Supporting information

Accommodation of Gly-cisPro in a designed $\boldsymbol{\beta}$-hairpin

Chandradeep Basu, \dagger Himal Kanti Ganguly \dagger and Gautam Basu*
Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII M , Kolkata 700054, India.
\dagger Authors contributed equally.
* To whom all correspondences should be addressed

Section S1. Materials and Methods

Peptide synthesis:

All peptides were synthesized by using the standard solid-phase peptide synthesis procedure in a stepwise manner on an AAPPTEC 90II peptide synthesizer, using Fmoc chemistry. Rink amide MBHA resin ($0.39 \mathrm{mmol} / \mathrm{g}$ substitution) and Fmoc-amino acids were purchased from Novabiochem while the fluorinated amino acids, Fmoc-4-R-fluoroproline (${ }^{\mathrm{t}} \mathrm{P}$) and Fmoc-4-S-fluoroproline $\left({ }^{\mathrm{C}} \mathrm{P}\right)$, were purchased from BACHEM. The Fmoc-protected amino acid derivatives (5-fold excess of resin load) were coupled using PyBOP and diisopropylethylamine (DIPEA) (5- and 10-fold excess of resin substitution, respectively) in N,N-dimethylformamide (DMF). The deprotection reactions of the Fmoc group were achieved using $20 \%(\mathrm{v} / \mathrm{v})$ piperidine solution in DMF. The peptides were acetylated at their N-terminal by using acetic acid, PyBOP, and DIPEA (5-, 5-, 10 -fold excess of resin substitution, respectively) in DMF. The peptides were cleaved from the resin using a cleavage cocktail containing 85% TFA, 5% water, 5% phenol, 2.5% anisole and 2.5% triisopropylsilane for 1 h . TFA was removed by evaporation, and the afforded crude peptides were dissolved in methanol. Peptides were purified using reverse-phase HPLC (on Phenomenix C18 column) using a linear gradient (0 to 100% over 60 min) of $\left.\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{OH}\right)$. The purified peptides were then lyophilized and then characterized by MALDI-TOF mass spectrometry and ${ }^{1}$ H NMR spectroscopy.

CD Spectrophotometry:

Circular dichroism experiments for the peptides were carried out in methanol at two different temperatures, 298 K and 278 K respectively, on a JASCO J-1500 CD spectrophotometer. Concentrations of the peptides were maintained around $50 \mu \mathrm{M}$. All spectra were recorded from 260 nm to 200 nm with data interval of 1 nm . Scan speed was set to 50 $\mathrm{nm} / \mathrm{min}$ and digital integration time (D.I.T) was set to 4 sec . All spectra were averaged over 3 scans. The spectra were baseline corrected manually and the ellipticity value at 260 nm for all the spectra were zero-corrected. For each peptide at least 3 independent trials were performed and the averaged data were used for analysis.

NMR Spectroscopy:

All ${ }^{1} \mathrm{H}$ NMR experiments were carried out either on a Bruker Avance III 500 MHz spectrometer equipped with a SMART probe or on a Bruker Avance III 700 MHz spectrometer equipped with an RT probe at 298 K , unless otherwise mentioned. Spectra of the peptides were obtained in $\mathrm{CD}_{3} \mathrm{OH}$. Resonance assignments for the amino acids within the peptides were achieved via TOCSY with 80 ms spinlock time with 2048 data points and 510 tl increments. The sequence assignments were achieved via ROESY experiments (mixing time of 250-350 ms, 510 t 1 increments, and 16 scans per t 1 increment). The prolyl isomers were identified using the expected $\mathrm{H} \alpha-\mathrm{H} \alpha$ and $\mathrm{H} \alpha-\mathrm{H} \delta$ ROE cross-peaks for the cis and the trans isomers, respectively. Relative cis-trans populations were calculated from the relative integrals of appropriate wellresolved resonances (amide) from the corresponding ${ }^{1} \mathrm{H}$ NMR spectra.

Characterization of peptides by ${ }^{1} H$ NMR spectroscopy

8W-L : [LLV ${ }^{\text {D PGYWV] }}$

$\mathrm{V} 3{ }_{t} \mathrm{~V} 8{ }_{t}$	$\mathrm{W} 7_{t} \mathrm{L1}_{t}$	$\mathrm{L2}_{t} \mathrm{G5}_{t}$	Y6 ${ }_{t}$
Mn	$\cdots \mathrm{N}$	N	M

8W-P : [LPVDPGYWV]
$\mathrm{NH}_{\substack{ \\\mathrm{V} 1_{t} \mathrm{~V} 8_{t}}}^{\mathrm{W}_{t} \mathrm{G5}_{t}}$
8W-G: [LGVDPGYWV]

$$
\begin{aligned}
& \mathrm{L} 1_{t} \mathrm{~W} 7_{t} \mathrm{~V}_{t} \mathrm{G2b}_{t} \quad \mathrm{G} 5_{t} \mathrm{~V} 8_{t} \quad \mathrm{Y} 6_{t} \\
& \text { MMMN MM, M }
\end{aligned}
$$

\qquad
8W-GP : [LGPVDPGYWV]
W7 ${ }_{t}$ G2 ${ }_{t}$
$\mathrm{~V}_{t} \mathrm{G5}_{t} \mathrm{L1}_{t} \quad \mathrm{V8}_{t} \quad \mathrm{Y} 6_{t}$
μ
n
8W-PG : [LPGVDPGYWV]

Figure S1: Comparison of the amide region in the ${ }^{1} \mathrm{H}$ NMR for the peptides $8 \mathrm{~W}-\mathrm{L}, 8 \mathrm{~W}-\mathrm{P}, 8 \mathrm{~W}-$ G, $8 \mathrm{~W}-\mathrm{PG}$, and $8 \mathrm{~W}-\mathrm{GP}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K .

