Electronic supporting information for manuscript

Unprecedented $[d^9]$ Cu $\cdot\cdot$ $[d^{10}]$ Au Coinage Bonding Interactions in $\{Cu(NH_3)_4[Au(CN)_2]\}^+[Au(CN)_2]^-$ salt

by

Emanuele Priola, Ghodrat Mahmoudi, Jacopo Andreo and Antonio Frontera

1.	X-ray crystallography	Page 2
2.	Experimental Details	Page 4
4.	Theoretical Methods	Page 5
5.	References	Page 6

1. X ray crystallography

Single-crystal data were collected with a Gemini R Ultra diffractometer with graphitemonochromatized Mo-K α radiation (λ = 0.71073 Å) for (**1**) with ω -scan method at 150 K. Data collection, data reduction and multi-scan absorption collection were performed the CrysAlisPro software [CrysAlis PRO 1.171.38.46 (Rigaku OD, 2015)]. Using the program Olex²,¹ all structures were solved with Direct Methods with SHELXS-14 solution program ²and refined with full-matrix least-squares techniques on F² with SHELXL-14 refinement program³. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms positions were calculated and refined riding on the corresponding bonded atoms. CCDC code 2085287 contains the supplementary crystallographic data for **1**. These data can be obtained free of charge via http://www.ccdc.cam.ac. uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.

Empirical formula	$C_4H_{12}Au_2Cu_1N_4$
Formula weight	629.71
Temperature/K	100
Crystal system	orthorhombic
Space group	Pnma
a/Å	11.2665(4)
b/Å	7.2480(3)
c/Å	15.2490(6)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	1245.22(8)
Ζ	5
$\rho_{calc}g/cm^3$	3.3585
µ/mm⁻¹	25.182
F(000)	1116.0
Crystal size/mm ³	0.5 × 0.3 × 0.25
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	4.5 to 64.2
Index ranges	$-16 \le h \le 15, -10 \le k \le 10, -22 \le l \le 21$
Reflections collected	16746
Independent reflections	2240 [R _{int} = 0.0575, R _{sigma} = 0.0245]
Data/restraints/parameters	2240/0/87
Goodness-of-fit on F ²	1.022
Final R indexes [I>=2σ (I)]	$R_1 = 0.0299$, $wR_2 = 0.0787$
Final R indexes [all data]	$R_1 = 0.0348$, $wR_2 = 0.0815$
Largest diff. peak/hole / e Å ⁻³	2.29/-2.03

Table S1 Crystal data and structure refinement for Cu-Au.

Table S2 Bond Lengths for Cu-Au.

		0			
Atom A	tom	Length/Å	Atom	Atom	Length/Å

Au1	C1	1.991(7)	Cu1	N6 ²	2.028(4)
Au1	C2	1.992(7)	Cu1	N6	2.028(4)
Au2	C3	1.995(7)	N1	C1	1.134(10)
Au2	C4	1.990(7)	N2	C2	1.140(9)
Cu1	N4 ¹	2.231(7)	N3	C3	1.128(10)
Cu1	N5 ²	2.041(4)	N4	C4	1.132(10)
Cu1	N5	2.041(4)			

¹-1/2+X,1/2-Y,1/2-Z; ²+X,1/2-Y,+Z

Table S3 Bond Angles for Cu-Au.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C2	Au1	C1	174.1(3)	N6 ¹	Cu1	N5 ¹	171.66(18)
C4	Au2	C3	172.3(3)	N6	Cu1	N5 ¹	89.95(17)
N5 ¹	Cu1	N4 ²	96.90(17)	N6	Cu1	N6 ¹	89.5(2)
N5	Cu1	N4 ²	96.90(17)	C4	N4	Cu1 ³	172.4(6)
N5 ¹	Cu1	N5	89.4(2)	N1	C1	Au1	176.2(7)
N6 ¹	Cu1	N4 ²	91.43(17)	N2	C2	Au1	177.5(6)
N6	Cu1	N4 ²	91.43(17)	N3	C3	Au2	175.2(7)
N6	Cu1	N5	171.66(18)	N4	C4	Au2	171.6(7)
N6 ¹	Cu1	N5	89.95(17)				

