Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Flame-made Cu/ZrO₂ Catalysts with Metastable Phase and Strengthened Interactions for CO₂ Hydrogenation to Methanol

Meng Yang^{a,b}, Jiafeng Yu^{a,*}, Xin Tong^{a,b}, Xingtao Sun^{a,b}, Hengyong Xu^a, Jian Sun^{a,*}

^aDalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023,

Liaoning, China

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding authors. E-mail addresses: yujf@dicp.ac.cn (Jiafeng Yu);

sunj@dicp.ac.cn (Jian Sun)

Catalysts Preparation

Preparation of FSP-Cu/ZrO₂ and F-ZrO₂. FSP-made Cu/ZrO₂ catalysts were prepared in a home-made FSP equipment with a flame generator (NanoPowder Nozzle npn) and a collection cylinder purchased from Tethis S.p.A., as described elsewhere¹. 3.26 g copper acetate anhydrous (Aladin, Analytical Purity) and 16.15 g zirconium butoxide (Aladin, 80wt% in mineral spirits) were dissolved in a mixture of 2ethylhexanonic acid (EHA, Aladin, Analytical Purity) and methanol (MeOH, Kermel, Analytical Purity) with volume ratio of 1:1, reaching a final metal concentration of 0.5 M. After ultrasonic treatment for 30 min, the obtained precursor solution was injected into the flame generator at a flow rate of 5 mL/min by a syringe pump (PHD ultratm, Harvard). It is then ignited instantly by the mixture of CH_4 (0.6 L/min) and O_2 (1.9 L/min). The dispersion and protection gas were O₂ (3.5 L/min) and air (5 L/min), respectively. On the top area of the flame, a collection cylinder and a water-cooled glass fiber filter (Whatman GF/D, 25.7 cm in diameter) was used to collect product nanoparticles by the aiding of a vacuum pump. FSP-Cu/ZrO₂ was 20 wt.% mass fraction of Cu in Cu/ZrO₂. F-ZrO₂ was for pure ZrO₂ made in the same way as FSP-Cu/ZrO₂. Cu content was determined to be 19.1 and 20.0 wt.% by ICP-OES and XPS, respectively (see Table S4, ESI).

Preparation of DP-Cu/F-ZrO₂ and DP-Cu/C-ZrO₂. These catalysts were prepared by conventional deposition method with 20 wt.% Cu loading. $3.85 \text{ g Cu(NO_3)}_2 \cdot 3H_2O$ (Kermel, Analytical Purity) was dissolved in deionized water (DI water) to form 1 M Cu cation liquid. 250 mL of 0.5 M Na₂CO₃ (Kermel, Analytical Purity) in DI water was also prepared. 4 g F-ZrO₂ was put into 200 mL DI water, then the Cu solution and Na₂CO₃ solution were added dropwise at the same time, keeping pH around 6.5. After Cu solution was consumed out, the mixture was continued to be stirred at 65°C for one hour, followed by centrifugation and washed with DI water for three times, as well as dried at 120°C overnight. The precursor without further calcination was denoted as DP-Cu/F-ZrO₂. DP-Cu/F-ZrO₂ was pretreated at 300°C for 1 h by H₂ (30 mL/min) before reaction. Cu content of DP-Cu/F-ZrO₂ was determined to be 25.2 and 27.3 wt.% by ICP-OES and XPS, respectively (see Table S4, ESI). Cu was deposited on commercial ZrO₂ powder (Beijing Beihua Fine Chemicals Co., Analytical Purity) in the same method with DP-Cu/F-ZrO₂ but calcined at 450°C for 3 h, which was denoted as DP-Cu/C-ZrO₂.

