Yb(III) catalysed *syn*-Thioallylation of Ynamides

Manash Protim Gogoi[†], Rajeshwer Vanjari^{#†}, B. Prabagar^{#†},Shengwen Yang^{#‡¥}, Shubham Dutta[†], Rajendra K. Mallick[†], Vincent Gandon,^{‡¥*} and Akhila K. Sahoo^{†*}

[†]School of Chemistry, University of Hyderabad, Hyderabad (India)

[‡]Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay cedex (France)

^{*}Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau cedex (France)

⁺akhilchemistry12@gmail.com/<u>akssc@uohyd.ac.in</u> ^{‡¥}<u>vincent.gandon@universite-paris-saclay.fr</u>

SUPPORTING INFORMATION

Table of Contents	Page
General Experimental	S2
Materials	S2
Experimental Procedures, Spectral and Analytical data	\$3-\$25
DFT Calculations	S26-S70
X-ray Crystallography Information	S71
References	\$72
NMR spectra	S75–S161

General Experimental

All the reactions were performed in an oven-dried Schlenk flask. Commercial grade solvents were distilled prior to use. Column chromatography was performed using silica gel (100-200 Mesh) eluting with hexanes and ethyl acetate mixture. Thin layer chromatography (TLC) was performed on silica gel GF254 plates. Visualization of spots on TLC plate was accomplished with UV light (254 nm) and staining over I₂ chamber. Proton, carbon and fluorine nuclear magnetic resonance spectra (¹H NMR, ¹³C NMR and ¹⁹F NMR) were recorded based on 400 MHz (¹H NMR, 400 MHz; ¹³C NMR, 101 MHz; ¹⁹F NMR, 376 MHz) spectrometer and 500 MHz (1H NMR, 500 MHz; ¹³C NMR, 126 MHz; ¹⁹F NMR, 470 MHz) spectrometer having solvent resonance as internal standard (¹H NMR, CHCl₃ at 7.26 ppm; ¹³C NMR, CDCl₃ at 77.0 ppm). Few cases tetramethylsilane (TMS) at 0.00 ppm was used as reference standard. Data for ¹H NMR are reported as follows: chemical shift (ppm), the abbreviations were used to explain the multiplicities: s = singlet; d = doublet; t = triplet; q = quartet; dd = doublet of doublet; m = multiplet; br = broad;coupling constants J, in (Hz). ¹³C NMR, ¹⁹F NMR were reported in terms of chemical shift (ppm). IR spectra were recorded on FT/IR spectrometer and reported in cm⁻¹. High resolution mass spectra (HRMS) were obtained in ESI mode. Melting points were determined by electro-thermal heating and are uncorrected. LC-MS spectra were obtained with a Shimadzu 2010A (EI-positive/ negative mode) with ionization voltage of 70ev; data was reported in the form of m/z (intensity relative to base peak = 100). X-ray data was collected at 298 K on a Bruker D8 Quest CCD diffractometer using Mo-Ka radiation (0.71073 Å).

Materials: Unless otherwise noted, all the reagents and intermediates were obtained commercially and used without purification. 1,4-dioxane, dichloromethane (CH₂Cl₂; DCM), toluene, acetonitrile (CH₃CN), 1,2-dichloroethane (1,2-DCE), CH₃NO₂ and acetone were distilled over CaH₂. THF was freshly distilled over sodium/benzophenone ketyl under dry nitrogen. Ph₃PAuNTf₂, In(OTf)₂, Pd(OAc)₂, PdCl₂(PPh₃)₂, Sc(OTf)₃, Fe(OTf)₃ and Cu(OTf)₂ were purchased from Sigma Aldrich Ltd. and used as received. Silver salts such as AgOTf was purchased from Aldrich Ltd. and used as received. Thiols, Allyl methyl sulfide, diallyl sulfide and phenyl acetylene were purchased and used as received. CuSO₄· 5H₂O, 1.10-phenanthroline, K₂CO₃, were directly purchased. The aryl iodides were purchased from Aldrich and used. Analytical and spectral data of all those known compounds are exactly matching with the reported values.

General procedure for the synthesis of ynamides 1 (GP-1)¹⁻⁴

A mixture of 2-oxazolidinone (**A**) (1.0 mmol), $CuSO_4 \cdot 5H_2O$ (0.10 mmol, 25mg), 1,10phenanthroline (0.20 mmol, 36 mg), and K_3CO_3 (2.0 mmol, 425 mg) in dry toluene (5.0 mL) was taken in a Schlenk tube. Subsequently, 1-bromo-2-arylacetylene(**B**) was introduced, and the resulting mixture was heated to 80 °C under a nitrogen atmosphere for 24 h. The progress of the reaction was monitored by TLC. Upon completion, the reaction mixture was cooled to room temperature and diluted with dichloromethane (10 mL). The crude mixture was filtered through a small pad of Celite and concentrated under reduced pressure. The crude residue was purified using column chromatography on silica gel to provide **1a-n**. Analytical and spectral data of all the known compounds **1a-n** are exactly matching with the reported values.

General procedure for the synthesis of ynamides 1 (GP-2)⁵⁻⁶

$$EWG_{NH} + Br - Ph \qquad \begin{array}{c} CuSO_{4.5}H_2O(10 \text{ mol}\%) \\ 1,10-phenanthroline (20 \text{ mol}\%) \\ \hline K_3PO_4 (2 \text{ equiv}), \text{ toluene} \\ reflux, 6-8 \text{ h} \end{array} \xrightarrow{N - Ph} R'$$

A mixture of amide (A2-A3) (1.0 mmol), CuSO₄·5H₂O (0.10 mmol, 25mg), 1,10-phenanthroline (0.20 mmol, 36 mg), and K₃PO₄ (2.0 mmol, 425 mg) in dry toluene (5.0 mL) was taken in a Schlenk tube. Subsequently, 1-bromo-2-phenylacetylene (B-1) was introduced, and the resulting mixture was heated to 80 °C under a nitrogen atmosphere for 24 h. The progress of the reaction was monitored by TLC. Upon completion, the reaction mixture was cooled to room temperature and diluted with dichloromethane (10 mL). The crude mixture was filtered through a small pad of Celite and concentrated under reduced pressure. The crude residue was purified using column chromatography on silica gel to provide 1a'-a''. Analytical and spectral data of all the known compounds 1a'-a'' are exactly matching with the reported values.

General procedure for the synthesis of allyl sulfides (GP-3)⁷⁻⁸

$$R-SH + Br \xrightarrow{Et_3N} R_S$$

$$2' 2'' 0.5 h 2$$

To a cooled solution of thiol (2') (0.6 mmol) and triethylamine (1.5 mmol) in dry THF (5.0 mL) was added allyl bromide (2'') (123 μ L, 1.5 mmol) and the reaction mixture was stirred for 30 min at room temperature. Solvent was removed in vacuo. The compounds were purified by silica gel column chromatography eluting with hexane-ethyl acetate solvent to give allyl sulfides (2a-w), 2'a and 6. Analytical and spectral data of all the known compounds 2a-w, 2'a, 2x, 2y and 2z are exactly matching with the reported values.

 Table S1. Optimization of the thioallylation of ynamides

Entry	Catalyst	Catalyst (x mol%)	Solvent	3a ^a
1	Yb(OTf) ₃	20 mol%	1,2-DCE	94
2	Sc(OTf) ₃	20 mol%	1,2-DCE	72
3	Fe(OTf) ₃	20 mol%	1,2-DCE	45
4	Cu(OTf) ₃	20 mol%	1,2-DCE	10
5	In(OTf) ₃	20 mol%	1,2-DCE	64
6	AgOTf	20 mol%	1,2-DCE	ND
7	Ph ₃ PAuNTf ₂	5 mol%	1,2-DCE	ND
8	Ph ₂ NTf ₂	10 mol%	1,2-DCE	ND
9	TfOH	10 mol%	1,2 - DCE	ND
10	Yb(OTf) ₃	20 mol%	THF	41
11	Yb(OTf) ₃	20 mol%	CH ₃ NO ₂	34
12	Yb(OTf) ₃	20 mol%	toluene	20

13	Yb(OTf) ₃	20 mol%	EtOAc	15
14	Yb(OTf) ₃	20 mol%	acetone	24
15	Yb(OTf) ₃	20 mol%	DCM	63
16	Yb(OTf) ₃	20 mol%	CHCl ₃	52
17 ^b	Yb(OTf) ₃	20 mol%	1,2-DCE	ND
18°	Yb(OTf) ₃	20 mol%	1,2-DCE	85

^aIsolated yield. ^bReaction carried out at room temperature. ^cReaction carried out at 100 ^oC; ND = not detected.

Table S2. Screening of N-protecting groups

General procedure for the Yb-catalyzed thioallylation of ynamides (GP-4):

A solution of **1a** (0.6 mmol) and Yb(OTf)₃ (74 mg, 0.12 mmol) in 1,2-DCE (4.0 mL) was placed in a screw capped tube under an argon atmosphere. Allyl sulfide (**2a-w**) (0.9 mmol) was next introduced. The reaction mixture was stirred for the specified time shown in the respective schemes at 80 °C. The progress of the reaction was periodically monitored by TLC. After 8 h, the reaction mixture was diluted with dichloromethane (10 mL), and filtered over a small pad of Celite. The solvent was evaporated under the reduced pressure and the residue was purified by flash chromatography on silica gel eluting with hexane/EtOAc mixture to afford the expected product **3a-w**.

(E)-3-(2-Phenyl-1-(phenylthio)penta-1,4-dien-1-yl)oxazolidin-2-one (3a): Following the general

procedure GP-4, compound **3a** (190 mg) was obtained in 94% yield as yellow solid; mp = 120–122 °C; $R_f = 0.32$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.49 (d, J = 8.0 Hz, 2H), 7.38–7.22 (m, 8H), 5.81–5.69 (m, 1H), 5.11 (dt, J = 16.8, 1.6 Hz, 1H), 5.03 (d, J = 9.6 Hz, 1H), 3.79 (t, J = 7.6 Hz, 2H), 3.61 (bd, J = 6.0 Hz, 2H),

3.35 (t, J = 8.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 155.2, 144.2, 139.8, 133.9, 131.9, 131.4, 129.2, 128.4, 127.8, 127.7, 127.4, 126.8, 116.9, 61.8, 46.1, 40.6; **IR** (Neat)v_{max} 3056, 1752, 1477, 1395, 1218, 1036, 698 cm⁻¹; **HRMS** (ESI) for $C_{20}H_{20}NO_2S^+$ (M+H)⁺: calcd 338.1209 found 338.1209

(E)-3-(1-((4-(*tert*-Butyl)phenyl)thio)-2-phenylpenta-1,4-dien-1-yl)oxazolidin-2-one (3b):

Following the general procedure GP-4, compound **3b** (198 mg) was obtained in 84% yield as a gummy brown solid; $R_f = 0.40$ (5:1 hexane/EtOAc); [Silica, UV and I₂];]; ¹**H NMR** (400 MHz, CDCl₃): δ 7.41 (d, J = 8.0 Hz, 2H), 7.37–7.22 (m, 7H), 5.81–5.69 (m, 1H), 5.09 (d, J = 16.8 Hz, 1H), 5.02 (d, J = 10 Hz, 1H), 3.74 (bt, J = 7.2 Hz, 2H),

3.60 (bd, J = 6.0 Hz, 2H), 3.31 (t, J = 7.6 Hz, 2H), 1.29 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 155.2, 151.3, 143.5, 140.0, 134.0, 131.5, 128.4, 128.0, 127.6, 127.4, 127.3, 126.2, 116.8, 61.8, 46.2, 40.5, 34.6, 31.2; **IR** (Neat) v_{max} 2960, 1751, 1595, 1489, 1394, 1217, 1035, 700 cm⁻¹; **HRMS** (ESI) for C₂₄H₂₈NO₂S⁺ (M+H)⁺: calcd 394.1835 found 394.1834

(E)-3-(1-((4-Isopropylphenyl)thio)-2-phenylpenta-1,4-dien-1-yl)oxazolidin-2-one (3c):

Following the general procedure GP-4, compound **3c** (182 mg) was obtained in 80% yield with inseparable minor isomer (89:11) as pale brown gummy liquid; $R_f = 0.30$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.42 (dt, J = 9.0, 2.5 Hz, 2H), 7.36-7.29 (m, 3H), 7.27-7.24 (m, 2H), 7.21-7.17 (m, 2H),

5.80-5.70 (m, 1H), 5.11 (dq, J = 17, 1.5 Hz, 1H), 5.03 (dq, J = 10, 1.5 Hz, 1H), 3.74 (bt, J = 7.0 Hz, 2H), 3.60 (d, J = 6.5 Hz, 2H), 3.30 (t, J = 8.0 Hz, 2H), 2.93–2.83 (m, 1H), 1.23 (s, 3H), 1.22 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 155.2, 149.0, 143.2, 139.9, 133.9, 131.9, 128.4, 128.3, 127.5, 127.4, 127.3, 116.7, 61.8, 46.2, 40.4, 33.7, 23.8; **IR** (Neat) v_{max} 2961, 1756, 1397, 1264, 1039, 735 cm⁻¹; **HRMS** (ESI) for $C_{23}H_{26}NO_2S+(M+H)^+$: calcd 380.1679, found 380.1679.

(E)-3-(2-Phenyl-1-(p-tolylthio)penta-1,4-dien-1-yl)oxazolidin-2-one (3d):

Following the general procedure GP–4, compound **3d** (194 mg) was obtained in 92% yield as yellow solid; mp = 128–130°C; $R_f = 0.36$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.43–7.36 (m, 2H), 7.35–7.29 (m, 2H),

7.28–7.22 (m, 3H), 7.13 (d, J = 8.0 Hz, 2H), 5.82–5.69 (m, 1H), 5.11 (dt, J = 16.8, 1.6 Hz, 1H), 5.03 (d, J = 10 Hz, 1H), 3.77 (t, J = 7.6 Hz, 2H), 3.61 (d, J = 6.4 Hz, 2H), 3.32 (t, J = 7.6 Hz, 2H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.2, 143.1, 139.9, 138.1, 134.0, 132.0, 129.9, 128.3, 128.0, 127.6, 127.5, 127.4, 116.7, 61.8, 46.2, 40.5, 21.1; **IR** (Neat) v_{max} 2917, 1751, 1636, 1491, 1395, 1294, 1036 cm⁻¹; **HRMS** (ESI) for C₂₁H₂₂NO₂S+ (M+H)⁺: calcd 352.1366 found 352.1366.

(E)-3-(1-((4-Chlorophenyl)thio)-2-phenylpenta-1,4-dien-1-yl)oxazolidin-2-one (3e):

Following the general procedure GP–4, compound **3e** (185 mg) was obtained in 83% yield as yellow solid; mp = 142–144 °C; R_f = 0.40 (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹**H NMR** (400 MHz, CDCl₃): δ 7.44–7.39 (m, 2H), 7.37–7.21 (m, 7H), 5.78–5.64 (m, 1H), 5.09 (dd, J = 17.2, 1.6 Hz, 1H), 5.03 (dd, J = 10.0, 1.2 Hz, 1H), 3.87 (t, J = 8.0 Hz, 2H), 3.59 (d, J = 6.4 Hz, 2H), 3.39 (t, J = 8.0 Hz, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 155.1, 145.2, 139.6, 133.8, 133.7, 132.3, 130.6, 129.3, 128.4, 127.8, 127.2, 126.1, 117.0, 61.8, 46.0, 40.6; **IR** (Neat) v_{max} 2977, 1749, 1636, 1475, 1393, 1090, 700 cm⁻¹; **HRMS** (ESI) C₂₀H₁₉ClNO₂S⁺ (M+H)⁺: calcd 372.0820 found 372.0822.

(E)-3-(1-((4-Bromophenyl)thio)-2-phenylpenta-1,4-dien-1-yl)oxazolidin-2-one (3f):

Following the general procedure GP-4, compound 3f (209 mg) was obtained in 84% yield as yellow

gummy solid; $R_f = 0.42$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.44 (d, J = 8.5 Hz, 2H), 7.37–7.22 (m, 7H), 5.77–5.68 (m, 1H), 5.08 (dd, J = 17.5, 1.5 Hz, 1H), 5.03 (bd, J = 10.0, 1H), 3.87 (t, J = 7.5 Hz, 2H), 3.59 (d, J = 6.5 Hz, 2H), 3.40 (t, J = 8.0 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 155.2, 145.7, 139.6,

133.7, 132.5, 132.3, 131.4, 128.4, 127.8, 127.3, 126.0, 121.8, 117.0, 61.8, 46.1, 40.6; IR (Neat) v_{max} 2917, 1752, 1472, 1394, 1250, 1007, 699 cm⁻¹; HRMS (ESI) for C₂₀H₁₉BrNO₂S⁺ (M+H)⁺: calcd 416.0314 found 416.0317

(E)-3-(1-((4-Fluorophenyl)thio)-2-phenylpenta-1,4-dien-1-yl)oxazolidin-2-one (3g):

Following the general procedure GP–4, compound **3g** (181 mg) was obtained in 85% yield with inseparable minor isomer (91:9) as yellow gummy solid; $R_f = 0.39$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.52–7.46 (m, 2H), 7.36–7.29 (m, 2H), 7.28–7.21 (m, 3H), 7.06–7.00 (m, 2H), 5.80–5.68 (m, 1H), 5.10 (dq, J = 17.0, 1.5 Hz, 1H), 5.03 (dq, J = 11.0, 1.0 Hz, 1H), 3.81 (t, J = 8.0

Hz, 2H), 3.59 (d, J = 6.5 Hz, 2H), 3.32 (t, J = 8.0 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 162.6 (d, J = 250 Hz, 1C), 155.2, 143.9, 139.6, 134.0 (d, J = 7.6 Hz, 1C), 133.7, 128.4, 127.7, 127.3, 127.0, 126.8 (d, J = 2.5 Hz, 1C), 116.9, 116.3 (d, J = 22 Hz, 1C), 61.8, 46.1, 40.4; ¹⁹F NMR (376 MHz) δ -112.9; IR (Neat) v_{max} 2921, 1754, 1588, 1489, 1396, 1223, 1036, 833 cm⁻¹; HRMS (ESI) for C₂₀H₁₉FNO₂S⁺ (M+H)⁺: calcd 356.1115 found 356.1115

(E)-3-(1-((3-Methoxyphenyl)thio)-2-phenylpenta-1,4-dien-1-yl)oxazolidin-2-one (3h):

