Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Electronic Supporting information for

Exploring the stability of the NHC-metal bond using thiones as probes

Nathalie Ségaud, Chloë Johnson, Albert Farre and Martin Albrecht*

Department of Chemistry & Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland

Content:

1.	Experimental details	S2
2.	NMR spectra of the complexes	S6
3.	Thione formation results	S14
4.	NMR spectra of the stability tests at room temperature	S17
5.	NMR spectra of the stability tests at 120 °C	S24
6.	Catalytic activity and stability of Ir(III)-trz	S36
7.	References	S37

1. Experimental details

General comments. Solvents (THF, CH_2Cl_2 and CH_3CN) were dried by passage through solvent purification columns. Extra-dry 1,2-dichlorobenzene (1,2-DCB) in Sure/Seal bottles and all other reagents were ordered from Sigma-Aldrich and used without further purification. NMR spectra were measured at room temperature on Bruker spectrometers operating at 300 MHz (¹H NMR) or 75 MHz (¹³C{H} NMR). Chemical shifts (δ in ppm, coupling constants J in Hz) were referenced to residual solvent resonances. Assignments were made based on homo- and heteronuclear shift correlation spectroscopy. Elemental analyses and high-resolution ESI mass spectrometry were performed by the Mass Spectrometry Group in the University of Bern using a Flash 2000 Organic Elemental Analyzer (Thermo Scientific) and a LTQ Orbitrap XL with nano ESI (Thermo Scientific) respectively.

Complexes syntheses. Metalation reactions were carried out under an inert nitrogen atmosphere using standard Schlenk techniques unless otherwise specified. The metal precursors nickelocene,^{S1} [Ru(*p*-cym)Cl₂]₂,^{S2} [Os(*p*-cym)Cl₂]₂,^{S3} [Ir(COD)Cl]₂,^{S4} [Rh(COD)Cl]₂,^{S5} [Cp*IrCl₂]₂,^{S6} and [Cp*RhCl₂]₂,^{S6} and azolium salts **imi-H.I**^{S7} and **trz-H.I**^{S8} were prepared following literature procedures. The synthesis of **imi=S**,^{S9} and the complexes Ir(I)-imi,^{S10} Ir(I)-imi,^{S11} Rh(I)-imi,^{S12} Rh(I)-trz,^{S8} Ru-imi,^{S13} Ru-trz,^{S14} Ag-imi,^{S15} Ag-trz,^{S16} Au-imi,^{S17} Au-trz,^{S18} Pd-imi,^{S19} and Pd-trz^{S20} as well as complexes Ag-IMes,^{S21} Ni-IMes,^{S22} Rh(I)-IMes,^{S23} and Ir(I)-IMes^{S24} have been previously reported.

trz=S [1,4-(di-*n*-**butyl)-3-methyl-5-thioxo-1,2,3-triazolylidene].** The **imi-H.I** salt (163 mg; 0.51 mmol) and KOtBu (68 mg; 0.61 mmol) were suspended in THF (3 mL) and the reaction mixture stirred for 30 min at room temperature. Sulfur powder (17 mg; 0.53 mmol) was added, and the mixture stirred further for 1 h. The solution was collected by

filtration through celite and the solvent removed in vacuo. The product was purified by SiO₂ column chromatography using a gradient of 1:100 to 1:20 MeOH/CH₂Cl₂. The thione was isolated as a pale-yellow oil upon evaporation of all volatiles under reduced pressure (92 mg; 79%). ¹H NMR (CDCl₃; 300 MHz): δ 4.35 (t, ³*J* = 7.5 Hz, 2H, N–CH₂), 3.91 (s, 3H, N–CH₃), 2.73 (t, ³*J* = 8.4 Hz, 2H, C_{trz}–CH₂), 1.93–1.77 (m, 2H, CH₂–CH₂N), 1.67–1.50 (m, 2H, CH₂–CH₂Ct_{rz}), 1.46–1.25 (m, 4H, CH₂), 0.91, 0.89 (2 x t, ³*J* = 7.2 Hz, 3H, CH₃) ppm. ¹³C{H} NMR (CDCl₃; 75 MHz): δ 155.0 (C=S), 138.5 (C_{trz} –CH₂), 48.3 (N–CH₂), 36.8 (N–CH₃), 30.1 (CH_2 –CH₂N), 29.1 (CH_2 –CH₂C_{trz}), 24.1 (CH_2 –Ct_{rz}), 22.6, 19.8 (2 x CH₂), 13.8, 13.6 (2 x CH₃) ppm. HR-MS (ESI): calcd for C₁₁H₂₁N₃NaS [M+Na]⁺ m/z = 250.1348, found m/z = 250.1347. Elem. anal. found (calcd) for C₁₁H₂₁N₃S (227.37 g/mol): C 57.97 (58.11); H 9.24 (9.31); N 18.42 (18.48).

