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1. Datasets and single-crystal X-ray diffraction measurement details

Single-crystal X-ray diffraction analysis of glycine polymorphs

High-quality single crystals of α-gly and β-gly were selected for X-ray diffraction (XRD) 
experiments at T = 100(2) K. The crystals were mounted with paratone-N oil using a glass capillary (α-
gly) and MiTeGen micromount (β-gly) (Fig. S1). Diffraction data were collected using an Agilent 
Technologies SuperNova single-source diffractometer with Mo Kα radiation (λ = 0.71073 Å) using 
CrysAlis RED software (CrysAlis CCD and CrysAlis RED, Oxford Diffraction, Oxford Diffraction Ltd, 
Yarnton, 2008). Multi-scan empirical absorption correction using spherical harmonics, as 
implemented in the SCALE3 ABSPACK scaling algorithm, was applied (CrysAlis CCD and CrysAlis RED, 
Oxford Diffraction, Oxford Diffraction Ltd, Yarnton, 2008). The structure was determined using the 
SHELXT program1. The structures were solved by direct methods, and then successive least-squares 
refinement by the full-matrix least-squares method was performed on F2 using the SHELXL program1. 
All the H atoms linked to N atoms were located on the Fourier difference electron density map and 
refined using Uiso(H) = 1.2Ueq(N). The N‒H bond lengths were maintained at 0.87 Å. Remaining H 
atoms were positioned geometrically with a C–H bond length of 0.93 Å and constrained to ride on 
their parent atoms with Uiso(H) = 1.2Ueq(C).

Supplementary figures and tables

Table S1. Crystal data and structure refinement details for α-gly and β-gly.
Identification code α-gly β-gly
Empirical formula C2H5NO2 C2H5NO2 
Formula weight 75.07 75.07 
Temperature/K 100(2) 100(2) 
Crystal system monoclinic monoclinic 
Space group P21/n P21 
a/Å 5.0867(2) 5.0757(2) 
b/Å 11.7982(4) 6.1737(2) 
c/Å 5.4598(2) 5.3882(2) 
α/° 90 90 
β/° 111.983(5) 113.422(4) 
γ/° 90 90 
Volume/Å3 303.84(2) 154.931(11) 
Z 4 2 
ρcalcg/cm3 1.641 1.609 
μ/mm‑1 0.146 0.143 
F(000) 160.0 80.0 
Crystal size/mm3 0.26 × 0.12 × 0.09 0.69 × 0.10 × 0.06 
Radiation Mo Kα (λ = 0.71073) Mo Kα (λ = 0.71073) 
2Θ range for data collection/° 6.908 to 61.01 8.244 to 60.978 

Index ranges -7 ≤ h ≤ 7, -16 ≤ k ≤ 16, 
-7 ≤ l ≤ 7 

-7 ≤ h ≤ 7, -8 ≤ k ≤ 8, 
-7 ≤ l ≤ 7 

Reflections collected 4778 9425 
Independent reflections 932 [Rint = 0.0265, 942 [Rint = 0.0314, 



Rsigma = 0.0198] Rsigma = 0.0131] 
Data/restraints/parameters 932/3/55 942/4/55 
Goodness-of-fit on F2 1.078 1.100 

Final R indexes [I  2σ (I)] 
R1 = 0.0317, 
wR2 = 0.0779 

R1 = 0.0229, 
wR2 = 0.0638 

Final R indexes [all data] R1 = 0.0386, 
wR2 = 0.0841 

R1 = 0.0233, 
wR2 = 0.0642 

Largest diff. peak/hole / e Å-3 0.50/-0.31 0.41/-0.19 
Flack parameter ‒ 0.3(4)

Figure S1. Single crystals of α-gly (left) and β-gly (right) selected for XRD analysis.