Following the general procedure GP–4, compound **3h** (181 mg) was obtained in 82% yield as yellow gummy solid; $R_f = 0.35$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.35–7.30 (m, 2H), 7.28–7.19 (m, 5H) (1H from CDCl₃) 7.06–7.00 (m, 2H), 6.82–6.78 (m, 1H), 5.80–5.70 (m, 1H), 5.11 (dq, J = 17.0, 1.5 Hz,

1H), 5.04 (dq, J = 10.0, 1.5 Hz, 1H), 3.83 (t, J = 8.0 Hz, 2H), 3.79 (s, 3H), 3.60 (d, J = 6.5 Hz, 2H), 3.41 (bt, J = 8.0 Hz, 2H),; ¹³C NMR (125 MHz, CDCl₃) δ 160.0, 155.1, 144.7, 139.8, 133.9, 133.3, 129.9, 128.3, 127.6, 127.3, 126.4, 122.8, 116.8, 115.4 114.2, 61.8, 55.4, 46.1, 40.5; IR (Neat) v_{max} 2910, 1754, 1588, 1477, 1395, 1248, 1037, 700 cm⁻¹; HRMS (ESI) for C₂₁H₂₁NNaO₃S+ (M+Na)⁺: calcd 390.1134 found 390.1134

(E)-3-(1-((3-Ethoxyphenyl)thio)-2-phenylpenta-1,4-dien-1-yl)oxazolidin-2-one (3i):

Following the general procedure GP–4, compound **3i** (146 mg) was obtained in 64% yield as yellow gummy solid; $R_f = 0.30$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.35–7.30 (m, 2H), 7.28–7.23 (m, 3H), 7.21 (t, J = 8.0 Hz, 1H), 7.05–6.99 (m, 2H), 6.82–6.78 (m, 1H), 5.79–5.70 (m, 1H), 5.11 (dq, J = 17.0, 1.5

Hz, 1H), 5.03 (dq, J = 10.0, 1.0 Hz, 1H), 4.01 (q, J = 7.0 Hz, 2H), 3.82 (t, J = 7.5 Hz, 2H), 3.60 (d, J = 6.0 Hz, 2H), 3.39 (t, J = 8.0 Hz, 2H), 1.39 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.4, 155.1, 144.5, 139.9, 133.9, 133.2, 129.9, 128.3, 127.6, 127.3, 126.6, 123.0, 116.8, 116.2 114.8, 63.6, 61.8, 46.1, 40.5, 14.7; IR (Neat) v_{max} 2910, 1754, 1588, 1477, 1395, 1248, 1037, 700 cm⁻¹; HRMS (ESI) for C₂₂H₂₄NO₃S+ (M+H)⁺: calcd 382.1477 found 382.1475

(E)-3-(2-Phenyl-1-(*m*-tolylthio)penta-1,4-dien-1-yl)oxazolidin-2-one (3j):

Following the general procedure GP–4, compound **3j** (169 mg) was obtained in 80% yield with inseparable minor isomer (84:16) as yellow gummy solid; $R_f = 0.41$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.35–7.24 (m, 6H), 7.20 (t, J = 8.0 Hz, 1H), 7.07 (d, J = 7.5 Hz, 1H), 5.80–5.70 (m, 1H), 5.10 (dq, J

= 17.0, 1.5 Hz, 1H), 5.03 (dq, J = 10.0, 1.5 Hz, 1H), 3.79 (t, J = 8.0 Hz, 2H), 3.61 (d, J = 6.0 Hz, 2H), 3.35 (br t, J = 7.5 Hz, 2H), 2.33 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 155.2, 144.0, 139.9, 139.1, 134.0, 132.0, 131.6, 128.9, 128.5, 128.3, 127.6, 127.4, 126.9, 116.8, 61.8, 46.1, 40.5, 21.2; IR (Neat) v_{max} 2916, 1751, 1591, 1475, 1393, 1035, 694 cm⁻¹; HRMS (ESI) for C₂₁H₂₂NO₂S⁺ (M+H)⁺: calcd 352.1366 found 352.1365

(E)-3-(1-((3-Fluorophenyl)thio)-2-phenylpenta-1,4-dien-1-yl)oxazolidin-2-one (3k):

Following the general procedure GP–4, compound **3k** (173 mg) was obtained in 81% yield as yellow gummy solid; $R_f = 0.40$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.38–7.22 (m, 7H), 7.19 (dt, J = 8.8, 2.0 Hz, 1H), 6.98–6.92 (m, 1H), 5.78–5.65 (m, 1H), 5.08 (dd, J = 16.8, 1.6 Hz, 1H), 5.03 (dd, J = 12.0, 1.2 Hz,

1H), 3.89 (t, J = 8.0 Hz, 2H), 3.60 (d, J = 6.4 Hz, 2H), 3.43 (t, J = 8.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 162.7 (d, J = 251 Hz, 1C), 155.1, 146.4, 139.5, 134.6 (d, J = 7.1 Hz, 1C), 133.7, 130.5 (d, J = 9.1 Hz, 1C), 128.4, 127.8, 127.3, 126.2 (d, J = 3.0 Hz, 1C), 125.6, 117.2 (d, J = 24 Hz, 1C), 117.0, 114.5 (d, J = 21.2 Hz, 1C), 61.8, 46.1, 40.6; ¹⁹F NMR (376 MHz) δ –111.2; IR (Neat) v_{max} 2911, 1750, 1596, 1474, 1395, 1215, 1116, 877 cm⁻¹; HRMS (ESI) for C₂₀H₁₉FNO₂S⁺ (M+H)⁺: calcd 356.1115 found 356.1116.

(E)-3-(1-((3-Chlorophenyl)thio)-2-phenylpenta-1,4-dien-1-yl)oxazolidin-2-one (3l):

Following the general procedure GP–4, compound **3l** (174 mg) was obtained in 78% yield as yellow solid; mp = 154–156 °C; $R_f = 0.43$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.47–7.45 (m, 1H), 7.39–7.31 (m, 4H), 7.29–7.23 (m, 4H), 5.78–5.66 (m, 1H), 5.09 (dq, J = 17.2, 1.6 Hz, 1H), 5.03 (dq, J =

10.0, 1.2 Hz, 1H), 3.88 (t, J = 8.0 Hz, 2H), 3.59 (dt, J = 6.4, 1.6 Hz, 2H), 3.40 (t, J = 8.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 155.2, 146.5, 139.5, 134.8, 134.5, 133.7, 130.3, 130.2, 128.9, 128.5, 127.9, 127.7, 127.3, 125.8, 117.1, 61.8, 46.2, 40.7; IR (Neat) v_{max} 2917, 1755, 1574, 1396, 1219, 1036, 777 cm⁻¹; HRMS (ESI) for C₂₀H₁₉ClNO₂S⁺ (M+H)⁺: calcd 372.0820 found 372.0822

(*E*)-3-(2-Phenyl-1-(*o*-tolylthio)penta-1,4-dien-1-yl)oxazolidin-2-one (3m):

Following the general procedure GP-4, compound 3m (200 mg) was obtained in 95% yield(with inseparable minor isomer) as pale yellow gummy liquid; $R_f = 0.27$ (9:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.52–7.48 (m, 1H), 7.36-7.30 (m, 2H), 7.28-7.23 (m, 3H), 7.22-7.19 (m, 2H), 7.19-7.12 (m, 2H), 5.82-5.69 (m, 1H), 5.10 (dd, J = 16.8, 1.6 Hz, 1H), 5.03 (dd, J = 10.0, 1.6 Hz, 1H), 3.75 (t, J = 7.6 Hz, 2H), 3.63 (d, J = 6.8 Hz, 2H), 3.24 (t, J = 8.0 Hz, 2H), 2.50 (s, 3H) (1H from CDCl3); ¹³C NMR (101 MHz, CDCl₃) δ 155.2, 144.4, 139.8, 139.7, 134.0, 132.7, 131.0, 130.6, 128.4, 128.2, 127.7, 127.4, 126.7, 117.0, 61.9, 46.2, 40.5, 20.6; IR (Neat)v_{max} 2974, 1749, 1392, 1249, 1216, 1035, 748; HRMS (ESI) for $C_{21}H_{22}NO_2S+(M+H)^+$: calcd 352.1366, found 352.1376.

(E)-3-(1-((2-Fluorophenyl)thio)-2-phenylpenta-1,4-dien-1-yl)oxazolidin-2-one (3n):

Following the general procedure GP-4, compound **3n** (147 mg) was obtained in 69% yield (with inseparable minor isomer) as yellow gummy solid; $R_f = 0.37$ (5:1) hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.58 (td, 7.6, 1.6 Hz 1H), 7.35–7.21 (m, 6H), 7.16–7.05 (m, 2H), 5.80–5.68 (m, 1H), 5.10 (dq, *J* = 17.2,

1.6 Hz, 1H), 5.03 (dq, J = 10.0, 1.6 Hz, 1H), 3.83 (t, J = 8.0 Hz, 2H), 3.63 (dt, J = 6.4, 1.2 Hz, 2H), 3.36 (t, J = 7.6 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 161.6 (d, J = 248 Hz, 1C), 155.1, 145.5, 139.6, 134.8, 133.7, 130.3 (d, J = 8.1 Hz, 1C), 128.4, 128.1, 127.7, 127.3, 125.8, 124.9 (d, J = 4.0 Hz, 1C), 119.0 (d, J = 17.2 Hz, 1C), 117.0, 115.7 (d, J = 22.2 Hz, 1C), 61.9, 46.0, 40.5; ¹⁹F NMR (376 MHz) δ -108.9; IR (Neat) v_{max} 2919, 2125, 1755, 1473, 1396, 1222, 916, 757 cm⁻¹; HRMS (ESI) for $C_{20}H_{19}FNO_2S+(M+H)^+$: calcd 356.1115 found 356.1116.

(E)-3-(1-((2-Bromophenyl)thio)-2-phenylpenta-1,4-dien-1-yl)oxazolidin-2-one (30):

Following the general procedure GP-4, compound **30** (112 mg) was obtained in 45% yield as pale brown gummy liquid; $R_f = 0.25$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (600 MHz, DMSO- d_6): δ 7.64 (d, J = 7.2 Hz, 1H), 7.40 (dd, J = 8.4, 2.4 Hz, 1H), 7.34-7.28 (m, 5H), 7.27-7.20 (m, 1H), 7.17 (td, J = 8.4, 1.2 Hz, 1H), 5.67-5.58

(m, 1H), 5.01 (dd, J = 17.4, 1.2 Hz, 1H), 4.95 (dd, J = 10.2, 1.2 Hz, 1H), 3.92 (t, J = 7.2 Hz, 2H), 3.53 (d, J = 6.0 Hz, 2H), 3.49 (t, J = 8.4 Hz, 2H); ¹³C NMR (151 MHz, DMSO- d_6) δ 155.0, 147.4, 139.7, 134.7, 134.5, 133.7, 131.1, 129.3, 128.9, 128.8, 128.3, 127.9, 125.1, 123.0, 117.5, 62.4, 46.1, 40.6; IR (Neat) v_{max} 2975, 1748, 1477, 1391, 1216, 1018, 747; HRMS (ESI) for C₂₀H₁₉BrNO₂S+ (M+H)⁺: calcd 416.0314, found 416.0320.

(E)-3-(1-((3,4-Dimethoxyphenyl)thio)-2-phenylpenta-1,4-dien-1-yl)oxazolidin-2-one (3p):

Following the general procedure GP–4, compound **3p** (207 mg) was obtained in 87% yield with inseparable minor isomer (86:14) as pale yellow gummy solid; R_f = 0.30 (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.33–7.28 (m, 2H), 7.25–7.21 (m, 3H), 7.06 (dd, J = 8.3, 2.0 Hz, 1H), 7.02 (d, J = 1.9 Hz, 1H), 6.80 (d, J = 8.3 Hz, 1H), 5.81–5.71 (m, 1H), 5.12 (dd, J = 17.1, 1.4

Hz, 1H), 5.04 (dd, J = 10.1, 1.1 Hz, 1H), 3.86 (s, 3H), 3.85 (s, 3H), 3.80–3.72 (m, 2H), 3.58 (d, J = 6.1 Hz, 2H), 3.33–3.25 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 155.3, 149.3, 142.2, 140.0, 133.9, 128.5, 128.3, 128.0, 127.8, 127.5, 127.3, 125.0, 116.7, 115.6, 111.4, 61.8, 56.1, 55.9, 46.1, 40.3; IR (Neat) v_{max} 2915, 1753, 1503 1396, 1254, 1023, 701 cm⁻¹; HRMS (ESI) for C₂₂H₂₄NO₄S⁺ (M+H)⁺: calcd 398.1421 found 398.1421.

(E)-3-(1-((2,4-Dimethylphenyl)thio)-2-phenylpenta-1,4-dien-1-yl)oxazolidin-2-one (3q):

Following the general procedure GP–4, compound **3q** (195 mg) was obtained in 89% yield as yellow solid; $R_f = 0.42$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.39 (d, J = 8.0 Hz, 1H), 7.36–7.29 (m, 3H), 7.28–7.21 (m, 2H), 7.04 (br s, 1H), 6.97 (d, J = 8.0 Hz, 1H), 5.82–5.69 (m, 1H), 5.10 (d, J = 16.8 Hz, 1H), 5.03 (d, J = 10.0 Hz, 1H), 3.74 (t, J = 7.6 Hz, 2H), 3.63

(d, J = 6.4 Hz, 2H), 3.21 (t, J = 8.0 Hz, 2H), 2.46 (s, 3H), 2.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.1, 143.2, 140.1, 139.9, 138.5, 134.0, 133.4, 131.4, 128.3, 128.0, 127.5, 127.4, 127.2, 127.0, 116.8, 61.8, 46.2, 40.4, 21.0, 20.5; IR (Neat) v_{max} 2918, 1755, 1600, 1477, 1396, 1218, 1036, 701 cm⁻¹; HRMS (ESI) for C₂₂H₂₄NO₂S⁺ (M+H)⁺: calcd 366.1522 found 366.1522.

(Z)-3-(1-(3,5-Dimethylphenyl)-2-phenylpenta-1,4-dien-1-yl)oxazolidin-2-one (3r):

Following the general procedure GP-4, compound 3r (213 mg) was obtained in 97% yield as pale

yellow semi solid; $R_f = 0.30$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.36–7.29 (m, 3H), 7.28-7.24 (m, 2H), 7.10 (br s, 2H), 6.89 (br s, 1H), 5.82–5.68 (m, 1H), 5.09 (dd, J = 17.2, 1.6 Hz, 1H), 5.03 (dd, J = 10.0, 1.6 Hz, 1H), 3.80 (t, J = 7.6 Hz, 2H), 3.61 (d, J = 6.4 Hz, 2H), 3.35 (t, J = 7.6 Hz, 2H), 2.28 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 155.2, 143.8, 140.0, 138.9,

134.1, 131.4, 129.5, 128.9, 128.4, 127.6, 127.5, 116.8, 61.8, 46.2, 40.6, 21.2; IR (Neat) v_{max} 2912, 1746, 1635, 1475, 1394, 1210, 842; HRMS (ESI) for $C_{22}H_{24}NO_2S+$ (M+H)⁺: calcd 366.1522, found 366.1528.

(E)-3-(1-((2,4-Dichlorophenyl)thio)-2-phenylpenta-1,4-dien-1-yl)oxazolidin-2-one (3s):

Following the general procedure GP–4, compound **3s** (199 mg) was obtained in 82% yield as white solid; mp = 162–164 °C; $R_f = 0.32$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.53 (d, J = 8.5 Hz, 1H), 7.41 (d, J = 2.5 Hz, 1H), 7.35 (t, J = 7.2 Hz, 2H), 7.31–7.20 (m, 4H), 5.79–5.66 (m, 1H), 5.08 (dd, J = 17.1 1.5 Hz, 1H), 5.02 (dd, J = 10.1, 1.5 Hz, 1H), 3.94 (t, J =

7.9 Hz, 2H), 3.61 (d, J = 6.5 Hz, 2H), 3.46 (t, J = 7.9 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 155.0, 148.0, 139.3, 134.7, 133.8, 133.6, 133.0, 130.6, 129.6, 128.5, 128.0, 127.9, 127.2, 124.5, 117.2, 61.8, 46.0, 40.7; IR (Neat) v_{max} 2961, 1740, 1475, 1395, 1247, 805; HRMS (ESI) for C₂₀H₁₈Cl₂NO₂S+ (M+H)⁺: calcd 406.0430, found 406.0430.

(E)-3-(1-(Naphthalen-2-ylthio)-2-phenylpenta-1,4-dien-1-yl)oxazolidin-2-one (3t):

Following the general procedure GP–4, compound **3t** (177 mg) was obtained in 76% yield with inseparable minor isomer (92:8) as pale yellow solid; mp = 154–157 °C; $R_f = 0.35$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.96 (br s, 1H), 7.83–7.76 (m, 3H), 7.54 (dd, J = 8.5, 1.5 Hz, 1H),

7.51–7.44 (m, 2H), 7.36–7.24 (m, 5H), 5.84–5.73 (m, 1H), 5.13 (dd, J = 17.5, 2.0 Hz, 1H), 5.05 (dd, J = 10.0, 1.0 Hz, 1H), 3.74–3.64 (m, 4H), 3.35 (t, J = 8.0 Hz, 2H); ¹³**C** NMR (126 MHz, CDCl₃) δ 155.1, 144.8, 139.9, 133.9, 133.6, 132.5, 130.1, 129.5, 128.8, 128.4, 127.71, 127.66, 127.5, 127.4, 126.8, 126.7, 126.4, 116.9, 61.7, 46.1, 40.6; **IR** (Neat) v_{max} 2923, 1756, 1396, 1264, 1039, 734, 701; **HRMS** (ESI) for C₂₄H₂₁NNaO₂S+ (M+Na)⁺: calcd 410.1191, found 410.1185.