8W-P : [LPVDPGYWV]

8W-tP : [LtPVDPGYWV]

8W-cP : [L"PVDPGYWV]

Figure S2: Comparison of the amide region in the ${ }^{1} \mathrm{H}$ NMR for the peptides $8 \mathrm{~W}-\mathrm{P}, 8 \mathrm{~W}-{ }^{\mathrm{t}} \mathrm{P}$, and $8 \mathrm{~W}-{ }^{\mathrm{c}} \mathrm{P}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K .

8W-GP : [LGPVDPGYWV]

8W-G'P : [LG'PVDPGYWV]

8W-G'P : [LGcPVDPGYWV]

Figure S3: Comparison of the amide region in the ${ }^{1} \mathrm{H}$ NMR for the peptides $8 \mathrm{~W}-\mathrm{GP}, 8 \mathrm{~W}-\mathrm{G}^{\mathrm{t}} \mathrm{P}$, and $8 \mathrm{~W}-\mathrm{G}^{\mathrm{c}} \mathrm{P}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K .

8V-G : [LGVDPGYVV]

8V-PG: [LPGVDPGYVV]

$$
\mathrm{G2b}_{t} \mathrm{V3}_{t} \mathrm{L1}{ }_{t} \mathrm{V7}_{t} \mathrm{G}_{t} \mathrm{~V} 8_{t} \quad \mathrm{Y}_{t}
$$

8V-GP : [LGPVDPGYVV]

8V-G ${ }^{c}$: [LGc ${ }^{c} V^{D P G Y V V]}$

Figure S4: Comparison of the amide region in the ${ }^{1} \mathrm{H}$ NMR for the peptides in 8 V series in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K .

Assigned TOCSY spectra for all peptides

Figure S5: Amide fingerprint region from TOCSY of the peptide 8W-L in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K .

Figure S6: Amide fingerprint region from TOCSY of the peptide $8 \mathrm{~W}-\mathrm{G}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K .

Figure S7: Amide fingerprint region from TOCSY of the peptide 8W-P in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K .

Figure S8: Amide fingerprint region from TOCSY of the peptide $8 \mathrm{~W}-\mathrm{PG}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K . Numbering the proline and glycine as residues with numbers as 2 a and 2 b , respectively, reflects the replacement of L2 with PG.

Figure S9: Amide fingerprint region from TOCSY of the peptide $8 \mathrm{~W}-{ }^{\mathrm{t}} \mathrm{P}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K .

Figure S10: Amide fingerprint region from TOCSY of the peptide $8 \mathrm{~W}^{-}{ }^{\mathrm{c}} \mathrm{P}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K .

Figure S11: Amide fingerprint region from TOCSY of the peptide $8 \mathrm{~W}-\mathrm{GP}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K . Numbering the glycine and proline as residues with numbers as 2 a and 2 b , respectively, reflects the replacement of L2 with GP. The resonances corresponding to the cis and the trans isomers are labeled in red and blue, respectively.

Figure S12: Amide fingerprint region from TOCSY of the peptide $8 \mathrm{~W}-\mathrm{G}^{\mathrm{t}} \mathrm{P}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K . Numbering the glycine and $4 R$-fluoroproline (${ }^{\mathrm{t}} \mathrm{P}$) as residues with numbers as 2 a and 2 b , respectively, reflects the replacement of L2 with G^{t}. The resonances corresponding to the cis and the trans isomers are labeled in red and blue, respectively.

Figure S13: Amide fingerprint region from TOCSY of the peptide $8 \mathrm{~W}-\mathrm{G}^{\mathrm{c}} \mathrm{P}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K . Numbering the glycine and $4 S$-fluoroproline (${ }^{\mathrm{C}} \mathrm{P}$) as residues with numbers as 2 a and 2 b , respectively, reflects the replacement of L 2 with $\mathrm{G}^{\mathrm{c}} \mathrm{P}$. The resonances corresponding to the cis and the trans isomers are labeled in red and blue, respectively.

Figure S14: Amide fingerprint region from TOCSY of the peptide 8V-L in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K .

Figure S15: Amide fingerprint region from TOCSY of the peptide 8V-P in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K .

Figure S16: Amide fingerprint region from TOCSY of the peptide $8 \mathrm{~V}-\mathrm{G}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K .

Figure S17: Amide fingerprint region from TOCSY of the peptide $8 \mathrm{~V}-\mathrm{PG}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K . Numbering the proline and glycine as residues with numbers as 2 a and 2 b , respectively, reflects the replacement of L2 with PG.

Figure S18: Amide fingerprint region from TOCSY of the peptide $8 \mathrm{~V}-\mathrm{GP}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K . Numbering the glycine and proline as residues with numbers as 2 a and 2 b , respectively, reflects the replacement of L2 with GP. The resonances corresponding to the cis and the trans isomers are labeled in red and blue, respectively.