Table S2. Fractional atomic coordinates (×104) and equivalent isotropic displacement parameters (Å2 
× 103) of α-gly. Ueq is defined as one-third of of the trace of the orthogonalised UIJ tensor. 
Atom x y z Ueq

C1 5696(2) 6250.2(8) 5658.6(18) 8.18(19)
C2 5584(2) 6458.0(8) 2859.6(18) 9.05(19)
N1 7955.7(18) 5887.1(7) 2404.8(16) 9.49(18)
O1 8024.9(15) 5937.4(6) 7364.0(13) 10.85(18)
O2 3451.0(15) 6423.6(6) 6064.7(14) 11.71(18)

Table S3. Anisotropic displacement parameters (Å2 × 103) of α-gly. Anisotropic displacement factor 
exponent takes the form -2π2[h2a*2U11 + 2hka*b*U12+…].
Atom U11 U22 U33 U23 U13 U12

C1 10.5(4) 6.4(4) 8.3(4) -1.0(3) 4.3(3) -1.1(3)
C2 8.4(4) 11.5(4) 8.1(4) 1.0(3) 4.0(3) 1.9(3)
N1 9.7(4) 12.1(4) 7.4(4) 0.6(3) 4.1(3) 1.5(3)
O1 10.5(3) 13.9(3) 8.1(3) 1.1(2) 3.5(3) 1.7(3)
O2 9.4(3) 16.1(4) 11.2(3) -1.7(3) 5.7(3) -0.1(3)

Table S4. Bond lengths for α-gly. 
Atom Atom Length/Å  Atom Atom Length/Å
C1 C2 1.5275(13)  C1 O2 1.2590(12)
C1 O1 1.2572(11)  C2 N1 1.4817(12)

Table S5. Valence angles of α-gly.
Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚
O1 C1 C2 117.40(8)  O2 C1 C2 116.96(8)
O1 C1 O2 125.63(9)  N1 C2 C1 111.52(7)



Table S6. Torsion angles of α-gly.
A B C D Angle/˚  A B C D Angle/˚

O1 C1 C2 N1 19.48(12)  O2 C1 C2 N1 -161.51(8)

Table S7. Hydrogen atom coordinates (×104 Å) and isotropic displacement parameters (×103 Å2) of α-
gly.
Atom x y z Ueq

H2B 3797.72 6178.13 1596.67 11
H2A 5672.51 7266.45 2576.16 11
H1A 7890(30) 5160(8) 2720(30) 14
H1B 9630(20) 6148(11) 3460(20) 14
H1C 7890(30) 5980(12) 757(19) 14

Table S8. Fractional atomic coordinates (×104) and equivalent isotropic displacement parameters 
(×103 Å2) of β-gly. Ueq is defined as one-third of the trace of the orthogonalised UIJ tensor.
Atom x y z Ueq

C1 6365(2) 5374(2) 5601(2) 8.6(2)
C2 6131(2) 5500(2) 2684(2) 9.6(2)
N1 8531(2) 4355(2) 2350(2) 9.1(2)
O1 8829(2) 5081.7(18) 7421.5(18) 12.0(2)
O2 4095.9(19) 5650.5(17) 5971.1(18) 10.8(2)

Table S9. Anisotropic displacement parameters (Å2 × 103) of β-gly. The anisotropic displacement 
factor exponent takes the form -2π2[h2a*2U11 + 2hka*b*U12+…].
Atom U11 U22 U33 U23 U13 U12

C1 11.5(5) 7.5(6) 8.1(4) -0.3(4) 5.2(4) -1.1(5)
C2 9.6(5) 12.5(7) 7.3(5) 0.7(4) 4.0(4) 2.3(5)
N1 9.1(4) 11.4(5) 7.4(5) -0.4(4) 3.8(4) 0.5(4)
O1 9.3(4) 19.1(6) 7.7(4) -0.1(3) 3.5(3) -1.3(3)
O2 10.2(4) 13.0(5) 11.3(4) -1.3(4) 6.4(3) 0.1(4)

Table S10. Bond lengths for β-gly.
Atom Atom Length/Å  Atom Atom Length/Å
C1 C2 1.5303(16)  C1 O2 1.2565(14)
C1 O1 1.2582(15)  C2 N1 1.4801(16)

Table S11. Valence angles of β-gly.
Atom Atom Atom Angle/˚  Atom Atom Atom Angle/˚
O1 C1 C2 117.10(10)  O2 C1 O1 125.83(11)
O2 C1 C2 117.01(10)  N1 C2 C1 111.65(9)