Ni-imi [(Cp)NiCl(imi)]. The **imi-H.I** salt (308 m, 1mmol) and nickelocene (189 mg; 1 mmol) were suspended in 1,4-dioxane (10 mL), and stirred at 90 °C for 3 h under nitrogen atmosphere. The solvent was removed *in vacuo* and a brown solution extracted with hot toluene (15 mL) and filtered through a glass microfiber filter. The

toluene solution was concentrated (~ 5 mL) and loaded onto a SiO₂ column. Using Et₂O/pentane (1:1) as eluent, the second, red fraction was collected under nitrogen and evaporated to dryness *in vacuo* to afford the nickel carbene complex as a red-pink oil (39 mg; 9%) An analytically pure sample was obtained following recrystallisation from hexane. ¹H NMR (CDCl₃; 300 MHz): δ 6.93 (s, 2H, H_{imid}), 5.32 (s, 5H, H_{Cp}), 4.79, 4.52 (2 x ddd, ²J = 13.7, ³J = 9.5, 6.0 Hz, 2H, N–CH₂), 2.04–1.73 (m, 4H, CH₂–CH₂N), 1.57–1.43 (m, 4H, CH₂–CH₃), 1.04 (t, ³J = 7.4 Hz, 6H, CH₃–CH₂) ppm. ¹³C{H} NMR (CDCl₃; 75 MHz): δ 163.1 (C_{imid}–Ni), 122.1 (C_{imid}–H), 91.8 (C_{Cp}), 52.3 (N–CH₂), 32.9 (CH₂–CH₂N), 20.3 (CH₂–CH₃), 14.1 (CH₃–

CH₂) ppm. HR-MS (ESI): calcd for $C_{16}H_{25}N_2Ni [M-I]^+ m/z = 303.1371$, found m/z = 303.1362. Elemental analysis could not be determined due to the rapid decomposition of the complex in air.

Pt-imi [(py)PtICl(imi)]. imi-H.I (100 mg, 0.32 mmol), potassium carbonate (450 mg, 3.2 mmol), sodium chloride (191 mg, 3.2 mmol) and $PtCl_2$ (88 mg, 0.33 mmol) were combined in a schlenk tube and pyridine (7 mL) was added. The resulting mixtue was stirred at 100 °C for 16h. The solution was filtered and evaporated to dryness *in vacuo*. The resulting orange oil was purified by column chromatography on SiO₂

(CH₂Cl₂ to CH₂Cl₂/acetonitrile, 4:1), yielding **Pt1** as a yellow powder (144 mg; 70%). ¹H NMR (300 MHz, CDCl₃): δ 9.03 (d, *J* = 5.0 Hz, 2H, CH_{py}), 7.72 (t, *J* = 7.6 Hz, 1H, CH_{py}), 7.32 (t, *J* = 7.0 Hz, 2H, CH_{py}), 6.85 (s, 2H, CH_{1m}), 4.44 (t, *J* = 7.7 Hz, 4H, N–CH₂), 2.09–1.94 (m, 4H, CH₂–CH₂N), 1.53–1.40 (m, 4H, CH₂–CH₃), 1.03 ppm (t, *J* = 7.3 Hz, 6H, CH₃–CH₂) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 153.9 (CH_{py}), 137.5 (CH_{py}), 134.5 (C_{1m}), 125.1 (CH_{py}), 120.5 (CH_{1m}), 50.9 (N–CH₂), 31.7 (CH₂–CH₂N), 20.1 (CH₂–CH₃), 13.9 ppm (CH₃–CH₂) ppm. HR-MS (ESI): calcd for C₁₆H₂₅IN₃Pt [M–Cl]⁺ m/z = 581.0741, found m/z = 581.0735. Elem. anal. found (calcd) for C₁₆H₂₅ClIN₃Pt x 1.2 CH₂Cl₂ (733.05 g/mol): C 27.90 (28.18); H 3.33 (3.77); N 5.92 (5.73).

General transmetalation procedure. The relevant azolium salt (1.0 equiv.), Ag_2O (0.65 equiv.) and Me_4NCl (1.3 equivalents) were suspended in CH_2Cl_2 and stirred for 2 h under the exclusion of light. The solution was filtered through a glass microfiber filter into a CH_2Cl_2 solution of the relevant metal precursor (1 equivalent with respect to the metal amount) and the reaction mixture was stirred for further hours in the absence of light. At the end point of the relevant, the mixture was filtered through celite eluting with CH_2Cl_2 , and all volatiles evaporated under reduced pressure to afford the crude metal complex.

Ir(I)-trz [(COD)IrCl(trz)]. Following the general transmetalation procedure, using **trz-H.I** (65 mg; 0.20 mmol), Ag₂O (30 mg; 0.13 mmol) and Me₄NCl (31 mg; 0.28 mmol) in CH₂Cl₂ (5 mL) and [Ir(COD)Cl]₂ (67 mg; 0.10 mmol). The reaction mixture was stirred for 1 h. The waxy solid was washed several times with pentane until it turns

solid and then dried *in vacuo* (95 mg; 92%). ¹H NMR (CDCl₃; 300 MHz): δ 4.71 (ddd, ²*J* = 13.1 Hz, ³*J* = 9.2, 6.1 Hz, 1H, CH₂–N) 4.56–4.37 (m, 3H, CH₂–N, CH_{COD}), 3.90 (s, 3H, N–CH₃), 2.98–2.72 (m, 4H, CH₂–C_{trz}, CH_{COD}), 2.22–1.84 (m, 6H, CH₂), 1.79–1.37 (m, 10H, CH₂), 1.01 (t, *J* = 7.3 Hz, 6H, CH₃) ppm. ¹³C{H} NMR (CDCl₃; 75 MHz): δ 168.7 (C_{trz}–Ir), 144.8 (*C*_{trz}–CH₂), 81.9, 81.6 (2 x C_{COD}–H), 54.5 (N–CH₂), 51.7, 51.0 (2 x C_{COD}–H), 36.0 (N–CH₃), 34.1, 33.6, 32.2, 32.0, 30.0, 29.8, 25.2, 22.9, 20.1 (9 x CH₂), 13.9, 13.8 (2 x CH₃) ppm. HR-MS (ESI): calcd for C₁₉H₃₃IrN₃ [M–Cl]⁺ m/z = 531.1992, found m/z = 531.1976. Elem. anal. found (calcd) for C₁₉H₃₃N₃Cl₂Ir x 0.5 CH₂Cl₂ (566.61 g/mol): C 38.01 (38.45); H 6.06 (5.63); N 6.98 (6.90).