Figure S19: Amide fingerprint region from TOCSY of the peptide $8 \mathrm{~V}-\mathrm{G}^{\mathrm{t}}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K . Numbering the glycine and $4 R$-fluoroproline (${ }^{\mathrm{t}} \mathrm{P}$) as residues with numbers as 2 a and 2 b , respectively, reflects the replacement of $L 2$ with $G^{t} P$. The resonances corresponding to the cis and the trans isomers are labeled in red and blue, respectively.

Figure S20: Amide fingerprint region from TOCSY of the peptide $8 \mathrm{~V}-\mathrm{G}^{\mathrm{c}} \mathrm{P}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K . Numbering the glycine and $4 S$-fluoroproline (${ }^{\mathrm{C}} \mathrm{P}$) as residues with numbers as 2 a and 2 b , respectively, reflects the replacement of L 2 with $\mathrm{G}^{\mathrm{c}} \mathrm{P}$. The resonances corresponding to the cis and the trans isomers are labeled in red and blue, respectively.

Key ROESY spectra from the peptides in the 8 W series

Figure S21: Superimposed TOCSY (red) and ROESY (blue) of $8 \mathrm{~W}-\mathrm{G}, 8 \mathrm{~W}-\mathrm{PG}, 8 \mathrm{~W}-\mathrm{GP}$, and $8 \mathrm{~W}-\mathrm{G}^{\mathrm{c} P}$. The relative intensities of the $\mathrm{HN}-\mathrm{Ha}$ crosspeaks corresponding to the Gly residue occupying either the $2^{\text {nd }}$ or the 2 a or the $2 b$ (whichever is applicable) are boxed.

Figure S22: ROESY of $8 \mathrm{~W}-\mathrm{L}$ and $8 \mathrm{~W}-\mathrm{G}^{\mathrm{c}} \mathrm{P}$. The red contours represent the diagonal, and negative cross peaks are shown in blue. The key side-chain-side-chain ROE cross peaks are shown with arrows. In $8 \mathrm{~W}-\mathrm{L}$ the Leul and Val3 side chains exhibit ROE cross peaks ($\boldsymbol{i} \rightarrow \boldsymbol{i}+\mathbf{2}$) while in $8 \mathrm{~W}-\mathrm{G}^{\mathrm{c} P}$ the Leu1 and Val3 side chains, that are separated by the united residue GlycisPro, exhibit $(\boldsymbol{i} \rightarrow \boldsymbol{i}+\mathbf{3})$ ROE cross peaks.

Characterization of peptides by mass spectroscopy

Table S1: The m/z expected and observed for all peptides.

Peptides	$\mathbf{m}_{\text {expected }}(D a)$	$\mathrm{m} / \mathbf{z}_{\text {observed }}(\mathrm{Da})$	
		$\mathbf{M}+\mathbf{N a}^{+}$	$\mathbf{M}+\mathbf{K}^{+}$
8W-L	987.19	1009.59	1025.57
8W-G	931.09	953.53	969.50
8W-P	971.15	993.55	1009.50
$8 \mathrm{~W}-{ }^{\mathrm{t}} \mathrm{P}$	989.15	1011.50	1027.50
$8 \mathrm{~W}-{ }^{\text {c }}$ -	989.15	1011.60	1027.60
8W-PG	1028.20	1050.60	1066.60
8W-GP	1028.20	1050.60	1066.50
$8 \mathrm{~W}-\mathrm{G}^{\mathrm{t}} \mathrm{P}$	1046.20	1068.60	1084.50
$8 \mathrm{~W}-\mathrm{G}^{\mathrm{c} P}$	1046.20	1068.60	1084.50
8V-L	900.11	922.52	938.49
8V-G	844.01	866.41	882.39
$8 \mathrm{~V}-\mathrm{P}$	884.07	906.44	922.42
$8 \mathrm{~V}-\mathrm{PG}$	941.12	963.54	979.52
$8 \mathrm{~V}-\mathrm{GP}$	941.12	963.50	979.48
$8 \mathrm{~V}-\mathrm{G}^{\mathrm{t}} \mathrm{P}$	959.12	981.50	997.42
$8 \mathrm{~V}-\mathrm{G}^{\mathrm{c}} \mathrm{P}$	959.12	981.45	997.42

Table S2: Resonance assignment of $8 \mathrm{~W}-\mathrm{L}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K

Residue	X-P amide	$\mathbf{H}^{\boldsymbol{N}}$	$\mathbf{H} \boldsymbol{\alpha}$	$\mathbf{H} \boldsymbol{\beta}$	$\mathbf{H} \boldsymbol{\gamma}$	Others
Ac	trans	-	-	-	-	2.01
L1	trans	8.39	4.61	1.49	1.60	$\mathrm{H} \delta: 0.90$
L2	trans	8.19	4.51	$0.92,1.43$	1.16	$\mathrm{H} \delta: 0.31,0.51$
V3	trans	8.90	4.46	2.09	0.90	-
DP4	trans	-	4.36	2.17	1.95	$\mathrm{H} \delta: 3.72$
G5	trans	8.11	$3.50,3.81$	-	-	-
Y6	trans	7.97	4.69	$2.90,3.17$	-	$\mathrm{H} \delta: 7.11 ; \mathrm{Hz}: 6.68$
W7	trans	8.47	5.05	$3.02,3.12$	-	$\mathrm{H} \delta 1: 7.07, \mathrm{Hz1:10.15}$,
						$\mathrm{H} \varepsilon 3: 7.39, \mathrm{H} \zeta 3: 7.03$,
						$\mathrm{H} \eta 2: 6.96, \mathrm{H} \zeta 2: 7.27$
V8	trans	8.87	4.30	2.09	0.94	-
CONH_{2}	trans	$6.93,7.53$	-	-	-	-

