.98(\mathrm{q}, J=3.6 \mathrm{~Hz}), 38.90 .{ }^{19} \mathrm{~F}$ NMR (565 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$-61.74. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 338.1151$, found 338.1149 .

2-Fluoro-6-phenyl-11H-dibenzo[b,e]azepine (3p): White solid; $35.0 \mathrm{mg}, 61 \%$ yield; m.p.: $153 \sim 155{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.42(\mathrm{~m}$, 4H), 7.38-7.32 (m, 2H), 7.26-7.21 (m, 2H), 6.98-6.92 (m, 2H), 3.68 (dd, $J=52.2$, $12.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.78, 162.12, 160.49, 142.12, 141.89 (d, $J=269.0 \mathrm{~Hz}$), 134.27 (d, $J=7.65 \mathrm{~Hz}$), 131.59, 131.20, 130.19, 129.90, 129.75, 128.16, $127.11(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 126.49,125.99,113.78(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 113.45(\mathrm{~d}, J=$ 22.1 Hz), 39.13. ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-117.80. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FN}[\mathrm{M}+\mathrm{H}]^{+}$288.1183, found 288.1184.

2-Chloro-6-phenyl-11H-dibenzo[b,e]azepine (3q): White solid; $38.8 \mathrm{mg}, 64 \%$ yield; m.p.: $145 \sim 147{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.40(\mathrm{~m}$, $4 \mathrm{H}), 7.32(\mathrm{dd}, J=10.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 4 \mathrm{H}), 3.66(\mathrm{dd}, J=48.6,12.6 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.42,144.36,142.90,140.82,134.13,131.53$, $131.40,131.28,130.34,129.90,129.80$, 128.17, 127.01, 126.80, 126.50, 126.01, 38.90. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClN}[\mathrm{M}+\mathrm{H}]^{+} 304.0888$, found 304.0887.

2-Bromo-6-phenyl-11H-dibenzo[b,e]azepine (3r): White solid; $46.5 \mathrm{mg}, 67 \%$ yield; m.p.: $158 \sim 160{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{t}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.67$ $(\mathrm{dd}, J=48.0,13.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.53,144.82,142.96$, $140.82,134.55,131.54,131.32,130.39,129.97,129.93,129.83,129.71,128.19$, 127.13, 126.54, 126.05, 119.39, 38.85. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{BrN}[\mathrm{M}+\mathrm{H}]^{+}$ 348.0382 , found 348.0380 .

3s

4-Methyl-6-phenyl-11H-dibenzo[b,e]azepine (3s): White solid; $35.7 \mathrm{mg}, 63 \%$ yield; m.p.: $155 \sim 157{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.47-7.42 (m, 3H), 7.39 (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.18 (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.08 (dd, $J=13.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65$ (dd, $J=19.8,13.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.53(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.38$, $144.01,143.88,141.39,133.56,133.00$, 131.57, 130.98, 130.16, 129.79, 129.65, 128.62, 128.19, 126.41, 125.97, 125.69, 124.69, 39.30, 18.73. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$284.1434, found 284.1435.

8,9-Dimethyl-6-phenyl-11H-dibenzo[b,e]azepine (3t): White solid; $42.8 \mathrm{mg}, 72 \%$ yield; m.p.: $161 \sim 162{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36$ (d, $J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.29(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 2 \mathrm{H})$, $6.90(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=51.6,12.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.06,145.86,141.35,140.10,133.88,133.19,130.73,129.94$, $129.82,129.35,128.04,127.55,126.79,126.76,125.87,125.53,38.75,19.64,19.23$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$298.1590, found 298.1590.

6-Phenyl-8,9,10,12-tetrahydrobenzo[b]indeno[5,6-e]azepine (3u): White solid; $46.4 \mathrm{mg}, 75 \%$ yield; m.p.: $157 \sim 159{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.52$ (d, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.47-7.43$ (m, 1H), 7.33-7.27 (m, 2H), 7.19 (t, $J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.74 (dd, $J=46.2,12.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.05-2.89(\mathrm{~m}$, $3 \mathrm{H}), 2.79-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.04(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 167.37, $147.95,145.86,141.97,141.66,141.57,133.24,129.90,129.84,128.03,126.78$, $126.73,125.85,125.46,125.43,122.20,77.21,77.00,76.79,39.18,32.84,32.31$, 25.39. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 310.1590$, found 310.1593 .