Catalyst Evaluation

The activity test was performed in a high-pressure fixed-bed flow stainless steel reactor with quartz lining. 0.25 g of catalyst in 20–40 mesh was packed into the reactor. At first, the catalyst was reduced in pure H₂ with the rate of 30 mL/min at 300°C for 1 h under atmospheric pressure. The reaction gas (24% CO₂, 72% H₂ and 4% N₂) with a flow rate of 20 mL/min was introduced into the reactor after the temperature was decreased to 50°C. The reaction was performed at 3.0 MPa and various temperatures at 260, 240, 220 and 200°C. The outlet gases were passed through the cold trap and then analyzed by two online gas chromatographers (GC), one is equipped with a TCD detector (SHIMADZU GC-8A) and the other is equipped with a flame ionization detector (FID, SHIMADZU GC-14C). The CO₂ conversion and CH₃OH selectivity were obtained from the GC data.

$$X_{CO_{2}} = \frac{F_{CO_{2}, in} - F_{CO_{2}, out}}{F_{CO_{2}, in}}$$
$$S_{CH_{3}OH} = \frac{F_{CO_{2}, in} - F_{CO_{2}, out}}{F_{CO_{2}, in} - F_{CO_{2}, out}}$$
$$S_{CO} = \frac{F_{CO, out}}{F_{CO_{2}, in} - F_{CO_{2}, out}}$$

 $methanol \, yield \, (g_{CH_3OH} \cdot kg_{Cu}^{-1} \cdot h^{-1}) = \frac{F_{CO_2} \times X_{CO_2} \times S_{CH_3OH} \times 32 \times 60}{22.4 \times m_{cat} \times x_{Cu}}$

 X_{CO_2} is the conversion of CO₂. S_x is the selectivity of x species in products. $F_{x, in}$ is the inlet flow rate of x species (mL/min), $F_{x, out}$ is the outlet flow rate of species x (mL/min). m_{cat} is the amount of catalyst, x_{Cu} is the Cu loading in Cu/ZrO₂.

Catalyst Characterization

The phase composition of the catalyst was identified by X-ray powder diffraction (XRD) on a PANalytical X'Pert Pro diffractometer with Cu-Ka (40 kV, 40 mA) radiation. X-ray photoelectron spectroscopy (XPS) with Auger electron spectroscopy (AES) measurements were performed by a ThermoFischer, ESCALAB 250Xi spectrometer equipped with an Al-K α (hv = 1486.6 eV) X-ray exciting source. The binding energies were calibrated by using the contaminant carbon (C 1s = 284.8 eV). Before Cu 2p spectra was collected, samples were etched by Ar⁺ sputtering at 2000 eV for 30 s. XRD and XPS measurement were performed after the reduction with H₂ at 300°C for 1 h and followed passivation treatment with 5% O₂/He at room temperature. The content of Cu in catalyst was detected by an inductively coupled plasma optical emission spectrometer (ICP-OES, PerkinElmer Optima 7300DV). The BET surface area of the catalyst were determined by N2 adsorption-desorption measurement at -196°C on a Quantachrome instrument with a pretreatment at 80°C for 6 h under vacuum. High resolution transmission electron microscopy (HRTEM) images were obtained on a Talos200 transmission electron microscope. High-angle annular dark-field (HAADF)-STEM images of FSP-Cu/ZrO₂ were recorded with a HAADF detector attached in TEM. Elemental maps of Cu, O and Zr were recorded by energy dispersive X-ray (EDX) detector.

The metallic copper surface area (S_{Cu}) was determined by using N₂O oxidant and followed by TPR according to the procedure described elsewhere². The catalysts were firstly reduced in 10% H₂/Ar mixture (50 mL/min) with a temperature reduction program (TPR) from room temperature to 500°C at a ramping rate of 10°C /min. Then the reactor was purged with Ar and cooled down to room temperature. The amount of H₂ consumption in the first TPR was denoted as X. After that, the catalyst was exposed to 5% N₂O/N₂ (50 mL/min) at 50°C for 30 min. The reactor was purged with Ar to remove the surface oxidants. Finally, the second TPR was operated in the same procedure with the first time, and H₂ consumption in the second TPR was denoted as Y. Dispersion (D_{Cu}), Cu surface area (S_{Cu}) and average volume-surface diameter (d_{Cu}) were calculated as

