Supporting Information Azopyridine-based chiral oxazolines with rare-earth metals for photoswitchable catalysis

Kento Nakamura ${ }^{\text {a }}$, Masaru Kondo*ab , Chandu G. Krishnan ${ }^{\text {a }}$, Shinobu Takizawa ${ }^{\text {a }}$, Hiroaki Sasai*a

${ }^{a}$ SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki-shi, Osaka, 567-0047 (Japan)
${ }^{b}$ Department of Materials Science and Engineering, Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki, 316-8511 (Japan)
Correspondence: $\underline{\text { masaru.kondo.fg74@vc.ibaraki.ac.jp, sasai@sanken.osaka-u.ac.jp }}$

CONTENTS:

General information SI-2
General procedure for preparation of 2 SI-2
Analytical data SI-4
Photoisomerization of $\mathbf{2}$ and $\mathbf{2}$-La complexes SI-7
Half-life of (Z)-2 and (Z)-2-La complexes. SI-14
Mass spectra of (E)-2a-La complex SI-16
General procedure for the RE catalyzed enantioselective intermolecular cyclization of sulfonamide
3 and aldehyde 4 SI-18
Reaction condition optimization SI-20
Plausible stereochemical model SI-23
References SI-23
${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}-\mathrm{NMR}$ charts. SI-24
HPLC charts. SI-32

General information

${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra were recorded with a JEOL JMN ECS400 FT NMR NMR (${ }^{1} \mathrm{H}-\mathrm{NMR} 400$ $\left.\mathrm{MHz},{ }^{13} \mathrm{C}-\mathrm{NMR} 100 \mathrm{MHz}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra are reported as follows: chemical shift in ppm relative to the chemical shift of CHCl_{3} at 7.26 ppm , integration, multiplicities ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet), and coupling constants $(\mathrm{Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra reported in ppm relative to the central line of triplet for CDCl_{3} at 77 ppm . ESI- and APCI-MS spectra were obtained with JMS-T100LC (JEOL). HPLC analyses were performed on a JASCO HPLC system (JASCO PU 980 pump and UV-975 UV/Vis detector). UV spectra were recorded on JASCO v-770. FT-IR spectra were recorded on a JASCO FT-IR system (FT/IR4100). Column chromatography on SiO_{2} was performed with Kanto Silica Gel $60(40-100 \mu \mathrm{~m})$. Commercially available organic and inorganic compounds were used without further purification. Photoirradiation was performed with LED lamp (PER-AMP, Techno Sigma Co., Ltd.).

General procedure for the preparation of 2 .

3,5-Dimethyl nitrosobenzene was prepared according to the reported procedure. ${ }^{1}$

(39\% over 2 steps)

Step $1($ for $\mathbf{R}=\mathbf{H})$

To a solution of 6 -aminopicolinic acid ($829 \mathrm{mg}, 6.0 \mathrm{mmol}$) and NaOH ($2880 \mathrm{mg}, 12 \mathrm{eq}$.) in toluene $/ \mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL} / 30 \mathrm{~mL})$ was added nitrosobenzene ($\left.643 \mathrm{mg}, 1.0 \mathrm{eq}.\right)$ at room temperature. The solution was allowed to warm up to $100^{\circ} \mathrm{C}$. After being refluxed for 2 h . the solution was cooled to room temperature and washed with toluene to remove unreacted nitrosobenzene. Then, the remaining aqueous phase was neutralized with $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$ and extracted with EtOAc (20 $\mathrm{mL} \times 2$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude mixture. The mixture was purified by silica gel column chromatography using hexane-ethyl acetate as an eluent to provide 1a.

Step 1 (for R = Me)

To a stirred solution of 6 -aminopicolinic acid ($691 \mathrm{mg}, 5.0 \mathrm{mmol}$) in 20% aq. $\mathrm{KOH}(25 \mathrm{~mL}$) and pyridine (10 mL) was added a solution of 3,5-dimethhylnitrosobenzene ($1014 \mathrm{mg}, 1.5 \mathrm{eq}$.) in pyridine (40 mL) at $100^{\circ} \mathrm{C}$. After being refluxed for 2 h at $100^{\circ} \mathrm{C}$, the solution was cooled to room temperature, neutralized with $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$ and extracted with EtOAc ($20 \mathrm{~mL} \times 2$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude mixture. The mixture was purified by silica gel column chromatography using hexane-acetone as an eluent to provide 1b.