(E)-3-(1-(Allylthio)-2-phenylpenta-1,4-dien-1-yl)oxazolidin-2-one (3u):

Following the general procedure GP–4, compound **3u** (159 mg) was obtained in 88% yield as yellow gummy solid; $R_f = 0.30$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹**H** NMR (400 MHz, CDCl₃): δ 7.34–7.14 (m, 5H), 5.99–5.87 (m, 1H), 5.78–5.63 (m, 1H), 5.24 (dd, J = 16.8, 1.2 Hz, 1H), 5.12 (dd, J = 10.4, 1.2 Hz,

1H), 5.08–4.96 (m, 2H) 4.09 (t, J = 8.0 Hz, 2H), 3.62–3.47 (m, 4H), 3.37–3.31 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 155.9, 146.3, 139.6, 134.0, 133.9, 128.6, 128.2, 127.5, 127.1, 117.6, 116.7, 61.9, 45.9, 40.6, 35.4; **IR** (Neat) v_{max} 2916, 1751, 1591, 1475, 1393, 1216, 694 cm⁻¹; **HRMS** (ESI) for C₁₇H₂₀NO₂S⁺ (M+H)⁺: calcd 302.1209 found 302.1209

(E)-3-(1-(Dodecylthio)-2-phenylpenta-1,4-dien-1-yl)oxazolidin-2-one (3v):

Following the general procedure GP–4, compound **3v** (221 mg) was obtained in 86% yield as yellow gummy solid; $R_f = 0.32$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; **¹H NMR** (500 MHz, CDCl₃): δ 7.33–7.28 (m, 2H), 7.26–7.21 (m, 1H), 7.20–7.17 (m, 2H), 5.75–5.65 (m, 1H), 5.04 (dd, J = 17.0, 1.5 Hz, 1H), 4.99 (dd,

J = 10.0, 1.5 Hz, 1H), 4.11 (t, J = 8.0 Hz, 2H), 3.59 (br s, 2H), 3.50 (d, J = 6.5 Hz, 2H), 2.64 (t, J = 7.5 Hz, 2H), 1.72–1.61 (m, 3H), 1.44–1.34 (m, 2H), 1.31–1.20 (m, 15 H), 0.88 (t, J = 7.0 Hz, 3 H); ¹³C **NMR** (126 MHz, CDCl₃) δ 155.9, 145.6, 139.9, 134.0, 128.6, 128.2, 127.4, 127.2, 116.6, 61.9, 46.0, 40.6, 32.2, 31.9, 29.7, 29.6, 29.58, 29.54, 29.49, 29.3, 29.1, 28.8, 22.6, 14.1; **IR** (Neat) v_{max} 2921, 2851, 1751, 1395, 1248, 1036, 699 cm⁻¹; **HRMS** (ESI) for C₂₆H₄₀NO₂S⁺ (M+H)⁺: calcd 430.2774 found 430.2774

(E)-3-(1-(Methylthio)-2-phenylpenta-1,4-dien-1-yl)oxazolidin-2-one (3w):

Following the general procedure GP–4, compound **3w** (149 mg) was obtained in 90% as yellow gummy solid; $R_f = 0.36$ (4:1 hexane/EtOAc); [Silica, UV and I₂]; **¹H NMR** (500 MHz, CDCl₃): δ 7.34–7.29 (m, 2H), 7.26–7.23 (m, 1H), 7.21–7.18 (m, 2H), 5.78–5.67 (m, 1H), 5.07 (dd, J = 17.0, 1.5 Hz, 1H), 5.01 (dd, J = 10.5, 1.5

Hz, 1H), 4.13 (t, J = 8.0 Hz, 2H), 3.56 (br s, 2H), 3.47 (d, J = 6.5 Hz, 2H), 2.23 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 156.3, 144.2, 139.8, 133.9, 128.5, 128.2, 127.5, 127.2, 116.7, 62.1, 46.0, 40.3, 14.9; **IR** (Neat) v_{max} 2921, 2091, 1745, 1695, 1401, 1218, 1033, 757 cm⁻¹; **HRMS** (ESI) for C₁₅H₁₈NO₂S⁺ (M+H)⁺: calcd 276.1053 found 276.1055.

General procedure for the Yb-catalyzed thioallylation of ynamides (GP-5):

A solution of **1b-n** (0.6 mmol) and Yb(OTf)₃ (74 mg, 0.12 mmol) in 1,2-DCE (4.0 mL) was placed in a screw capped tube under an argon atmosphere. Allyl sulfide, 2b (0.9 mmol) was next introduced. The reaction mixture was stirred for the specified time shown in the respective schemes at 80 °C. The progress of the reaction was periodically monitored by TLC. After 8 h, the reaction mixture was diluted with dichloromethane (10 mL), and filtered over a small pad of Celite. The solvent was evaporated under the reduced pressure and the residue was purified by flash chromatography on silica gel eluting with hexane/EtOAc mixture to afford the expected product 4a-m.

(E)-3-(2-(4-Methoxyphenyl)-1-(p-tolylthio)penta-1,4-dien-1-yl)oxazolidin-2-one (4a)

Following the general procedure GP-5, compound 4a (151 mg) was obtained in 66% yield as yellow gummy solid; $R_f = 0.35$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.4 Hz, 2H), 7.21–7.09 (m, 4H), 6.87–6.82 (m, 2H), 5.82-5.68 (m, 1H), 5.09 (dd, J = 16.8, 1.6 Hz, 1H), 5.02 (dd, J = 10.4, 1.6 Hz, 1H), 3.90-3.70 (m, 5H), 3.59 (d, J = 6.4 Hz, 2H), 3.32 (t, J = 8.0 Hz, 2H), 2.32 (s, 3H); ¹³C NMR (101) MHz, CDCl₃) δ158.8, 155.3, 142.9, 138.0, 134.2, 132.0, 131.9, 130.4, 129.9, 128.6, 128.2, 126.8, 116.6, 113.8, 61.8, 55.1, 46.1, 40.5, 21.1; IR (Neat) v_{max} 2918, 1753, 1636, 1597, 1489, 1395, 915 cm⁻¹; **HRMS (ESI)** for C₂₂H₂₄NO₃S (M+H)⁺: calcd. 382.1477, found 382.1483.

(E)-3-(2-(p-Tolyl)-1-(p-tolylthio)penta-1,4-dien-1-yl)oxazolidin-2-one (4b):

Following the general procedure GP-5, compound 4b (140 mg) was obtained in 64% yield as yellow gummy solid; $R_f = 0.41$ (5:1 hexane/EtOAc); [Silica, UV and I₂];¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, J = 8.0 Hz, 2H), 7.17–7.10 (m, 6H), 5.80–5.70 (m, 1H), 5.10 (dq, J = 17.0, 1.5 Hz, 1H), 5.03 (dd, J = 6.5, 1.5 Hz, 1H), 3.79 (t, J = 7.5 Hz,

2H), 3.60 (d, J = 6.0 Hz, 2H), 3.33 (t, J = 7.5 Hz, 2H), 2.31 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ155.2, 143.3, 138.0, 137.3, 136.9, 134.1, 131.9, 130.6, 129.9, 129.1, 128.2, 127.2, 116.6, 61.8, 46.2, 40.5, 21.2, 21.1; IR (Neat) v_{max} 2918, 1751, 1604, 1491, 1393, 1113, 809 cm⁻¹; **HRMS (ESI)** for C₂₂H₂₄NO₂S (M+H)⁺: calcd. 366.1528, found 366.1531.

(E)-3-(2-(4-Acetylphenyl)-1-(p-tolylthio)penta-1,4-dien-1-yl)oxazolidin-2-one (4c):

Following the general procedure GP–5, compound **4c** (104 mg) was obtained in 44% yield as light yellow solid; mp = 120–122 °C; $R_f = 0.22$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 8.4 Hz, 2H), 7.38–7.30 (m, 4H), 7.13 (d, J = 8.0 Hz, 2H), 5.78–5.66 (m, 1H), 5.08 (dd, J = 17.2, 1.2 Hz, 1H), 5.03

(dd, J = 10.0, 1.2 Hz, 1H), 3.79 (br t, J = 7.2 Hz, 2H), 3.61 (br d, J = 5.6 Hz, 2H), 3.42 (br t, J = 6.8 Hz, 2H), 2.57 (s, 3H), 2.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.5, 155.0, 145.2, 141.6, 138.3, 135.9, 133.6, 131.8, 130.0, 128.5, 128.4, 127.7, 127.4, 117.0, 61.8, 45.9, 40.2, 26.5, 21.1; IR (Neat) v_{max} 2915, 1750, 1670, 1597, 1400, 1258, 1027, 811 cm⁻¹; HRMS (ESI) for C₂₃H₂₄NO₃S⁺ (M+H)⁺: calcd 394.1471 found 394.1479

(E)-4-(1-(2-Oxooxazolidin-3-yl)-1-(p-tolylthio)penta-1,4-dien-2-yl)benzaldehyde (4d)

Following the general procedure GP–5, compound **4d** (143 mg) was obtained in 63% yield with inseparable minor isomer (90:10) as yellow gummy solid; $R_f = 0.40$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃) δ 9.97 (s, 1H), 7.84 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 8.5 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0

Hz, 2H), 5.80–5.69 (m, 1H), 5.10 (dd, J = 17.0, 1.5 Hz, 1H), 5.05 (dd, J = 10.0, 1.0 Hz, 1H), 3.90–3.38 (m, 6H), 2.32 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 191.7, 155.0, 146.7, 141.5, 138.4, 135.3, 133.6, 131.9, 130.1, 129.8, 129.5, 128.3, 127.4, 117.2, 61.8, 46.0, 40.2, 21.1; IR (Neat) v_{max} 2918, 1750, 1698, 1600, 1491, 1392, 915 cm⁻¹; **HRMS (ESI)** for C₂₂H₂₂NO₃S (M+H)⁺: calcd. 380.1320, found 380.1318.

(E)-3-(2-(4-Bromophenyl)-1-(p-tolylthio)penta-1,4-dien-1-yl)oxazolidin-2-one (4e):

Following the general procedure GP–5, compound **4e** (157 mg) was obtained in 61% yield as yellow gummy solid; $R_f = 0.67$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.46–7.41 (m, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.15–7.09 (m, 4H), 5.78–5.67 (m, 1H), 5.08 (dd, J = 17.2, 1.6 Hz, 1H), 5.03 (dd, J = 10.0, 1.2 Hz,

1H), 3.79 (br t, J = 8.0 Hz, 2H), 3.57 (d, J = 6.4 Hz, 2H), 3.36 (br t, J = 7.6 Hz, 2H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.1, 141.6, 138.9, 138.2, 133.7, 132.0, 131.5, 130.0, 129.1, 128.0, 127.6,

121.5, 117.0, 61.8, 46.0, 40.3, 21.1; IR (Neat) v_{max} 2908, 1745, 1478, 1396, 1223, 1035, 807 cm⁻¹; HRMS (ESI) for C₂₁H₂₁BrNO₂S⁺ (M+H)⁺: calcd 430.0471 found 430.0475

(E)-3-(2-(4-Chlorophenyl)-1-(p-tolylthio)penta-1,4-dien-1-yl)oxazolidin-2-one (4f):

Following the general procedure GP–5, compound 4f (171 mg) was obtained in 74% yield as yellow gummy solid; $R_f = 0.43$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃) δ 7.36 (d, J = 8.0 Hz, 2H), 7.31–7.27 (m, 2H), 7.20–7.16 (m, 2H), 7.13 (d, J = 8.0 Hz, 2H), 5.80–5.67 (m, 1H), 5.08 (dq, J = 17.0, 1.5 Hz, 1H), 5.04 (dq, *J* = 10.0, 1.5 Hz, 1H), 5.04 3.80 (br s, 2H), 3.57 (d, *J* = 5.5 Hz, 2H), 3.37 (br s, 2H), 2.32 (s, 3H);

¹³C NMR (126 MHz, CDCl₃) δ155.1, 141.8, 138.5, 138.3, 133.7, 133.4, 132.0, 130.0, 128.9, 128.6, 128.1, 127.7, 117.0, 61.8, 46.0, 40.4, 21.1; IR (Neat) v_{max} 2917, 1744, 1638, 1479, 1397, 1034, 807 cm⁻¹; **HRMS (ESI)** for C₂₁H₂₁ClNO₂S (M+H)⁺: calcd. 386.0982, found 386.0977.

(E)-3-(2-(4-Fluorophenyl)-1-(p-tolylthio)penta-1,4-dien-1-yl)oxazolidin-2-one (4g):

Following the general procedure GP-5, compound 4g (142 mg) was obtained in 64% yield as yellow gummy solid; $R_f = 0.47$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.34 (m, 2H), 7.24–7.19 (m, 2H), 7.13 (d, J = 8.0 Hz, 2H), 7.04–6.98 (m, 2H), 5.80–5.68 (m, 1H), 5.09 (dq, J = 17.2, 1.6 Hz, 1H), 5.04 (dq,

J = 10.0, 1.6 Hz, 1H), 3.80 (t, J = 7.6 Hz, 2H), 3.57 (d, J = 6.4 Hz, 2H), 3.35 (t, J = 7.2 Hz, 2H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.0 (d, J = 249 Hz, 1C), 155.2, 142.1, 138.2, 135.8 (d, J = 4.0 Hz, 1C), 133.8, 132.0, 130.0, 129.2 (d, *J* = 8.1 Hz, 2C), 127.8, 116.9, 115.4 (d, *J* = 21.2 Hz, 2C), 61.8, 46.0, 40.5, 21.1; ¹⁹F NMR (376 MHz) δ –114.2; IR (Neat) v_{max} 2919, 1744, 1637, 1597, 1502, 1398, 839 cm⁻¹; **HRMS (ESI)** for C₂₁H₂₁FNO₂S (M+H)⁺: calcd. 370.1277, found 370.1283.

(E)-3-(2-(m-Tolyl)-1-(p-tolylthio)penta-1,4-dien-1-yl)oxazolidin-2-one (4h):

Following the general procedure GP-5, compound 4h (131 mg) was obtained in 60% yield with inseparable minor isomer (90:10) as yellow gummy solid; $R_f = 0.41$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.36 (m, 1H), 7.24-7.16 (m, 2H), 7.15-7.00 (m, 5H), 5.82-5.70 (m, 1H), 5.11 (dq, J = 17.2, 1.6 Hz, 1H),

5.03 (dq, J = 10.4, 1.6 Hz, 1H), 3.78 (t, J = 8.0 Hz, 2H), 3.60 (d, J = 6.4 Hz, 2H), 3.33 (t, J = 7.6 Hz, 2H),2.33 (s, 3H), 2.32 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ155.2, 143.5, 139.9, 138.1, 137.9, 134.1, 132.0, 130.8, 129.9, 128.4, 128.1, 128.0, 127.3, 124.5, 116.7, 61.8, 46.2, 40.5, 21.5, 21.1; IR (Neat) v_{max} 2917, 1751, 1600, 1490, 1394, 1036, 808 cm⁻¹; **HRMS (ESI)** for C₂₂H₂₄NO₂S (M+H)⁺: calcd. 366.1528, found 366.1531.

(E)-3-(2-(3-Methoxyphenyl)-1-(p-tolylthio)penta-1,4-dien-1-yl)oxazolidin-2-one (4i):

Following the general procedure GP–5, compound **4i** (151 mg) was obtained in 66% yield as yellow solid; $R_f = 0.35$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; Yellow gummy solid; ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.37 (m, 2H), 7.24–7.20 (m, 1H), 7.13 (d, J = 8.0 Hz, 2H), 6.85–6.76 (m, 3H), 5.83–5.70 (m, 1H), 5.11 (dq, J = 17.2, 1.6

Hz, 1H), 5.04 (dq, J = 10.0, 1.2 Hz, 1H), 3.87–3.70 (m, 5H). 3.58 (d, J = 6.4 Hz, 2H), 3.30 (t, J = 8.0 Hz, 2H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.4, 155.4, 142.9, 141.3, 138.2, 134.0, 132.3, 129.9, 129.3, 127.9, 127.7, 119.7, 116.8, 113.2, 113.0, 61.8, 55.2, 46.2, 40.4, 21.1; IR (Neat) v_{max} 2894, 1742, 1637, 1592, 1488, 1396, 805 cm⁻¹; **HRMS (ESI)** for C₂₂H₂₄NO₃S (M+H)⁺: calcd. 382.1477, found 382.1479.

(E)-Ethyl 3-(1-(2-oxooxazolidin-3-yl)-1-(p-tolylthio)penta-1,4-dien-2-yl)benzoate (4j):

Following the general procedure GP–5, compound **4j** (150 mg) was obtained in 59% yield with inseparable minor isomer (87:13). as light yellow liquid; $R_f = 0.51$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃): δ 7.93–7.88 (m, 2H), 7.49 (dt, J = 8.0, 1.5 Hz, 1H), 7.42–7.37 (m, 1H), 7.34 (d, J = 8.5 Hz, 2H), 7.11 (d, J =

8.0 Hz, 2H), 5.78–5.68 (m, 1H), 5.09 (dd, J = 17.0, 1.5 Hz, 1H), 5.02 (dd, J = 10.0, 1.5 Hz, 1H), 4.34 (q, J = 7.0 Hz, 2H), 3.80 (br t, J = 7.5 Hz, 2H), 3.61 (d, J = 5.0 Hz, 2H), 3.44 (br t, J = 7.0 Hz, 2H), 2.30 (s, 3H), 1.37 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.2, 155.8, 141.7, 140.1, 138.0, 133.7, 132.1, 131.5, 130.6, 130.4, 129.9, 128.47, 128.45, 128.4, 128.1, 127.6, 61.7, 60.9, 45.9, 40.1, 21.0, 14.2; IR (Neat) ν_{max} 2978, 1753, 1713,1491, 1392, 1239, 1084, 808 cm⁻¹; HRMS (ESI) for C₂₄H₂₆NO₄S⁺ (M+H)⁺: calcd 424.1577 found 424.1585.

(E)-3-(1-(p-Tolylthio)-2-(3-(trifluoromethyl)phenyl)penta-1,4-dien-1-yl)oxazolidin-2-one (4k):

Following the general procedure GP–5, compound 4k (111 mg) was obtained in 44% yield as colorless liquid; $R_f = 0.68$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃): δ 7.53–7.43 (m, 4H), 7.37 (d, J = 8.4 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 5.81–5.69 (m, 1H), 5.11 (dd, J = 16.8, 1.6 Hz, 1H) 5.06 (dd, J = 10.0, 1.6 Hz, 1H),

3.88–3.73 (m, 2H), 3.62 (br d, J = 4.0 Hz, 2H), 3.44 (br s, 2H), 2.31 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 154.9, 141.2, 140.8, 138.2, 133.5, 131.7, 131.1, 130.3 (q, J = 32.3 Hz, 1C), 130.0, 128.9,

128.7, 127.4, 124.0 (q, J = 273 Hz, 1C), 124.1 (q, J = 4.0 Hz, 1C), 117.1, 61.7, 45.9, 40.2, 21.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.5; IR (Neat)v_{max} 2917, 1751, 1491, 1393, 1332, 1118, 805; HRMS (ESI) for $C_{22}H_{21}F_3NO_2S^+$ (M+H)⁺: calcd 420.1240 found 420.1244.