 $D_{Cu} = 2X / Y \times 100\%$

 $S_{Cu} = 2Y \times N_{av} / (X \times M_{Cu} \times 1.4 \times 10^{19})$

 $=1353 \times Y/X (m^{2}_{Cu}/g_{Cu})$

 $d_{Cu} = 0.5 \times X / Y (nm)$

N_{av} is Avogadro's constant;

M_{Cu} is the relative atomic mass of copper (63.46 g/mol);

 1.47×10^{19} is the number of Cu atom of per square meter

Temperature programmed desorption of CO₂ (CO₂-TPD) experiment was performed to study the CO₂ adsorption capacity of the catalyst. Prior to the adsorption, 50 mg of the sample was pre-reduced in H₂ stream at 300°C for 1 h. After cooling down to 50°C, the sample was exposed to a flow of 5% CO₂/Ar at 30°C for 30 min for saturated adsorption, and then purged with flowing He gas at same temperature for 45 min to remove the reversibly and physically absorbed CO₂. Subsequently, the CO₂ desorption was carried out from 50 to 900°C with a heating rate of 10°C/min in He stream (30 mL/min). The CO₂ signal (m/z =44) during the desorption process was recorded by a Pfeiffer OmniStar mass spectrometer.

In situ diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS) results were collected on a TENSOR_II (Bruker, Germany) infrared spectrometer in diffuse reflectance FTIR (DRIFT) mode. The spectra resolution was set at 4 cm⁻¹. Prior to test, the powder of the catalyst was placed into an *in-situ* chamber and mounted in a quarts IR cell. Then, the sample was pretreated in 10% H₂/Ar flow (30 mL/min) for 30 min at 30°C, and then the atmosphere was switched to high purity Ar flow (30 mL/min) for 30 min. After that, the sample was cooled to target temperatures and the corresponding back-ground spectra were collected for subsequent DRIFTS analysis.

To collect *in-situ* Infrared spectra of CO adsorption (CO-IR) on FSP-Cu/ZrO₂ and DP-Cu/F-ZrO₂, the samples were reduced at 300°C for 30 min with 10% H₂/Ar 30 mL/min and treated with pure Ar at 300°C and 30 mL/min for 30 min, and then cooled down to 30°C. The back-ground spectra was collected. The gas was changed to a stream of 5% CO/He at a flow rate of 30 mL/min under atmospheric pressure for 30 min. Then the IR chamber was purged with high purity Ar for 60 min to remove gaseous CO. Finally, the time-resolved DRIFTS spectra were collected under Ar flow.

Fig. S1 XRD of commercial ZrO_2 and F- ZrO_2 .

Fig. S2 XRD of all the catalysts after reduction

Fig. S3 Methanol yield of DP-Cu/F-ZrO₂ and DP-Cu/C-ZrO₂ at 3.0 MPa, 200-260°C, GHSV=4800 mL/(g_{cat} ·h).

Fig. S4 CO_2 -TPD of (a) F-ZrO₂ and (b) C-ZrO₂

Fig. S5 Stability test of DP-Cu/F-ZrO₂ catalyst. Reaction condition: 260°C, 3.0 MPa and 4800 mL/(g_{cat} ·h).

Fig. S6 Stability test of FSP-Cu/ZrO₂ catalyst. Reaction condition: 260°C, 3.0 MPa and 24000 mL/(g_{cat} ·h).

Fig. S7 HRTEM images of FSP-Cu/ZrO₂

Fig. S8 HAADF-STEM images and elemental mapping of FSP-Cu/ZrO $_2$

Fig. S9 H₂-TPR of all the tested catalysts

Fig. S10 The XPS O 1s spectra and the percentages of each type of oxygen species of FSP-Cu/ZrO₂ (FSP) and DP-Cu/F-ZrO₂ (DP) catalysts.