8,9-Dimethoxy-6-phenyl-11H-dibenzo [b,e]azepine (3v): White solid; $49.4 \mathrm{mg}, 75 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 3 \mathrm{H})$, $7.40(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}$, $3 \mathrm{H}), 3.59(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.40,151.50$, 146.61, 145.77, 141.13, 137.29, 132.97, 130.12, 129.82, 128.12, 126.89, 126.74, 125.93, 125.46, 123.86, 112.80, 109.06, 56.06, 55.94, 38.83. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]{ }^{+} 330.1489$, found 330.1491.

8,9-Difluoro-6-phenyl-11H-dibenzo[b,e]azepine (3w): White solid; $37.2 \mathrm{mg}, 61 \%$ yield; m.p.: $153 \sim 155{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.53-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.20-7.13 (m, 2H), 7.06 (dd, $J=10.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ (dd, $J=45.6,13.2$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.68,151.98(\mathrm{dd}, J=252.2,12.5 \mathrm{~Hz}$), 148.28 (dd, $J=244.1,14.5 \mathrm{~Hz}$), 145.36, $140.50(\mathrm{dd}, J=5.6,3.8 \mathrm{~Hz}), 140.27,131.96$, $130.56,129.62,128.35,127.94,127.37,126.96,126.44,125.65,118.58$ (d, $J=17.8$ $\mathrm{Hz}), 115.15(\mathrm{~d}, J=17.3 \mathrm{~Hz}), 38.33 .{ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-129.95(\mathrm{~d}, J$ $=22.0 \mathrm{~Hz}),-133.77(\mathrm{~d}, J=22.0 \mathrm{~Hz}),-139.93(\mathrm{~d}, J=20.9 \mathrm{~Hz}),-140.64(\mathrm{~d}, J=21.5 \mathrm{~Hz})$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 306.1089$, found 306.1087.

$3 x+3 x^{\prime}$

10-Methyl-6-phenyl-11H-dibenzo[b,e]azepine (3x) and 7-Methyl-6-phenyl-11Hdibenzo[b,e]azepine (3x'): Pale green liquid; $39.6 \mathrm{mg}, 70 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88-7.86(\mathrm{~m}, 0.5 \mathrm{H}), 7.73(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1.8 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 0.9 \mathrm{H})$, $7.43-7.39(\mathrm{~m}, 3.1 \mathrm{H}), 7.32$ (dd, $J=7.8,0.6 \mathrm{~Hz}, 1.0 \mathrm{H}), 7.27$ (d, $J=7.8 \mathrm{~Hz}, 1.4 \mathrm{H}), 7.24$ (d, $J=6.0 \mathrm{~Hz}, 1.1 \mathrm{H}), 7.22(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 0.76 \mathrm{H}), 7.17(\mathrm{dd}, J=13.8,6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.13$ (td, $J=7.2,1.2 \mathrm{~Hz}, 0.38 \mathrm{H}$), $7.07-7.05(\mathrm{~m}, 1.0 \mathrm{H}), 7.04(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $0.37 \mathrm{H}), 7.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1.0 \mathrm{H}), 4.01(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 0.25 \mathrm{H}), 3.62(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, $1.0 \mathrm{H}), 3.56(\mathrm{~d}, ~ J=13.2 \mathrm{~Hz}, 1.0 \mathrm{H}), 3.35(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 0.26 \mathrm{H}), 2.56(\mathrm{~s}, 0.77 \mathrm{H}), 1.87$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.89,167.39,146.03,145.99,145.53$, $141.63,141.56,141.26,136.71,133.33,133.16,132.64,132.44,131.98,130.36$, $130.08,130.04,129.95,129.77,129.23,128.48,128.10,128.06,127.63,126.93$,
$126.88,126.74,126.61,125.78,125.40,125.33,125.15,124.30,123.47,39.08,33.84$, 21.89, 20.01. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$284.1434, found 284.1433.

4a

5-Phenyl-4b-(o-tolyl)-4b,9b-dihydro-5H-benzo[3,4]cyclobuta[1,2-b]indole (4a):

 White solid; 51.0 mg , m.p.: $143 \sim 145{ }^{\circ} \mathrm{C}, 71 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.43 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J$ $=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.03(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.97(\mathrm{dd}, J=7.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{td}, J=7.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=7.8,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.99$, $146.01,143.54,141.97,138.46,138.28,131.65,129.84,129.42,128.75,128.03$, 127.92, 127.49, 125.13, 124.22, 124.20, 124.17, 123.88, 122.28, 118.89, 110.43, 80.55, 58.96, 20.40. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$360.1747, found 360.1746 .