Step 2 and 3 (two-step procedure)

To a stirred solution of $\mathbf{1}(0.5 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.14 \mathrm{~mL}, 2.0 \mathrm{eq}$.) and (S) -phenyl glycinol ($89 \mathrm{mg}, 1.3$ eq.) in DCM (7.1 mL) was added HBTU ($247 \mathrm{mg}, 1.3$ eq.) at room temperature. The stirring was continued under nitrogen atmosphere at the same temperature. After being stirred for 24 h , the reaction mixture was washed with sat. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ followed by removal of the solvent under reduced pressure to give crude mixture. The mixture was purified by silica gel column chromatography using hexane-ethyl acetate as an eluent to give amide product (contained tetra methyl urea: coproduct generated from HBTU), which was used in the next step without further purification.
To a solution of the amide (0.25 mmol), DMAP ($12 \mathrm{mg}, 0.4 \mathrm{eq}$.) and $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL}, 3.0$ eq.) in DCE $(2.3 \mathrm{~mL})$ were added methanesulfonyl chloride ($25 \mu \mathrm{~L}, 1.3 \mathrm{eq}$.) at $0^{\circ} \mathrm{C}$. The solution was allowed to warm up to $70{ }^{\circ} \mathrm{C}$. After being stirred for 24 h , sat. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ was added to the solution. The resulting mixture was extracted with $\mathrm{DCM}(10 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude mixture. The mixture was purified by silica gel column chromatography using hexane-acetone as an eluent to provide pure 2.

Analytical data

Characterization of new compounds and 5 .

1a: 40% yield; dark orange solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.37$ (dd, $J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-8.02(\mathrm{~m}, 3 \mathrm{H})$, 7.62-7.57 (m, 3H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.17,161.41$, 152.02, 145.95, 140.65, 133.09, 129.37, 125.32, 123.70, 117.89; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}: \mathrm{m} / z\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right) 250.0587$, found 250.0584; IR (KBr) 3047, 2849, 2592, 1704, 1578, 1452, 1332, 1277, 1146, 778, $680 \mathrm{~cm}^{-1}$

1b: 20% yield; orange solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.36$ (dd, J $=7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.66 (s, 2H), 7.25 (s, 1H), $2.45(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 164.29, 161.61, 152.30, 146.16, 140.50, 139.12, 134.78, 125.12, 121.50, 117.38, 21.15; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}: m / z\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right)$ 278.0900, found 278.0897; IR (KBr) 2915, 2504, 1720, 1589, 1452, $1342,1266,1162,1129,866,772,685 \mathrm{~cm}^{-1}$

(S)-2a : 39\% yield (over 2 steps); orange solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.32(\mathrm{dd}, J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.11-8.06(\mathrm{~m}, 2 \mathrm{H}), 8.00(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 3 \mathrm{H})$, $7.40-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.50(\mathrm{dd}, J=10.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.96$ (dd, $J=10.1$, $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 163.52, 162.91, 152.21, 146.51, 141.71, 139.04, 132.41, 129.12, 128.81, 127.79, 126.84, 125.55, 123.86, 115.36, 75.46, 70.42; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{ONa}: \mathrm{m} / \mathrm{z}$ ([M+Na+]) 351.1216, found 351.1209; $\operatorname{IR}(\mathrm{KBr}) 3052,2959,2921,2893,1632,1589,1573,1436,1364,1150,1107$, 1074, 981, 762, $701 \mathrm{~cm}^{-1}$

(S)-2b: 39\% yield (over 2 steps); red oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 2 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 5.50$ (dd, $J=10.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.95$ (dd, $J=10.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{t}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $163.56,162.90,152.38,146.41,141.70,138.98,138.77,134.11$, $128.79,127.76,126.81,125.39,121.69,114.96,75.44,70.35,21.16$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Na}: m / z\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right) 379.1529$, found 379.1524; IR (KBr) 3063, 2959, 2915, 2860, 1638, 1567, 1442, 1364, 1277, 1129, 1107, 981, 849, 817, $745 \mathrm{~cm}^{-1}$

