Supporting Information

Construction of 2-Alkynyl Aza-spiro[4,5]indole Scaffolds via

Sequential C-H Activations for Modular Click Chemistry Libraries

Jun Zhang,^a Mengmeng Wang,^c Huiying Wang,^c Hui Xu,^b Junjie Chen,^b Ziqiong Guo,^b Biao Ma,^{*,b} Shu-Rong Ban,^{*,a} Hui-Xiong Dai^{*,b,c,d}

^a School of Pharmaceutical Science, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China.

^b Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai 201203, China.

^c School of Chinese Materia Medica, Nanjing University of Chinese Medicine,

Nanjing, Jiangsu 210023, China

^d University of Chinese Academy of Sciences, Beijing 100049, China.

Contents

1. General Information	S2
2. General Procedure for the Preparation of Substrates	
3. Optimization of Reaction Conditions	
4. Experimental Procedures	
5. X-ray Crystallographic Date of compound 5aa	S10
6. References	S16
7. Analytical Data	S17
8. NMR Spectra	S36

1. General Information

All reagents were purchased from commercial suppliers with the highest purity grade, and used directly without further purification. ¹H and ¹³C NMR spectra were Record on Bruker AVANCE III 400, Bruker AVANCE III 500 and Bruker AVANCE III 600 instruments. ¹⁹F NMR spectra were recorded on Bruker AVANCE III 500 and BRUKER AVANCE NEO 500 instrument and are reported relative to the CFCl₃ as the external standard. The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = double of doublets, td = triple doublet, dt = double triplet, and br = broad. EI-double focus magnetic-sector high resolution MS (EI-DFS-HRMS) were recorded on a DFS-Thermofischer instrument at the Center for Mass Spectrometry, Shanghai Institute of Material Medica. ESI with TOF analyzer was carried out at the Center for Mass Spectrometry, Shanghai Institute of Organic Chemistry. Solvents were purified prior to use according to conventional procedures. Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Column chromatography was performed on silica gel (200–300 mesh) using a mixture of petroleum ether-ethyl acetate or dichloromethane-methanol as the eluent.

2. General Procedure for the Preparation of Substrates

Preparation of substrates 1¹

Preparation of PivONH₂ solution: To a 100 mL round bottle charged with a stirring bar was added PivONH₂ TfOH (20.0 mmol) and 5 mL THF. To the system was then added sodium hydroxide (powder, 1.0 equiv). The system was then stirred at room temperature for about 3 h until the system became clear.

The synthesis of *O*-pivaloyl 1-indolehydroxamic acid: To a 100 mL round bottle charged with stirring bar, was added indole (5.0 mmol, 1.0 equiv), 1, 1'-carbonyldiimidazole (CDI, 7.5 mmol, 1.5 equiv) and 4-dimethylaminepyridine (DMAP, 20.0 mol%). Then 20 mL anhydrous MeCN was added to the bottle under the protection of nitrogen. The system was refluxed at 85 °C for 10 h. After cooled to room temperature, PivONH₂ solution (4 M in THF, 2 equiv) was added and then stirred at 60 °C for another 6 h (when most of indole was consumed as detected by TLC). After reaction, the reaction mixture was extracted with EtOAc. The combined organic layers were dried over MgSO₄. The solvent was removed in vacuo and **1a** was obtained by silica gel column chromatography (PE/EtOAc) in 58% yield.

Preparation of substrates 2²

Step 1: 2-iodobenzoic acid (**A**) (7.4 g, 30 mmol, 1.0 equiv) and NaIO₄ (6.7 g, 31 mmol, 1.0 equiv) were suspended in 30% (v:v) aq. AcOH (45 mL). The mixture was vigorously stirred and refluxed for 4 h. The reaction mixture was then diluted with cold water (120 mL) and allowed to cool to room temperature, protecting it from light. After 1 h, the crude product was collected by filtration, washed on the filter with ice water (3 x 30 mL) and acetone (3 x 30 mL), and air-dried in the dark to give the pure product **B** (7.3 g, 19 mmol, 92%) as a colorless solid.