(E)-3-(1-(2-Oxooxazolidin-3-yl)-1-(p-tolylthio)penta-1,4-dien-2-yl)benzonitrile (41)

Following the general procedure GP–5, compound 4l (165 mg) was obtained in 73% yield with inseparable minor isomer (82 :18) as yellow gummy solid; $R_f = 0.37$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.57–7.48 (m, 3H), 7.45–7.41 (m, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 7.6 Hz, 2H), 5.77–5.65 (m,

1H), 5.12–5.03 (m, 2H), 3.81 (br s, 2H), 3.57 (br s, 2H), 3.48 (br s, 2H), 2.31 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ154.8, 141.5, 138.4, 133.3, 132.3, 131.7, 130.98, 130.93, 130.1, 129.2, 127.2, 117.4, 112.4, 61.8, 45.8, 40.2, 21.1; IR (Neat) v_{max} 2916, 2227, 1749, 1596, 1477, 1392, 804 cm⁻¹; **HRMS** (ESI) for $C_{22}H_{21}N_2O_2S$ (M+H)⁺: calcd. 377.1318, found 377.1324.

(E)-3-(2-(3-Bromophenyl)-1-(p-tolylthio)penta-1,4-dien-1-yl)oxazolidin-2-one (4m)

Following the general procedure GP-5, compound 4m (149 mg) was obtained in 58% yield as yellow gummy compound; $R_f = 0.67$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.33 (m, 4H), 7.22–7.18 (m, 2H), 7.13 (d, J = 8.0Hz, 2H), 5.80–5.67 (m, 1H), 5.11 (dq, J = 17.2, 1.6 Hz, 1H), 5.05 (dq, J = 10.0, 1.6 Hz, 1H), 3.83 (t, J = 7.2 Hz, 2H), 3.58 (d, J = 6.0 Hz, 2H), 3.41 (t, J = 7.6 Hz, 2H), 2.32 (s, 3H); ¹³C NMR (101 MHz,

CDCl₃) *δ*155.0, 142.1, 141.3, 138.3, 133.6, 131.9, 130.5, 130.2, 130.00, 129.95, 128.5, 127.6, 126.3, 122.1, 117.1, 61.8, 46.0, 40.3, 21.1; IR (Neat) v_{max} 2908, 1745, 1478, 1396, 1223, 1035, 807 cm⁻¹; HRMS (ESI) for C₂₁H₂₁BrNO₂S⁺ (M+H)⁺: calcd 430.0471 found 430.0475

Synthesis of allyl(4-bromophenyl)selane (5a)⁹

To a suspension of NaBH₄ (2.0 eq.) in EtOH (20 mL) was added a solution of diselenide 5 (5.0 mmol, 1.0 eq.) in THF (40.0 mL) dropwise under an argon atmosphere. The mixture was kept under agitation at 0 °C and allyl bromide (10.0 mmol, 2.0 eq.) in THF (20 mL) was added. After 25 minutes, the reaction mixture was quenched with water and the organic phase was extracted with diethyl ether. The organic layers were combined, dried over Na₂SO₄, and concentrated under vacuum. The residue was purified by flash chromatography on silica gel using n-hexane as the eluent to afford the desire product **5a** in 60% yield.

A solution of **1a** (0.6 mmol) and Yb(OTf)₃ (74 mg, 0.12 mmol) in 1,2-DCE (4.0 mL) was placed in a Schlenk flask under an argon atmosphere. Allyl senenide (**5a**) (0.9 mmol) was next introduced. The reaction mixture was stirred for the specified time shown in the respective schemes at 80 °C. The progress of the reaction was periodically monitored by TLC. After 8 h, the reaction mixture was diluted with dichloromethane (10 mL), and filtered over a small pad of Celite. The solvent was evaporated under the reduced pressure and the residue was purified by flash chromatography on silica gel eluting with hexane/EtOAc mixture to afford the expected product **6**.

(E)-3-(1-((4-Bromophenyl)selanyl)-2-phenylpenta-1,4-dien-1-yl)oxazolidin-2-one (6)

Following the general procedure GP-6 compound 6 (136 mg) was obtained in 49% yield with

inseparable minor isomer (85 :15) as yellow gummy compound; $R_f = 0.67$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, J = 8.5 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 7.42–7.32 (m, 5H), 7.31–7.28 (m, 1H), 7.25 (d, J = 7.0 Hz, 1H), 5.78–5.67 (m, 1H), 5.12 (d, J = 17.0 Hz, 1H), 5.06 (d, J = 10.0 Hz, 1H), 3.78 (t, J = 6.5 Hz, 2H), 3.54 (d, J = 6.5 Hz, 2H)

2H), 3.26 (t, J = 7.5 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 155.3, 145.8, 139.6, 135.9, 133.4, 132.4, 128.4, 127.7, 127.2, 126.5, 124.7, 122.7, 117.1, 61.8, 46.5, 41.9; IR (Neat) v_{max} 2908, 1745, 1478, 1396, 1223, 1035, 807 cm⁻¹; HRMS (ESI) for C₂₀H₁₉BrNO₂Se+ (M+H)⁺: calcd 463.9759 found 463.9757

General procedure for gram scale synthesis of 3a (GP-7):

A solution of **1a** (1g, 5.3 mmol) and Yb(OTf)₃ (331mg, 0.53 mmol) in 1,2-DCE (35 mL) was placed in a sealed tube under an argon atmosphere. Allyl sulfide (**2a**) (1.2g, 7.95 mmol) was next introduced. The reaction mixture was stirred at 80 °C in an oil bath. The progress of the reaction was periodically monitored by TLC. After 10 h, the reaction mixture was diluted with dichloromethane (30 mL), and filtered over a small pad of Celite. The solvent was evaporated under the reduced pressure and the residue was purified by flash chromatography on silica gel eluting with hexane/EtOAc mixture to afford the expected product **3a** (1.4 g, 75%).

Synthesis of (*E*)-3-(4-Methyl-2-phenyl-1-(phenylthio)penta-1,3-dien-1-yl)oxazolidin-2-one (3'a):

A solution of **1a** (0.6 mmol) and Yb(OTf)₃ (74 mg, 0.12 mmol) in 1,2-DCE (4.0 mL) was placed in a Schlenk flask under an argon atmosphere. Allyl sulfide (**2'a**) (147 mg, 0.9 mmol) was next introduced. The reaction mixture was stirred at 80 °C. The progress of the reaction was periodically monitored by TLC. After 8 h, the reaction mixture was diluted with dichloromethane (10 mL), and filtered over a small pad of Celite. The solvent was evaporated under the reduced pressure and the residue was purified by flash chromatography on silica gel eluting with hexane/EtOAc mixture to afford the expected product **3'a** (177 mg) in 84% yield as yellow gummy compound (in 75:25 ratio of cisoid and transoid isomers); $R_f = 0.67$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.52–7.47 (m, 2H), 7.37 (br d, J = 7.6 Hz, 1.4H), 7.34–7.37 (m, 8H), 7.25–7.20 (m, 2H), 6.40 (d, J = 1.2 Hz, 1H), 5.96 (d, J = 1.2 Hz, 0.34H), 4.09 (br s, 0.73H), 3.80–3.65 (m, 3H), 3.26 (t, J = 7.5 Hz, 2H), 1.82 (s, 3H), 1.81 (s, 1H), 1.32 (s, 1.1H), 1.24 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 155.4, 155.1, 143.2, 141.8, 141.7, 140.2, 140.0, 139.9, 138.8, 133.8, 132.2, 132.0, 131.7, 129.5, 129.2, 129.1, 129.0, 128.4, 128.1, 128.0, 127.8, 127.5, 127.4, 126.8, 123.9, 123.1, 62.0, 61.8, 46.3, 44.9, 27.0, 26.8, 20.2, 19.9; IR (Neat) v_{max} 2916, 1751, 1951, 1475, 1393, 1216, 1035, 694cm⁻¹; HRMS (ESI) for C₂₁H₂₂NO₂S+ (M+H)⁺: calcd 352.1366 found 352.1368.

Synthesis of 3-((1*E*,3*E*)-5-(4-Methoxyphenyl)-2-phenyl-1-(phenylthio)penta-1,3-dien-1-yl)oxazolidin-2-one (11):

The compound **3a** (0.2 mmol), aryldiazonium salt **9** (89 mg, 0.4 mmol), Pd₂(dba)₃ (9.16 mg, 0.01 mmol) and NaHCO₃ (33.6 mg, 0.4 mmol) and DMSO (2.0 mL) were added in a reaction tube. The resulting solution was stirred vigorously at room temperature. The progress of the reaction was periodically monitored by TLC. After 4 h, the reaction mixture was quenched with water (10 mL), and extracted with ethyl acetate (3 × 10 mL). The combined organic layer was dried over Na₂SO₄ and evaporated under the reduced pressure and the residue was purified by flash chromatography on silica gel eluting with hexane/EtOAc mixture to afford the expected product **10** (54 mg, 62%) as yellow gummy compound; $R_f = 0.67$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.55–7.48 (m, 2H), 7.37–7.27 (m, 8H), 7.24–7.19 (m, 2H), 6.81 (d, *J* = 8.8 Hz, 2H), 6.37 (d, *J* = 16.0 Hz, 1H), 6.00–5.91 (m, 1H), 3.81–3.76 (m, 5H), 3.73 (br dd, *J* = 6.8, 1.2 Hz, 1H), 3.37 (t, *J* = 8.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 158.9, 155.2, 144.9, 139.9, 132.1, 131.4, 130.2, 129.2, 128.4, 127.8, 127.7, 127.4, 127.3, 126.7, 123.4, 113.8, 61.8, 55.3, 46.2, 39.9; IR (Neat) v_{max} 2921, 2851, 1752, 1396, 1249, 1091, 1037, 700 cm⁻¹; HRMS (ESI) for C₂₇H₂₆NO₃S+ (M+H)⁺: calcd 444.1628 found 444.1629

Mechanistic Studies

General procedure for cross-over experiment (GP-8):

A solution of **1a** (18.7 mg, 0.1 mmol) and Yb(OTf)₃ (12.3 mg, 0.02 mmol) in 1,2-DCE (0.67 mL) was placed in a Schlenk flask under an argon atmosphere. Allyl sulfide **2'a** (16.3 mg, 0.1 mmol) and **2b** (20.1 mg, 0.1 mmol) were next introduced. The reaction mixture was stirred at 80 °C. The progress of the reaction was periodically monitored by TLC. After 8 h, the reaction mixture was diluted with dichloromethane (2 mL), and filtered over a small pad of Celite. The solvent was evaporated under the reduced pressure and the residue analyzed through HRMS. The formation of products **3'a** and **3b** was observed. No cross-over products were observed.

General procedure for the experiment of thioallylation by terminally disubstituted allyl sulfide (GP-9):

A solution of **1a** (56 mg, 0.3 mmol) and Yb(OTf)₃ (37 mg, 0.06 mmol) in 1,2-DCE (2.0 mL) was placed in a Schlenk flask under an argon atmosphere. The allyl sulfide **2x** (80 mg, 0.45 mmol) was next introduced. The reaction mixture was stirred at 80 °C. The progress of the reaction was periodically monitored by TLC. After 8 h, the reaction mixture was diluted with dichloromethane (10 mL), and filtered over a small pad of Celite. The solvent was evaporated under the reduced pressure and the residue was purified by flash chromatography on silica gel eluting with hexane/EtOAc mixture to afford the product **7** (42%).

(E)-3-(2-Phenyl-1-(phenylthio)vinyl)oxazolidin-2-one (7)

Following the general procedure GP–12, compound **7** (37 mg) was obtained in 42% yield as yellow gummy compound; $R_f = 0.67$ (5:1 hexane/EtOAc); [Silica, UV and I₂]; ¹H NMR (500 MHz, CDCl₃) δ 7.50-7.47 (m, 2H), 7.37-7.32 (m, 6H), 7.30-7.27 (m, 2H), 6.88 (s, 1H), 4.11 (t, J = 7.5 Hz, 2H), 3.67 (t, J = 8.0 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 154.8, 134.7, 132.0, 131.5,

131.3, 129.5, 129.4, 129.2, 128.7, 128,3, 128.0, 62.2, 45.2; IR (Neat) v_{max} 2920, 1773, 1697, 1386, 1364, 1221, 704 cm⁻¹; HRMS (ESI) for C₁₇H₁₆NO₂S+ (M+H)⁺: calcd 298.0896 found 298.0891

General procedure for competitive experiment to trap allyl vs benzyl (GP-10):

A solution of **1a** (56 mg, 0.3 mmol) and Yb(OTf)₃ (37 mg, 0.06 mmol) in 1,2-DCE (2.0 mL) was placed in a Schlenk flask under an argon atmosphere. Allyl benzyl sulfide **3y** (74 mg, 0.45 mmol) was next introduced. The reaction mixture was stirred at 80 °C. The progress of the reaction was periodically monitored by TLC. After 8 h, the reaction mixture was diluted with dichloromethane (10 mL), and filtered over a small pad of Celite. The solvent was evaporated under the reduced pressure and the residue was purified by flash chromatography on silica gel eluting with hexane/EtOAc mixture to afford the product **8** (78%) and no benzyl migration product was observed.

(E)-3-(1-(Benzylthio)-2-phenylpenta-1,4-dien-1-yl)oxazolidin-2-one (8):

2H); ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 146.6, 139.7, 138.2, 134.0, 128.8, 128.6, 128.3, 127.6,

127.3, 127.2, 116.8, 61.9, 45.8, 40.5, 37.2; **IR** (Neat)*v*_{max} 2912, 1744, 1490, 1395, 1218, 1033, 914; **HRMS** (ESI) for C₂₁H₂₂NO₂S+ (M+H)⁺: calcd 352.1366, found 352.1370.

General procedure for experiment to trap benzyl in absence of allyl(GP-11):

A solution of **1a** (56 mg, 0.3 mmol) and Yb(OTf)₃ (37 mg, 0.06 mmol) in 1,2-DCE (2.0 mL) was placed in a Schlenk flask under an argon atmosphere. Phenyl benzyl sulfide **3z** (90 mg, 0.45 mmol) was next introduced. The reaction mixture was stirred at 80 °C. The progress of the reaction was periodically monitored by TLC. After 8 h, the reaction mixture was diluted with dichloromethane (10 mL), and filtered over a small pad of Celite. The solvent was evaporated under the reduced pressure and the residue was purified by flash chromatography on silica gel eluting with hexane/EtOAc mixture to afford the hydrothiolation product **7** (53%) and no benzyl migration product was observed.

DFT computations

The calculations were carried out with the Gaussian 09 program¹⁰ using the hybrid functional B3PW91¹¹ (following a rare recent theoretical study on Yb-catalyzed reactions).¹² Ytterbium was treated with a large-core Stuttgart Dresden relativistic effective core potential (RECP). For the +3 oxidation state, the MWB RECP is recommended and it was used in combination with its optimized basis set augmented by a f polarization function.¹³ Hydrogen, carbon, oxygen, and nitrogen atoms were described with the 6-31+G(d,p) double– ζ quality basis set. Electronic energies were computed at T = 353.15 K in gas phase. Geometry optimizations were performed without symmetry constraints and analytical frequency calculations allowed to verify the nature of the extrema. Transition states were optimized using the TS keyword and characterized by a frequency calculation showing a single imaginary frequency (noted in the Energies and Cartesian coordinates section). Intrinsic Reaction Coordinates (IRC)¹⁴ were carried out to verify the connections of the optimized transition states. The values presented are $\Delta G_{353.15}$ (kcal/mol). The three-dimensional images of the optimized structures were prepared using CYLview.¹⁵

The Yb(OTf)₃-catalyzed *syn*-thioallylation of ynamide **1a** with allylmethylsulfane **2a** was first studied (Figure S1). Coordination of the reactants to the Yb(III) center gives **intA**₀, lying 26.9 kcal/mol above the reactants. Subsequently, a *syn* insertion of the alkyne moiety into the S-Yb

Figure S1. Partial Gibbs free energy profile for the *syn*-thioallylation of ynamides catalyzed by Yb(OTf)₃.

proceeds through transition state tsA_0B_0 , resulting in the vinyl-Yb complex $intB_0$ (42.9 kcal/mol; with *trans* orientation of the phenyl and sulfide groups). This step requires 52.3 kcal/mol of free activation energy, which is not possible at 353.15 K.

Repeated efforts for computing the thioallylation of ynamides using Yb(OTf)₃ as active species all failed. This prompted us to examine another potentially active species. The true nature of the catalytically active species in lanthanide-catalyzed reactions remains unknown. However, Eberlin, Roithová et al have recently shown that, owing to the poor coordinating ability of the triflate anion, $Ln(OTf)_3$ Lewis acids easily form ion pairs with Lewis bases and that the corresponding charged metal species (Ln^{2+} or Ln^{3+}) are much more active than the neutral one.¹⁶ This ability of $Ln(OTf)_3$

Figure S2. DFT analysis: comparison of N-oxazolidinone and N-sulfonyl ynamides (free energy profile, $\Delta G_{353.15}$ (kcal/mol); selected distances in Å).

Lewis acids to form charged species would be the reason why triflates are privileged catalysts in lanthanide chemistry. Consistently, the experimental results could be rationalized when $Yb(OTf)^{2+}$ was used as active species, as discussed in the manuscript and with more details below (Figure S2).

The transformation begins with the barrierless coordination of ynamide **1a** and allyl-methylsulfide (**2w**) to Yb(OTf)²⁺ to provide the pentavalent species **intA**. This process is highly exergonic by 28.5 kcal/mol. Next, *syn*-insertion of the alkyne into the S-Yb bond proceeds through transition state **tsAB** (see Fig S3 for IRC plot), found at -13.7 kcal/mol on the free energy surface, and gives the vinyl-Yb complex **intB** (-21.6 kcal/mol) with *trans*-orientation of phenyl and sulfide groups. The sulfonium cation is stabilized by a non-covalent interaction with one oxazolidinone oxygen (nonbonding O···S distance 3.076 Å, which agrees well with a previous report (3.32 Å)¹⁷ and the NCI analysis of **intB** shown in Figure S4). Next, a suprafacial [3,3]-sigmatropic shift promotes the migration of the allyl-group from the sulfonium to the C=C bond of **intB** via the 6-membered ring transition state **tsBC** (see Fig S3 for IRC plot), spanning a barrier of 20.7 kcal/mol (27.6 kcal/mol from **intA**). This step generates the very stable Yb(III)⁺ intermediate **intC**, lying at -36.8 kcal/mol. Of note, it was not possible to locate a transition state corresponding to a [1,3]-sigmatropic shift. Finally, the catalyst is regenerated with concomitant release of the desired product **3w**, which is 16.6 kcal/mol more stable than the reactants. Thus, the rate-determining step is the allyl migration.

Figure S3. IRC plots of tsAB (a) and tsBC (b).