Table S3: Resonance assignment of 8W-P in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K

Residue	X-P amide	$\mathbf{H}^{\mathbf{N}}$	$\mathbf{H} \boldsymbol{\alpha}$	$\mathbf{H} \boldsymbol{\beta}$	$\mathbf{H} \boldsymbol{\gamma}$	Others
Ac	trans	-	-	-	-	2.03
L 1	trans	8.64	4.93	1.56	1.68	$\mathrm{H} \delta: 0.94$
P2	trans	-	4.41	$1.33,1.65$	$1.75,2.10$	$\mathrm{H} \delta: 3.62,3.82$
V3	trans	8.71	4.37	2.04	0.90	-
${ }^{\mathrm{D}} \mathrm{P} 4$	trans	-	4.34	2.18	1.90	$\mathrm{H} \delta: 3.60,3.66$
G5	trans	8.43	$3.59,3.75$	-	-	-
Y6	trans	7.86	4.69	$2.92,2.97$	-	$\mathrm{H} \delta: 7.10 ; \mathrm{H} \mathrm{\varepsilon:} \mathrm{6.67}$
W7	trans	8.44	4.94	$2.97,3.02$	-	$\mathrm{H} \delta 1: 7.03, \mathrm{H} \varepsilon 1: 10.20$,
						$\mathrm{H} 33: 7.33, \mathrm{H} \zeta 3: 7.04$,
						$\mathrm{H} 2: 6.97, \mathrm{H} \zeta 2: 7.27$
V 8	trans	8.61	4.33	2.10	0.96	-
CONH_{2}	trans	$7.06,7.67$	-	-	-	-

Table S4: Resonance assignment of $8 \mathrm{~W}-\mathrm{G}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K

Residue	X-P amide	$\mathbf{H}^{\boldsymbol{N}}$	$\mathbf{H} \boldsymbol{\alpha}$	$\mathbf{H} \boldsymbol{\beta}$	$\mathbf{H} \boldsymbol{\gamma}$	Others
Ac	trans	-	-	-	-	1.94
L1	trans	8.22	4.43	1.56	1.56	$\mathrm{H} \delta: 0.91$
G2	trans	8.23	$3.60,3.95$	-	-	-
V3	trans	8.35	4.45	2.11	0.94	-
DP4	trans	-	4.36	2.23	2.00	$\mathrm{H} \delta: 3.70,3.86$
G5	trans	8.27	$3.69,3.77$	-	-	-
Y6	trans	7.85	4.55	2.93		$\mathrm{H} \delta: 7.08 ; \mathrm{Hz:} \mathrm{6.65}$
W7	trans	8.27	4.84	$3.06,3.22$	-	$\mathrm{H} \delta 1: 7.08, \mathrm{Hz1:10.18}$,
						$\mathrm{H} \varepsilon 3: 7.50, \mathrm{H} \zeta 3: 7.05$,
V8	trans	8.07	4.21	2.05	0.88	-
CONH_{2}	trans	$6.91,7.31$	-	-	-	-

Table S5: Resonance assignment of $8 \mathrm{~W}-\mathrm{PG}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K

Residue	X-P amide	$\mathbf{H}^{\mathbf{N}}$	$\mathbf{H} \boldsymbol{\alpha}$	$\mathbf{H} \boldsymbol{\beta}$	$\mathbf{H} \boldsymbol{\gamma}$	Others
Ac	trans	-	-	-	-	1.91
L1	trans	8.31	4.76	$1.53,1.57$	1.69	$\mathrm{H} \delta: 0.95$
P2a	trans	-	4.16	2.04	1.90	$\mathrm{H} \delta: 3.61,3.84$
G2b	trans	8.19	$3.82,3.91$	-	-	-
V3	trans	8.24	4.42	2.17	0.99	-
DP4	trans	-	4.41	2.23	2.02	$\mathrm{H} \delta: 3.71,3.96$
G5	trans	8.06	$3.68,3.85$	-	-	-
Y6	trans	7.86	4.55	$2.90,2.96$	-	$\mathrm{H} \delta: 7.05 ; \mathrm{H} \mathrm{\varepsilon:} \mathrm{6.65}$
W7	trans	8.29	4.71	$3.11,3.23$	-	$\mathrm{H} \delta 1: 7.13, \mathrm{H} \varepsilon 1: 10.19$,
						$\mathrm{H} \varepsilon 3: 7.53, \mathrm{H} \zeta 3: 7.05$,
V8	trans	8.01	4.19	2.03	0.90	-
CONH_{2}	trans	$6.95,7.34$	-	-	-	-

** For two-residue substitution at position 2, the $1^{\text {st }}$ amino acid was denoted by position 2 a and the $2^{\text {nd }}$ amino acid was denoted by position 2 b to maintain parity with one-residue substitution

Table S6: Resonance assignment of 8W-GP in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K