Step 2: Trimethylsilyltriflate (3.6 mL, 20 mmol, 1.1 equiv, freshly distilled) was added dropwise to a stirred solution of 2-iodosylbenzoic acid (**B**) (4.7 g, 18 mmol, 1.0 equiv) in MeCN (140 mL). (Trimethylsilyl)(tri*iso*-propylsilyl)acetylene (**C**) (5.0 g, 20 mmol, 1.1 equiv) was then added dropwise, followed, after 15 min, by the addition of pyridine (1.5 mL, 20 mmol, 1.1 equiv). The mixture was stirred 10 min. The solvent was then removed under reduced pressure and the yellow crude oil was dissolved in dichloromethane (50 mL). The organic layer was washed with 1 M HCl (50 mL) and the aqueous layer was extracted with DCM (50 mL). The organic layers were combined, washed with a saturated solution of NaHCO₃ (50 mL), dried over MgSO₄, filtered and the solvent was evaporated under reduced pressure. Recrystallization from MeCN afforded **2** (6.3 g, 15 mmol, 83%) as a colorless solid.

Preparation of substrates 4^{3,4,5}

Method A:

Step 1: To a stirred solution of isatin (8 mmol) and K_2CO_3 (2 eq) in DMF (10 mL) was added CH₃I (2 eq) dropwise at room temperature. Then the mixture was stirred at 40 °C for 2-12 h. After completion of the reaction, the mixture was diluted with DCM (50 mL), and cold water (50 mL) was added. The organic layer was separated, washed with brine (50 ml x 2), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure to give crude product without further purification.

Step 2: A mixture of N-substituted isatin (5 mmol) and TsNHNH₂ (1.1 eq) in THF (25 mL) was stirred at 60 °C for 2 h, then cooled at room temperature. The mixture solvent was concentrated under reduced pressure, and the pure tosylhydrazone was precipitated from MeOH (15 mL) solution. Then tosylhydrazone was dissolved in THF (25 mL), aq. NaOH (0.2 N) solution was added, and the mixture was stirred at room temperature for 2 h. Water (15 mL) and EtOAc (15 mL) were added and the organic layer was separated. The collected organic layers were washed with brine (10 mL), dried over Na₂SO₄, and concentrated under reduced pressure to give the crude products, which was purified by column chromatography eluting with PE/EtOAc (10:1).

Method B:

A mixture of isatin derivatives (5 mmol) and TsNHNH2 (1.1 eq) in THF (25 mL) was stirred at

60 °C for 2 h, then cooled at room temperature. The mixture solvent was concentrated under reduced pressure, and the pure tosylhydrazone was precipitated from MeOH (15 mL) solution. Then tosylhydrazone was dissolved in THF (25 mL), aq. NaOH (0.2 N) solution was added, and the mixture was stirred at room temperature for 2 h. Water (15 mL) and EtOAc (15 mL) were added and the organic layer was separated. The collected organic layers were washed with brine (10 mL), dried over Na₂SO₄, and concentrated under reduced pressure to give the crude products, which was purified by column chromatography eluting with PE/EtOAc (10:1).

3. Optimization of Reaction Conditions

L L L L L L L L L L L L L L L L L L L	≻−H [Cp*RhCl 2 () ≻NHOPiv base, s	2]2 (2.5 mol%) k equiv)		2 TIPS
Entry	Solvent	Temp (°C)	t (h)	Yield (%) of 3a
1	DCE	r.t.	12	52
2	DCM	r.t.	12	50
3	MeCN	r.t.	12	52
4	MeOH	r.t.	12	44
5	THF	r.t.	12	18
6	Toluene	r.t.	12	51
7°	DCE	r.t.	12	66
8°	DCE	0	12	80
9°	DCE	0	4	79
10 ^{c,d}	DCE	0	4	86

Table S1. Screening of C2-alkynylation reaction conditions^{a,b}

[a] Conditions: **1a** (0.10 mmol), **2** (0.10 mmol), $[Cp*RhCl_2]_2$ (2.5 mol%), NaOAc (100 mol%), solvent (1.0 mL), r.t., air, 12 h. [b] ¹H NMR yields were determined by using CH₂Br₂ as internal standard. [c] 1.5 equiv of **2**. [d] 20 mol% NaOAc.