$(R)-5 \mathbf{a}^{2,3,4}: 95 \%$ yield (Table 2, entry 6); white solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.65(\mathrm{~m}, 1 \mathrm{H}), 5.01-4.91(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{~d}$, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.85(\mathrm{~m}, J=13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.68(\mathrm{~m}, J=$ $14.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J$ $=2.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.42,133.23,124.73,118.86,116.21,64.80,43.64$, 24.05, 22.57, 22.28; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}: \mathrm{m} / \mathrm{z}$ ($\left[\mathrm{M}+\mathrm{Na}^{+}\right]$) 263.0825, found 263.0824; IR (KBr) 3381, 3222, 2953, 2866, 1605, 1567, 1496, 1326, 1287, 1156, 1085, 926, 745, $559 \mathrm{~cm}^{-1}$; HPLC conditions: Daicel Chiralpak OD-H column, n-hexane $/ i \operatorname{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}$, $250 \mathrm{~nm}, \mathrm{tR}=7.6 \mathrm{~min}$ (major) and 16.8 min (minor).

$(R)-5 \mathbf{b}^{3,4}: 76 \%$ yield (Scheme 2, under dark); white solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.64-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~m}$, $1 \mathrm{H}), 4.76$ (dd, $J=13.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47$ ($\mathrm{s}, 1 \mathrm{H}$), 4.32 (m, 1H), 2.06-1.97 (m, 1 H), $1.11(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.68,133.26,124.75$, 122.58, 118.83, 116.24, 70.55, 32.05, 17.64, 16.62; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}: m / z\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right) 249.0668$ found 249.0666 ; IR (KBr) 3358, 3326, 2967, 2869, 1602, 1575, 1488, 1326, 1281, 1161, 1080, 905, 748, $569 \mathrm{~cm}^{-1}$; HPLC conditions: Daicel Chiralpak OD-H column, n-hexane $/$ / $\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, \mathrm{tR}=8.3 \mathrm{~min}$ (major) and 30.1 min (minor).

$(R)-5 \mathbf{c}^{4}: 81 \%$ yield (Scheme 2, under dark); white solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.81$ $(\mathrm{m}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-4.88(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 4.36$ $(\mathrm{d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-1.36(\mathrm{~m}, 4 \mathrm{H}), 0.94(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.49,133.26,124.73,122.54,118.82,116.18$, 66.18, 34.47, 26.32, 22.21, 13.83; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}: m / z\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right)$263.0825, found 263.0826; IR (KBr) 3375, 3225, 2950, 2917, 2858, 1700, 1592, 1483, 1317, 1167, 1142, 742, $558 \mathrm{~cm}^{-1}$; HPLC conditions: Daicel Chiralpak OD-H column, n-hexane $/$ ' $\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}$, $250 \mathrm{~nm}, \mathrm{tR}=7.6 \mathrm{~min}$ (major) and 17.5 min (minor).

$(R)-5 \mathbf{d}^{4}: 54 \%$ yield (Scheme 2, under dark); white solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 6 \mathrm{H}), 6.85(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.08(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.68$ (d, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{dd}, J=10.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{q}$, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.33,136.67,133.31$, 128.70, 128.38, 128.05, 124.65, 122.76, 119.08, 116.84, 73.79, 69.98, 64.69; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}: m / z\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right) 263.0774$, found 263.0767 ; $\mathrm{IR}(\mathrm{KBr}) 3364$, 3239, 3027, 2864, 1607, 1569, 1488, 1389, 1362, 1308, 1281, 1150, 1123, 1064, 738, 693, 580, 547, $514 \mathrm{~cm}^{-1}$; HPLC
conditions: Daicel Chiralpak OD-H column, n-hexane $/$ $/ \mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 240 \mathrm{~nm}, \mathrm{tR}=$ 18.3 min (major) and 26.1 min (minor).