Table S12. Torsion angles of β-gly.
A B C D Angle/˚  A B C D Angle/˚

O1 C1 C2 N1 24.55(16)  O2 C1 C2 N1 -158.00(11)



Table S13. Hydrogen atom coordinates (×104 Å) and isotropic displacement parameters (×103 Å2) of 
β-gly.
Atom x y z Ueq

H2A 4325.86 4861.61 1485.73 12
H2B 6132.17 7006.8 2175.6 12
H1A 10190(30) 4800(30) 3490(30) 11
H1B 8590(40) 4540(30) 760(30) 11
H1C 8370(40) 2980(20) 2570(40) 11

2. Theoretical calculations 

Periodic ab-initio density functional theory (DFT) calculations were performed for the selected 

systems using the CRYSTAL17 program with the B3LYP2 functional3. The standard 6-31G(d,p) basis set 

was applied. It has been used extensively and gives reasonable relative stabilities of related systems4, 

5; it has been used for the estimation of vibrational frequencies. We optimised the geometry (not the 

cell parameters, only the coordinates, starting from the experimental geometry). Subsequently, we 

calculated the normal modes and their frequencies at the Γ point of the Brillouin zone. The 

convergence criteria for geometry optimisation were set to the default for frequency calculations 

using the PREOPTGEOM keyword. As we optimised only the coordinates, the frequencies were 

calculated using the cell parameters from XRD measurements. Input for CRYSTAL17 frequency 

calculations can be easily created using a cif2crystal routine 

(www.shade.ki.ku.dk/docs/cif2crystal/cif2crystal.html).6

For the glycine polymorphs, we conducted 2 × 2 × 2 supercell DFT frequency calculations in 

CRYSTAL17. Before the calculations, we optimised the geometry using B3LYP and the standard 6-

31G(d,p) basis set. 

3. Normal-mode refinement

The idea of normal mode refinement was introduced in our previous work.7 Here, we would like to 

briefly describe the model which we are using during normal mode refinement and focus on 

http://www.shade.ki.ku.dk/docs/cif2crystal/cif2crystal.html


differences between the initial approach7 and current version implemented in the NoMoRe 

webserver.  

In both approaches the normal-mode coordinates and frequencies are derived from the dynamical 

matrix, which is obtained from DFT calculations (in our case using the CRYSTAL17 program). The 

atomic mean square displacement matrix (MSD) can be calculated as 8:

  [1]
𝐵𝑎𝑡𝑜𝑚(𝑘) =  

1
𝑁𝑚𝑘

 ∑
𝑗𝑞

𝐸𝑗(𝑞)

𝜔2
𝑗(𝑞)

 𝑒(𝑘│𝑗𝑞)𝑒 ∗ (𝑘|𝑗𝑞))𝑇,

where  denotes the kth component of the eigenvector e(jq) and corresponds to atom k in 𝑒(𝑘|𝑗𝑞)

normal mode j along the wavevector q.  is the frequency of mode j, mk is the mass of atom k, 𝜔𝑗(𝑞)

and (q) is the energy of the mode, which is given by𝐸𝑗

  [2]

𝐸𝑗(𝑞) =  ℏ𝜔𝑗(𝑞){1
2

+  
1

exp [ℏ
𝜔𝑗(𝑞)

𝑘𝐵𝑇 ] ‒ 1
},

where kB is the Boltzmann constant. 

From these atomic mean square displacement matrices ( ) one can compute the atomic 𝐵𝑎𝑡𝑜𝑚

displacement parameter (ADP) matrices by a transformation of the coordinate basis. 

As it was already mentioned, equation 1 represents a relation between frequencies and MSDs (so 

also ADPs).The mean square displacements, and thus the ADPs are mean values of vibration over the 

Brillouin zone (BZ). Since the dispersion – the q dependence of the frequencies – is not accessible 

from the elastic scattering experiments, we use the approximation that the MSD matrices are the 

summation of all phonon branches, but without q dependence:

         [3]
𝐵𝑎𝑡𝑜𝑚(𝑘) =  

1
𝑁𝑚𝑘

 ∑
𝑗

𝐸𝑗

𝜔2
𝑗

 𝑒(𝑘│𝑗)𝑒 ∗ (𝑘|𝑗))𝑇.