	$= \text{TIPS} + \underbrace{\bigvee_{N_2}^{N_2}}_{Me} O = \underbrace{[Cp^*RhCl_2]_2 (2.5 \text{ mol}\%)}_{MeCN, 12 \text{ h, r.t., air}}$	Me-N NO H 5aa
Entry	Variations from the standard conditions	Yield (%) of 5aa
1	none	92
2	No Rh(III)	0
3	MeOH instead of MeCN	65
4	DCE instead of MeCN	71
5	THF instead of MeCN	69
6	CsOAc (1.0 equiv)	89
7	KOAc (1.0 equiv)	91
8	AgSbF ₆ (20 mol%)	0
9	MeCN (2 mL)	92
10	MeCN (0.5 mL)	68
11	60 °C	77
12	4a (1.0 equiv)	73

Table S2. Screening of C7-annulation reaction conditions^{a,b}

a) Conditions: **3a** (0.10 mmol), **4a** (0.15 mmol), [Cp*RhCl₂]₂ (2.5 mol%), NaOAc (1.0 equiv), MeCN (1.0 mL), r.t., air, 12 h. b) ¹H NMR yields were determined by using CH₂Br₂ as internal standard.

4. Experimental Procedures

General procedure for Rh-catalyzed indole C2-alkynylation (Step 1)

To a solution of **1a** (26.0 mg, 0.1 mmol), $[Cp^*RhCl_2]_2$ (1.6 mg, 2.5 mol%), NaOAc (1.6 mg, 20 mol%) in DCE (1 mL) was added **2** (64.2 mg, 0.15 mmol). The reaction mixture was stirred at 0 °C for 4 h. After completion of the reaction, the resulting mixture was diluted with 25 mL of EtOAc, and filtered through a celite pad. Evaporation of the solvent followed by purification on silica gel (gradient eluent: PE/EtOAc = 20/1), provided product **3a**.

General procedure for Rh-catalyzed indole C7-annulation (Step 2)

To a solution of **3a** (44.0 mg, 0.1 mmol), $[Cp^*RhCl_2]_2$ (1.6 mg, 2.5 mol%), NaOAc (8.2 mg, 100 mol%), in MeCN (1 mL) was added **4a** (26.0 mg, 0.15 mmol). The reaction mixture was stirred at room temperature for 12 h. Then, the reaction flask was cooled to 0 °C and TBAF solution (0.12 mL, 1 M solution in THF) was added via a syringe. The reaction mixture was warmed up to ambient temperature and stirred for additional 1 h. After completion of the reaction, the reaction mixture was quenched with H₂O (1.5 mL), and compound was extracted with EtOAc (5 mL × 3). The combined organic extract was dried over Na₂SO₄ and the volatiles were evaporated in vacuo. The remaining residue was purified by column chromatography (PE/EtOAc: 1/1) to yield **6aa**.

Gram-scale Synthesis

Step 1: Under air atmosphere, to a solution of **1a** (1.04 g, 4.0 mmol), $[Cp^*RhCl_2]_2$ (64.0 mg, 2.5 mol%), NaOAc (65.6 mg, 20 mol%) in DCE (40 mL) was added **2** (2.57 g, 6.0 mmol). The reaction mixture was stirred at 0 °C for 4 h. After completion of the reaction, the resulting mixture was diluted with EtOAc, and filtered through a celite pad. The solvent was removed under

reduced pressure. The residue was purified by column chromatography on silica gel (gradient eluent: PE/EtOAc = 20/1) to give product **3a** in 83% yield.

Step 2: Under air atmosphere, to a solution of **3a** (1.61 g, 3.3 mmol), $[Cp^*RhCl_2]_2$ (52.8 mg, 2.5 mol%), NaOAc (270.6 mg, 1 equiv) in MeCN (33 mL) was added **4a** (855.0 mg, 5.0 mmol). The reaction mixture was stirred at room temperature for 12 h. Then, the reaction flask was cooled to 0 °C and TBAF solution (3.96 mL, 1 M solution in THF) was added via a syringe. The reaction mixture was warmed up to ambient temperature and stirred for additional 1 h. After completion of the reaction, the reaction mixture was quenched with H₂O (50 mL), and compound was extracted with EtOAc (100 mL × 3). The combined organic extract was dried over Na₂SO₄ and the volatiles were evaporated in vacuo. The remaining residue was purified by column chromatography (PE/EtOAc: 1/1) to yield **6aa**.