Photoisomerization experiments of 2 and 2-La complexes

Photoisomerization of 2a

Fig. S1 UV-Vis spectra of $\mathbf{2 a}(250 \mu \mathrm{M})$ in MeCN.

$365 \mathrm{~nm}, 30 \mathrm{~min}($ PSS: $E / Z=56: 44)$
$448 \mathrm{~nm}, 30 \mathrm{~min}(\mathrm{PSS}: E / Z=83: 17)$

Fig. S2 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{2 a}(8 \mathrm{mM})$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. S3 UV-Vis spectra of $\mathbf{2 a}-\mathrm{La}(\mathrm{OTf})_{3}(250 \mu \mathrm{M})$ in MeCN .

$448 \mathrm{~nm}, 30 \mathrm{~min}(P S S: E / Z=77: 23)$

Fig. S4 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{2 a - L a}(\mathrm{OTf})_{3}(8 \mathrm{mM})$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Peak shifting of (E) or (Z)-2a after coordination to $\mathrm{La}(\mathrm{OTf})_{3}$

Fig. S5 Comparison of $(E)-\mathbf{2 a}$ and $(E)-\mathbf{2 a - L a}(\mathrm{OTf})_{3}(8 \mathrm{mM})$ in $\mathrm{CD}_{3} \mathrm{CN}$: H_{o} was shifted and broadening, and H_{m-p} were splitted, supporting coordination of azo group with slow $\mathrm{C}_{\text {Phe }}-\mathrm{N}_{\text {azo }}$ rotation.

Fig. S6 Comparison of $(Z) \mathbf{- 2 a}$ and $(Z)-\mathbf{2 a - L a}(\mathrm{OTf})_{3}(8 \mathrm{mM})$ in $\mathrm{CD}_{3} \mathrm{CN}: \mathrm{H}_{o}$ and H_{p} were assigned but there was no apparent peak shift, supporting azo group was not participating into coordination.

Photoisomerization of $\mathbf{2 b}$

Fig. S7 UV-Vis spectra of $\mathbf{2 b}(250 \mu \mathrm{M})$ in MeCN.

$365 \mathrm{~nm}, 30 \mathrm{~min}(\mathrm{PSS}: E / Z=24: 76)$

Fig. S8 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{2 b}(8 \mathrm{mM})$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. S9 UV-Vis spectra of $\mathbf{2 b}-\mathrm{La}(\mathrm{OTf})_{3}(250 \mu \mathrm{M})$ in MeCN .

Fig. S10 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{2 b}-\mathrm{La}(\mathrm{OTf})_{3}(8 \mathrm{mM})$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Peak shifting of (E) or $(Z) \mathbf{- 2 b}$ after coordination to $\mathrm{La}(\mathrm{OTf})_{3}$

Fig. S11 Comparison of $(E) \mathbf{- 2 b}$ and $(E)-\mathbf{2 b}-\mathrm{La}(\mathrm{OTf})_{3}(8 \mathrm{mM})$ in $\mathrm{CD}_{3} \mathrm{CN}$: H_{o} was shifted to indicate coordination of azo group.

Fig. S12 Comparison of $(Z)-\mathbf{2 b}$ and $(Z) \mathbf{- 2 b}-\mathrm{La}(\mathrm{OTf})_{3}(8 \mathrm{mM})$ in $\mathrm{CD}_{3} \mathrm{CN}: \mathrm{H}_{o}$ and H_{p} were assigned but there was no apparent peak shift, supporting azo group was not participating into coordination.

Table S1. Solvent effect on the PSS.

entry	2	solvent	$\begin{gathered} 365 \mathrm{~nm} \\ E / Z^{a} \end{gathered}$	$\begin{gathered} 448 \mathrm{~nm} \\ E / Z^{a} \end{gathered}$
1	2a		56:44	83:17
2	2b	$\mathrm{MeCN}-d_{3}$	24:76	84:16
3	2a		53:47	88:12
4	2b	toluene- d_{8}	23:77	88:12
5	2a		63:37	86:14
6	2b	THF-d8	35:65	87:13
7	2a		50:50	88:12
8	2b	CDCl_{3}	20:80	88:12