                    [4]

𝐸𝑗 =  ℏ𝜔𝑗{1
2

+  
1

exp [ℏ
𝜔𝑗

𝑘𝐵𝑇] ‒ 1
}.

The parameters refined against the observed structure factors are those usually refined in a standard 

structure refinement (the scaling parameters, atomic coordinates) but the refinement of the ADPs is 

replaced by the refinement of the frequencies  of the normal mode vibrations. We include all 𝜔𝑗



normal modes in the calculations of the DW factors, but we refine only a small subset of the modes 

with the lowest frequencies. During the refinement the normal mode vectors [e(k│j) or e(k│jq)] are 

not altered and remain as computed.

Refinement details

All the initial normal-mode vectors and their frequencies at the Gamma point of BZ are obtained 

from the CRYSTAL17 calculations. A scaling factor of 1.0 is assigned to each frequency. Next the ADPs 

for all atoms (including hydrogen atoms) are calculated and are submitted with the coordinates to 

SHELXL9, which calculates the structure factors and all the statistics and discrepancy factors (R, wR2). 

Next, the selected frequencies are optimised by refining the frequency scaling factors against the 

diffraction data to minimise wR2. Here, we use different optimization method than was the case of 

our initial refinement procedure7. Because NoMoRe is written in Python 3, we used the least-squares 

minimisation routine from the SciPy Python package (scipy.optimize.least_squares). We estimate the 

Jacobian matrix by a finite difference method. In this approach the Jacobian matrix is numerically 

estimated by a three point scheme. We used a trust region reflective algorithm The trust region for 

the frequency scaling parameters was set to the range 0–6. The refinements became considerably 

more stable, and the convergence was improved compared to the previous approach; moreover, we 

obtained the estimated standard deviations of the refined frequencies.

Note that in the current version of NoMoRe, the  ADPs are not refined at any stage of the refinement 

procedure. The ADPs are always computed directly from the normal-mode frequencies, which are 

obtained by CRYSTAL17 calculations for high-frequency modes and refined against XRD data for low-

frequency modes. 

NoMoRe web 



The NoMoRe web server is written in Django and is a user-friendly server on which NoMoRe 

refinement can be conducted free of charge.

We used the nomore.chem.uw.edu.pl web server (a version of the NoMoRe Python program) to 

conduct refinements for urea, the glycine polymorphs, and 4-hydroxyacetophenone (HAP). For each 

dataset, we specified the number of frequencies to be refined and the measurement temperature 

(Table S13). Here we present the results of two types of refinement for each compound:

1. one in which only the acoustic modes are refined (the results are presented in the main 

manuscript),

2. one in which the acoustic mode frequencies and a few additional frequencies were refined, 

where we tried to find the frequency gap, at which the internal vibrations can be 

distinguished from external molecular vibrations, and we refined only low frequencies (FG 

model).

In each refinement, we started with the frequencies obtained by CRYSTAL17 calculations. The 

translational acoustic modes, which are zero at the Γ point, were initialised at 50 cm-1. Refinements 

for urea, the glycine polymorphs, and HAP were conducted against single-crystal XRD measurements 

from 100 K until convergence occurred.

A slightly different strategy was applied for benzoic acid (BA). This structure is disordered; therefore, 

we could not apply the standard version of webNoMoRe. Also, we could not simply compute the 

ADPs and refine the frequencies because the ADPs obtained from frequencies refined against XRD 

data for disordered structure would be biased. Therefore, we used the mta-NoMoRe version, in 

which we fit frequencies to the ADPs obtained from measurements at different temperatures. We 

already applied the procedure for the polymorphs of dimethyl 3,6-dichloro-2,5-

dihydroxyterephthalate10. In that case, we could not fit many frequencies to the ADPs, as we were 

not refining against structure factors but rather fitting to the ADPs, and thus, we did not have as 

many data points as we did for the refinements against structure factors. 



Table S13. Number of refined frequencies and final wR after NoMoRe. For all systems, we 
conducted two types of refinement: first by refining only the acoustic modes and second by 
refining additional frequencies [we found the frequency gap and refined only frequencies below 
the gap (FG model).]