Ir(III)-trz [(Cp*)IrCl(trz)]. Following the general transmetalation procedure, using **trz-H.I** (152 mg; 0.47 mmol), Ag₂O (70 mg; 0.31 mmol) and Me₄NCl (67 mg; 0.61 mmol) in CH₂Cl₂ (3 mL) and [Ir(Cp*)Cl₂]₂ (150 mg; 0.19 mmol) in CH₂Cl₂ (5 mL). The reaction mixture was stirred for 16 h. The crude product was further purified by column chromatography on SiO₂ (CH₂Cl₂ to CH₂Cl₂/acetone, 9:1), yielding **Ir2b** as a yellow

powder (151 mg; 67%). An analytically pure sample was obtained by slow evaporation of Et_2O to a concentrated solution of **Ir(III)-trz** in CH₂Cl₂. ¹H NMR (CDCl₃, 300 MHz) δ 4.91–4.72, 4.32–4.13 (2 x m, 1H, CH₂–N), 3.97 (s, 3H, CH₃–N), 3.03–2.87 (m, 2H, CH₂–Ct_{rz}), 2.23–2.03 (m, 1H, NCH₂–CH₂), 2.00–1.82 (m, 2H, CH₂–CH₂), 1.60 (s, 15H, Cp–CH₃), 1.52–1.37 (m, 5H, CH₂–CH₂), 0.97, 0.93 (2 x t, *J* = 7.1 Hz, 3H,

CH₃-CH₂) ppm. ¹³C{¹H} NMR (CDCl₃, 75 MHz) δ 148.3 (C_{trz} -CH₂), 144.6 (C-Ir), 87.8 (C_{Cp}), 53.9 (N-CH₂), 36.5 (N-CH₃), 33.1, 32.3 (2 × CH₂-CH₂), 25.3 (CH₂-C_{trz}), 23.3, 20.4 (2 × CH₂-CH₃), 14.0 (CH₃-CH₂), 9.2 (CH₃-Cp) ppm. HR-MS (ESI): calcd for C₂₁H₃₆ClIrN₃ [M-Cl]⁺ m/z = 558.2227, found m/z = 558.2214. Elem. anal. found (calcd) for C₂₁H₃₆Cl₂IrN₃ (593.66 g/mol): C 42.52 (42.49); H 5.92 (6.11); N 6.86 (7.08).

Rh(III)-imi [(Cp*)RhCl(imi)]. Following the general transmetalation procedure, using **imi-H.I** (80 mg; 0.26 mmol), Ag₂O (39 mg; 0.17 mmol) and Me₄NCl (37 mg; 0.34 mmol) in CH₂Cl₂ (15 mL) and [Cp*RhCl₂]₂ (80 mg; 0.13 mmol) in CH₂Cl₂ (5 mL). The reaction mixture was stirred for 16 h. The complex was purified by SiO₂ column chromatography using 20:1 CH₂Cl₂/acetone as eluent. Recrystallisation from

CH₂Cl₂/Et₂O afforded orange-red plate shaped crystals (55 mg; 43%). ¹H NMR (CDCl₃; 300 MHz): δ 7.07 (s, 1H, H_{im}), 4.72 (td, *J* = 12.1, 5.1 Hz, 2H, N–CH₂), 3.85 (td, *J* = 12.0, 5.0 Hz, 2H, N–CH₂), 2.11–1.92 (m, 2H, CH₂–CH₂), 1.74–1.30 (m, 6H, CH₂–CH₂), 1.58 (s, 15H, CH₃–C_{Cp}), 0.96 (t, ³*J* = 7.3 H, CH₃–CH₂) ppm. ¹³C{H} NMR (CDCl₃; 75 MHz): δ 169.1 (d, ¹*J*_{Rh-C} = 56.8 Hz, C_{im}–Rh), 122.2 (C_{im}–H), 96.1 (d, ¹*J*_{Rh-C} = 7.0 Hz, C_{Cp}–Rh), 51.1 (N–CH₂), 33.9, 20.3 (2 x CH₂), 14.2 (CH₃–CH₂), 9.5 (CH₃–C_{Cp}) ppm. HR-MS (ESI): calcd for C₂₁H₃₅N₂ClRh [M–Cl]⁺ m/z = 453.1544, found m/z = 453.1528. Elem. anal. found (calcd) for C₂₁H₃₅N₂Cl₂Rh x 0.1 CH₂Cl₂ (497.82 g/mol): C 51.07 (50.91); H 6.59 (7.13); N 5.51 (5.63).

Rh(III)-trz [(Cp*)RhCl(trz)]. Following the general transmetalation procedure, using **trz-H.I** (80 mg; 0.25 mmol), Ag₂O (36 mg; 0.16 mmol) and Me₄NCl (38 mg; 0.35 mmol) in CH₂Cl₂ (5 mL) and [Cp*RhCl₂]₂ (77 mg; 0.12 mmol). The reaction mixture was stirred for 19 h. The complex was purified by SiO₂ column chromatography using 10:1 CH₂Cl₂/acetone as eluent (93 mg; 74%). ¹H NMR (CD₂Cl₂; 300 MHz): δ 4.92, 4.19 (2 x br