${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$

Half-life of (Z)-2 and (Z)-2-La complexes

Fig. S13 First order kinetic plot for the thermal reisomerization of (Z)-2a at $20^{\circ} \mathrm{C}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. S14 First order kinetic plot for the thermal reisomerization of $(Z)-\mathbf{2 a - L a}(\mathrm{OTf})_{3}$ at $20{ }^{\circ} \mathrm{C}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. S15 First order kinetic plot for the thermal reisomerization of (Z)-2b at $20^{\circ} \mathrm{C}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. S16 First order kinetic plot for the thermal reisomerization of $(Z)-\mathbf{2 b}-\mathrm{La}(\mathrm{OTf})_{3}$ at $20{ }^{\circ} \mathrm{C}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Mass spectra of (E)-2a-La complex

A cationic $\mathrm{L}_{2}-\mathrm{RE}(\mathrm{OTf})_{2}{ }^{+}\left(\mathrm{L}={ }^{i} \mathrm{Pr}\right.$-Pybox) can be observed for the tridentate Pybox, according to the previous report by Aspinall. ${ }^{5}$ The observed spectra for (E)-2a (Fig. S17) also showed $\mathrm{L}_{2}-\mathrm{La}(\mathrm{OTf})_{2}{ }^{+}$ $(\mathrm{L}=(E) \mathbf{- 2 a})$ and it agrees well with the theoretical spectra (Fig. S18).

Calcd for $\mathrm{C}_{42} \mathrm{H}_{32} \mathrm{~F}_{6} \mathrm{LaN}_{8} \mathrm{O}_{8} \mathrm{~S}_{2}{ }^{+}: m / z\left(\left[\mathrm{M}^{+}\right]\right)$:
1093.0747 found 1093.0758

Fig. S17 APCI-MS spectra of $\mathrm{L}_{2}-\mathrm{La}(\mathrm{OTf})_{2}{ }^{+}(\mathrm{L}=(E)-\mathbf{2 a})$

Fig. S18 Theoretical spectra of $\mathrm{L}_{2}-\mathrm{La}(\mathrm{OTf}) 2_{2}{ }^{+}(\mathrm{L}=(E)-\mathbf{2 a})$

Fig. S19 Comparison of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $(\mathrm{A})(E) \mathbf{- 2 a},(\mathrm{B})(E)-\mathbf{2 a}+\mathrm{La}(\mathrm{OTf})_{3}(0.5$ eq. $)$, and $(\mathrm{C})(E) \mathbf{- 2 a}+\mathrm{La}(\mathrm{OTf})_{3}(1.0$ eq. $)\left(8 \mathrm{mM}, \mathrm{CD}_{3} \mathrm{CN}\right)$.

General procedure for the 2-RE(OTf)3 catalyzed enantioselective intermolecular cyclization of sulfonamide 3 and aldehyde 4 (Table 2).

The following procedure was conducted under nitrogen atmosphere and photoirradiation with LED $(365 \mathrm{~nm})$. To a flame dried test tube equipped with LED were added (S)-2 ($5 \mathrm{~mol} \%$) and toluene $(0.7 \mathrm{~mL})$. Photoirradiation was started and the solution was stirred for 30 min at $0^{\circ} \mathrm{C}$. After that, $\mathrm{RE}(\mathrm{OTf})_{3}(2.5 \mathrm{~mol} \%)$ was added to the solution and the stirring was continued for another 30 min at $0^{\circ} \mathrm{C}$, followed by the addition of MS4A (17 mg), $\mathbf{3}(12.1 \mathrm{mg}, 0.07 \mathrm{mmol})$ and $\mathbf{4 a}(7.5 \mu \mathrm{~L}, 1.0 \mathrm{eq}$.) at $-10^{\circ} \mathrm{C}$. After 4 h , the mixture was pathed through short pad of silica and washed with EtOAc to give crude mixture. A small part of the mixture was taken and purified by preparative TLC (eluent: hexane-ethyl acetate) to immediately complete HPLC analysis in 1 h . The rest of the mixture was purified by silica gel column chromatography using hexane-ethyl ethyl acetate as an eluent to provide 5a. ${ }^{2,3,4}$ The reaction under dark was conducted without LED.