Fig. S11 The XPS Cu 2p spectra of FSP-Cu/ZrO₂ and DP-Cu/F-ZrO₂ catalysts

Table S1. Summary of infrared band of the surface species for CO_2+H_2 reaction on Cu/ZrO_2 and ZrO_2 at 0.1 MPa and 260 °C

Surface Species	Wavenumber (cm ⁻¹)				
Bidentate formate	2967, (2879-2873), 2752, 2736,				
(bi-HCOO) ³⁻¹⁰	(1593-1588), 1580, (1421-1420), 1384, (1361-1360)				
Monodentate formate (m-HCOO) ^{3, 4, 11}	1560, 1295				
Methoxy ^{3, 4, 8}	(2933-2924), (2824-2820), 1147 of bridged (b-OCH ₃), (1047-1030) of terminal (t-OCH ₃)				
Bidentate bicarbonate (bi-HCO ₃) ^{6, 9, 11-14}	1643, (1622-1610), 1491, (1465-1470),				
Carbonate ¹²⁻¹⁵	1783, 1540, 1525, 1481, 1447, 1353, 1335-1333, (1328- 1321), 1111-1107, 1106				

Temperature · (°C)	FS	SP-Cu/ZrO ₂		DP-Cu/F-ZrO ₂			
	CO ₂	Methanol	CO (%)	CO ₂ Conversion	Methanol	CO(0/)	
	Conversion (%)	Selectivity (%)		(%)	Selectivity (%)	CO (%)	
260	13.6	51.9	49.1	11.4	37.2	62.8	
240	8.3	64.1	35.9	5.2	47.8	52.2	
220	5.0	75.8	24.2	2.6	61.8	38.2	
200	2.4	85.6	14.4	1.4	71.6	28.4	

Table S2. Product distributions of FSP-Cu/ZrO_2 and DP-Cu/F-ZrO_2

Catalyst	Cu content (wt.%)	P (MPa)	T (°C)	Methanol Selectivity (%)	CO ₂ conversion (%)	GSHV (mL/(g·h))	Methanol Yield (g/(g _{Cu} ·h))
FSP-Cu/ZrO ₂ (this work)	19.1	3.0	260	70.9	6.49	24000	2.00
IM-10Cu/a-ZrO ₂ -500 ¹⁶	10.0	1.0	230	ca. 70.0	ca. 0.65	8732	0.40
IM-8Cu/a-ZrO ₂ -350 ¹⁷	8.0	1.0	230	ca. 70.0	ca. 2.2	8732	0.56
FSP-60CuO/ZrO2 ¹⁸	58.0	1.0	230	ca. 60.0	ca. 3.0	6000	0.05
DP-10Cu@3DZrO2 ¹⁹	12.4	4.5	260	78.8	13.1	21600	6.42
DFSP-10CuO-ZrO ₂ ²⁰	14.0	2.0	270	ca. 58	NA	22500	0.60
$IM-10Cu/t-ZrO_2{}^{21}$	10.0	8.0	260	86	15.0	3600	0.06
CP-a-ZrO ₂ /90Cu ²²	91.2	3.0	220	70.0	ca. 4.0	48000	0.06
CP-10Cu/ZrO ₂ ²²	12.6	3.0	220	ca. 75.0	ca. 2.0	48000	1.26
Cu/ZnO/Al ₂ O ₃ ¹⁹	41.8	4.5	260	49.7	22.3	21600	2.05

Table S3. Comparison of catalytic performance of FSP-Cu/ZrO₂ in this work with other Cu/ZrO₂ and commercial Cu/ZnO/Al₂O₃ catalysts in literatures.

Catalyst	Cu content (wt.%) ^b	Surface Cu content (wt.%) ^c	Surface Area (m²/g)	$\mathrm{S}_{\mathrm{Cu}}(\mathrm{m}^{2}/\mathrm{g}_{\mathrm{Cu}})^{\mathrm{d}}$	D _{Cu} (%) ^e	D _{Cu} (nm) ^f
FSP-Cu/ZrO ₂	19.1	20.0	74.4	185.4	27.4	3.7
DP-Cu/F-ZrO2 ^a	25.2	27.3	56.2	24.4	3.6	27.8
DP-Cu/C-ZrO ₂	22.6	_	24.2	41.3	6.1	16.4

Table S4. Textural and structural properties of tested catalysts

^a DP-Cu/F-ZrO₂ are calcined at 450°C for 3 h before N₂O oxidation followed by TPR method.

