Nitrogen functional carbon nanotubes supported bimetallic PtNi nanoparticles for hydrogen generation from hydrous hydrazine

Xiaoping Hu^a, Tong Liu^{b, *}, Xiaoli Zhang^c, Jian Tian^{a, *}

^a School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

^b College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266000, China

^c School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China

* Corresponding authors. Email: liutong@qust.edu.cn (T. Liu), jiantian@sdust.edu.cn (J. Tian)

1. Materials

Hydrazine monohydrate (H₂NNH₂·H₂O, Aladdin reagent Co., Ltd, >98%), nickel(II) chloride hexahydrate (NiCl₂·6H₂O, Sinopharm Chemical Reagent Co., Ltd, >98%), sodium borohydride (NaBH₄, Sinopharm Chemical Reagent Co., Ltd, >96%), potassium permanganate (KMnO₄, Sinopharm Chemical Reagent Co., Ltd, \geq 99.5%), graphite power (Sinopharm Chemical Reagent Co., Ltd, \geq 99.85%), hydrogen peroxide (H₂O₂, Sinopharm Chemical Reagent Co., Ltd, \geq 30%), phosphoric acid (H₃PO₄, Sinopharm Chemical Reagent Co., Ltd, AR), sulfuric acid (H₂SO₄, Sinopharm Chemical Reagent Co., Ltd, 95~98%), vulcanic-72 carbon (Cabot corporation, \geq 97%), multi-walled carbon nanotube (Shandong Dazhan nano materials Co., Ltd, 97%) were used without further purification. De-ionized water with a specific resistance of 18.2 MΩ·cm was obtained by reversed osmosis followed by ion exchange and filtration.

2. Synthesis of N-MWCNTs

1.0 g MWCNTs were mixed with 1.5 g urea, which was transferred to a ceramic crucible and heat treatment in a muffle furnace at 300 °C for two hours. (ACS Catal. 2017, 7, 2720–2724) After cooling to room temperature, the mixture was washed with DI water and ethanol for three times. The product was obtained after drying in an oven at 60 °C overnight. After that, 1.0 g as-prepared sample was mixed with 2.0 g urea again, and then heat-treated at 175 °C for 4 hours. The final N-MWCNTs samples were collected by centrifuging and washed with DI water three times and then dried in an oven at 60 °C.

3. Catalytic measurement:

An aqueous suspension (4 mL) containing the as-prepared catalysts was placed in a two-neck round-bottom flask (30 mL), which was placed in a water bath under an ambient atmosphere. The reaction started when 2 mmol of hydrazine monohydrate was injected into the mixture using a syringe. A gas burette filled with water was connected to the reaction flask to measure the volume of released gas. The gas released during the reaction was measured volumetrically. The molar ratios of metal/N₂H₄•H₂O were theoretically fixed at 0.025 for all the catalytic reactions.

4. Durability testing of the catalysts:

For testing the durability of PtNi/N-MWCNTs catalysts, 2 mmol of $N_2H_4 \cdot H_2O$ was subsequently added into the reaction flask after the completion of the first-run decomposition of $N_2H_4 \cdot H_2O$. Such test cycles of the catalyst for the decomposition of $N_2H_4 \cdot H_2O$ were carried out for 5 runs at 50 °C by adding $N_2H_4 \cdot H_2O$.

5. Calculation of turnover frequency (TOF)

The TOF reported here is an apparent TOF value based on the number of Ni and Pt atoms in the catalyst, which is calculated from the equation as follow:

$$TOF = 2P_0 V / (3RTn_{NiPt}t)$$
⁽¹⁾

Where P₀ is the atmospheric pressure (101325 Pa), V is the final generated volume of H₂/N₂ gas, R is the universal gas constant (8.3145 m³ Pa mol⁻¹ K⁻¹), T is the room temperature (298 K), n_{NiPt} is the total mole number of Ni and Pt atoms in catalyst and *t* is the completion time of the reaction in hour.

Figure S1. The particle size distribution of PtNi in PtNi/N-MWCNTs.

Figure S2. The particle size distribution of PtNi in PtNi/MWCNTs.

Figure S3. XPS spectrum of N 1s in PtNi/MWCNTs.

Figure S4. XPS spectrum of Pt 4f in PtNi/N-MWCNTs and PtNi/MWCNTs.

Figure S5. XPS spectrum of Ni 2p in PtNi/N-MWCNTs and PtNi/MWCNTs.

Figure S6. Time-course plots for the generated N_2+H_2 from catalytic hydrazine decomposition over $Pt_{0.7}Ni_{0.3}/N$ -MWCNTs nitridated different temperatures.

Figure S7. Time-course plots for the generated N_2+H_2 from catalytic hydrazine decomposition over $Pt_{0.7}Ni_{0.3}/N$ -MWCNTs in various NaOH amounts.