One-pot Synthesis

To a solution of **1a** (26.0 mg, 0.1 mmol), $[Cp^*RhCl_2]_2$ (3.2 mg, 5 mol%), NaOAc (8.2 mg, 1 equiv) in DCE (1 mL) was added **2** (64.2 mg, 0.15 mmol). The reaction mixture was stirred at 0 °C for 4 h. Then, **4a** (26.0 mg, 0.15 mmol) was added. The reaction mixture was stirred at room temperature for 12 h. Then, the reaction flask was cooled to 0 °C and TBAF solution (0.12 mL, 1 M solution in THF) was added via a syringe. The reaction mixture was warmed up to ambient temperature and stirred for additional 1 h. After completion of the reaction, the reaction mixture was quenched with H₂O (1.5 mL), and compound was extracted with EtOAc (5 mL × 3). The combined organic extract was dried over Na₂SO₄ and the volatiles were evaporated in vacuo. The remaining residue was purified by column chromatography (PE/EtOAc: 1/1) to yield **6aa**.

The preparation of 8a⁶

Compound **6aa** (32.7 mg, 0.1 mmol), **7a** (33.8 mg, 0.1 mmol, the preparation according to previous reports^{7, 8}) and CuI (1.9 mg, 10 mol%) were charged into a Schlenk tube, and DMF (2 mL) was added under argon. The reaction mixture was stirred at 60 °C for 14 h. At ambient temperature, H₂O (5 mL) was added and the compound was extracted with EtOAc (30 mL \times 3). The combined organic extract was washed with water (10 mL \times 3) and dried over Na₂SO₄, and the volatiles were evaporated in vacuo. The remaining residue was purified by column chromatography (PE/EtOAc: 1/5) to yield **8** (60.0 mg, 90%) as a white solid.

The preparation of 11a

0°C, NaH (6.0 mg, 1.5 eq) was added into a solution of Compound **6aa** (32.7 mg, 0.1 mmol) in DMF (2 mL) under argon. After 1h, compound **9a** (45.1 mg, 1.2 eq) was added, and the reaction mixture was stirred at 80 °C for 14 h. At ambient temperature, H₂O (5 mL) was added and the reaction was extracted with EtOAc (30 mL \times 3). The combined organic extract was washed with water (10 mL \times 3) and dried over Na₂SO₄, and the volatiles were evaporated in vacuo. The remaining residue was purified by column chromatography (PE/EtOAc: 1/1) to yield **10a** (51.0 mg, 81%) as a pink solid.

Compound **10a** (21 mg, 0.03 mmol), 7**a** (11 mg, 0.03 mmol) and CuTc (1 mg, 10 mol%) were charged into a Schlenk tube, and Toluene (1 mL) was added under argon. The reaction mixture was stirred at r.t. for 6 h. At ambient temperature, H₂O (5 mL) was added and the compound was extracted with EtOAc (30 mL \times 3). The combined organic extract was washed with water (10 mL \times 3) and dried over Na₂SO₄, and the volatiles were evaporated in vacuo. The remaining residue was purified by column chromatography (PE/acetone: 2/1) to yield **11a** (25 mg, 78%) as a white solid.

5. X-ray Crystallographic Date of compound 5aa

Crystal Data for C₂₉H₃₃N₃O₂S (*M* =487.64 g/mol): monoclinic, space group P2₁/c (no. 14), *a* = 7.7589(12) Å, *b* = 9.054(2) Å, *c* = 37.137(7) Å, *β* = 94.835(6)°, *V* = 2599.6(9) Å³, *Z* = 4, *T* = 140.0 K, μ (MoK α) = 0.155 mm⁻¹, *Dcalc* = 1.246 g/cm³, 20910 reflections measured (4.402° $\leq 2\Theta \leq 50.048^{\circ}$), 4610 unique (*R*_{int} = 0.1032, R_{sigma} = 0.0864) which were used in all calculations. The final *R*₁ was 0.0950 (I > 2 σ (I)) and *wR*₂ was 0.2882 (all data).

Table 1 Crystal data and structure refinement for 22020487TIPS1_0m.

Identification code	22020487TIPS1_0m
Empirical formula	$C_{29}H_{33}N_3O_2S$
Formula weight	487.64
Temperature/K	140.0
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	7.7589(12)
b/Å	9.054(2)
c/Å	37.137(7)
α/°	90
β/°	94.835(6)
γ/°	90
Volume/Å ³	2599.6(9)
Z	4
$\rho_{calc}g/cm^3$	1.246
μ/mm^{-1}	0.155
F(000)	1040.0
Crystal size/mm ³	$0.15\times 0.08\times 0.05$
Radiation	MoK α ($\lambda = 0.71073$)