Residue	X-P amide	$\mathbf{H}^{\text {N }}$	H α	H β	H γ	Others
Ac	cis	-	-	-	-	2.00
	trans	-	-	-	-	1.98
L1	cis	8.44	4.57	1.64	1.68	H8: 0.93
	trans	8.17	4.50	1.59	1.66	H8: 0.91
G2a	cis	8.10	3.47, 4.21	-	-	-
	trans	8.01	3.48, 3.65	-	-	-
P2b	cis	-	4.48	1.85	1.46, 1.65	H8: 3.28, 3.44
	trans	-	4.44	1.90	1.71, 1.82	H8: 3.02, 3.31
V3	cis	8.76	4.50	2.14	0.97	-
	trans	8.49	4.43	2.10	0.93	-
${ }^{\text {D }}$ P4	cis	-	4.36	2.22	1.95, 2.07	H\%: 3.72
	trans	-	4.36	2.22	1.95, 2.07	H8: 3.72
G5	cis	8.3	3.54, 3.85	-	-	-
	trans	8.05	3.68, 3.78	-	-	-
Y6	cis	8.07	4.68	2.97, 3.01	-	Hס: 6.96; Hع: 6.64
	trans	7.96	4.66	2.95, 3.01	-	H8: 7.11; Hع: 6.68
W7	cis	8.42	4.73	3.08, 3.23	-	Н反1: 7.11, Hع1: 10.22,
						$\begin{aligned} & \text { Нદ3: 7.50, НЦ3: 7.05, } \\ & \text { Нๆ2: 6.93, Нگ2: } 7.28 \end{aligned}$
	trans	8.50	4.67	3.05, 3.25	-	H81: 7.11, Hع1: 10.23,
						Нع3: 7.51, Hל3: 7.08,
						Hך2: 7.00, Нら2: 7.30
V8	cis	8.06	4.25	2.05	0.93	-
	trans	7.93	4.24	2.07	0.92	-
CONH_{2}	cis	n.d. ,7.51	-	-	-	-
	trans	6.99, 7.52	-	-	-	-

* n.d. - not identified

Table S7: Resonance assignment of $8 \mathrm{~W}-{ }^{\mathrm{t}} \mathrm{P}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K

Residue	X-P amide	$\mathbf{H}^{\mathbf{N}}$	$\mathbf{H} \boldsymbol{\alpha}$	$\mathbf{H} \boldsymbol{\beta}$	$\mathbf{H} \boldsymbol{\gamma}$	Others
Ac	trans	-	-	-	-	1.92
L 1	trans	8.50	4.79	1.66	1.55	$\mathrm{H} \delta: 0.92$
${ }^{\mathrm{t}} \mathrm{P} 2$	trans	-	4.76	$2.07,2.19$	5.36	$\mathrm{H} \delta: 3.87,4.26$
V 3	trans	8.76	4.42	2.07	0.94	-
${ }^{\mathrm{D}} \mathrm{P} 4$	trans	-	4.35	2.2	$1.95,2.07$	$\mathrm{H} \delta: 3.68$
G 5	trans	8.42	$3.62,3.77$	-	-	-
Y6	trans	7.91	4.65	$2.90,2.96$	-	$\mathrm{H} \delta: 7.08 ; \mathrm{H} \mathrm{\varepsilon:6.66}$
W7	trans	8.32	4.94	$3.05,3.10$	-	$\mathrm{H} \delta 1: 7.01, \mathrm{H} \varepsilon 1: 10.12$,
						$\mathrm{H} \mathrm{\varepsilon 3:7.43,H} \mathrm{\zeta 3:7.03}$,
						$\mathrm{H} \eta 2: 6.98, \mathrm{H} \zeta 2: 7.27$
V 8	trans	8.22	4.28	2.07	0.93	-
CONH_{2}	trans	$7.00,7.52$	-	-	-	-

Table S8: Resonance assignment of $8 \mathrm{~W}-{ }^{\mathrm{c}} \mathrm{P}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K

Residue	X-P amide	$\mathbf{H}^{\mathbf{N}}$	$\mathbf{H} \boldsymbol{\alpha}$	$\mathbf{H} \boldsymbol{\beta}$	$\mathbf{H} \boldsymbol{\gamma}$	Others
Ac	trans	-	-	-	-	2.03
L 1	trans	8.52	4.76	1.68	1.57	$\mathrm{H}: 0.94$
${ }^{\mathrm{c}} \mathrm{P} 2$	trans	-	4.59	$1.51,2.02$	4.98	$\mathrm{H} \delta: 3.76,4.10$
V3	trans	8.55	4.37	2.06	0.93	-
${ }^{\mathrm{D}} \mathrm{P} 4$	trans	-	4.34	2.16	$1.94,2.04$	$\mathrm{H} \delta: 3.66$
G 5	trans	8.26	$3.60,3.81$	-	-	-
Y6	trans	7.87	4.66	$2.93,2.97$	-	$\mathrm{H} \delta: 7.09 ; \mathrm{H} \mathrm{\varepsilon:} \mathrm{6.67}$
W7	trans	8.38	4.77	$3.03,3.10$	-	$\mathrm{H} \delta 1: 7.08, \mathrm{H} \varepsilon 1: 10.25$,
						$\mathrm{H} \varepsilon 3: 7.40, \mathrm{H} \zeta 3: 7.07$,
						$\mathrm{H} \eta 2: 6.97, \mathrm{H} 2: 7.31$
V 8	trans	8.2	4.27	2.08	0.92	-
CONH_{2}	trans	$7.03,7.53$	-	-	-	-

Table S9: Resonance assignment of $8 \mathrm{~W}-\mathrm{G}^{\mathrm{t}} \mathrm{P}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K