Catalyst	Solvent	Temp.	Selectivity	TOF (h-	Ref.
		(°C)	H_2 for (100	1)a	
			%)		
Pt _{0.7} Ni _{0.3} /N-MWCNTs	Aqueous	50	100	1595	This
	NaOH	- 0	100	e t o th	work
$N_{10.6}Pt_{0.4}/g-C_3N_4$ NPs	Aqueous NaOH	50	100	2194	
Pt _{0.5} Ni _{0.5} /NGNs-850	Aqueous NaOH	50	100	2116 ^b	[2]
Ni _{0.4} Pt _{0.6} /CNTs	Aqueous NaOH	50	100	1725 ^b	[3]
Pt ₄ Ni ₆ /NC	Aqueous NaOH	50	100	1602 ^b	[4]
Rh ₅₅ Ni ₄₅ /Ce(OH)	Aqueous	50	100	395 ^b	[5]
Rh ₃₄ Ni ₆₆ @ZIF-8	Aqueous	50	100	140	[6]
(Ni ₃ Pt ₇) _{0.5} -(MnO _x) _{0.5} /NPC-900	Aqueous NaOH	50	100	706 ^b	[7]
Pt ₃ Ni ₂	Aqueous NaOH	50	100	290 ^b	[8]
PtNi/CeO ₂	Aqueous NaOH	50	100	286 ^b	[9]
Ni ₃ Pt ₇ /BNG-1000	Aqueous NaOH	30	100	199.4	[10]
$Ni_{0.9}Pt_{0.05}Rh_{0.05}/La_2O_3$	Aqueous NaOH	25	100	45.9	[11]
$Ni_{0.9}Pt_{0.1}/Ce_2O_3$	Aqueous NaOH	25	100	28.1	[12]
$Ni_{0.58}Pt_{0.42}/graphene$	Aqueous NaOH	30	100	434	[13]
$Ni_{0.9}Pt_{0.1}/MIL-101$	Aqueous NaOH	30	100	140	[14]
$Ni_{0.8}Pt_{0.2}/MIL-101-NH_2$	Aqueous NaOH	50	100	676	[15]

Table S1 Catalytic activities of different catalysts for N_2H_4 · H_2O decomposition

^a TOF values were calculated using the amount of released gas and the completion time of reaction in hour, ^b Initial TOF values were calculated at the initial stages of the catalytic reactions.

Catalyst	N content
Pt _{0.7} Ni _{0.3} /N-MWCNTs_125	2.72%
Pt _{0.7} Ni _{0.3} /N-MWCNTs_175	3.25%
Pt _{0.7} Ni _{0.3} /N-MWCNTs_225	4.59%
Pt _{0.7} Ni _{0.3} /N-MWCNTs_300	9.28%

Table S2 Elemental analyses for the samples

Notes and references

- [1] C. Wan, L. Sun, L. Xu, D. Cheng, F. Chen, X. Zhan, Y. Yang, J. Mater. Chem. A, 7 (2019) 8798-8804.
- [2] A. Kumar, X. Yang, Q. Xu, J. Mater. Chem. A, 7 (2019) 112–115.
- [3] M. Zhang, L. Liu, S. Lu, L. Xu, Y. An, C. Wan, ChemistrySelect 4 (2019) 10494-10500.
- [4] Y. Qiu, Q. Shi, L. Zhou, M. Chen, C. Chen, P. Tang, G. Walker, P. Wang, ACS Appl. Mater. Interfaces 12 (2020) 18617–18624.
- [5] J. Chen, Q. Yao, J. Zhu, X. Chen, Z. H. Lu, Int. J. Hydrogen Energ. 41 (2016) 3946-3954.
- [6] B. Q. Xia, N. Cao, H. M. Dai, J. Su, X. J. Wu, W. Luo, G. Z. Cheng, ChemCatChem 6 (2014) 2549-2552.
- [7] B. Xia, T. Liu, W. Luo, G. Cheng, J. Mater. Chem. A. 4 (2016) 5616-5622.
- [8] Y.-P. Qiu, L.-L. Zhou, Q. Shi, P. Wang, Chem. Commun. 57 (2021) 623-626.
- [9] H. Dai, Y. P. Qiu, H. B. Dai, P. Wang, ACS Sustain. Chem. Eng. 6 (2018) 9876-9882.
- [10]X. Du, C. Du, P. Cai, W. Luo, G. Cheng, ChemCatChem 8 (2016) 1410-1416.
- [11] O. Song-Il, J. M. Yan, H. L. Wang, Z. L. Wang, Q. Jiang, Int. J. Hydrogen Energ. 39 (2014) 3755-3761.
- [12] H. L. Wang, J. M. Yan, Z. L. Wang, O. Song-Il, Q. Jiang, J. Mater. Chem. A 1 (2013) 14957-14962.
- [13] J. M. Chen, Z.-H. Lu, W. Huang, Z. B. Kang, X. S. Chen, J. Alloy. Compd. 695 (2017) 3036-3043.
- [14] Z. J. Zhang, S. L. Zhang, Q. L. Yao, X. S. Chen, Z.-H. Lu, Inorg. Chem., 56 (2017) 11938-11945.
- [15] P. Liu, X. Gu, Y. Wu, J. Cheng, H. Su, Int. J. Hydrogen Energ. 42 (2017) 19096-19105.