^b Determined by ICP-OES

^c Determined by XPS

 $^{\rm d}$ Cu surface area was determined by N_2O oxidation followed by TPR method.

^e Dispersion of Cu was determined by N₂O oxidation followed by TPR method.

^f Average diameter of Cu particles was determined by N₂O oxidation followed by TPR method.

Reference

- Z. Zhang, J. Yu, J. Zhang, Q. Ge, H. Xu, F. Dallmann, R. Dittmeyer and J. Sun, *Chem. Sci.*, 2018, 9, 3386-3394.
- C. J. G. V. D. Grift, A. F. H. Wielers, B. P. J. Joghi, J. V. Beijnum, M. D. Boer, M. V. Helder and J. W. Geus, *J. Catal.*, 1991, **131**, 178-189.
- S. Posada-Perez, P. J. Ramirez, J. Evans, F. Vines, P. Liu, F. Illas and J. A. Rodriguez, J. Am. Chem. Soc., 2016, 138, 8269-8278.
- 4. W. Wang, Z. Qu, L. Song and Q. Fu, J. Catal., 2020, 382, 129-140.
- 5. N. Koizumi, G. B. I, K. Murai, T. Ozaki and M. Yamada, J. Mol. Catal. A: Chem., 2004, 207, 173-182.
- 6. S. Bailey, *Catal. Letters*, 1995, **30**, 99-111.
- D. Bianchi, T. Chafik, M. Khalfallah and S. J. Teichner, *Appl. Catal. A: Gen.*, 1993, **105**, 223-249.
- S.-i. Fujita, M. Usui, E. Ohara and N. Takezawa, *Catal. Letters*, 1992, 13, 349-358.
- 9. W. Hertl, *Langmuir*, 1989, **5**, 96-100.
- 10. Y. Amenomiya, J. Catal., 1979, 57, 64-70.
- D. Bianchi, T. Chafik, M. Khalfallah and S. J. Teichner, *Appl. Catal. A: Gen.*, 1994, **112**, 57-73.
- J. Weigel, R. A. Koeppel, A. Baiker and A. Wokaun, *Langmuir*, 1996, **12**, 5319-5329.
- D. Bianchi, T. Chafik, M. Khalfallah and S. J. Teichner, *Appl. Catal. A: Gen.*, 1994, **112**, 219-235.
- 14. E. Guglielminotti, *Langmuir*, 1990, **6**, 1455-1460.
- 15. K. Pokrovski, K. T. Jung and A. T. Bell, *Langmuir*, 2001, **17**, 4297-4303.
- 16. S. Tada and S. Satokawa, Catal. Commum., 2018, 113, 41-45.
- S. Tada, S. Kayamori, T. Honma, H. Kamei, A. Nariyuki, K. Kon, T. Toyao, K. i. Shimizu and S. Satokawa, *ACS Catal.*, 2018, 8, 7809-7819.
- 18. S. Tada, K. Fujiwara, T. Yamamura, M. Nishijima, S. Uchida and R. Kikuchi,

Chem. Eng. J., 2020, 381.

- 19. T. Liu, X. Hong and G. Liu, *ACS Catal.*, 2019, **10**, 93-102.
- S. Tada, K. Larmier, R. Büchel and C. Copéret, *Catal. Sci. Tech.*, 2018, 8, 2056-2060.
- K. Samson, M. Śliwa, R. P. Socha, K. Góra-Marek, D. Mucha, D. Rutkowska-Zbik, J. F. Paul, M. R. Mikołajczyk, R. Grabowski and J. Słoczyński, ACS Catal., 2014, 4, 3730-3741.
- C. Wu, L. Lin, J. Liu, J. Zhang, F. Zhang, T. Zhou, N. Rui, S. Yao, Y. Deng, F. Yang, W. Xu, J. Luo, Y. Zhao, B. Yan, X. D. Wen, J. A. Rodriguez and D. Ma, *Nat. Commun.*, 2020, 11, 5767-5777.