Although 5a is reported to racemize at room temperature, ${ }^{2}$ it did not proceed during the course of reaction and after the immediate purification with preparative TLC (Table. S2). The racemization of HPLC sample in ${ }^{i} \mathrm{PrOH}$ was sufficiently slow ($T_{1 / 2}=6.2 \mathrm{~h}$ at $20^{\circ} \mathrm{C}$) to ensure all of the obtained ee value (Fig. S20).

Table S2. Time course measurement of the ee of $\mathbf{5 a}$

	+	(S)-2a (5 mol\%) $\mathrm{La}(\mathrm{OTf})_{3}(2.5 \mathrm{~mol} \%)$ MS4A			
3		4a	oluene, -1 under	$\xrightarrow[\text { ime }]{\longrightarrow}$	(R)-5a
		entry	time (h)	ee of 5 a (\%)	
		1	1	$66^{\text {a }}$	
		2	2	67^{a}	
		3	3	68^{a}	
		4	4	67^{a}	
		5	4	68^{b}	

[^0]

Fig. S20 Racemization rate of $(R)-5 \mathbf{a}$ in ${ }^{i} \mathrm{PrOH}$ monitored by HPLC $\left(20^{\circ} \mathrm{C}\right)$. HPLC conditions: Daicel Chiralpak OD-H column, n-hexane $/$ $/ \mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}$.

Fig. S21 Reaction setting with LED (left), and LED apparatus (PER-AMP) (right).

Reaction condition optimization

Table S3. Initial condition screening and solvent effect.

${ }^{a}$ Determined by ${ }^{1} \mathrm{H}$-NMR using 1,3,5-trimethoxybenzene as an internal standard.

Table S4. Metal screening.

entry	RE(OTf) ${ }_{3}$	LED	yield (\%) ${ }^{\text {a }}$	ee (\%)
2	$\mathrm{La}(\mathrm{OTf})_{3}$	$365 \mathrm{~nm}$ under dark	$95<$ $95<$	$\left.\begin{array}{l} 32 \\ 65 \end{array}\right)+33 \% \text { ee }$
3	$\mathrm{Eu}(\mathrm{OTf})_{3}$	365 nm under dark	$\begin{aligned} & 95< \\ & 95< \end{aligned}$	$\left.\begin{array}{l} 23 \\ 64 \end{array}\right)+41 \% \mathrm{ee}$
6	$\mathrm{Gd}(\mathrm{OTf})_{3}$	$365 \mathrm{~nm}$ under dark	$\begin{aligned} & 79 \\ & 77 \end{aligned}$	$\left.\begin{array}{l} 41 \\ 69 \end{array}\right)+28 \% \mathrm{ee}$
8	$\mathrm{Yb}(\mathrm{OTf})_{3}$	$365 \mathrm{~nm}$ under dark	$\begin{aligned} & 95< \\ & 95< \end{aligned}$	$\left.\begin{array}{l} 30 \\ 59 \end{array}\right\}+29 \% \mathrm{ee}$

${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}$-NMR using 1,3,5-trimethoxybenzene as an internal standard.

Table S5. Catalyst loading, metal/ligand ratio, and temperature effect on the Eu catalyzed reaction.

[^1]
Plausible stereochemical model

(E)- $\mathrm{L}^{*}-\mathrm{RE}(\mathrm{OTf})_{3}$

(Z)-L*-RE(OTf) ${ }_{3}$

Fig. S22. Plausible stereochemical model for the 1:1 complex: in the Z state (right), the imine intermediate would be accessible to Y or Z , resulting in the cyclization reaction away from the chiral oxazoline.

References

1. Y. Xiao, X. Wu, H. Wang, S. Sun, J.-T. Yu and J. Cheng, Org. Lett., 2019, 21, 2565-2568.
2. X. Cheng, S. Vellalath, R. Goddard and B. List, J. Am. Chem. Soc., 2008, 130, 15786-15787.
3. P. Du, H. Zhou, Y. Sui, Q. Liu and K. Zou, Tetrahedron, 2016, 72, 1573-1578.
4. Y. Sui, P. Cui, S. Liu, Y. Zhou, P. Du and H. Zhou, Eur. J. Org. Chem., 2018, 215-218.
5. H. C. Aspinall, J. F. Bickley, N. Greeves, R. V. Kelly and P. M. Smith, Organometallics, 2005, 24, 3458-3467.