m, 1H, N–CH₂), 3.99 (s, 3H, N–CH₃), 2.99, 2.83 (2 x br m, 1H, CH₂–C_{trz}), 2.15–1.33 (m, 8H, CH₂–CH₂), 1.52 (s, 15H, CH₃–C_{Cp}), 0.99 (t, ${}^{3}J$ = 7.4 Hz, 3H, CH₃–CH₂), 0.98 (t, ${}^{3}J$ = 7.1 Hz, 3H, CH₃–CH₂) ppm. 13 C{H} NMR (CD₂Cl₂; 75 MHz): δ 157.5 (d, ${}^{1}J_{Rh-C}$ = 52.0 Hz, C_{trz}–Rh), 147.4 (d, ${}^{2}J_{Rh-C}$, C_{trz}–CH₂), 95.7 (d, ${}^{1}J_{Rh-C}$ = 7.0 Hz, C_{Cp}–CH₃), 54.5 (N–CH₂), 36.8 (N–CH₃), 33.1, 31.7 (2 x CH₂–CH₂), 25.7 (CH₂–C_{trz}), 23.4, 20.5 (2 x CH₂–CH₂), 14.1, 14.0 (2 x CH₃–CH₂), 9.6 (CH₃–C_{cp}) ppm. HR-MS (ESI): calcd for C₂₁H₃₆N₃ClRh [M–Cl]⁺ m/z = 468.1653, found m/z = 468.1639. Elem. anal. found (calcd) for C₂₁H₃₆N₃Cl₂Rh (504.35 g/mol): C 50.03 (50.01); H 7.48 (7.20); N 7.95 (8.33).

Os-imi [(p-cym)OsCl₂(imi)]. Following the general transmetalation procedure, using **imi-H.I** (57 mg; 0.18 mmol), Ag₂O (28 mg; 0.12 mmol) and Me₄NCl (26 mg; 0.24 mmol) in CH₂Cl₂ (5 mL) and $[Os(p-cym)Cl_2]_2$ (71 mg; 0.09 mmol). The reaction mixture was stirred for 14 h. The complex was purified by SiO₂ column chromatography using a gradient of CH₂Cl₂/acetone from 100:1 to 10:1, affording a yellow solid (60 mg;

58%). ¹H NMR (CDCl₃; 300 MHz): δ 6.95 (s, 2H, H_{imid}), 5.65, 5.37 (2 x d, ³*J* = 5.3 Hz, 2H, H_{Ar}), 4.51, 3.97 (2 x br m, 2H, N–C*H*₂), 2.82 (hept, ³*J* = 7.0 Hz, 1H, C*H*Me₂), 2.09 (s, 3H, C*H*₃–C_{Ar}), 1.97, 1.63 (2 x br m, 2H, C*H*₂–CH₂N), 1.52–1.31 (m, 4H, C*H*₂–CH₃), 1.24 (d, ³*J* = 7.0 Hz, 6H, C*H*₃–CH), 0.96 (t, ³*J* = 7.3 Hz, 6H, C*H*₃–CH₂) ppm. ¹³C{H} NMR (CDCl₃; 75 MHz): δ 159.9 (C_{imid}–Os), 120.8 (C_{imid}–H), 99.1 (C_{Ar}–iPr), 90.9 (C_{Ar}–Me), 77.4, 73.7 (2 x C_{Ar}–H), 51.5 (N–CH₂), 34.2 (*C*H₂–CH₂N), 31.0 (*C*HMe₂), 23.1 (*C*H₃–CH), 20.4 (*C*H₂–CH₃), 18.9 (*C*H₃–C_{Ar}), 14.1 (*C*H₃–CH₂) ppm. HR-MS (ESI): calcd for C₂₁H₃₄N₂ClOs [M–Cl]⁺ m/z = 541.2031, found m/z = 541.1988. Elem. anal. found (calcd) for C₂₁H₃₄N₂Cl₂Os x 0.5 C₃H₆O (604.69 g/mol): C 44.90 (44.69); H 6.25 (6.17); N 4.52 (4.63).

Os-trz [(*p***-cym)OsCl₂(trz)].** Following the general transmetalation procedure, using trz-**H.I** (59 mg; 0.18 mmol), Ag₂O (31 mg; 0.13 mmol) and Me₄NCl (30 mg; 0.27 mmol) in CH₂Cl₂ (5 mL) and [Os(*p*-cym)Cl₂]₂ (71 mg; 0.09 mmol). The reaction mixture was stirred for 17 h. The complex was purified by SiO₂ column chromatography using a gradient of CH₂Cl₂/acetone from 100:1 to 10:1, affording a dark yellow solid (87 mg;