Residue	X-P amide	$\mathbf{H}^{\mathbf{N}}$	H α	H β	H γ	Others
Ac	cis	-	-	-	-	1.99
	trans	-	-	-	-	1.97
L1	cis	8.30	4.49	1.65	1.60	H8: 0.92
	trans	8.13	4.46	1.56	1.64	H8: 0.90
G2a	cis	8.01	3.69, 4.17	-	-	-
	trans	8.03	3.71	-	-	-
${ }^{t} \mathrm{P} 2 \mathrm{~b}$	cis	-	4.81	2.16, 2.54	5.12	H8: 3.53, 4.00
	trans	-	4.70	2.03, 2.38	5.23	H8: 3.66
V3	cis	8.81	4.54	2.17	1.02	-
	trans	8.62	4.40	2.13	0.97	-
${ }^{\text {D }}$ P4	cis	-	4.38	2.16	1.94	H8: 3.73, 3.81
	trans	-	4.38	2.22	1.97, 2.08	H8: 3.69, 3.78
G5	cis	8.32	3.56, 3.90	-	-	-
	trans	8.19	3.65, 3.83	-	-	-
Y6	cis	8.09	4.63	2.96	-	Hס: 7.07; Hع: 6.66
	trans	8.01	4.62	2.93, 2.98	-	Нб: 7.09; Hz: 6.67
W7	cis	8.27	4.70	3.14, 3.25	-	Нб1: 7.10, Hع1: 10.21,
						$\begin{aligned} & \text { Нع3:7.53, НЦ3: 7.05, } \\ & \text { Нŋ2: 6.97, Н弓2: } 7.29 \end{aligned}$
	trans	8.36	4.68	3.08, 3.24	-	H81: 7.09, Hz1: 10.22,
						$\begin{aligned} & \text { Нદ3: 7.54, Нל3: 7.08, } \\ & \text { H } 2: 7.02, \text { Hל2: } 7.31 \end{aligned}$
V8	cis	7.78	4.20	2.00	0.89	-
	trans	7.72	4.18	2.02	0.89	-
CONH_{2}	cis	6.92, 7.37	-	-	-	-
	trans	6.86, 7.33	-	-	-	-

Table S10：Resonance assignment of $8 \mathrm{~W}-\mathrm{G}^{\mathrm{c}} \mathrm{P}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K

Residue	X－P amide	$\mathbf{H}^{\text {N }}$	Ha	H β	H γ	Others
Ac	cis	－	－	－	－	1.98
	trans	－	－	－	－	2.01
L1	cis	8.46	4.59	1.64	1.69	H8： 0.94
	trans	8.21	4.40	1.60	1.68	H\％： 0.93
G2a	cis	8.20	3．51， 4.21	－	－	－
	trans	7.77	2．76， 3.31	－	－	－
${ }^{\text {c }} \mathrm{P} 2 \mathrm{~b}$	cis	－	4.64	1．53， 2.24	4.77	H8：3．47， 3.65
	trans	－	4.49	2．02， 2.31	5.03	Н8：2．98， 3.21
V3	cis	8.66	4.45	2.15	0.96	－
	trans	8.27	4.47	2.07	0.88	－
${ }^{\text {D }} \mathrm{P} 4$	cis	－	4.36	2.05	1．92， 2.16	H8：3．63， 3.70
	trans	－	4.36	2.03	1．94， 2.26	H8：3．70， 3.74
G5	cis	8.17	3．55， 3.82	－	－	－
	trans	7.40	3．67， 3.90	－	－	－
Y6	cis	7.99	4.69	3.00	－	Hס：7．12；Hع： 6.68
	trans	7.86	4.63	3．00， 3.06	－	Нб：7．14，Нع： 6.69
W7	cis	8.55	4.68	3．07， 3.25	－	Н反1：7．14，Hع1：10．25，
						$\begin{aligned} & \text { Нદ3: 7.52, НЦ3: 7.05, } \\ & \text { Нŋ2: 6.92, Н弓2: } 7.29 \end{aligned}$
	trans	8.59	4.63	3．04， 3.36	－	Hס1：7．19，Hz1：10．21，
						$\begin{aligned} & \text { Нદ3: 7.68, Н弓3: 7.09, } \\ & \text { Hך2: 7.05, Нと2: } 7.28 \end{aligned}$
V8	cis	8.00	4.28	2.05	0.92	－
	trans	7.64	4.27	2.07	0.94	－
CONH_{2}		n．d．	－	－	－	－
	trans	$7.03,7.56$	－	－	－	－

＊n．d．－not identified

Table S11: Resonance assignment of $8 \mathrm{~V}-\mathrm{L}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K

Residue	X-P amide	$\mathbf{H}^{\mathbf{N}}$	$\mathbf{H} \boldsymbol{\alpha}$	$\mathbf{H} \boldsymbol{\beta}$	$\mathbf{H} \boldsymbol{\gamma}$	Others
Ac	trans	-	-	-	-	1.93
L1	trans	8.42	4.56	1.53	1.62	$\mathrm{H} \delta: 0.92$
L2	trans	8.39	4.88	1.53	1.67	$\mathrm{H} \delta: 0.85$
V3	trans	8.97	4.49	2.11	$0.91,0.95$	-
DP4	trans	-	4.39	2.19	1.98	$\mathrm{H} \delta: 3.72$
G5	trans	8.36	$3.45,3.97$	-	-	-
Y6	trans	8.12	4.73	$2.90,2.97$	-	$\mathrm{H} \delta: 7.14 ; \mathrm{H} \varepsilon: 6.69$
V7	trans	8.39	4.61	1.94	$0.85,0.89$	-
V8	trans	8.88	4.32	2.08	$0.94,0.96$	-
CONH_{2}	trans	$7.07,7.77$	-	-	-	-