4b

4b-(2-Fluorophenyl)-5-phenyl-4b,9b-dihydro-5H-benzo[3,4]cyclobuta[1,2-

blindole (4b): Pale green solid; $55.9 \mathrm{mg}, 77 \%$ yield; m.p.: $149 \sim 151^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 2 \mathrm{H})$, $7.10-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.67(\mathrm{~d}$,
$J=249.15 \mathrm{~Hz}), 149.33,146.23,143.37,141.90,130.61(\mathrm{~d}, J=3.45 \mathrm{~Hz}), 129.73$ (d, J $=8.1 \mathrm{~Hz}), 129.67,128.83,128.75,127.90,127.83,127.70,124.66,124.33(\mathrm{~d}, J=5.25$ $\mathrm{Hz}), 123.44,123.32(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 122.41,118.74,116.03,115.89,110.05,77.45$, 60.01. ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-112.07. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{FN}$ $[\mathrm{M}+\mathrm{H}]^{+}$364.1496, found 364.1493.

4c
4b-Methyl-5-phenyl-4b,9b-dihydro-5H-benzo[3,4]cyclobuta[1,2-b]indole
Pale green liquid; $46.4 \mathrm{mg}, 82 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.25$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.06$ (m, 5H), 6.93 (d, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 149.90, 147.47, $145.99,141.58,129.23,128.96,128.66,127.88,127.68,125.64,124.69,124.56$, 122.07, 121.54, 118.11, 109.02, 74.39, 58.04, 22.35. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}$ $[\mathrm{M}+\mathrm{H}]^{+}$284.1434, found 284.1436.

5-(3,4-Dimethylphenyl)-2,3,4b-trimethyl-4b,9b-dihydro-5H-

benzo[3,4]cyclobuta[1,2-b]indole (4d): Pale green liquid; $50.2 \mathrm{mg}, 74 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ (s, $1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.66$ (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 6 \mathrm{H})$,
$2.24(\mathrm{~s}, 6 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 150.19, 145.49, 143.70, $139.12,137.49,137.39,136.13,133.04,130.33,128.85,127.80,127.09,124.39$, 123.30, 122.97, 122.60, 117.54, 108.75, 74.14, 57.60, 22.45, 20.52, 20.46, 20.03, 19.37. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 340.2060$, found 340.2058 .

5-(2,3-Dihydro-1H-inden-5-yl)-4b-methyl-1,2,3,4b,5,9b-

hexahydroindeno $\left[5 ', 6^{\prime}: 3,4\right]$ cyclobuta $[1,2-b]$ indole (4e): Pale green liquid; 50.1 mg , 69% yield; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{t}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.15(\mathrm{~d}, J=13.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.03-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}$, 1H), 2.99 (t, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}$), 2.94-2.89 (m, 2H), 2.19 (dd, $J=15.0,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.06$ (dd, $J=14.4,7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $1.77(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 150.46, 145.58, 145.31, 144.61, 143.76, 143.22, 140.81, 139.67, 128.91, 127.77, 124.77, 124.36, 124.09, 122.25, 118.25, 117.83, 117.48, 108.78, 73.42, 56.87, 33.25, 33.19, 33.06, 32.53, 25.65, 25.30, 22.50. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ 364.2060, found 364.2063 .

5-Phenyl-4b-propyl-4b,9b-dihydro-5H-benzo[3,4]cyclobuta[1,2-b]indole
(4f):
Pale green liquid; $53.5 \mathrm{mg}, 86 \%$ yield; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=14.4,7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 7.05(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.70(\mathrm{~m}, 1 \mathrm{H}), 6.62$
(d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 2.24-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.52(\mathrm{~m}$, $1 \mathrm{H}), 1.41-1.34(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $146.91,146.38,129.18,128.85,128.66,127.81,127.57,125.50,124.54,124.47$, 121.83, 121.80, 118.04, 108.87, 78.00, 55.39, 36.72, 18.34, 14.28.HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 312.1747$, found 312.1748.

4 g
4b-iso-Pentyl-5-phenyl-4b,9b-dihydro-5H-benzo[3,4]cyclobuta[1,2-b]indole (4g):
Pale green liquid; $56.3 \mathrm{mg}, 83 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.34$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.20-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 1 \mathrm{H})$, $1.46-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.18(\mathrm{~m}, 1 \mathrm{H}), 0.79(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $0.76(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.44,147.10,146.35$, $141.58,129.15,128.85,128.73,127.81,127.60,125.40,124.51,124.49,121.89$, 121.72, 118.04, 108.92, 77.97, 55.23, 33.77, 32.16, 28.16, 22.61, 22.38. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 340.2060$, found 340.2063 .