${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$-NMR charts

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ chart of $\mathbf{1 a}$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ chart of $\mathbf{1 a}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ chart of $\mathbf{1 b}$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ chart of $\mathbf{1 b}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) chart of (S)-2a

${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) chart of (S)-2a

${ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) chart of (S)-2b

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ chart of (S)-2b

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) chart of $(R)-\mathbf{5 a}$
(
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ chart of $(R)-5 \mathbf{a}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ chart of (R)-5b

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ chart of $(R)-5 \mathbf{b}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) chart of $(R)-\mathbf{5 c}$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ chart of $(R)-5 \mathbf{c}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) chart of (R)-5d

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ chart of $(R)-5 d$

HPLC charts

HPLC charts of 5a: HPLC conditions: Daicel Chiralpak OD-H column, n-hexane $/$ ' $\mathrm{PrOH}=80 / 20$, $1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}$.

$\#$	Peak Name	CH	tR [min]	Area [$\mu \mathrm{V} \cdot \mathrm{sec}]$	Height [$\mu \mathrm{V}]$	Area\%	Height\%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	9	7.680	2050542	76181	50.358	71.012	$\mathrm{~N} / \mathrm{A}$	2059	8.197	1.521	
2	Unknown	9	17.297	2021368	31097	49.642	28.988	$\mathrm{~N} / \mathrm{A}$	1705	$\mathrm{~N} / \mathrm{A}$		1.267

$\#$	Peak Name	CH	tR $[\mathrm{min}]$	Area $[\mu \mathrm{V} \cdot \mathrm{sec}]$	reight $[\mu \mathrm{V}]$	Area\%	Height\%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	9	7.540	5105706	223259	66.284	82.635	$\mathrm{~N} / \mathrm{A}$	2848	9.132	1.620	
2	Unknown	9	16.720	2597110	46915	33.716	17.365	$\mathrm{~N} / \mathrm{A}$	2125	$\mathrm{~N} / \mathrm{A}$	1.223	

$\#$	Peak Name	CH	tR [min]	Area [$\mu \mathrm{V} \cdot \mathrm{sec}]$	Height [$\mu \mathrm{V}]$	Area\%	Height\%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	9	7.557	5222131	209495	86.019	93.260	$\mathrm{~N} / \mathrm{A}$	2631	8.986	1.415	
2	Unknown	9	16.800	848807	15141	13.981	6.740	$\mathrm{~N} / \mathrm{A}$	2080	$\mathrm{~N} / \mathrm{A}$		1.208

HPLC charts of 5b: HPLC conditions: Daicel Chiralpak OD-H column, n-hexane $/$ ' $\mathrm{PrOH}=80 / 20$, $1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}$.

\#	Peak Name	CH	tR $[\mathrm{min}]$	Area $[\mu \mathrm{V} \cdot \mathrm{sec}]$	Height $[\mu \mathrm{V}]$	Area\%	Height\%	Quantity	NTP	Resolution	Symmetry Factor
1	Unknown	9	8.300	549930	19194	49.941	77.325	$\mathrm{~N} / \mathrm{A}$	2212	13.010	1.488
2	Unknown	9	29.457	551224	5628	50.059	22.675	$\mathrm{~N} / \mathrm{A}$	2126	$\mathrm{~N} / \mathrm{A}$	

$\#$	Peak Name	CH	tR $[\mathrm{min}]$	Area $[\mu \mathrm{V} \cdot \mathrm{sec}]$	Height [LV$]$	Area\%	Height\%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	9	8.290	2868534	104640	90.081	97.030	$\mathrm{~N} / \mathrm{A}$	2432	13.301	1.549	
2	Unknown	9	30.070	315854	3203	9.919	2.970	$\mathrm{~N} / \mathrm{A}$	2122	$\mathrm{~N} / \mathrm{A}$	1.162	

HPLC charts of 5c: HPLC conditions: Daicel Chiralpak OD-H column, n-hexane/ $/ \mathrm{PrOH}=80 / 20$, $1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}$.