82%). ¹H NMR (CDCl₃; 300 MHz): δ 5.61 (d, ³*J* = 5.3 Hz, 2H, *CH*_{Ar}–CHMe₂), 5.32 (d, ³*J* = 5.3 Hz, 2H, *CH*_{Ar}–CH₃), 4.55 (br m, 2H, N–CH₂), 3.94 (s, N–CH₃), 2.95 (t, ³*J* = 8.4 Hz, 2H, CH₂–Ct_{rz}), 2.82 (hept, ³*J* = 6.9 Hz, 1H, *CH*Me₂), 2.07 (s, 3H, CH₃–C_{Ar}), 2.04–1.89 (m, 2H, *CH*₂–CH₂N), 1.70–1.54 (m, 2H, *CH*₂–CH₂Ct_{rz}), 1.52–1.33 (m, 4H, *CH*₂–CH₃), 1.28 (d, ³*J* = 6.9 Hz, 6H, *CH*₃–CH), 0.98 (t, ³*J* = 7.2 Hz, 3H, *CH*₃–CH₂), 0.94 (t, ³*J* = 6.9 Hz, 3H, *CH*₃–CH₂) ppm. ¹³C{H} NMR (CDCl₃; 75 MHz): δ 148.2 (Ctr₂–Os), 147.4 (*C*tr₂–CH₂), 98.0 (C_{Ar}–*i*Pr), 88.8 (*C*_{Ar}–Me), 77.4 (*C*H_{Ar}–*Ci*Pr), 73.0 (*C*H₄–CMe), 54.3 (N–CH₂), 36.4 (N–CH₃), 33.4 (*C*H₂–CH₂N), 32.7 (*C*H₂–CH₂Ct_{rz}), 31.1 (*C*HMe₂), 26.0 (*C*H₂–Ct_{rz}), 23.2 (*C*H₃–CH), 20.4 (*C*H₂–CH₃), 18.9 (CH₃–C_{Ar}), 14.0 (*C*H₃–CH₂) ppm. HR-MS (ESI): calcd for C₂₁H₃₅N₃ClOs [M–Cl]⁺ m/z = 556.2134, found m/z = 556.2099. Elem. anal. found (calcd) for C₂₁H₃₅N₃Cl₂Os x 0.5 C₃H₆O (619.70 g/mol): C 43.43 (43.61); H 6.38 (6.18); N 6.76 (6.78).

Stability assays. The complex or azolium salt (20 μ mol) and mesitylene (internal standard, 3 mg) were transferred into a schlenk tube and purged with nitrogen. Extra dry 1,2-dichlorobenzene or dry dichloromethane (0.5 mL) was added and a 0.01 mL sample was taken and was diluted with 0.4 mL CDCl₃ or CD₂Cl₂ for NMR measurement. S₈ (12 μ mol, 5 eq) was added and the reaction was started at room temperature or 120 °C. Aliquots were taken at 30 min, 2 h, 6 h and 24 h and analysed by ¹H NMR spectroscopy. The NCH₂ protons of the complexes, of the azolium salts and of the thiones were integrated towards the internal standard to calculate conversions and yields (see ESI section 3).

2. NMR spectra of the complexes

All NMR spectra measured at room temperature on Bruker spectrometers operating at 300 MHz (¹H NMR) or 75 MHz (^{13}C {H} NMR).

Figure S1. ¹H NMR spectrum of **Ni-imi** in CDCl₃.

Figure S2. ¹³C NMR spectrum of Ni-imi in CDCl₃.

Figure S3. ¹H NMR spectrum of **Pt-imi** in CDCl₃.

Figure S4. $^{\rm 13}C$ NMR spectrum of $\ensuremath{\text{Pt-imi}}$ in CDCl_3.

Figure S6. ¹³C NMR spectrum of Ir(I)-trz in CDCl₃.

Figure S8. ¹³C NMR spectrum of Ir(III)-trz in CDCl₃.

Figure S9. ¹H NMR spectrum of **Rh(III)-imi** in CDCl₃.

Figure S10. ¹³C NMR spectrum of **Rh(III)-imi** in CDCl₃.

Figure S12. 13 C NMR spectrum of **Rh(III)-trz** in CD₂Cl₂.

Figure S14. ¹³C NMR spectrum of **Os-imi** in CDCl₃.

Figure S16. ¹³C NMR spectrum of **Os-trz** in CDCl₃.

3. Thione formation results

Complex	<mark>% Thione</mark> /% Complex				Reactivity pattern	Figure
	30 min 2 h 6 h 24 h					
Ag-imi	<mark>89</mark> /11	<mark>96</mark> /4	100 /0	100/ 0	Thione formation	S19
Ag-trz	<mark>55</mark> /46	<mark>94</mark> /9	<mark>98</mark> /0	<mark>98</mark> /0	Thione formation	S20

 Table S1. Thione formation, complex conversion over time and associated reactivity pattern at room temperature using complexes Ag-imi and Ag-trz.

Figure S17. Thione formation over time with **Ag-imi** (orange) and **Ag-trz** (purple) measured at room temperature (20 μmol complex and 12 μmol S₈ in 0.5 mL 1,2-dichlorobenzene).

 Table S2. Thione formation, complex conversion over time and associated reactivity pattern at room temperature using complexes bearing an imi ligand.

Complex		% Thione	/% Comple	х	Reactivity pattern	Figure
	30 min	2 h	6 h	24 h		
Ni-imi	<mark>0</mark> /95	<mark>0</mark> /97	<mark>0</mark> /84	<mark>0</mark> /83	Decomposition	S24
Ag-imi	<mark>89</mark> /11	<mark>96</mark> /4	100/ 0	<mark>100</mark> /0	Thione formation	S19
Ru-imi	<mark>0</mark> /100	<mark>0</mark> /100	<mark>0</mark> /100	<mark>0</mark> /94	Ancillary ligand dissociation	S21
Rh(I)-imi	<mark>0</mark> /97	<mark>0</mark> /93	<mark>0</mark> /81	<mark>0</mark> /59	Decomposition	S23
Os-imi	<mark>0</mark> /100	<mark>0</mark> /100	<mark>0</mark> /93	<mark>0</mark> /91	Decomposition	S25
lr(I)-imi	<mark>0</mark> /96	<mark>0</mark> /93	<mark>0</mark> /85	<mark>0</mark> /32	Ancillary ligand dissociation	S22

 Table S3. Thione formation, complex conversion over time and associated reactivity pattern at 120 °C, using complexes bearing an imi ligand.