Based on the experimental findings, the N-sulfonyl protected ynamides was reluctant to undergo the *syn*-thioallylation process. To understand the contrasting reactivity of such substrates, further DFT calculations were performed (red lines; Fig S2). The coordination of N-tosyl ynamide **1a'**

and **2w** to Yb(OTf)₂⁺ at first gives **intA'**, lying at -23.5 kcal/mol. Complex **intA'** should then undergo a *syn* insertion to give the vinyl-Yb complex **intB'**, but the corresponding transition state could not be found. Of note, NCI analysis of **intB'** (see Figure S4) reveals that the noncovalent interaction between the vinylic S and one O of the SO₂ moiety is virtually inexistent (O···S distance 3.720 Å). There is also a steric hindrance between the Ts and the Ph groups. These two features explain why **intB'** is much less stable than **intB**. The formation of **C'** through the [3,3]sigmatropic transition state **tsB'C'** requires 31.5 kcal/mol of free energy of activation from **intA'**, which is significantly higher than the one required for forming **intC** (27.6 kcal/mol). Moreover, the final product **3a'** as the same free energy as the reactants. This is again likely due to a steric clash between the large Ts and the Ph group. Therefore, the *syn*-thioallylation of oxazolidinonederived ynamides is favored kinetically and thermodynamically.

We plotted a space of nonbonding $O \cdots S$ interactions based on the electron density (ρ) and its derivative, namely the reduced electron density gradient (RDG),¹⁸ to characterize the nature of this interaction. In this study, the surface is colored on a blue-green-red scale, ranging from -3.0 to 3.0 (see the color bar). Blue, green and red denote a strong attraction, weak vdW interactions and repulsive steric, respectively. Taking the dispersion effect into account, we performed B3PW91-D3 calculation including Grimme's dispersion correction¹⁹ on the intermediates **intB** and **intB'**. After dispersion correction, the $O \cdots S$ distance of **intB** is shorter (3.042 Å). In addition, there is a blue area of noncovalent interactions located between O and S of **intB** in the NCI plot, indicating that there is a strong attraction. In contrast, there is no obvious interaction between O and S of **intB** in the NCI plot, and the main interaction comes from the hydrogen bond, which is also proved by the 3D structure.

Figure S4. 3D structures (a) and NCI plots (b) of intB and intB'. Bond distances are in Å.

Energies and Cartesian coordinates for all the intermediates and transition states Yb(OTf)₃

Sum of electronic and thermal Energies= -2923.131618 Sum of electronic and thermal Enthalpies= -2923.130468 Sum of electronic and thermal Free Energies= -2923.253177 E(RB3PW91) = -2923.25419522

Yb -0.208715000000 0.263090000000 -0.041281000000

Atom X Y Z

O 1.457502000000 1.138489000000 1.277911000000 $O \quad -0.313312000000 \quad -1.845325000000 \quad 0.878863000000 \\$ O -2.102818000000 0.650715000000 -1.277374000000 $S \ -2.93742500000 \ 1.244731000000 \ -0.154282000000$ S 1.88325000000 2.248617000000 0.330505000000 S 0.269898000000 -2.594101000000 -0.307164000000 O -0.452958000000 -3.738832000000 -0.804972000000 O 0.60570900000 -1.48543000000 -1.291697000000 O -2.013314000000 1.153316000000 1.050533000000 O -3.60485000000 2.499534000000 -0.397798000000 O 0.995896000000 2.030549000000 -0.883716000000 0 1.987493000000 3.585103000000 0.861939000000 $C \quad 3.58972000000 \quad 1.744475000000 \quad -0.248150000000 \\$ C 1.93145100000 -3.204799000000 0.298953000000 C -4.257373000000 -0.040826000000 0.174434000000 F 3.53494400000 0.52401600000 -0.782954000000 F 4.01140400000 2.610897000000 -1.160216000000 F 4.418057000000 1.738699000000 0.789169000000 F -5.054598000000 -0.124561000000 -0.883222000000 F -3.679522000000 -1.220894000000 0.395489000000 F -4.957332000000 0.320795000000 1.242477000000 F 2.623813000000 -2.183013000000 0.802413000000 F 1.739221000000 -4.119333000000 1.241007000000 F 2.597451000000 -3.735748000000 -0.719299000000

Yb(OTf)2⁺

Zero-point correction = 0.057388 (Hartree/Particle) Thermal correction to Energy= 0.081590 Thermal correction to Enthalpy= 0.082740 Thermal correction to Gibbs Free Energy= -0.010629 Sum of electronic and zero-point Energies= -1961.649665 Sum of electronic and thermal Energies= -1961.625463 Sum of electronic and thermal Enthalpies= -1961.624313 Sum of electronic and thermal Free Energies= -1961.717682

Х Y Z Atom Yb -0.002599000000 -0.388011000000 -0.003221000000 O -1.63338600000 0.445425000000 1.216527000000 O 1.981587000000 -1.245612000000 0.411479000000 S -2.77212000000 -0.39905000000 0.601655000000 S 2.767732000000 -0.388120000000 -0.604864000000 3.641493000000 -1.065723000000 -1.516739000000 0 1.630614000000 0.471377000000 -1.201755000000 0 O -1.98673600000 -1.242739000000 -0.426411000000 $O \quad -3.653786000000 \quad -1.086289000000 \quad 1.498384000000 \\$ C -3.71580300000 0.83679200000 -0.465144000000 C 3.725149000000 0.825068000000 0.476130000000 F -2.810705000000 1.425792000000 -1.257008000000 F -4.599943000000 0.185368000000 -1.185787000000 F -4.285516000000 1.724158000000 0.318207000000 F 2.830434000000 1.407262000000 1.283324000000 F 4.61040000000 0.156158000000 1.179296000000 F 4.295081000000 1.720465000000 -0.298144000000

1a oxazolidinone ynamide

Zero-point correction= 0.178624 (Hartree/Particle)
Thermal correction to Energy= 0.190358
Thermal correction to Enthalpy= 0.191302
Thermal correction to Gibbs Free Energy= 0.138068
Sum of electronic and zero-point Energies= -629.343337
Sum of electronic and thermal Energies= -629.331603
Sum of electronic and thermal Enthalpies= -629.330659
Sum of electronic and thermal Free Energies= -629.383892
E(RB3PW91) = -629.521960606
Atom X Y Z
O -4.117416000000 0.464683000000 -0.085635000000
C -4.186621000000 -0.948281000000 0.148352000000
C -2.770956000000 -1.465540000000 -0.125964000000
N -2.007738000000 -0.237243000000 0.065527000000
C -2.828151000000 0.892155000000 -0.021818000000
O -2.488651000000 2.043280000000 -0.045151000000
C -0.667371000000 -0.179839000000 0.039966000000
C 0.546674000000 -0.156577000000 0.031433000000
C 1.969359000000 -0.092229000000 0.016254000000
C 2.620539000000 1.155712000000 0.029390000000
C 4.010391000000 1.220238000000 0.015778000000
C 4.773598000000 0.051507000000 -0.012179000000
C 4.134359000000 -1.189293000000 -0.025911000000
C 2.744858000000 -1.266062000000 -0.011270000000
H -4.487527000000 -1.111865000000 1.188571000000
H -4.939289000000 -1.367767000000 -0.520587000000
H -2.458184000000 -2.238260000000 0.580368000000
H -2.646368000000 -1.840931000000 -1.149255000000

- Н 2.025672000000 2.063536000000 0.050023000000
- Н 4.500211000000 2.190039000000 0.026534000000
- Н 5.858355000000 0.107349000000 -0.023205000000
- Н 4.720785000000 -2.103808000000 -0.047792000000
- Н 2.248983000000 -2.232034000000 -0.021256000000

2w allylmethylsulfane

Zero-point correction= 0.109564 (Hartree/Particle)
Thermal correction to Energy= 0.119119
Thermal correction to Enthalpy= 0.120269
Thermal correction to Gibbs Free Energy= 0.069442
Sum of electronic and zero-point Energies= -555.202770
Sum of electronic and thermal Energies= -555.193214
Sum of electronic and thermal Enthalpies= -555.192064
Sum of electronic and thermal Free Energies= -555.242892
E(RB3PW91) = -555.312333411

Atom X Y Z

 S
 0.93104300000
 -0.63758900000
 -0.093412000000

 C
 -0.37199200000
 0.63456300000
 0.132882000000

 C
 2.40380700000
 0.421267000000
 -0.036815000000

 C
 -1.67677700000
 -0.021387000000
 0.45537000000

 C
 -2.75493700000
 0.01794600000
 -0.330975000000

 H
 -0.45605900000
 1.24521600000
 -0.772424000000

 H
 -0.06106900000
 1.28214700000
 0.962435000000

 H
 3.269952000000
 -0.232515000000
 -0.165270000000

 H
 2.401322000000
 1.156897000000
 -0.846565000000

 H
 2.492987000000
 0.932812000000
 1.397743000000

 H
 -1.715854000000
 -0.47222800000
 -0.46129000000

 H
 -2.747201000000
 0.541954000000
 -1.284353000000

intA0

Zero-point correction = 0.377059 (Hartree/Particle) Thermal correction to Energy= 0.444962 Thermal correction to Enthalpy= 0.446112 Thermal correction to Gibbs Free Energy= 0.246157 Sum of electronic and zero-point Energies= -4107.706087 Sum of electronic and thermal Energies= -4107.638184 Sum of electronic and thermal Enthalpies= -4107.637034 Sum of electronic and thermal Free Energies= -4107.836989 E(RB3PW91) = -4108.08314612

Atom X Y Z

 Yb
 -0.086738000000
 -0.138539000000
 -0.345118000000

 O
 1.740503000000
 -1.231458000000
 -0.759318000000

 O
 0.803015000000
 1.752677000000
 0.007083000000

 O
 -2.140149000000
 0.588183000000
 -0.159175000000

 S
 -3.612216000000
 0.717320000000
 -0.564086000000

 S
 2.923138000000
 -1.305328000000
 -1.742872000000

 S
 0.646315000000
 3.274144000000
 0.231931000000

 O
 -0.100045000000
 3.896237000000
 -0.85182000000

 O
 0.305530000000
 3.553474000000
 1.622058000000

 O
 -3.765084000000
 0.814303000000
 -2.013105000000

 O
 -4.451057000000
 -2.292037000000
 -2.702362000000

 O
 3.301841000000
 0.014781000000
 -2.230291000000
C 2.422879000000 3.809786000000 0.010385000000 C -4.031041000000 2.402346000000 0.126439000000 F 3.960503000000 -3.019766000000 -0.013564000000 F 5.404623000000 -2.031480000000 -1.301665000000 F 4.501399000000 -0.946148000000 0.348746000000 F -3.307833000000 3.343472000000 -0.466802000000 F -5.327118000000 2.640132000000 -0.083203000000 F -3.793655000000 2.421778000000 1.441775000000 F 2.837988000000 3.541462000000 -1.226743000000 F 2.504041000000 5.125021000000 0.222469000000 F 3.213692000000 3.181188000000 0.883423000000 S -1.501791000000 -2.174073000000 -1.913689000000 C -1.44051800000 -1.084725000000 -3.400342000000 C -0.38424000000 -3.539425000000 -2.350982000000 C -0.22570500000 -0.209629000000 -3.357387000000 C -0.245581000000 1.092958000000 -3.014734000000 Н -2.363891000000 -0.500588000000 -3.363172000000 Н -1.455175000000 -1.730963000000 -4.282819000000 Н -0.360512000000 -4.189323000000 -1.474233000000 H -0.81617000000 -4.083577000000 -3.193886000000 Н 0.623314000000 -3.189751000000 -2.580185000000 Н 0.724407000000 -0.679650000000 -3.611819000000 H 0.670623000000 1.676722000000 -3.000961000000 H -1.177659000000 1.617169000000 -2.808723000000 O -3.67192000000 -3.95730900000 1.420127000000 C -4.496843000000 -2.897873000000 1.958848000000 C -3.516733000000 -1.906665000000 2.594586000000 N -2.277999000000 -2.284919000000 1.898387000000 C -2.40542000000 -3.559166000000 1.286078000000 O -1.517317000000 -4.171078000000 0.755336000000 C -1.11152000000 -1.68840500000 2.041917000000 C -0.064135000000 -1.042459000000 2.161063000000 C 1.190468000000 -0.719041000000 2.808751000000

С	2.064528000000	-1.761458000000	3.169671000000
С	3.245782000000	-1.468796000000	3.841123000000
С	3.563007000000	-0.146709000000	4.163773000000
С	2.698522000000	0.886586000000	3.803488000000
С	1.518173000000	0.611099000000	3.116804000000
Н	-5.044974000000	-2.443750000000	1.131501000000
Н	-5.182503000000	-3.349681000000	2.675648000000
Н	-3.783846000000	-0.873737000000	2.372691000000
Н	-3.392671000000	-2.055677000000	3.672081000000
Н	1.809852000000	-2.786398000000	2.918120000000
Н	3.919912000000	-2.275154000000	4.115329000000
Н	4.486554000000	0.076077000000	4.690499000000
Н	2.942633000000	1.916160000000	4.046688000000
Н	0.855213000000	1.423376000000	2.833924000000

tsA₀B₀

Frequency -134.4057
Zero-point correction= 0.375877 (Hartree/Particle)
Thermal correction to Energy= 0.442735
Thermal correction to Enthalpy= 0.443885
Thermal correction to Gibbs Free Energy= 0.245593
Sum of electronic and zero-point Energies= -4107.666292
Sum of electronic and thermal Energies= -4107.599434
Sum of electronic and thermal Enthalpies= -4107.598284

Sum of electronic and thermal Free Energies= -4107.796577 E(RB3PW91) = -4108.04216964

Z

Y

Atom X

S -1.785165000000 -1.959018000000 0.374379000000 C -2.28383000000 -0.041657000000 1.565579000000 Yb 0.41120000000 -0.106483000000 -0.184093000000 O 1.704648000000 -1.744694000000 0.228441000000 O 1.75166900000 1.531228000000 -0.171672000000 O -0.582414000000 0.164429000000 -2.079973000000 C -1.516682000000 -3.927871000000 -2.788866000000 C -1.101789000000 0.491609000000 1.708374000000 S 2.266208000000 -3.146862000000 -0.099750000000 S 2.373365000000 2.847321000000 -0.704513000000 S -1.958225000000 0.297316000000 -2.745601000000 O -2.10120900000 -0.56247000000 -3.908537000000 O -3.019322000000 0.285267000000 -1.727322000000 $C \ -1.87364000000 \ \ 2.056323000000 \ \ -3.370228000000 \ \ \\$ O 1.41516600000 -4.19180100000 0.463296000000 O 2.706499000000 -3.234524000000 -1.482715000000 C 3.803152000000 -3.113629000000 0.962008000000 O 2.325177000000 2.908078000000 -2.155908000000 O 1.925343000000 3.976716000000 0.100598000000 C 4.157852000000 2.542757000000 -0.240227000000 F 3.47330700000 -2.920419000000 2.242836000000 F 4.434997000000 -4.281486000000 0.847726000000 F 4.61736000000 -2.133891000000 0.571127000000 F 4.614234000000 1.450018000000 -0.853888000000 F 4.89118600000 3.59196600000 -0.611773000000 F 4.271264000000 2.378160000000 1.080697000000 F -0.89863000000 2.188661000000 -4.258218000000 F -3.040519000000 2.368199000000 -3.937684000000 F -1.657367000000 2.885136000000 -2.342363000000 C -2.722793000000 -3.048784000000 -0.796705000000

С	-1.394592000000	-3.068097000000	1.748555000000
С	-1.821066000000	-4.016011000000	-1.490084000000
Н	-3.200318000000	-2.352007000000	-1.489790000000
Н	-3.489545000000	-3.528655000000	-0.180796000000
Н	-0.929368000000	-2.454699000000	2.522578000000
Н	-2.323814000000	-3.496506000000	2.125684000000
Н	-0.678664000000	-3.818862000000	1.410262000000
Н	-1.403649000000	-4.819940000000	-0.887124000000
Н	-0.861176000000	-4.657728000000	-3.254743000000
Н	-1.901430000000	-3.129515000000	-3.419327000000
N	-3.592157000000	0.179468000000	1.592539000000
С	-4.223338000000	1.395316000000	1.050903000000
С	-5.681031000000	1.156473000000	1.457413000000
0	-5.778560000000	-0.262132000000	1.701615000000
С	-4.566477000000	-0.806402000000	1.866114000000
Н	-6.392937000000	1.406902000000	0.670741000000
Н	-5.951246000000	1.674343000000	2.382025000000
Н	-4.076494000000	1.422464000000	-0.031942000000
Н	-3.792715000000	2.284837000000	1.513929000000
0	-4.348633000000	-1.949570000000	2.170070000000
С	-0.814674000000	1.422479000000	2.825683000000
С	-1.412531000000	1.233585000000	4.087079000000
С	0.063708000000	2.504029000000	2.650475000000
С	-1.146331000000	2.108876000000	5.135840000000
Н	-2.063508000000	0.378282000000	4.249422000000
С	-0.290584000000	3.196104000000	4.943359000000
Н	-1.604115000000	1.938651000000	6.106573000000
С	0.308174000000	3.389793000000	3.698909000000
н	-0.082781000000	3.878789000000	5.762399000000
н	0.981061000000	4.226409000000	3.535218000000
Н	0.552309000000	2.673977000000	1.697014000000

intB₀

Zero-point correction= 0.377656 (Hartree/Particle)
Thermal correction to Energy= 0.444602
Thermal correction to Enthalpy= 0.445752
Thermal correction to Gibbs Free Energy= 0.247460
Sum of electronic and zero-point Energies= -4107.681415
Sum of electronic and thermal Energies= -4107.614469
Sum of electronic and thermal Enthalpies= -4107.613319
Sum of electronic and thermal Free Energies= -4107.811611
E(RB3PW91) = -4108.05907094