$\#$	Peak Name	CH	$\mathrm{tR}[\mathrm{min}]$	Area [$\mu \mathrm{V} \cdot \mathrm{sec}]$	Height [$\mu \mathrm{V}]$	Area\%	Height\%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	9	7.600	4507420	170635	50.009	68.767	$\mathrm{~N} / \mathrm{A}$	2254	9.198	1.754	
2	Unknown	9	17.407	4505713	77500	49.991	31.233	$\mathrm{~N} / \mathrm{A}$	2161	$\mathrm{~N} / \mathrm{A}$		1.309

$\#$	Peak Name	CH	tR [min]	Area [$\mu \mathrm{V} \cdot \mathrm{sec}]$	Height [$\mu \mathrm{V}]$	Area\%	Height\%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	9	7.583	5955764	231891	64.105	80.057	$\mathrm{~N} / \mathrm{A}$	2348	9.337	1.748	
2	Unknown	9	17.467	3334923	57766	35.895	19.943	$\mathrm{~N} / \mathrm{A}$	2179	$\mathrm{~N} / \mathrm{A}$		1.285

$\#$	Peak Name	CH	tR $[\mathrm{min}]$	Area $[\mu \mathrm{V} \cdot \mathrm{sec}]$	Height $[\mu \mathrm{V}]$	Area\%	eight\%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	9	7.567	7275945	285619	88.185	94.336	$\mathrm{~N} / \mathrm{A}$	2359	9.372	1.770	
2	Unknown	9	17.537	974863	17149	11.815	5.664	$\mathrm{~N} / \mathrm{A}$	2158	$\mathrm{~N} / \mathrm{A}$	1.176	

HPLC charts of 5d: HPLC conditions: Daicel Chiralpak OD-H column, n-hexane $/$ ' $\mathrm{PrOH}=80 / 20$, $1.0 \mathrm{~mL} / \mathrm{min}, 240 \mathrm{~nm}$.

\#	Peak Name	CH	tR $[\mathrm{min}]$	Area $[\mu \mathrm{V} \cdot \mathrm{sec}]$	Height $[\mu \mathrm{V}]$	Area\%	Height\%	Quantity	NTP	Resolution	Symmetry Factor

1										
1	Unknown	9	18.460	666611	10364	49.678	58.140	$\mathrm{~N} / \mathrm{A}$	1980	3.724
2	Unknown	9	25.903	675256	7462	50.322	41.860	$\mathrm{~N} / \mathrm{A}$	1947	$\mathrm{~N} / \mathrm{A}$

\#	Peak Name	CH	$\mathrm{tR}[\mathrm{min}]$	Area [$\mu \mathrm{V} \cdot \mathrm{sec}$]	Height [$\mu \mathrm{V}]$	Area\%	Height\%	Quantity	NTP	Resolution	Symmetry Factor
1	Wnknown	9	18.213	2021251	30633	65.675	73.293	$\mathrm{~N} / \mathrm{A}$	2017	3.751	1.623
2	Unknown	9	25.863	1056416	11162	34.325	26.707	$\mathrm{~N} / \mathrm{A}$	1758	$\mathrm{~N} / \mathrm{A}$	

$\#$	Peak Name	CH	tR [min]	Area [$\mu \mathrm{V} \cdot \mathrm{sec}]$	Height $[\mu \mathrm{V}]$	Area\%	Height\%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	9	18.317	1092514	16799	87.099	89.424	$\mathrm{~N} / \mathrm{A}$	1991	4.016	1.419	
2	Unknown	9	26.093	161819	1987	12.901	10.576	$\mathrm{~N} / \mathrm{A}$	2168	$\mathrm{~N} / \mathrm{A}$		1.090

[^0]: ${ }^{a}$ Determined as crude state. ${ }^{b}$ After purification with preparative TLC. SI-18

[^1]: ${ }^{a}$ Determined by ${ }^{1} \mathrm{H}$-NMR using 1,3,5-trimethoxybenzene as an internal standard. ${ }^{b}$ Isolated yield.