4h

Pale green liquid; $38.1 \mathrm{mg}, 53 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.08(\mathrm{~m}, 6 \mathrm{H}), 7.03(\mathrm{~d}, J=$
$6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.88(\mathrm{~s}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.08,146.27,146.00,141.48,137.14,129.75,129.26,129.07$, $128.45,127.92,127.80,127.60,126.16,125.62,124.66,124.48,122.01,121.79$, 118.21, 108.89, 77.68, 54.87, 40.55. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ 360.1747 , found 360.1748 .

6. References

[1] Y. Yin, W. Ma, Z. Chai and G. Zhao, J. Org. Chem., 2007, 72, 5731.
[2] A.-T. Biju and F. Glorius, Angew. Chem. Int. Ed., 2010, 49, 9761.
[3] B. Balakrishna, A. Bauzá, A. Frontera and A. Vidal-Ferran, Chem.-Eur. J., 2016, 22, 10607.

7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of the Products

Noxiog orone

3d


```
NNNNNNNNNNNNNNNN
```


 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

3j

- (ppin)


```
*)
```


30

					1	,	,	1	1	
200	180	160	140	120	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	60	40	20	0

$3 r$

 	Oio
notnNunNTNO	ウゥゥゥ
	4

3t

に

3t

이이잉

$3 w$

4a

8. HRMS Analysis Reports for All Compounds

$\left.\begin{array}{llllllllllllllllllll}293 & 294 & 295 & 296 & 297 & 298 & 299 & 300 & 301 & 302 & 303 & 304 & 305 & 306 & 307 & 308 & 309 & 310 & 311 & 312\end{array}\right) 313$

9. Crystallographic Data for 3a and 4a

9.1 Crystallographic Data for 3a

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 1

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0052 \mathrm{~A}$	Wavel	$=0.71073$
Cell:	$a=18.566$ (2)	$\mathrm{b}=5.4612$ (7)	$\mathrm{C}=14.391$ (2)
	alpha=90	beta=90	gamma $=90$
Temperature :	296 K		
	Calculated	Repo	
Volume	1459.1(3)	1459	
Space group	P c a 21	P C	
Hall group	P 2c -2ac	P 2c	
Moiety formula	C20 H15 N	C20	
Sum formula	C20 H15 N	C20	
Mr	269.33	269.	
Dx, g cm-3	1.226	1.22	
Z	4	4	
Mu (mm-1)	0.071	0.07	
F000	568.0	568.	
F000'	568.20		
h, k, 1 max	22,6,17	22,6	
Nref	2571[1344]	2555	
Tmin, Tmax	0.980, 0.985	0.62	46
Tmin'	0.980		
```Correction method= # Reported T Limits: Tmin=0.628 Tmax=0.746 AbsCorr = MULTI-SCAN```			
Data completeness $=1.90 / 0.99$		Theta $(\max )=25.000$	
R (reflections) $=0.0503(1786)$		wR2 (reflections) $=0.0915(2555)$	
$S=1.025$	Npar= 191		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test

PLATON version of $05 / 12 / 202$; check.def file version of $05 / 12 / 2020$


### 9.2 Crystallographic Data for 4a

## checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

## Datablock: t

Bond precision: $\quad C-C=0.0036 \mathrm{~A}$
Wavelength $=0.71073$

Cell:	$\begin{aligned} & a=9.0099(13) \\ & \text { alpha=67.411(2) } \end{aligned}$	$\begin{array}{ll} \mathrm{b}=10.3660(15) & \mathrm{c}=11.4985(16) \\ \text { bet } \mathrm{a}=86.553(2) & \text { gamma }=87.881(2) \end{array}$
Temperature:	296 K	
	Calculated	Reported
Volume	989.6(2)	989.6(2)
Space group	P -1	P -1
Hall group	-P 1	-P 1
Moiety formula	C27 H21 N	C27 H21 N
Sum formula	C27 H21 N	C27 H21 N
Mr	359.45	359.45
Dx,g cm-3	1.206	1.206
Z	2	2
Mu (mm-1)	0.069	0.069
F000	380.0	380.0
F000'	380.13	
h, k, 1max	11,13,15	11,13,15
Nref	4650	4351
Tmin, Tmax	0.987,0.990	0.656,0.746
Tmin'	0.987	

Correction method= \# Reported T Limits: Tmin=0.656 Tmax=0.746
AbsCorr $=$ NONE

Data completeness $=0.936$
Theta $(\max )=27.735$
$R($ reflections $)=0.0582(2652) \quad$ wR2 (reflections $)=0.1679(4351)$
$S=1.007$
Npar $=254$

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level
lick on the hyperlinks for more details of the test.