¹+X,1/2-Y,+Z; ²-1/2+X,1/2-Y,1/2-Z; ³1/2+X,1/2-Y,1/2-Z

Atom1	Atom2	Length	Length-VdW	Symm. op. 1	Symm. op. 2
C1	H5b	2.811	-0.089	x,y,z	x,1/2-y,z
N2	H5a	2.345	-0.405	x,y,z	1/2+x,1/2-y,1/2-z
N2	H6b	2.279	-0.471	x,y,z	1/2+x,y,1/2-z
N1	H5c	2.336	-0.414	x,y,z	-x,1/2+y,1-z
N1	H6a	2.376	-0.374	x,y,z	1/2-x,1-y,1/2+z
C3	H5b	2.826	-0.074	x,y,z	-1/2+x,1/2-y,1/2-z
C4	H6c	2.719	-0.181	x,y,z	-1/2+x,1/2-y,1/2-z

 Table S4 Hydrogen bonding Bond Lengths for Cu-Au.

2. Experimental details

Synthesis of {Cu(NH₃)₄[Au(CN)₂]}[Au(CN)₂]: 20 mg CuNO₃.5/2H₂O has been dissolved in 5 ml of water. Addition of 2 ml of concentrated ammonia brings to the immediate formation of [Cu(NH₃)₄]²⁺ complex. After complete reaction, 50 mg of K[Au(CN)₂] have been added, forming a deep blue solution. This solution has been tapped and refrigerated to 10 °C. After one day, deep blue crystals start crystallizing. These crystals are not stable outside to the mother liquor after few ours, and after the choice of a suitable crystal for SCXRD, the measurement has been done at low temperature, to prevent decomposition. This is probably due to loss of ammonia. (Yield: 99.9 %, Elemental analysis (%): Calcd for C₄H₁₂Au₂CuN₈: C, 7.63%; H, 1.92%; N, 17.79%; Found: C, 7.57%; H, 1.98%; N, 17.75%.)

Fig. S Raman Spectrum of Cu-Au.

 Table S5: Raman and IR modes assignation of Cu-Au.

Assignation	IR	Raman
v(Cu-N)	324	324
δ(Au-C)	395	395
v(Au-C)	423	423
δ(N-H)	1277	1277
v(C-N)	2144	2144
v(C-N)	2179	2179
v(N-H)	3282	3282

3. Theoretical Methods.

The energetic features of the adducts analyzed in this work were calculated at the PBE0⁴-D3⁵¹/ def2-TZVP⁶ level of theory using the crystallographic coordinates. For Gold, the inner shell electrons are modelled by ECPs (ECP-60 scheme),⁷ which also accounts for scalar relativistic effects. The GAUSSIAN-16 program has been used for the energetic calculations and NBO analysis.⁸ The basis set superposition error for the calculation of interaction energies has been corrected using the counterpoise method.⁹ Molecular electrostatic potential (MEP) surfaces have been computed at the same level of theory and represented using several isovalues of electron density to map the electrostatic potential. The QTAIM analysis¹⁰ has been performed using the AIMAII program¹¹ at the same level of theory.

References.

- ¹ O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *Journal of Applied Crystallography*, 2009, **42**, 339-341.
- ² G. M. Sheldrick, Acta Crystallogr. Sect. A, 2015, **71**, 3-8.
- ³ G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, **64**, 112-122.
- ⁴ C. Adamo, V. Barone, *J. Chem. Phys.* 1999, **110**, 6158-6170.
- ⁵ F. Weigend, *Phys. Chem. Chem. Phys.* 2006, **8**, 1057-1065.
- ⁶ S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, **132**, 154104.
- ⁷ D. Andrae, U. Haeussermann, M. Dolg, H. Stoll and H. Preuss, *Theor. Chim. Acta*, 1990, **77**, 123–141)

⁸ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Wallingford, CT, **2016**.

- ⁹ S. F. Boys, F. Bernardi, *Mol. Phys.* **1970**, *19*, 553-566.
- ¹⁰ R. F. W. Bader, *Chem. Rev.* **1991**, *91*, 893-928.
- ¹¹ T. A. Keith, TK Gristmill Software, OverlandPark KS, USA **2019**.