Table S12: Resonance assignment of $8 \mathrm{~V}-\mathrm{P}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K

Residue	X-P amide	$\mathbf{H}^{\mathbf{N}}$	$\mathbf{H} \boldsymbol{\alpha}$	$\mathbf{H} \boldsymbol{\beta}$	$\mathbf{H} \boldsymbol{\gamma}$	Others
Ac	trans	-	-	-	-	1.91
L1	trans	8.54	4.84	1.58	1.66	$\mathrm{H} \delta: 0.91,0.94$
P2	trans	-	4.04	$2.15,2.27$	1.98	$\mathrm{H} \delta: 3.71$
V3	trans	8.86	4.44	2.09	0.94	-
DP4	trans	-	4.39	$2.15,2.21$	1.98	$\mathrm{H} \delta: 3.66,3.73$
G5	trans	8.59	$3.53,3.92$	-	-	-
Y6	trans	8.01	4.73	2.96	-	$\mathrm{H} \delta: 7.13 ; \mathrm{H} \mathrm{\varepsilon:} 6.68$
V7	trans	8.32	4.47	1.91	$0.80,0.85$	-
V8	trans	8.50	4.32	2.11	0.97	-
CONH_{2}	trans	$7.11,7.77$	-	-	-	-

Table S13: Resonance assignment of $8 \mathrm{~V}-\mathrm{G}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K

Residue	X-P amide	$\mathbf{H}^{\mathbf{N}}$	$\mathbf{H} \boldsymbol{\alpha}$	$\mathbf{H} \boldsymbol{\beta}$	$\mathbf{H} \boldsymbol{\gamma}$	Others
Ac	trans	-	-	-	-	1.96
L 1	trans	8.29	4.49	1.57	1.65	$\mathrm{H} \delta: 0.93$
G 2	trans	8.42	$3.87,4.23$	-	-	-
V3	trans	8.49	4.51	2.13	0.98	-
${ }^{\mathrm{D}} \mathrm{P} 4$	trans	-	4.37	2.24	$1.98,2.08$	$\mathrm{H} \delta: 3.73,3.84$
G5	trans	8.38	3.76	-	-	-
Y6	trans	7.96	4.62	2.99	-	$\mathrm{H} \delta: 7.12 ; \mathrm{H} \varepsilon: 6.67$
V7	trans	8.19	4.37	1.99	0.90	-
V8	trans	8.25	4.24	2.07	0.96	-
CONH_{2}	trans	$7.04,7.65$	-	-	-	-

Table S14: Resonance assignment of $8 \mathrm{~V}-\mathrm{PG}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K

Residue	X-P amide	$\mathbf{H}^{\mathbf{N}}$	$\mathbf{H} \boldsymbol{\alpha}$	$\mathbf{H} \boldsymbol{\beta}$	$\mathbf{H} \boldsymbol{\gamma}$	Others
Ac	trans	-	-	-	-	1.90
L1	trans	8.27	4.75	1.55	1.69	$\mathrm{H} \delta: 0.95$
P2a	trans	-	4.32	2.16	1.98	$\mathrm{H} \delta: 3.64,3.91$
G2b	trans	8.36	$3.93,4.07$	-	-	-
V3	trans	8.31	4.46	2.16	0.99	-
DP4	trans	-	4.38	2.23	2.02	$\mathrm{H} \delta: 3.72,3.96$
G5	trans	8.12	$3.70,3.86$	-	-	-
Y6	trans	7.89	4.57	$2.96,3.01$	-	$\mathrm{H} \delta: 7.09 ; \mathrm{H} \mathrm{\varepsilon}: 6.66$
V7	trans	8.20	4.24	2.03	0.92	-
V8	trans	8.09	4.22	2.05	0.96	-
CONH_{2}	trans	$7.02,7.60$	-	-	-	-

Table S15: Resonance assignment of $8 \mathrm{~V}-\mathrm{GP}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K

Residue	X-P amide	$\mathbf{H}^{\mathbf{N}}$	$\mathbf{H} \boldsymbol{\alpha}$	$\mathbf{H} \boldsymbol{\beta}$	$\mathbf{H} \boldsymbol{\gamma}$	Others
Ac	cis	-	-	-	-	2.00
	trans	-	-	-	-	1.99
L 1	cis	8.32	4.48	1.61	1.65	$\mathrm{H} \delta: 0.94$
	trans	8.19	4.50	1.58	1.66	$\mathrm{H} \delta: 0.92$
G 2 a	cis	8.06	$3.61,4.26$	-	-	-
	trans	8.10	$4.00,4.12$	-	-	-
P 2 b	cis	-	4.74	2.26	$1.88,2.16$	$\mathrm{H} \delta: 3.58,3.63$
	trans	-	4.65	2.16	$1.99,2.08$	$\mathrm{H} \delta: 3.60,3.66$
V 3	cis	8.70	4.55	2.16	1.00	-
	trans	8.45	4.44	2.13	0.99	-
D 4	cis	-	4.38	2.21	$1.98,2.10$	$\mathrm{H} \delta: 3.75,3.79$
	trans	-	4.38	2.21	$1.98,2.09$	$\mathrm{H} \delta: 3.70,3.79$
G 5	cis	8.39	$3.60,3.92$	-	-	-
	trans	8.32	$3.66,3.91$	-	-	-
Y 6	cis	8.12	4.69	3.04	-	$\mathrm{H} \delta: 7.13 ; \mathrm{H} \mathrm{\varepsilon:} 6.69$
	trans	8.02	4.65	$2.99,3.04$		$\mathrm{H} \mathrm{\delta:} \mathrm{7.12;} \mathrm{H} \mathrm{\varepsilon:} \mathrm{6.70}$
V 7	cis	8.25	4.16	2.05	0.95	-
	trans	8.17	4.19	2.05	0.93	-
V 8	cis	7.90	4.26	2.04	0.95	-
	trans	7.96	4.20	2.07	0.96	-
CONH	cis	$7.01,7.68$	-	-	-	-
	trans	$7.01,7.64$	-	-	-	-