Complex	% Th	ione/% Coi	mplex (/ <mark>%</mark> S	Salt)	Reactivity pattern	Figure
	30 min	2 h	6h 24h			
imi-H.I	<mark>7</mark> /93	<mark>8</mark> /90	<mark>13</mark> /87	<mark>30</mark> /68	-	S43
Ni-imi	<mark>38/0/34</mark>	<mark>38</mark> /0/73	<mark>38</mark> /0/ <mark>64</mark>	<mark>42/0/69</mark>	NHC dissociation	S42
Au-imi	<mark>0</mark> /100	<mark>0</mark> /100	<mark>0</mark> /100	<mark>0</mark> /100	No modification	S33
Ru-imi	<mark>0</mark> /86	<mark>0</mark> /51	<mark>18</mark> /14	<mark>24</mark> /0	ligand dissociation + thione	S37
Rh(I)-imi	<mark>5</mark> /22	<mark>10</mark> /9	<mark>15</mark> /2	<mark>15</mark> /0	ligand dissociation + thione	S38
Rh(III)-imi	<mark>13</mark> /52/ <mark>26</mark>	15/0/ <mark>66</mark>	<mark>32/0/64</mark>	<mark>37/0/61</mark>	NHC dissociation	S41
Pd-imi	<mark>0</mark> /100	<mark>0</mark> /100	<mark>0</mark> /97	<mark>0</mark> /93	Decomposition	S34
Os-imi	<mark>0</mark> /87	<mark>3</mark> /84	<mark>5</mark> /71	<mark>8</mark> /45	Decomposition + thione	S39
lr(l)-imi	<mark>0</mark> /29	<mark>0</mark> /9	<mark>0</mark> /0	<mark>0</mark> /0	Decomposition	S36
lr(III)-imi	<mark>0</mark> /93/ <mark>0</mark>	<mark>0</mark> /92/ <mark>5</mark>	1/73/ <mark>20</mark>	<mark>2/6/38</mark>	NHC dissociation	S40
Pt-imi	<mark>0</mark> /100	<mark>0</mark> /96	<mark>0</mark> /89	<mark>0</mark> /69	Decomposition	S35

Table S4. Thione formation, complex conversion over time and associated reactivity pattern at 120 °C, using complexesbearing an IMes ligand.

Complex	% Tł	nione/% Coi	mplex (/%	Salt)	Reactivity pattern	Figure
•	30 min 2 h 6 h 24 h			, 24 h	, ,	0
Ag-IMes	<mark>99</mark> /0	<mark>99</mark> /0	<mark>99</mark> /0	<mark>99</mark> /0	thione	S53
Ni-IMes	<mark>28</mark> /0/ <u>18</u>	40/0/10	<mark>69/0/0</mark>	<mark>99/0/0</mark>	ligand & NHC dissociation	S54
Rh(I)-IMes	<mark>0</mark> /0	<mark>5</mark> /0	<mark>19</mark> /0	<mark>42</mark> /0	ligand dissociation + thione	S55
Ir(I)-IMes	<mark>0</mark> /50	<mark>0</mark> /0	<mark>0</mark> /0	<mark>0</mark> /0	degradation	S56

Table S5. Thione formation, complex conversion over time and associated reactivity pattern at 25 °C using trz complexes.

Complex		% Thione/	% Comple>	(Reactivity pattern	Figure
	30 min	2 h	6 h	24 h		
Ag-trz	<mark>55</mark> /46	<mark>94</mark> /9	<mark>98</mark> /0	<mark>98</mark> /0	Thione formation	S20
Ru-trz	<mark>0</mark> /100	<mark>0</mark> /100	<mark>0</mark> /100	<mark>0</mark> /92	Ancillary ligand dissociation	S29
Rh(I)-trz	<mark>0</mark> /77	<mark>0</mark> /48	<mark>0</mark> /30	<mark>0</mark> /0	Decomposition	S31
Rh(III)-trz	<mark>0</mark> /100	<mark>0</mark> /100	<mark>0</mark> /100	<mark>0</mark> /100	No modification	S26
Pd-trz	<mark>0</mark> /100	<mark>0</mark> /100	<mark>0</mark> /100	<mark>0</mark> /100	No modification	S27
Os-trz	<mark>0</mark> /100	<mark>0</mark> /98	<mark>0</mark> /98	<mark>0</mark> /92	Decomposition	S32
lr(l)-trz	<mark>0</mark> /83	<mark>0</mark> /49	<mark>0</mark> /0	<mark>0</mark> /0	Ancillary ligand dissociation	S30
lr(III)-trz	<mark>0</mark> /100	<mark>0</mark> /100	-	<mark>0</mark> /100	No modification	S28

Table S6. Thione formation, conversion over time and associated reactivity pattern at 120 °C, using trz complexes.

Complex	%	Thione/% C	omplex/ <mark>% S</mark>	Reactivity pattern	Figure	
	30 min	2 h	6 h	24 h		
trz-H.I	<mark>13</mark> /85	<mark>41</mark> /55	<mark>63</mark> /31	<mark>71</mark> /25	-	S52
Au-trz	<mark>0</mark> /100	<mark>0</mark> /100	<mark>0</mark> /100	<mark>0</mark> /100	No modification	S44
Ru-trz	<mark>0</mark> /78	<mark>0</mark> /33	<mark>24</mark> /2	<mark>50</mark> /1	ligand dissociation + thione	S47
Rh(I)-trz	<mark>0/</mark> 0	<mark>0</mark> /0	<mark>18</mark> /0	<mark>22</mark> /0	ligand dissociation + thione	S48
Rh(III)-trz	<mark>0</mark> /62/19	<mark>23</mark> /0/72	<mark>87/0/12</mark>	<mark>100</mark> /0/0	NHC dissociation	S51
Pd-trz	<mark>0</mark> /98	<mark>0</mark> /99	<mark>0</mark> /95	<mark>0</mark> /89	Decomposition	S45
Os-trz	<mark>0</mark> /80	<mark>0</mark> /72	<mark>6</mark> /53	<mark>28</mark> /4	Decomposition + thione	S49
lr(l)-trz	<mark>0</mark> /0	<mark>0/</mark> 0	<mark>0</mark> /0	<mark>0</mark> /0	ligand dissociation	S46
lr(III)-trz	<mark>0</mark> /100	<mark>0</mark> /98	<mark>7</mark> /92	<mark>57</mark> /38	Decomposition + thione	S50