Compound Number of refined frequencies Final wR after NoMoRe

Urea 3
8

0.30
0.17

α-Glycine 3
8

0.10
0.098

β-Glycine 3
7

0.08
0.07

HAP 3
32

0.25
0.15

Compound Number of fitted frequencies Final wR after NoMoRe

BA 3
6

0.57
0.26

Table S14. Acoustic mode frequencies obtained from NoMoRe values 
(initial value of these frequencies is 50 cm-1, s.u. were obtained from covariance matrix 
after least-squares )

Compound Initial/cm-1 Only acoustic 
modes 

refined/cm-1

FG model/
cm-1

Urea 50 75 83
50 44 48
50 44 48

α-Glycine 50 61(0.93) 59(2.7)
50 43(0.21) 45(0.26)
50 69(1.13) 75(3.95)

β-Glycine 50 60(0.19) 53(0.32)
50 45(0.12) 46(0.19)
50 67(0.23) 81(0.35)

HAP 50 22 36
50 29 50
50 20 27

BA 50 38 24
50 25 46
50 26 21



(a)

(b) (c)

(d) (e)

Figure S2 Comparison of two different NoMoRe models – AC and FG. Difference between heat 
capacity from calorimetry and: DFT Γ-point calculations with acoustic mode 
frequencies of 50 cm-1 (blue line), NoMoRe when only acoustic modes are refined 
(green line) and NoMoRe FG model (red line) (a) urea, (b) α glicyne, (c) β glicyne, (d) 
benzoic acid, (e) 4’-hydroxyacetophenone



Computational cost of NoMoRe

The most expensive (in terms of computational time) part of NoMoRe is the periodic ab-

initio DFT frequency calculations, which are the starting point for the refinement. For such 

frequency calculations the computational cost will strongly depend on the number of atoms. 

For example, we can compare the computational costs of our approach with the full ab-initio 

lattice-dynamical approach in the quasi-harmonic approximation (QHA): In the NoMoRe case 

we need to optimize the structure and calculate the frequencies for one volume only 

(corresponding to the experimental cell parameters). In the case of the QHA, the geometry 

optimization and frequency calculations should be done for a few different cell volumes 

(contracted and expanded, according to CRYSTAL manual 4 volumes are the minimum). 

Moreover, we are utilizing only calculations from Gamma point, which is much faster than 

conducting supercell calculations (as it was done for urea by Erba11).

Heat capacity estimation:
To estimate the heat capacity we applied the procedure proposed by Aree and Bürgi12. First 

we calculated  as:�̅�𝑣

�̅�𝑣 =
3

∑
𝑖 = 1

3𝑅( 𝑇
1.437𝑣𝐷,𝑖

)3

1.437𝑣𝐷,𝑖/𝑇

∫
0

𝑥4𝑒𝑥

(𝑒𝑥 ‒ 1)2
𝑑𝑥 +  ∑

𝑗

𝑚𝑅(𝜃𝐸𝑗

𝑇 )2  

𝑒𝑥𝑝(𝜃𝐸𝑗

𝑇 )
[𝑒𝑥𝑝(𝜃𝐸𝑗

𝑇 ) ‒ 1]2 

,

where R stands for  the gas constant and T is the absolute temperature. The first part of this 

equation refers only to acoustic frequencies, and  is the Debye frequency, defined as   𝑣𝐷,𝑖 𝑣𝐷,𝑖

=1.616 , whereas  the second part the sum runs over the unique normal modes j, m is their 𝑣𝐸,𝑖

degeneracy,  =1.437 eff(j), is the Einstein temperature and  is the wavenumber in       
𝜃𝐸𝑗  𝑣 𝜃𝐸𝑗 𝑣 

cm-1. The frequencies of intramolecular vibrations are overestimated before we calculated  𝐶𝑣

we applied a scale factor correction for high vibrational frequencies: the frequencies higher 

than 500  cm-1 were multiplied by 0.956. The difference between  and has been 𝐶𝑣 𝐶𝑝 

approximated with the Nernst−Lindemann relation which is based on two quantities: the 

melting point, and a universal constant (1.63 × 10−2 K mol cal−1). 
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