Atom X Y Z

 S
 2.32108200000
 1.30409700000
 0.500273000000

 C
 2.21264800000
 -0.35313700000
 1.229736000000

 Yb
 -0.67201000000
 0.26240900000
 -0.217936000000

 O
 -0.98968400000
 2.24548800000
 0.513996000000

 O
 -2.47725300000
 -0.82972100000
 -0.105211000000

 O
 -2.1725300000
 -0.2405900000
 -2.154461000000

 C
 3.79757200000
 3.23423900000
 -2.172571000000

 C
 0.93470400000
 -0.79559500000
 1.260318000000

 S
 -1.05598100000
 3.74869300000
 0.149924000000

 S
 -3.44344900000
 -1.878453000000
 -2.943323000000

 O
 1.83621900000
 0.757904000000
 -3.861751000000

 O
 2.54323800000
 -0.836210000000
 -3.975392000000

0	0.159245000000	4.434316000000	0.578156000000
0	-1.567716000000	3.940047000000	-1.198247000000
С	-2.399260000000	4.292545000000	1.329168000000
0	-4.109675000000 -	-1.355639000000	-1.898039000000
0	-2.815602000000 -	-3.194142000000	-0.743637000000
С	-4.723319000000 -	1.928890000000	0.643632000000
F	-2.030661000000	4.046481000000	2.589976000000
F	-2.603690000000	5.600318000000	1.182544000000
F	-3.531841000000	3.638471000000	1.072623000000
F	-5.280301000000 -	0.727380000000	0.801060000000
F	-5.668409000000 -	2.810228000000	0.316631000000
F	-4.161894000000 -	2.301064000000	1.797253000000
F	-0.069480000000 -	1.406094000000	-4.769281000000
F	1.955405000000 -2	2.194557000000	-4.716095000000
F	0.527934000000 -2	2.759669000000	-3.176710000000
С	3.949486000000	1.550995000000	-0.340610000000
С	2.361511000000	2.475497000000	1.879446000000
С	4.037165000000	2.940173000000	-0.891313000000
Н	3.946955000000	0.784899000000	-1.120072000000
Н	4.711590000000	1.346934000000	0.415158000000
Н	1.494726000000	2.234940000000	2.496941000000
Н	3.289883000000	2.351873000000	2.435553000000
Н	2.218262000000	3.467834000000	1.448095000000
Н	4.327317000000	3.723829000000	-0.194235000000
Н	3.889613000000	4.254809000000	-2.532220000000
Н	3.497253000000	2.478585000000	-2.894821000000
N	3.381791000000 -	1.056239000000	1.541534000000
С	3.666976000000 -	2.377348000000	0.974336000000
С	4.918931000000 -	2.759476000000	1.772059000000
0	5.416217000000 -	1.519725000000	2.312902000000
С	4.460124000000 -	0.571949000000	2.251216000000
н	5.707171000000 -	3.198783000000	1.159489000000
Н	4.689770000000 -	3.424401000000	2.609822000000

Η	3.844121000000	-2.292694000000	-0.102857000000
Н	2.839994000000	-3.068613000000	1.148024000000
0	4.578099000000	0.536421000000	2.731652000000
С	0.613944000000	-2.019493000000	2.025340000000
С	1.041350000000	-2.167412000000	3.360088000000
С	-0.174400000000	-3.038598000000	1.462559000000
С	0.699792000000	-3.298523000000	4.096670000000
Н	1.622251000000	-1.375164000000	3.825266000000
С	-0.061325000000	-4.314966000000	3.513816000000
Н	1.024128000000	-3.384496000000	5.130424000000
С	-0.494698000000	-4.180806000000	2.194767000000
Н	-0.327737000000	-5.196657000000	4.089822000000
Н	-1.102185000000	-4.953486000000	1.732880000000
Н	-0.546593000000	-2.955368000000	0.444598000000

intA

Zero-point correction= 0.349108 (Hartree/Particle)
Thermal correction to Energy= 0.404277
Thermal correction to Enthalpy= 0.405427
Thermal correction to Gibbs Free Energy= 0.240022
Sum of electronic and zero-point Energies= -3146.280721
Sum of electronic and thermal Energies= -3146.225552
Sum of electronic and thermal Enthalpies= -3146.224402
Sum of electronic and thermal Free Energies= -3146.389808
E(RB3PW91) = -3146.62982951

Y Z X Atom Yb 0.018189000000 -0.313644000000 -0.131253000000 O -2.080971000000 -0.262787000000 -0.259606000000 O 0.918423000000 -1.633410000000 1.498318000000 S -3.308571000000 -0.694155000000 -1.121206000000 S 2.369318000000 -1.618887000000 1.029146000000 0 2.280876000000 -1.017351000000 -0.358929000000 O 3.347037000000 -1.046044000000 1.928443000000 O -3.363633000000 0.119117000000 -2.332107000000 O -3.374448000000 -2.145068000000 -1.213809000000 C -4.71136000000 -0.13862000000 -0.016479000000 C 2.828572000000 -3.424637000000 0.808994000000 F -4.645003000000 1.179282000000 0.165613000000 F -5.857643000000 -0.451819000000 -0.604769000000 F -4.625454000000 -0.754005000000 1.160398000000 F 1.91470300000 -4.029835000000 0.050951000000 $F \quad 4.012448000000 \quad -3.484504000000 \quad 0.216364000000 \\$ F 2.875512000000 -3.995821000000 1.999268000000 $S \quad 0.87957900000 \quad 0.944587000000 \quad -2.536737000000 \\$ C 0.77150200000 -0.654135000000 -3.451712000000 C -0.495976000000 1.919494000000 -3.229740000000 C -0.333105000000 -1.485610000000 -2.882086000000 C -0.147147000000 -2.556110000000 -2.085672000000 Н 1.75147000000 -1.124253000000 -3.334184000000 Н 0.617821000000 -0.419555000000 -4.509203000000 H -0.443451000000 2.890064000000 -2.732500000000 H -0.310916000000 2.057525000000 -4.296868000000 H -1.466337000000 1.449984000000 -3.057309000000 H -1.348220000000 -1.169140000000 -3.123550000000 H -1.003507000000 -3.110202000000 -1.706773000000 Н 0.847627000000 -2.949813000000 -1.891571000000 O 3.869781000000 3.858952000000 -1.117234000000 C 4.825855000000 3.105117000000 -0.339527000000

С	4.024538000000	2.509743000000	0.827287000000
N	2.660836000000	2.613957000000	0.283732000000
С	2.618586000000	3.507558000000	-0.830150000000
0	1.618975000000	3.865531000000	-1.388523000000
С	1.563606000000	2.179677000000	0.857082000000
С	0.545713000000	1.686922000000	1.359317000000
С	-0.634348000000	1.654586000000	2.200075000000
С	-1.601539000000	2.671754000000	2.077490000000
С	-2.725348000000	2.650404000000	2.893737000000
С	-2.900174000000	1.627098000000	3.830441000000
С	-1.945642000000	0.618096000000	3.951734000000
С	-0.816164000000	0.617618000000	3.135052000000
Н	5.251999000000	2.337287000000	-0.990102000000
Н	5.606630000000	3.794068000000	-0.018340000000
Н	4.280962000000	1.470947000000	1.041123000000
Н	4.103939000000	3.105481000000	1.741445000000
Н	-1.456450000000	3.470191000000	1.356289000000
Н	-3.466640000000	3.438716000000	2.803958000000
Н	-3.779672000000	1.620959000000	4.467273000000
Н	-2.074302000000	-0.171125000000	4.686153000000
Н	-0.060095000000	-0.153386000000	3.248591000000

Frequency -149.8792

Zero-point correction=0.348030 (Hartree/Particle)Thermal correction to Energy=0.401903Thermal correction to Enthalpy=0.403053Thermal correction to Gibbs Free Energy=0.239255Sum of electronic and zero-point Energies=-3146.257485Sum of electronic and thermal Energies=-3146.203612Sum of electronic and thermal Enthalpies=-3146.202462Sum of electronic and thermal Free Energies=-3146.366260E(RB3PW91) = -3146.60551490

Atom X Y Z

S -1.253082000000 0.567015000000 -1.933087000000 C -2.411489000000 -0.201001000000 -0.144901000000 Yb 0.749721000000 0.053558000000 0.064700000000 O 2.402988000000 -1.432169000000 0.582953000000 O 0.685534000000 2.34465000000 -0.015177000000 C 0.673879000000 3.107958000000 -3.846905000000 $C \ -1.470453000000 \ -0.801827000000 \ \ 0.540919000000$ S 2.80852000000 -1.783781000000 -0.841545000000 $S \quad 0.851357000000 \quad 2.590491000000 \quad 1.483314000000 \\$ O -0.120658000000 3.454055000000 2.110246000000 1.025334000000 1.191559000000 2.045025000000 0 C 2.543639000000 3.381978000000 1.640493000000 1.839655000000 -0.956959000000 -1.681605000000 0 O 4.206499000000 -1.728394000000 -1.181254000000 C 2.216095000000 -3.546142000000 -1.067512000000 0.908691000000 -3.594885000000 -0.784738000000 F F 2.410657000000 -3.912374000000 -2.325404000000 F 2.880354000000 -4.340036000000 -0.245737000000 F 2.517698000000 4.564623000000 1.044557000000 F 2.84036900000 3.514751000000 2.921473000000 F 3.436812000000 2.593081000000 1.042741000000 C -1.425547000000 2.107416000000 -2.959091000000 C -1.467729000000 -0.781758000000 -3.119412000000

С	-0.332558000000	2.236714000000	-3.967749000000
Н	-1.404798000000	2.916826000000	-2.224663000000
Н	-2.422423000000	2.039839000000	-3.404529000000
Н	-1.473415000000	-1.708326000000	-2.542881000000
Н	-2.424168000000	-0.656673000000	-3.627121000000
Н	-0.622650000000	-0.784361000000	-3.809063000000
Н	-0.400261000000	1.602582000000	-4.849562000000
Н	1.432332000000	3.197926000000	-4.618609000000
Н	0.763086000000	3.767460000000	-2.986698000000
N	-3.626286000000	0.333386000000	-0.059903000000
С	-4.114441000000	1.088037000000	1.107927000000
С	-5.585159000000	1.269061000000	0.718138000000
0	-5.606563000000	1.126185000000	-0.719175000000
С	-4.514994000000	0.494941000000	-1.152675000000
Н	-5.981058000000	2.255175000000	0.959252000000
Н	-6.229419000000	0.494761000000	1.142923000000
Н	-3.576376000000	2.038398000000	1.190366000000
Н	-3.982389000000	0.510194000000	2.023947000000
0	-4.291611000000	0.159498000000	-2.285909000000
С	-1.728283000000	-1.823707000000	1.574936000000
С	-2.818189000000	-2.709722000000	1.484649000000
С	-0.852467000000	-1.937568000000	2.669158000000
С	-3.025243000000	-3.674361000000	2.466124000000
Н	-3.482971000000	-2.661396000000	0.626094000000
С	-2.159092000000	-3.764576000000	3.558657000000
Н	-3.861739000000	-4.361426000000	2.376549000000
С	-1.076193000000	-2.890978000000	3.659699000000
Н	-2.323125000000	-4.518672000000	4.322543000000
н	-0.398231000000	-2.955391000000	4.505486000000
Н	-0.008919000000	-1.258381000000	2.775768000000

intB

Zero-point correction=0.349821 (Hartree/Particle)Thermal correction to Energy=0.403798Thermal correction to Enthalpy=0.404948Thermal correction to Gibbs Free Energy=0.240215Sum of electronic and zero-point Energies=-3146.269231Sum of electronic and thermal Energies=-3146.215254Sum of electronic and thermal Enthalpies=-3146.214104Sum of electronic and thermal Free Energies=-3146.378837E(RB3PW91) = -3146.61905193

Atom X Y Z

S -1.269557000000 -0.721638000000 1.774805000000 C -2.24533000000 -0.429016000000 0.274699000000 Yb 0.888217000000 0.185183000000 -0.214074000000 1.96306900000 2.165744000000 -0.572242000000 0 1.455136000000 -1.982641000000 0.267476000000 0 C 0.451959000000 -3.175204000000 3.788241000000 C -1.45290800000 0.200004000000 -0.630307000000 $S \quad 2.134334000000 \quad 2.560629000000 \quad 0.887428000000 \\$ $1.911118000000 \ \ -2.371227000000 \ \ -1.137519000000$ S 1.351703000000 -3.577992000000 -1.694729000000 0 1.743259000000 -1.080176000000 -1.922990000000 0 C 3.766979000000 -2.586711000000 -0.980041000000 1.430912000000 1.428381000000 1.633742000000 0 O 3.447329000000 2.942078000000 1.337707000000 C 0.989633000000 4.026918000000 1.105421000000

F	-0.238693000000	3.673504000000	0.706265000000
F	0.956496000000	4.362848000000	2.386926000000
F	1.424559000000	5.035586000000	0.372421000000
F	4.010102000000	-3.613924000000	-0.180104000000
F	4.280290000000	-2.799871000000	-2.178592000000
F	4.278152000000	-1.472363000000	-0.454761000000
С	-1.558733000000	-2.386559000000	2.546032000000
С	-1.740281000000	0.477027000000	3.048813000000
С	-0.722292000000	-2.537150000000	3.776427000000
Н	-1.269877000000	-3.084404000000	1.755239000000
Н	-2.631139000000	-2.439053000000	2.746851000000
Н	-1.665887000000	1.459561000000	2.580086000000
Н	-2.754600000000	0.270770000000	3.387174000000
Н	-0.992491000000	0.391382000000	3.840037000000
Н	-1.135217000000	-2.129972000000	4.696932000000
Н	1.012119000000	-3.296528000000	4.710392000000
Н	0.882731000000	-3.606014000000	2.887555000000
N	-3.542893000000	-0.916189000000	0.135535000000
С	-4.01320000000	-1.560063000000	-1.097985000000
С	-5.497242000000	-1.746451000000	-0.767486000000
0	-5.568143000000	-1.672266000000	0.670698000000
С	-4.461794000000	-1.102507000000	1.160626000000
Н	-5.894635000000	-2.714042000000	-1.074007000000
Н	-6.119008000000	-0.945353000000	-1.176415000000
Н	-3.485914000000	-2.509253000000	-1.249576000000
Н	-3.860892000000	-0.921853000000	-1.969433000000
0	-4.293328000000	-0.832458000000	2.330792000000
С	-1.973915000000	0.805781000000	-1.868542000000
С	-3.084740000000	1.672274000000	-1.847678000000
С	-1.303400000000	0.605029000000	-3.090708000000
С	-3.509004000000	2.309686000000	-3.010603000000
Н	-3.597459000000	1.864616000000	-0.908570000000
С	-2.847413000000	2.083154000000	-4.220088000000

Н	-4.357228000000	2.987432000000	-2.973426000000
С	-1.747806000000	1.225088000000	-4.257326000000

- Н -3.18262800000 2.57919400000 -5.125981000000
- Н -1.22820800000 1.04372200000 -5.193601000000
- Н -0.449675000000 -0.069102000000 -3.142260000000

tsBC

Frequency -315.6671

Zero-point correction= 0.34894	7 (Hartree/Particle)
Thermal correction to Energy=	0.401747
Thermal correction to Enthalpy=	0.402897
Thermal correction to Gibbs Free Ener	gy= 0.244736
Sum of electronic and zero-point Energ	gies= -3146.241696
Sum of electronic and thermal Energies	s= -3146.188895
Sum of electronic and thermal Enthalp	ies= -3146.187745
Sum of electronic and thermal Free En	ergies= -3146.345907
E(RB3PW91) = -3146.59064244	

Ζ

Atom X Y

 S
 2.64140600000
 0.668777000000
 -1.84423000000

 C
 2.54332500000
 -0.58539000000
 -0.623622000000

 Yb
 -0.829101000000
 0.069124000000
 0.108877000000

 O
 -0.89431000000
 1.837507000000
 1.560010000000

 O
 -2.30190300000
 -0.78755900000
 -1.398379000000

 C
 0.61595200000
 -2.05939400000
 -2.353712000000

 C
 1.26218700000
 -0.99923900000
 -0.366137000000

 S
 -0.917216000000
 2.937880000000
 0.507413000000

S -3.230133000000 -1.481916000000 -0.401677000000 O -3 550165000000 -2 863931000000 -0 665399000000 O -2.607941000000 -1.139275000000 0.939009000000 C -4.81211200000 -0.47815300000 -0.471322000000 O -0.760157000000 2.160505000000 -0.796595000000 O -1.970589000000 3.917483000000 0.575712000000 C 0.714461000000 3.828917000000 0.736817000000 F 1.703486000000 2.931924000000 0.743041000000 F 0.888589000000 4.677603000000 -0.266119000000 F 0.690221000000 4.475324000000 1.890328000000 F -5.350838000000 -0.610058000000 -1.672944000000 F -5.641644000000 -0.919184000000 0.459766000000 F -4.51122900000 0.800718000000 -0.245780000000 C 1.94917900000 -0.55003200000 -3.686456000000 C 4.373587000000 0.831317000000 -2.342899000000 C 0.701623000000 -1.039717000000 -3.279919000000 Н 2.812823000000 -1.210871000000 -3.651588000000 Н 2.002053000000 0.242559000000 -4.429535000000 $H \quad 4.88726500000 \quad 1.448432000000 \quad -1.604704000000 \quad \\$ H 4.851495000000 -0.146128000000 -2.428893000000 Н 4.362049000000 1.332195000000 -3.313753000000 Н -0.19348000000 -0.475553000000 -3.534101000000 Н -0.357445000000 -2.423571000000 -2.039697000000 Н 1.453014000000 -2.735193000000 -2.208623000000 3.733953000000 -1.112211000000 -0.107995000000 Ν C 3.944935000000 -2.515558000000 0.254338000000 C 5.394161000000 -2.449630000000 0.748413000000 O 5.572456000000 -1.083419000000 1.161412000000 C 4.645126000000 -0.299625000000 0.587910000000 Н 6.116677000000 -2.664980000000 -0.044968000000 Н 5.589751000000 -3.090922000000 1.607766000000 Н 3.827735000000 -3.173676000000 -0.609889000000 Н 3.257555000000 -2.833522000000 1.044329000000

0	4.608918000000	0.902762000000	0.665304000000
С	0.912132000000	-1.846805000000	0.803336000000
С	0.867736000000	-1.188217000000	2.061210000000
С	0.390209000000	-3.155317000000	0.732528000000
С	0.352547000000	-1.827146000000	3.194265000000
Н	1.300952000000	-0.191429000000	2.162448000000
С	-0.139594000000	-3.126869000000	3.101722000000
Н	0.343166000000	-1.300627000000	4.144235000000
С	-0.111913000000	-3.785076000000	1.870117000000
Н	-0.548410000000	-3.621498000000	3.977019000000
Н	-0.499391000000	-4.796495000000	1.788131000000
Н	0.389687000000	-3.691729000000	-0.210468000000

intC

ero-point correction= 0.350855 (Hartree/Particle)	
hermal correction to Energy= 0.404116	
hermal correction to Enthalpy= 0.405266	
hermal correction to Gibbs Free Energy= 0.244446	
um of electronic and zero-point Energies= -3146.296752	
um of electronic and thermal Energies= -3146.243491	
um of electronic and thermal Enthalpies= -3146.242341	
um of electronic and thermal Free Energies= -3146.40316	
(RB3PW91) = -3146.64760708	
tom X Y Z	