Figure S18. Conversion profile of selected complexes into thione and salt, over 24 h. Plain line for imi complexes and dashed lines for trz complexes. Top left, group 8/d⁶ metals; bottom left, group 9/d⁶ metals; bottom right, group 9/d⁸ metals.

4. NMR spectra of the stability tests at room temperature

Figure S19. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between **Ag-imi** and S₈ in dichlorobenzene at room temperature, measured in CD₂Cl₂.

Figure S20. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between Ag-trz and S_8 in dichlorobenzene at room temperature, measured in CD_2Cl_2 .

Figure S21. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between **Ru-imi** and S₈ in dichlorobenzene at room temperature, measured in CD₂Cl₂.

Figure S22. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between Ir(I)-imi and S₈ in dichlorobenzene at room temperature, measured in CDCl₃.

Figure S23. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between Rh(I)-imi and S_8 in dichlorobenzene at room temperature, measured in CD_2Cl_2 .

Figure S24. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between Ni-imi and S_8 in dichlorobenzene at room temperature, measured in CD_2Cl_2 .

Figure S25. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between **Os-imi** and S₈ in dichlorobenzene at room temperature, measured in CDCl₃.

Figure S26. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between **Rh(III)-trz** and S₈ in dichloromethane at room temperature, measured in CD₂Cl₂.

Figure S27. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between **Pd-trz** and S₈ in dichlorobenzene at room temperature, measured in CD₂Cl₂.

Figure S28. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between Ir(III)-trz and S₈ in dichlorobenzene at room temperature, measured in CD₂Cl₂.

Figure S29. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between **Ru-trz** and S₈ in dichlorobenzene at room temperature, measured in CD₂Cl₂.

Figure S30. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between Ir(I)-trz and S_8 in dichlorobenzene at room temperature, measured in CDCl₃.

Figure S31. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between Rh(I)-trz and S_8 in dichlorobenzene at room temperature, measured in CD_2Cl_2 .

Figure S32. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between **Os-trz** and S_8 in dichlorobenzene at room temperature, measured in CDCl₃.

5. NMR spectra of the stability tests at 120 °C

Figure S33. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between **Au-imi** and S₈ in dichlorobenzene at room temperature, measured in CDCl₃.

Figure S34. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between **Pd-imi** and S₈ in dichlorobenzene at 120 °C, measured in CDCl₃.

Figure S35. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between **Pt-imi** and S_8 in dichlorobenzene at 120 °C, measured in CDCl₃.

Figure S36. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between Ir(I)-imi and S₈ in dichlorobenzene at 120 °C, measured in CDCl₃.

Figure S37. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between Ru-imi and S₈ in dichlorobenzene at 120 $^{\circ}$ C, measured in CD₂Cl₂.

Figure S38. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between **Rh(I)-imi** and S₈ in dichlorobenzene at 120 °C, measured in CD₂Cl₂.

Figure S39. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between **Os-imi** and S₈ in dichlorobenzene at 120 °C, measured in CDCl₃.

Figure S40. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between Ir(III)-imi and S₈ in dichlorobenzene at 120 °C, measured in CDCl₃.

Figure S41. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between **Rh(III)-imi** and S₈ in dichlorobenzene at 120 °C, measured in CDCl₃.

Figure S42. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between **Ni-imi** and S₈ in dichlorobenzene at 120 °C, measured in CDCl₃.

Figure S43. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between **imi-H.I** and S₈ in dichlorobenzene at 120 °C, measured in CDCl₃.

Figure S44. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between Au-trz and S_8 in dichlorobenzene at 120 °C, measured in CDCl₃.

Figure S45. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between **Pd-trz** and S_8 in dichlorobenzene at 120 °C, measured in CDCl₃.

Figure S46. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between Ir(I)-trz and S₈ in dichlorobenzene at 120 °C, measured in CDCl₃.

Figure S47. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between Ru-trz and S₈ in dichlorobenzene at 120 $^{\circ}$ C, measured in CD₂Cl₂.

Figure S48. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between Rh(I)-trz and S₈ in dichlorobenzene at 120 °C, measured in CD_2Cl_2 .

Figure S49. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between **Os-trz** and S_8 in dichlorobenzene at 120 °C, measured in CDCl₃.

Figure S50. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between Ir(III)-trz and S₈ in dichlorobenzene at 120 °C, measured in CDCl₃.

Figure S51. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between **Rh(III)-trz** and S₈ in dichlorobenzene at 120 °C, measured in CDCl₃.

Figure S52. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between **trz-H.I** and S₈ in dichlorobenzene at 120 °C, measured in CDCI₃.

Figure S53. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between **Ag-IMes** and S₈ in dichlorobenzene at 120 °C, measured in CDCl₃ (• Ag-IMes, • IMes=S, # mesitylene (standard), * dichlorobenzene). Characteristic shifts are the C_{imi}–H from δ_H 7.13 to 6.81, and the *ortho* C_{Mes}–CH₃ from δ_H 2.08 to 2.15.