2Θ range for data collection/°	4.402 to 50.048
Index ranges	-9 \leq h \leq 9, -10 \leq k \leq 10, -44 \leq l \leq 44
Reflections collected	20910
Independent reflections	4610 [$R_{int} = 0.1032$, $R_{sigma} = 0.0864$]
Data/restraints/parameters	4610/0/324
Goodness-of-fit on F ²	1.039
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0950, wR_2 = 0.2583$
Final R indexes [all data]	$R_1 = 0.1223, wR_2 = 0.2882$
Largest diff. peak/hole / e Å-3	0.57/-0.80

Table 2 Fractional Atomic Coordinates $(\times 10^4)$ and Equivalent Isotropic Displacement Parameters $(\mathring{A}^2 \times 10^3)$ for 22020487TIPS1_0m. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom x		у	z	U(eq)
S 1	2112(2)	2374(2)	4458.0(5)	28.6(5)
O2	805(5)	6039(5)	3497.5(12)	23.0(10)
01	3261(6)	6942(5)	2537.6(12)	25.0(11)
N1	3656(6)	6772(6)	3535.8(13)	14.0(10)
N2	1581(6)	8037(6)	3172.6(13)	18.5(11)
N3	2887(7)	9375(6)	2358.7(13)	19.2(12)
C18	1915(7)	6869(7)	3406.1(15)	16.6(13)
C11	4551(7)	8897(7)	3184.9(15)	14.8(12)
C13	7801(7)	8518(7)	3589.6(17)	18.4(13)
C20	3025(9)	3804(8)	4183.4(18)	25.2(15)
C15	4859(8)	7791(7)	3440.3(16)	15.4(12)
C8	1558(8)	13030(8)	2949.5(18)	24.8(14)
C14	6446(8)	7558(7)	3644.6(15)	17.5(13)
C2	2781(7)	8908(7)	2979.6(16)	15.8(13)
C5	2419(8)	10698(7)	2517.9(16)	17.7(13)
C16	6155(8)	6328(7)	3875.5(16)	20.2(14)
C3	3002(8)	8245(7)	2598.8(16)	18.9(13)
C19	3616(8)	4762(8)	4000.6(18)	23.8(14)
C17	4484(8)	5892(7)	3819.4(16)	20.2(14)
C10	5898(8)	9844(7)	3136.9(16)	20.3(13)
C9	1795(8)	11615(7)	3103.8(17)	21.6(14)
C25	2734(9)	2820(8)	4950.7(18)	28.4(16)
C4	2222(8)	10466(7)	2887.3(16)	17.3(13)
C6	2229(8)	12095(7)	2365.6(18)	21.7(14)
C12	7523(8)	9649(7)	3336.5(17)	21.7(14)
C27	-276(9)	2505(8)	4367.8(17)	26.4(15)
C1	3169(10)	9228(8)	1975.9(16)	27.8(16)

C7	1785(8)	13252(8)	2585.0(18)	25.1(14)
C29	-1062(10)	3834(10)	4553(2)	36.9(19)
C28	-839(10)	2618(9)	3954.3(18)	34.4(17)
C21	1948(12)	-586(11)	4171(3)	52(2)
C24	4696(10)	2848(10)	5043(2)	39.9(19)
C22	3094(11)	535(9)	4351(3)	45(2)
C23	4811(11)	639(11)	4201(3)	49(2)
C26	1853(11)	1743(11)	5196.4(19)	46(2)

Table 3 Anisotropic Displacement Parameters $(\mathring{A}^2 \times 10^3)$ for 22020487TIPS1_0m. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+\cdots]$.