S -2.8353	69000000	0.620474000000	1.841008000000
-----------	----------	----------------	----------------

 $C \ -2.557931000000 \ -0.684282000000 \ \ 0.741887000000$

Yb 0.752747000000 0.002816000000 -0.086962000000 O 0.981861000000 1.872051000000 -1.331558000000 O 2.394835000000 -0.721717000000 1.269283000000 C -0.69680900000 -1.899149000000 2.093910000000 C -1.319765000000 -1.370691000000 0.777727000000 S 0.748988000000 2.883812000000 -0.209242000000 S 3.316672000000 -1.300961000000 0.192442000000 O 3.778714000000 -2.653268000000 0.383815000000 O 2.564111000000 -0.980762000000 -1.088921000000 C 4.801507000000 -0.153176000000 0.189089000000 O 0.37933000000 1.982074000000 0.966352000000 O 1.756374000000 3.888575000000 0.008277000000 C -0.845755000000 3.744982000000 -0.687006000000 F -1.760008000000 2.822248000000 -0.980307000000 F -1.257214000000 4.480665000000 0.333983000000 F -0.615404000000 4.505253000000 -1.744214000000 $F \quad 5.427644000000 \ -0.266014000000 \ \ 1.348255000000$ F 5.60049600000 -0.496862000000 -0.807264000000 $F \quad 4.37018900000 \quad 1.094888000000 \quad 0.021133000000 \\$ C -1.221091000000 -1.509720000000 4.506942000000 C -4.63198000000 0.744543000000 2.057004000000 C -0.748387000000 -1.064573000000 3.341087000000 H -1.67404800000 -2.494195000000 4.604601000000 Н -1.162368000000 -0.905749000000 5.407187000000 H -5.065623000000 1.384164000000 1.287318000000 H -5.09439000000 -0.244281000000 2.055938000000 H -4.770617000000 1.197953000000 3.041055000000 Н -0.288173000000 -0.076846000000 3.300889000000 Н 0.363159000000 -2.129822000000 1.903990000000 H -1.158365000000 -2.874135000000 2.310881000000 N -3.54979000000 -1.05849200000 -0.143314000000 C -3.855132000000 -2.443071000000 -0.522241000000 C -5.266721000000 -2.265425000000 -1.085131000000

0	-5.298858000000	-0.896847000000	-1.528534000000
С	-4.366032000000	-0.174052000000	-0.890119000000
Н	-6.043023000000	-2.400385000000	-0.325621000000
Н	-5.476173000000	-2.902304000000	-1.944249000000
Н	-3.820615000000	-3.102567000000	0.346804000000
Н	-3.161837000000	-2.811878000000	-1.285243000000
0	-4.231610000000	1.016163000000	-0.979594000000
С	-0.854850000000	-2.033029000000	-0.472805000000
С	-0.950529000000	-1.334605000000	-1.714481000000
С	-0.139493000000	-3.250067000000	-0.479999000000
С	-0.404363000000	-1.854825000000	-2.890521000000
Н	-1.519603000000	-0.401798000000	-1.769114000000
С	0.275740000000	-3.073935000000	-2.867690000000
Н	-0.505168000000	-1.298448000000	-3.818073000000
С	0.402680000000	-3.761750000000	-1.661364000000
Н	0.713762000000	-3.473851000000	-3.776477000000
Н	0.940030000000	-4.705046000000	-1.629593000000
Н	-0.021330000000	-3.816476000000	0.437968000000

3aw

Sum of electronic and more point Energies	1104 595601
sum of electronic and zero-point Energies=	-1184.383091

Sum of electronic and thermal Energies= -1184.558561 Sum of electronic and thermal Enthalpies= -1184.557410 Sum of electronic and thermal Free Energies= -1184.653194 E(RB3PW91) = -1184.87756348

Z

Atom X

Y

S 1.823911000000 2.232675000000 -0.183015000000 C 0.771725000000 0.803093000000 -0.023343000000 $C \ -1.190069000000 \ 2.191448000000 \ 0.737333000000$ $C \ -0.535856000000 \ \ 0.896345000000 \ \ 0.299127000000$ $C \ -3.176564000000 \ \ 3.162436000000 \ \ -0.474188000000 \\$ C 3.267752000000 1.734327000000 0.806056000000 C -1.865791000000 2.921695000000 -0.393739000000 H -3.866246000000 2.824249000000 0.296367000000 Н -3.602699000000 3.708604000000 -1.311358000000 Н 2.986793000000 1.557400000000 1.845489000000 Н 3.741436000000 0.841320000000 0.393092000000 Н 3.97369000000 2.566716000000 0.750941000000 Н -1.206673000000 3.273369000000 -1.188614000000 Н -0.420654000000 2.841743000000 1.171882000000 Н -1.928243000000 1.962530000000 1.514571000000 N 1.36340800000 -0.439998000000 -0.356061000000 C 1.538914000000 -0.907448000000 -1.719589000000 C 2.38576000000 -2.168842000000 -1.485922000000 O 2.274867000000 -2.451000000000 -0.084821000000 C 1.757118000000 -1.374194000000 0.573661000000 Н 3.44336300000 -2.006243000000 -1.72023000000 H 2.024059000000 -3.037588000000 -2.039315000000 Н 2.055624000000 -0.160251000000 -2.330848000000 Н 0.567357000000 -1.130833000000 -2.178615000000 O 1.688913000000 -1.303518000000 1.778575000000 C -1.425447000000 -0.301343000000 0.223183000000 C -2.200519000000 -0.537613000000 -0.921345000000 C -1.541958000000 -1.173503000000 1.314223000000

С	-3.065575000000	-1.631470000000	-0.977773000000
н	-2.130940000000	0.143878000000	-1.764818000000
С	-3.171622000000	-2.498171000000	0.110243000000
Н	-3.659037000000	-1.802471000000	-1.872257000000
С	-2.407817000000	-2.265438000000	1.254884000000
Н	-3.845014000000	-3.349968000000	0.066304000000
Н	-2.478277000000	-2.939561000000	2.104320000000
Н	-0.931527000000	-1.007475000000	2.196864000000

1a' N-sulfonyl ynamides

Zero-point correction=	0.273734 (Hartree/Particle)	
Thermal correction to Energy	y= 0.301150	
Thermal correction to Enthal	lpy= 0.302300	
Thermal correction to Gibbs	Free Energy= 0.204527	
Sum of electronic and zero-p	point Energies= -1221.399957	,
Sum of electronic and therm	al Energies= -1221.372540	
Sum of electronic and therm	al Enthalpies= -1221.371390	,
Sum of electronic and therm	al Free Energies= -1221.46916	53
E(RB3PW91) = -1221.6736	59039	

Atom X Y Z

- C 0.645768000000 -1.376826000000 -0.467732000000
- $C \quad 1.702495000000 \ \ -0.787222000000 \ \ -0.339417000000 \\$
- C 2.94219500000 -0.09895900000 -0.186427000000
- N -0.525321000000 -2.011129000000 -0.661771000000
- C 3.017655000000 1.293078000000 -0.381930000000

C 4.22870800000 1.96109800000 -0.228715000000 C 5.385691000000 1.255322000000 0.107315000000 C 5.32256200000 -0.12658000000 0.297294000000 C 4.11250300000 -0.799879000000 0.160292000000 C -0.499925000000 -3.357435000000 -1.255241000000 $C \ -2.055882000000 \ \ 0.045454000000 \ \ 0.250722000000$ C -2.805935000000 0.471226000000 -0.847061000000 $C \ -3.031589000000 \ 1.831223000000 \ -1.018064000000 \\$ C -2.521886000000 2.772619000000 -0.109109000000 $C \ -1.777255000000 \ \ 2.31202000000 \ \ 0.982254000000$ C -1.538766000000 0.951487000000 1.171767000000 C -2.784328000000 4.240890000000 -0.308905000000 S -1.779563000000 -1.694842000000 0.492814000000 O -2.925379000000 -2.453557000000 -0.007074000000 O -1.282197000000 -1.896151000000 1.851188000000 Н 2.118667000000 1.837373000000 -0.655089000000 Н 4.272135000000 3.036557000000 -0.378972000000 Н 6.330841000000 1.778870000000 0.220501000000 Н 6.218958000000 -0.681240000000 0.560984000000 Н 4.058122000000 -1.872463000000 0.319809000000 Н 0.050125000000 -3.291316000000 -2.196099000000 Н -0.014045000000 -4.083103000000 -0.593990000000 H -1.526467000000 -3.666234000000 -1.453840000000 Н -3.211363000000 -0.254838000000 -1.544466000000 H -3.618794000000 2.170526000000 -1.868046000000 H -1.378596000000 3.025163000000 1.699170000000 H -0.968331000000 0.591094000000 2.021436000000 H -3.858588000000 4.454867000000 -0.282667000000 H -2.302779000000 4.843431000000 0.465287000000 H -2.411085000000 4.579257000000 -1.281817000000

intA'

Zero-point correction=	0.443812 (H	artree/Particle)
Thermal correction to Energ	y=	0.509957
Thermal correction to Entha	lpy=	0.511107
Thermal correction to Gibbs	Free Energy=	= 0.314914
Sum of electronic and zero-j	point Energies	-3738.338267
Sum of electronic and therm	al Energies=	-3738.272122
Sum of electronic and therm	al Enthalpies=	-3738.270972
Sum of electronic and therm	al Free Energ	ies= -3738.467165
E(RB3PW91) = -3738.7820)7892	

Atom X Y Z

Yb	1.061557000000	0.414456000000	-0.202051000000
0	2.624113000000	-0.984683000000	-0.111518000000
0	0.732790000000	1.266918000000	1.881824000000
s	4.068498000000	-1.357667000000	-0.558709000000
s	0.354637000000	2.691048000000	1.484242000000
0	0.485737000000	2.658206000000	-0.031977000000
0	-0.837534000000	3.259742000000	2.055375000000
0	4.055471000000	-1.753362000000	-1.964819000000
0	5.024762000000	-0.367331000000	-0.089245000000

С	4.324146000000	-2.912689000000	0.448420000000
С	1.806082000000	3.719834000000	2.074791000000
F	3.403844000000	-3.817656000000	0.117321000000
F	5.534372000000	-3.392046000000	0.190340000000
F	4.219289000000	-2.629182000000	1.744477000000
F	2.942281000000	3.144801000000	1.670322000000
F	1.713695000000	4.935254000000	1.552210000000
F	1.781987000000	3.781973000000	3.395075000000
S	0.497123000000	0.598342000000	-3.012844000000
С	1.835013000000	1.827206000000	-3.328760000000
С	1.200333000000	-0.931416000000	-3.719447000000
С	3.003317000000	1.565487000000	-2.430654000000
С	3.362238000000	2.359558000000	-1.408472000000
Н	1.377696000000	2.803593000000	-3.144434000000
Н	2.094551000000	1.759650000000	-4.389900000000
Н	0.480121000000	-1.728439000000	-3.523419000000
Н	1.299869000000	-0.799643000000	-4.798831000000
Н	2.160289000000	-1.196898000000	-3.270859000000
Н	3.594084000000	0.675525000000	-2.646677000000
Н	4.227584000000	2.111360000000	-0.799391000000
Н	2.840411000000	3.290056000000	-1.199646000000
N	-2.840753000000	-0.294805000000	-1.439989000000
С	-1.881270000000	-0.785189000000	-0.746436000000
С	-0.898460000000	-1.109837000000	-0.014549000000
С	-0.595194000000	-2.212849000000	0.910862000000
С	-0.752094000000	-3.547346000000	0.498613000000
С	-0.439496000000	-4.586153000000	1.369952000000
С	0.023520000000	-4.311280000000	2.658907000000
С	0.176449000000	-2.988986000000	3.072789000000
С	-0.118818000000	-1.939468000000	2.203187000000
Н	-1.108554000000	-3.764897000000	-0.504120000000
Н	-0.560535000000	-5.614512000000	1.041942000000
н	0.264794000000	-5.125600000000	3.335444000000

Η	0.529200000000	-2.767306000000	4.075649000000
Н	-0.019342000000	-0.913212000000	2.546217000000
С	-3.172447000000	-0.674889000000	-2.822794000000
Н	-4.188146000000	-1.077686000000	-2.852435000000
Н	-3.103528000000	0.203305000000	-3.466472000000
Н	-2.473228000000	-1.444347000000	-3.150045000000
S	-3.883840000000	1.009812000000	-0.668304000000
0	-3.097577000000	1.391341000000	0.489847000000
0	-4.153439000000	1.887763000000	-1.794935000000
С	-5.340178000000	0.146544000000	-0.191479000000
С	-5.362975000000	-0.519946000000	1.038222000000
С	-6.447818000000	0.162919000000	-1.043641000000
С	-6.522422000000	-1.191157000000	1.404406000000
Н	-4.500266000000	-0.494994000000	1.696425000000
С	-7.596638000000	-0.515572000000	-0.650101000000
Н	-6.415896000000	0.715974000000	-1.977029000000
С	-7.655134000000	-1.201489000000	0.572585000000
Н	-6.555157000000	-1.707638000000	2.359874000000
Н	-8.467286000000	-0.501984000000	-1.299949000000
С	-8.912043000000	-1.900971000000	1.003883000000
Н	-9.538849000000	-2.167887000000	0.149518000000
Н	-8.690450000000	-2.810394000000	1.569296000000
Н	-9.504234000000	-1.247733000000	1.656331000000

intB'

Zero-point correction =0.444706 (Hartree/Particle)Thermal correction to Energy=0.509280Thermal correction to Enthalpy=0.510430Thermal correction to Gibbs Free Energy=0.321418Sum of electronic and zero-point Energies=-3738.324546Sum of electronic and thermal Energies=-3738.259972Sum of electronic and thermal Enthalpies=-3738.258822Sum of electronic and thermal Free Energies=-3738.447833E(RB3PW91) = -3738.76925167

Atom X Y Z

S -0.919011000000 1.762356000000 2.096923000000 C -1.56533600000 0.87098800000 0.620017000000 Yb 1.783184000000 -0.062842000000 -0.258017000000 O 2.78288000000 1.339169000000 -1.765421000000 O 2.722077000000 -1.287478000000 1.419762000000 C -0.38613000000 -1.75200500000 3.318915000000 $C \ -0.565283000000 \ \ 0.281115000000 \ \ -0.049816000000$ S 3.286336000000 2.373463000000 -0.765752000000 S 2.93109000000 -2.575391000000 0.631501000000 O 2.466651000000 -3.801437000000 1.233657000000 2.410399000000 -2.221467000000 -0.751123000000 0 C 4.788864000000 -2.689785000000 0.420531000000 O 2.761381000000 1.856039000000 0.561616000000 O 4.668722000000 2.768396000000 -0.844922000000 C 2.24144000000 3.885222000000 -1.118453000000 F 0.945429000000 3.539679000000 -1.073345000000 F 2.479511000000 4.807275000000 -0.197180000000 F 2.529292000000 4.351936000000 -2.322659000000 F 5.350743000000 -2.858042000000 1.607123000000 F 5.071361000000 -3.710531000000 -0.373599000000 F 5.223797000000 -1.554066000000 -0.129738000000 C -1.140382000000 0.603212000000 3.540568000000 C -2.104718000000 3.063063000000 2.518174000000

С	-0.098506000000	-0.462215000000	3.522856000000
Н	-2.159079000000	0.213185000000	3.504824000000
Н	-1.027775000000	1.273483000000	4.400602000000
Н	-2.048722000000	3.829419000000	1.743593000000
Н	-3.111025000000	2.647660000000	2.612015000000
Н	-1.771915000000	3.491117000000	3.466725000000
Н	0.924635000000	-0.153404000000	3.733022000000
Н	0.390979000000	-2.509183000000	3.363716000000
Н	-1.402249000000	-2.081927000000	3.120140000000
N	-2.931070000000	0.914098000000	0.283746000000
С	-0.749614000000	-0.628765000000	-1.193154000000
С	-0.084238000000	-0.325262000000	-2.406092000000
С	-1.335076000000	-1.903140000000	-1.050063000000
С	-0.049294000000	-1.250804000000	-3.454667000000
Н	0.325430000000	0.674236000000	-2.569379000000
С	-0.637444000000	-2.503110000000	-3.296551000000
Н	0.439005000000	-0.986307000000	-4.387998000000
С	-1.276778000000	-2.822164000000	-2.094288000000
Н	-0.592462000000	-3.231906000000	-4.099888000000
Н	-1.725621000000	-3.803461000000	-1.966018000000
Н	-1.814683000000	-2.158762000000	-0.109744000000
С	-3.453452000000	2.082344000000	-0.441259000000
Н	-4.323724000000	1.777712000000	-1.027016000000
Н	-3.744649000000	2.906448000000	0.218505000000
Н	-2.679802000000	2.420180000000	-1.132916000000
S	-4.031893000000	0.048341000000	1.272311000000
0	-3.293851000000	-1.154263000000	1.664553000000
С	-5.364826000000	-0.336127000000	0.173649000000
С	-6.620434000000	0.218395000000	0.426282000000
С	-5.156940000000	-1.217773000000	-0.891089000000
С	-7.682211000000	-0.120886000000	-0.408510000000
н	-6.758854000000	0.892314000000	1.265400000000
С	-6.230307000000	-1.536997000000	-1.713000000000

Η	-4.175793000000	-1.642768000000	-1.073803000000
С	-7.508986000000	-1.000336000000	-1.485752000000
Н	-8.663515000000	0.303797000000	-0.215319000000
Н	-6.077447000000	-2.220018000000	-2.544490000000
С	-8.666639000000	-1.387354000000	-2.361964000000
Н	-9.471304000000	-0.649428000000	-2.315763000000
Н	-8.359449000000	-1.498629000000	-3.405825000000
Н	-9.082462000000	-2.349901000000	-2.040311000000
0	-4.541095000000	0.941561000000	2.322096000000

tsB'C'

Frequency -311.8374

Zero-point correction= 0.444423 (Hartree/Particle) Thermal correction to Energy= 0.507683 Thermal correction to Enthalpy= 0.508833 Thermal correction to Gibbs Free Energy= 0.326694 Sum of electronic and zero-point Energies= -3738.297724 Sum of electronic and thermal Energies= -3738.234464 Sum of electronic and thermal Enthalpies= -3738.233314 Sum of electronic and thermal Free Energies= -3738.415453 E(RB3PW91) = -3738.74214752 Y Z Atom X S -0.927676000000 2.349082000000 1.724168000000