Figure S54. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between Ni-IMes and S_8 in dichlorobenzene at 120 °C, measured in CDCl₃.

Figure S55. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between **Rh(I)-IMes** and S₈ in dichlorobenzene at 120 °C, measured in CDCl₃.

Figure S56. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between **Ir(I)-IMes** and S₈ in dichlorobenzene at 120 °C, measured in CDCl₃.

Figure S57. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between **Rh(III)-imi** in dichlorobenzene at 120 °C in the absence of S₈. The decomposition is <3%, 4%, 7%, and 18% at 0.5, 1, 6, and 24 h, respectively.

6. Catalytic activity and stability of Ir(III)-trz

Figure S58. Catalytic activity of **Ir(III)-trz** in the transfer hydrogenation of benzophenone to diphenylmethanol (reaction conditions: 0.5 mmol benzophenone, 0.05 mmol KOH, 5mmol **Ir(III)-trz**, 5 mL *i*PrOH, reflux. Conversion determined from aliquots diluted in CDCl₃ and analyzed by ¹H NMR spectroscopy).

Figure S59. ¹H NMR spectra of samples (0, 30 min, 2, 6 and 24 h) from the reaction between **Ir(III)-trz** and S₈ in dichlorobenzene at 80 °C, *i.e.* the temperature used for transfer hydrogenation (see Fig. S61), measured in CDCl₃. The monitoring shows no detectable degradation under these conditions.

7. References

- S1 V. Ritleng, E. Brenner and M. J. Chetcuti, J. Chem. Educ., 2008, 85, 1646.
- S2 M. A. Bennett and A. K. Smith, J. Chem. Soc., Dalton Trans., 1974, 233–241.
- S3 H. Werner and K. Zenkert, J. Organomet. Chem., 1988, **345**, 151–166.
- S4 R. H. Crabtree, J. M. Quirk, H. Felkin and T. Fillebeen-khan, *Synth. React. Inorg. Met. Chem.*, 1982, **12**, 407–413.
- S5 G. Giordano and R. H. Crabtree, *Inorg. Synth.*, 1979, **19**, 218.
- S6 C. White, A. Yates, P. M. Maitlis and D. M. Heinekey, *Inorg. Synth.*, 1992, 29, 228–234.
- S7 S. S. Palimkar, S. A. Siddiqui, T. Daniel, R. J. Lahoti and K. V Srinivasan, J. Org. Chem., 2003, 68, 9371–9378.
- S8 A. Poulain, D. Canseco-Gonzalez, R. Hynes-Roche, H. Müller-Bunz, O. Schuster, H. Stoeckli-Evans, A. Neels and M. Albrecht, *Organometallics*, 2011, **30**, 1021–1029.
- S9 K. Mebrouk, F. Camerel, O. Jeannin, B. Heinrich, B. Donnio and M. Fourmigué, *Inorg. Chem.*, 2016, **55**, 1296–1303.
- S10 A. R. Chianese, X. Li, M. C. Janzen, J. W. Faller and R. H. Crabtree, *Organometallics*, 2003, **22**, 1663–1667.
- S11 R. Corberán, M. Sanaú and E. Peris, J. Am. Chem. Soc., 2006, 128, 3974–3979.

- S12 S. Y. Choi and Y. K. Chung, *Adv. Synth. Catal.*, 2011, **353**, 2609–2613.
- S13 L. Mercs, A. Neels and M. Albrecht, *Dalton Trans.*, 2008, 5570–5576.
- S14 A. Prades, E. Peris and M. Albrecht, *Organometallics*, 2011, **30**, 1162–1167.
- S15 U. Hintermair, U. Englert and W. Leitner, Organometallics, 2011, **30**, 3726–3731.
- S16 D. Canseco-Gonzalez and M. Albrecht, Dalton Trans., 2013, 42, 7424–7432.
- M. V Baker, P. J. Barnard, S. J. Berners-Price, S. K. Brayshaw, J. L. Hickey, B. W. Skelton and A. H. White, *J. Organomet. Chem.*, 2005, 690, 5625–5635.
- S18 R. Pretorius, M. R. Fructos, H. Müller-Bunz, R. A. Gossage, P. J. Pérez and M. Albrecht, *Dalton Trans.*, 2016, **45**, 14591–14602.
- S19 H. Valdés, M. Poyatos, G. Ujaque and E. Peris, Chem. Eur. J., 2015, 21, 1578–1588.
- S20 D. Canseco-Gonzalez, A. Gniewek, M. Szulmanowicz, H. Müller-Bunz, A. M. Trzeciak and M. Albrecht, *Chem. Eur. J.*, 2012, **18**, 6055–6062.
- S21 T. Ramnial, C. D. Abernethy, M. D. Spicer, I. D. McKenzie, I. D. Gay and J. A. C. Clyburne *Inorg. Chem.*, 2003, **42**, 1391–1393.
- S22 C. D Abernethy, A. H. Cowley and R. A. Jones, J. Organomet. Chem., 2000, 596, 3–5.
- S23 X. Yu, B. O. Patrick and B. R. James, *Organometallics*, 2006, **25**, 2359–2363.
- R. A. Kelly III, H. Clavier, S. Giudice, N. M. Scott, E. D. Stevens, J. Bordner, I. Samardjiev, C. D. Hoff, L. Cavallo and S. P. Nolan, *Organometallics*, 2008, 27, 202–210. D. S. Timofeeva, D. M. Lindsay, D. J. Nelson and W. J. Kerr, *Catal. Sci. Technol.*, 2020, 10, 7249–7255.