Table S16: Resonance assignment of 8 V _G ${ }^{t} \mathrm{P}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K

Residue	X-P amide	$\mathbf{H}^{\mathbf{N}}$	$\mathbf{H} \boldsymbol{\alpha}$	$\mathbf{H} \boldsymbol{\beta}$	$\mathbf{H} \boldsymbol{\gamma}$	Others
Ac	cis	-	-	-	-	1.99
	trans	-	-	-	-	1.97
L 1	cis	8.33	4.50	1.60	1.65	$\mathrm{H} \delta: 0.93$
	trans	8.16	4.51	1.57	1.65	$\mathrm{H} \delta: 0.92$
G 2 a	cis	8.07	$3.66,4.31$	-	-	-
	trans	8.22	$4.05,4.10$	-	-	-
t 2 P	cis	-	4.96	$2.25,2.69$	5.24	$\mathrm{H} \delta: 3.57,4.12$
	trans	-	4.86	$2.14,2.56$	5.35	$\mathrm{H} \delta: 3.82,3.96$
V 3	cis	8.91	4.57	2.17	1.02	-
	trans	8.72	4.43	2.14	$0.98,1.02$	-
D 4	cis	-	4.37	2.20	$1.97,2.10$	$\mathrm{H} \delta: 3.75,3.77$
	trans	-	4.37	2.21	$1.97,2.10$	$\mathrm{H} \delta: 3.71,3.76$
G 5	cis	8.41	$3.53,3.94$	-	-	-
	trans	8.38	$3.59,3.90$	-	-	-
Y 6	cis	8.15	4.70	3.04	-	$\mathrm{H} \delta: 7.14 ; \mathrm{H} \varepsilon: 6.69$
	trans	8.06	4.66	2.99	-	$\mathrm{H} \delta: 7.12 ; \mathrm{H} \mathrm{\varepsilon:} \mathrm{6.68}$
V 7	cis	8.33	4.18	2.03	0.94	-
	trans	8.22	4.19	2.00	0.89	-
V 8	cis	7.81	4.26	2.03	$0.93,0.95$	-
	trans	7.81	4.20	2.08	0.97	-
CONH	cis	$7.02,7.66$	-	-	-	-
	trans	$7.03,7.66$	-	-	-	-

Table S17: Resonance assignment of $8 \mathrm{~V}_{-} \mathrm{G}^{\mathrm{c}} \mathrm{P}$ in $\mathrm{CD}_{3} \mathrm{OH}$ at 298 K

Residue	\mathbf{X}-P amide	$\mathbf{H}^{\mathbf{N}}$	$\mathbf{H} \boldsymbol{\alpha}$	$\mathbf{H} \boldsymbol{\beta}$	$\mathbf{H} \boldsymbol{\gamma}$	Others
Ac	cis	-	-	-	-	1.99
	trans	-	-	-	-	1.97
L 1	cis	8.31	4.47	1.61	1.66	$\mathrm{H} \delta: 0.92$
	trans	8.20	4.48	$1.57,1.62$	1.67	$\mathrm{H} \delta: 0.90,0.93$
G 2 a	cis	8.03	$3.67,4.27$	-	-	-
	trans	8.11	$3.91,4.09$	-	-	-
P 2 b	cis	-	4.86	$2.54,2.69$	5.24	$\mathrm{H} \delta: 3.81,3.86$
	trans	-	4.73	2.45	5.34	$\mathrm{H} \delta: 3.90,3.97$
V 3	cis	8.53	4.48	2.19	0.98	-
	trans	8.20	4.43	2.13	0.96	-
P 4	cis	-	4.37	2.16	$1.95,2.09$	$\mathrm{H} \delta: 3.67,3.75$
	trans	-	4.37	2.18	$1.96,2.04$	$\mathrm{H} \delta: 3.65,3.81$
G 5	cis	8.39	$3.55,3.92$	-	-	-
	trans	8.05	$3.74,3.87$	-	-	-
Y 6	cis	8.10	4.68	3.05	-	$\mathrm{H} \delta: 7.16 ; \mathrm{H} \mathrm{\varepsilon:} 6.69$
	trans	7.94	4.63	$2.99,3.04$	-	$\mathrm{H} \delta: 7.12 ; \mathrm{H} \mathrm{\varepsilon:} \mathrm{6.68}$
V 7	cis	8.30	4.05	2.06	0.98	-
	trans	8.12	4.17	2.07	0.95	-
V 8	cis	7.70	4.30	2.02	0.95	-
	trans	7.83	4.19	2.06	0.96	-
CONH	cis	$7.01,7.69$	-	-	-	-
	trans	$7.01,7.60$	-	-	-	-