 $C \ -1.571516000000 \ 1.012706000000 \ 0.764859000000$

Yb 1.65956500000 -0.125737000000 -0.090449000000

0	2.385279000000 1.057025000000 -1.911029000000
0	3.001743000000 -1.071275000000 1.488878000000
С	-0.142681000000 -0.875267000000 2.565552000000
С	-0.640787000000 0.038242000000 0.520806000000
S	2.883805000000 2.282324000000 -1.157587000000
S	3.321596000000 -2.362132000000 0.737097000000
0	3.162901000000 -3.598869000000 1.462093000000
0	2.555051000000 -2.197941000000 -0.562822000000
С	5.123598000000 -2.178236000000 0.256147000000
0	2.496943000000 1.982658000000 0.281989000000
0	4.225227000000 2.737251000000 -1.416360000000
С	1.713645000000 3.640691000000 -1.692640000000
F	0.450144000000 3.224440000000 -1.514997000000
F	1.925363000000 4.722465000000 -0.958321000000
F	1.910304000000 3.906669000000 -2.973643000000
F	5.865290000000 -2.170947000000 1.351910000000
F	5.465155000000 -3.188084000000 -0.528026000000
F	5.269318000000 -1.025210000000 -0.398929000000
С	-0.498867000000 1.198484000000 3.734484000000
С	-2.328787000000 3.316220000000 2.349482000000
С	0.358152000000 0.179309000000 3.310407000000
Н	-1.555579000000 0.980325000000 3.870184000000
Н	-0.106627000000 2.031071000000 4.313913000000
Н	-2.560681000000 4.108791000000 1.635899000000
Н	-3.200066000000 2.683126000000 2.534167000000
Н	-1.99058000000 3.771657000000 3.283346000000
Н	1.43390000000 0.31428000000 3.408072000000
Н	0.518963000000 -1.684530000000 2.262900000000
Н	-1.203046000000 -1.107115000000 2.596482000000
N	-2.917765000000 0.990347000000 0.346973000000
С	-0.854605000000 -1.075779000000 -0.435658000000
С	-0.503805000000 -0.812119000000 -1.785115000000
С	-1.13745000000 -2.409521000000 -0.081414000000

C -0.463218000000 -1.835433000000 -2.738395000000 H -0.337696000000 0.217758000000 -2.108188000000 C -0.749355000000 -3.145536000000 -2.364626000000 H -0.206751000000 -1.598134000000 -3.766800000000 C -1.091426000000 -3.421957000000 -1.038211000000 Н -0.702376000000 -3.946549000000 -3.095726000000 H -1.319415000000 -4.441531000000 -0.740042000000 Н -1.42099000000 -2.65021000000 0.936549000000 C -3.470061000000 2.103340000000 -0.436937000000 Н -4.194441000000 1.705581000000 -1.152679000000 H -3.964903000000 2.861517000000 0.177714000000 Н -2.654471000000 2.561430000000 -0.999400000000 S -4.047768000000 0.139896000000 1.333725000000 O -3.272349000000 -0.946536000000 1.934158000000 C -5.228174000000 -0.478954000000 0.169922000000 C -6.532846000000 0.015130000000 0.210821000000 $C \ -4.85160200000 \ -1.474544000000 \ -0.735433000000 \\$ $C \quad -7.47243200000 \quad -0.503773000000 \quad -0.676161000000 \quad \\$ Н -6.802441000000 0.780952000000 0.930661000000 $C \ -5.806167000000 \ -1.974224000000 \ -1.612708000000 \$ Н -3.83452000000 -1.852453000000 -0.749706000000 C -7.129853000000 -1.503385000000 -1.597045000000 H -8.49116300000 -0.12673600000 -0.647923000000 Н -5.522941000000 -2.748887000000 -2.320428000000 C -8.160034000000 -2.081762000000 -2.525470000000 H -8.966523000000 -1.371249000000 -2.723883000000 H -7.718604000000 -2.379277000000 -3.480670000000 H -8.612686000000 -2.976763000000 -2.081449000000 O -4.723719000000 1.108138000000 2.203501000000

intC'

Zero-point correction=0.446236 (Hartree/Particle)Thermal correction to Energy=0.510002Thermal correction to Enthalpy=0.511152Thermal correction to Gibbs Free Energy=0.325906Sum of electronic and zero-point Energies=-3738.350868Sum of electronic and thermal Energies=-3738.287102Sum of electronic and thermal Enthalpies=-3738.285952Sum of electronic and thermal Free Energies=-3738.471197E(RB3PW91) = -3738.79710374

Atom X Y Z

S -0.899272000000 2.624402000000 1.807534000000

C -1.497672000000 1.089147000000 1.232207000000

Yb 1.493996000000 -0.087701000000 -0.018003000000

O 2.03010900000 0.901737000000 -1.991784000000

O 3.120575000000 -0.878738000000 1.322395000000

C -0.051018000000 -0.443984000000 2.738696000000

C -0.69292200000 -0.056661000000 1.386757000000

S 2.406350000000 2.267832000000 -1.428851000000

S 3.45669600000 -2.139631000000 0.521562000000

O 3.493615000000 -3.387299000000 1.242422000000

O 2.51603800000 -2.03353900000 -0.66790000000

C 5.165435000000 -1.800480000000 -0.175118000000

O 2.075285000000 2.121773000000 0.049956000000

O 3.687645000000 2.818011000000 -1.784494000000

С	1.087628000000	3.412780000000	-2.102653000000
F	-0.118271000000	2.868462000000	-1.871687000000
F	1.165687000000	4.583455000000	-1.492155000000
F	1.260353000000	3.555763000000	-3.405384000000
F	6.033143000000	-1.763036000000	0.821937000000
F	5.476051000000	-2.764851000000	-1.026237000000
F	5.141959000000	-0.626845000000	-0.804527000000
С	-0.151931000000	0.689829000000	4.958165000000
С	-2.342552000000	3.429029000000	2.577624000000
С	0.360412000000	0.606859000000	3.728039000000
Н	-0.960756000000	0.040920000000	5.287072000000
Н	0.227721000000	1.407316000000	5.679542000000
Н	-2.651504000000	4.294275000000	1.988673000000
Н	-3.167398000000	2.722139000000	2.685433000000
Н	-2.022568000000	3.755201000000	3.569655000000
Н	1.181067000000	1.266758000000	3.449501000000
Н	0.826949000000	-1.088831000000	2.557353000000
Н	-0.786276000000	-1.101825000000	3.224013000000
N	-2.718870000000	1.032569000000	0.593022000000
С	-0.834410000000	-1.185115000000	0.418130000000
С	-0.894972000000	-0.909044000000	-0.978434000000
С	-0.672062000000	-2.535011000000	0.793896000000
С	-0.827027000000	-1.927756000000	-1.930840000000
Н	-1.062840000000	0.115544000000	-1.316065000000
С	-0.685165000000	-3.256650000000	-1.525896000000
Н	-0.878763000000	-1.676765000000	-2.986349000000
С	-0.614771000000	-3.549853000000	-0.165008000000
Н	-0.615172000000	-4.050017000000	-2.263285000000
Н	-0.497871000000	-4.578668000000	0.163016000000
Н	-0.620886000000	-2.803877000000	1.842879000000
С	-3.256208000000	2.159483000000	-0.179592000000
н	-3.803304000000	1.763722000000	-1.039810000000
Н	-3.928179000000	2.787801000000	0.410003000000

```
H -2.42114100000 2.760272000000 -0.540329000000
S -3.985224000000 0.020474000000 1.325941000000
O -3.283454000000 -1.006240000000 2.082894000000
C -4.83640400000 -0.69222000000 -0.049651000000
C -5.98519000000 -0.063294000000 -0.537736000000
C \ -4.38493400000 \ -1.901857000000 \ -0.580672000000 \ \\
C \ -6.674418000000 \ -0.654670000000 \ -1.591093000000 \ \\
H \ -6.341508000000 \ 0.854570000000 \ -0.081409000000
C -5.093489000000 -2.475675000000 -1.630863000000
Н -3.514171000000 -2.394854000000 -0.161627000000
C -6.244058000000 -1.865939000000 -2.154384000000
Н -7.571447000000 -0.174391000000 -1.972700000000
Н -4.757371000000 -3.423424000000 -2.042925000000
C -7.024631000000 -2.514023000000 -3.262604000000
Н -7.430842000000 -1.770554000000 -3.954221000000
Н -6.410645000000 -3.216419000000 -3.831754000000
Н -7.873607000000 -3.074354000000 -2.852668000000
O -4.87131700000 0.97946900000 1.979598000000
```

3a'

Zero-point correction=0.387727 (Hartree/Particle)Thermal correction to Energy=0.424856Thermal correction to Enthalpy=0.426006Thermal correction to Gibbs Free Energy=0.308785

Sum of electronic and zero-point Energies= -1776.633039 Sum of electronic and thermal Energies= -1776.595909 Sum of electronic and thermal Enthalpies= -1776.594759 Sum of electronic and thermal Free Energies= -1776.711980 E(RB3PW91) = -1777.02076542Atom X Y Z $S \quad 3.022973000000 \quad -1.918900000000 \quad 0.541973000000 \\$ $C \quad 1.761629000000 \quad -0.690848000000 \quad 0.241433000000 \\$ C 3.473858000000 0.919722000000 -0.667771000000 $C \ 2.086932000000 \ 0.556402000000 \ -0.177801000000$ $C \ 5.426468000000 \ 1.356058000000 \ 0.855500000000 \\$ C 2.530273000000 -3.300060000000 -0.538398000000 C 4.24990900000 1.724273000000 0.343748000000 Н 5.902828000000 0.420535000000 0.570437000000 Н 5.94899000000 1.976538000000 1.578578000000 Н 3.24082900000 -4.104279000000 -0.330069000000 Н 1.518124000000 -3.646802000000 -0.320842000000 Н 2.602531000000 -3.015255000000 -1.590141000000 $H \quad 3.79708000000 \quad 2.66405600000 \quad 0.661348000000 \\$ Н 3.359444000000 1.522867000000 -1.579830000000 Н 4.029931000000 0.016570000000 -0.929453000000 N 0.408865000000 -1.018710000000 0.568163000000 C 1.113945000000 1.682383000000 -0.145865000000 C 0.547506000000 2.105679000000 1.065791000000 C 0.812362000000 2.403242000000 -1.311403000000 C -0.294738000000 3.215513000000 1.112180000000 Н 0.784644000000 1.565888000000 1.977899000000 C -0.59043000000 3.92270000000 -0.054543000000 H -0.715819000000 3.531442000000 2.063075000000 C -0.037535000000 3.508508000000 -1.267654000000 H -1.242141000000 4.791621000000 -0.018282000000 H -0.265596000000 4.047045000000 -2.183805000000 H 1.225547000000 2.081618000000 -2.263423000000

С	0.156588000000	-1.654847000000	1.863189000000
Н	-0.914621000000	-1.614234000000	2.079016000000
Н	0.494882000000	-2.695609000000	1.902094000000
Н	0.683803000000	-1.080424000000	2.627927000000
S	-0.600183000000	-1.582573000000	-0.690792000000
0	-0.099891000000	-0.983374000000	-1.925157000000
С	-2.184313000000	-0.871246000000	-0.274708000000
С	-3.193269000000	-1.701174000000	0.209180000000
С	-2.407083000000	0.491658000000	-0.478850000000
С	-4.441384000000	-1.151300000000	0.501936000000
Н	-3.000934000000	-2.761718000000	0.336119000000
C	-3.658090000000	1.020056000000	-0.182637000000
Η	-1.616409000000	1.124896000000	-0.867674000000
С	-4.693665000000	0.211943000000	0.313025000000
Η	-5.231632000000	-1.796974000000	0.876977000000
Η	-3.834805000000	2.080979000000	-0.342282000000
С	-6.042559000000	0.805724000000	0.619213000000
Η	-6.727850000000	0.057455000000	1.026112000000
Η	-5.959621000000	1.619837000000	1.347986000000
Η	-6.500676000000	1.225689000000	-0.283543000000
0	-0.763066000000	-3.039567000000	-0.585796000000

X-ray crystallography:²⁰

X-ray reflections for 5ag were collected on Bruker D8 Quest CCD diffractometer using Mo-K α , radiation. Data reduction was performed using CrysAlisPro (version 1.171.33.55). Apex 2 and SHELXL 97 program were used to solve and refine the data. All non-hydrogen atoms were refined anisotropically, and C–H hydrogens were fixed.

Figure S3. Molecular structure of compound 3d, {oxygen (red), nitrogen (blue), and Sulphur (yellow)}Table S3. Crystallographic Data for Compound 3d

Compound	3d
Formula	351.45
Formula weight	$C_{21}H_{21}NO_2S$
Crystal system	Monoclinic
Space group	P 21
T (K)	298 K

a [Å]	6.1683 (9)
b [Å]	18.221 (3)
C [Å]	8.3375 (14)
α [°]	90
β [°]	100.838 (5)
γ [°]	90
V [Å ³]	920.4 (3)
Ζ	2
$ ho_{calcd} [m g cm^{-3}]$	1.268
μ [mm ⁻¹]	0.189
Total reflns	16985
Unique reflns	4130
observed	3877
$R_1[I>2\sigma(I)]$	0.0287 (3877)
wR2 [all]	0.0744 (4130)
GOF	1.056
Diffractometer	Bruker D8 Quest CCD
CCDC Number	2064571

References:

- [1] Wang, J.; Gao, Y.; Wu, G.; Zhou, Q. Angew. Chem. Int. Ed. 2018, 57, 2716-2720.
- [2] Arsenyan, P.; Paegle, E.; Belyakov, S.; Kirsh, G. Tetrahedron Lett. 2015, 56, 4554-4557.
- [3] Stahl, S.; Hamada T.; Ye, X. J. Am. Chem. Soc. 2008, 130, 833-835.
- [4] Maulide, N.; Pinto, A.; Kaiser, D.; Maryasin, B.; Mauro, G. D.; González, L. *Chem. Eur. J.* 2018, 24, 2515-2519.
- [5] Vanjari, R.; Dutta, S.; Gogoi, M. P.; Gandon, V.; Sahoo, A. K. Org. Lett. 2018, 20, 8077-8081.
- [6] Yoo H. Ji.; Youn, S. W. Org. Lett. 2019, 21, 3422-3426.
[7] Ruddraraju, K. V.; Parsons, Z. D.; Lewis, C. D.; Gates, K. S. J. Org. Chem. 2017, 82, 776-780.

[8] Davies, P. W.; Albrecht, S. J.-C. Chem. Commun. 2008, 238-240.

[9] Jana, S.; Koenigs, R. M. Org. Lett. 2019, 21, 3653-3657.

[10] Gaussian 09 Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J. E. Peralta,S145 Jr., F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

[11] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648. b) K. Burke, J. P. Perdew, Y. Wang, In Electronic Density Functional Theory: Recent Progress and New Directions (Eds.: J. F. Dobson, G. Vignale, M. P. Das,) Plenum: New York, 1998.

[12] X. Liu, L. Xiang, E. Louyriac, L. Maron, X. Leng, Y. Chen, J. Am. Chem. Soc. 2019, 141, 138.

[13] M. Dolg, H. Stoll, A. Savin, H. Preuss, Theor. Chim. Acta. 1989, 75, 173.

[14] a) K. Fukui, J. Phys. Chem. 1970, 74, 4161. b) K. Fukui, Acc. Chem. Res. 1981, 14, 363.

[15] C. Y. Legault, CYLview, Version 1.0b; Université de Sherbrooke, 2009 (available via the Internet at: <u>http://www.cylview.org</u>).

[16] G. L. Tripodi, T. C. Correra, C. F. F. Angolini, B. R. V. Ferreira, P. Maître, M. N. Eberlin, J. Roithová, *Eur. J. Org. Chem.* **2019**, 3560

[17] R. Taylor, J. Chem. Inf. Model. 2011, 51, 897.

[18] E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, W. Yang, Revealing Noncovalent Interactions. *J. Am. Chem. Soc.* **2010**, *132*, 6498.

[19] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **2010**, *132*, 154104.

[20] (a) SAINT-Plus, version 6.45, Bruker AXS Inc. Madison, WI, 2003. (b) Sheldrick, G. M. SADABS, Program for Empirical Absorption Correction of Area Detector Data, University of Gottingen, Germany, 1997. (c) SMART (version 5.625), SHELX-TL (version 6.12), Bruker AXS Inc. Madison, WI, 2000; (d) Sheldrick, G. M. SHELXS-97, SHELXL-97, University of Gottingen, Germmany, 1997. (e) Dolomanov O.V.; Blake A. J.; Champness N. R., Schroder M. *J. Appl. Cryst.* **2003**, 36, 1283.

1

٨

155.14 144.83 144.83 133.93 133.63 133.63 133.63 133.63 133.63 133.63 132.45 132.45 128.77 128.77 128.77 128.77 128.77 126.70 116.90		₹77.25 ₹77.00 76.74	61.67		
$ \int_{C} \int_{$			*	* *	Constant Data Parameters NMM P1:55 PROCND 1 Same 2019421 ProcND 1 Same 2019421 ProcND 1 Same 2019421 ProcND 1 Same 2019421 ProcND 1 Same 2011 Same 2011 Same Same 2011 Same 2011 Same Same 2011 Same
180 170 160 150 140 130 120 110	100 90	80 70	60	50 40	30 20 10 0 ppm

2

*

.

Me	155.02 142.07 141.34 138.26	133.63 131.88 130.53 130.24 130.24 130.00	127.58 127.58 122.09	117.07	77.31	76.68	61.80	46.04	40.26				
O S 4m Br											Turner, De NAME # EXT NO FROND F1 = Acquir Date F1 = Acquir F1 = A	<pre>c.s. Parameters d 400 uprotest</pre>	×
											FIDARS AQ AQ AQ AD DA DA TS DI TS DI TS DI TS DA DA DA DA DA DA DA DA DA DA DA DA DA	0,731554 Hz 1,321424 arc 0,750 Usec 6,55 Usec 0,000000 arc 0,00000000 arc 100,613031 MHz 1,33 Usec 1,35 Usec 4,4335463 MHz 4,43556 MHz 4,43556 Usec 1,142555 MHz 0,4452255 MHz 0,245500 Usec 1,142555 Usec 1,14555 Usec 1,1455 Use	
							I				55 859 555 55 68 97	100 (023673 MB: BM 0 1.00 HB 1.40	
akining alaring and a solar and a solar	Nisingh Li Biling a bil property a scient		a na fairthe and a fair the second state of the se	ullum a where a site wat was to a life inde	Markanan da ser se analysis and see	alah ah san tikke se si	edan, si v. bili u da	the second se	esti i, st. Aidau asti	e a statististist	brés chelona suite	South Erblinson, Laker, La	Bibs. ray!. 42 jimmasi
180 170	160 150	140 130	120 110) 100	80 80	 70	60	50	40	30	20	10	0 ppn

1

 (\mathcal{A})

.

4