Atom	n U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
S 1	34.6(9)	20.0(10)	32.6(9)	3.3(7)	10.5(7)	1.7(7)
O2	20(2)	17(2)	32(2)	6(2)	5.2(18)	-0.8(19)
01	35(3)	11(3)	29(2)	-3.3(19)	4(2)	5(2)
N1	11(2)	13(3)	18(2)	3(2)	-0.7(19)	3(2)
N2	14(2)	14(3)	28(3)	6(2)	6(2)	2(2)
N3	30(3)	12(3)	17(2)	0(2)	8(2)	1(2)
C18	16(3)	11(3)	23(3)	-2(2)	4(2)	2(3)
C11	18(3)	8(3)	19(3)	-2(2)	6(2)	1(2)
C13	11(3)	18(4)	26(3)	-4(3)	1(2)	2(2)
C20	30(3)	21(4)	26(3)	3(3)	7(3)	4(3)
C15	19(3)	5(3)	24(3)	-3(2)	6(2)	0(2)
C8	23(3)	12(3)	39(4)	-4(3)	3(3)	3(3)
C14	18(3)	13(3)	21(3)	-2(3)	2(2)	5(2)
C2	16(3)	9(3)	23(3)	3(2)	5(2)	4(2)
C5	20(3)	12(3)	21(3)	-1(2)	4(2)	-1(2)
C16	22(3)	19(4)	19(3)	2(3)	-1(2)	1(3)
C3	17(3)	18(4)	22(3)	-3(3)	3(2)	-2(3)
C19	28(3)	15(4)	29(3)	2(3)	6(3)	5(3)
C17	24(3)	13(3)	23(3)	4(3)	2(3)	1(3)
C10	21(3)	16(3)	24(3)	1(3)	4(3)	-2(3)
C9	25(3)	14(3)	27(3)	0(3)	5(3)	3(3)
C25	27(3)	25(4)	34(3)	6(3)	10(3)	8(3)
C4	20(3)	12(3)	20(3)	0(2)	5(2)	3(2)
C6	23(3)	15(4)	27(3)	6(3)	2(2)	3(3)
C12	23(3)	14(4)	29(3)	-4(3)	6(3)	-1(3)
C27	33(4)	17(4)	31(3)	0(3)	15(3)	3(3)
C1	40(4)	27(4)	17(3)	0(3)	8(3)	3(3)
C7	26(3)	15(4)	35(3)	2(3)	4(3)	5(3)

C29	33(4)	46(5)	33(4)	-7(4)	5(3)	13(4)
C28	36(4)	39(5)	29(3)	-2(3)	6(3)	-4(4)
C21	55(5)	41(6)	61(5)	-15(4)	8(5)	1(4)
C24	35(4)	46(5)	38(4)	4(4)	-4(3)	8(4)
C22	44(5)	15(4)	78(6)	-5(4)	23(4)	-1(3)
C23	43(5)	40(6)	64(6)	-9(4)	6(4)	20(4)
C26	55(5)	59(6)	24(4)	8(4)	4(3)	-16(5)

Table 4 Bond Lengths for 22020487TIPS1_0m.

Atom	n Atom	n Length/Å	Atom Atom Length/Å			
S 1	C20	1.827(7)	C15	C14	1.407(8)	
S 1	C25	1.896(7)	C8	C9	1.409(9)	
S 1	C27	1.859(7)	C8	C7	1.394(9)	
S 1	C22	1.887(8)	C14	C16	1.435(9)	
O2	C18	1.212(8)	C2	C3	1.559(8)	
01	C3	1.221(8)	C2	C4	1.507(9)	
N1	C18	1.398(7)	C5	C4	1.409(8)	
N1	C15	1.380(8)	C5	C6	1.388(9)	
N1	C17	1.429(8)	C16	C17	1.354(9)	
N2	C18	1.378(8)	C19	C17	1.425(9)	
N2	C2	1.454(8)	C10	C12	1.419(9)	
N3	C5	1.397(8)	C9	C4	1.372(9)	
N3	C3	1.355(8)	C25	C24	1.532(11)	
N3	C1	1.462(8)	C25	C26	1.535(10)	
C11	C15	1.386(9)	C6	C7	1.388(10)	
C11	C2	1.513(8)	C27	C29	1.537(10)	
C11	C10	1.375(9)	C27	C28	1.564(9)	
C13	C14	1.393(9)	C21	C22	1.473(12)	
C13	C12	1.394(9)	C22	C23	1.492(11)	
C20	C19	1.215(10)				

Table 5 Bond Angles for 22020487TIPS1_0m.

Atom Atom Angle/°			Atom Atom Atom Angle/°				
C20	S 1	C25	108.0(3)	C11	C2	C3	106.9(5)
C20	S 1	C27	106.4(3)	C4	C2	C11	110.6(5)
C20	S 1	C22	109.0(3)	C4	C2	C3	101.9(5)
C27	S 1	C25	109.2(3)	N3	C5	C4	109.7(5)
C27	S 1	C22	115.6(4)	C6	C5	N3	129.1(5)
C22	S 1	C25	108.4(4)	C6	C5	C4	121.1(6)
C18	N1	C17	130.6(5)	C17	C16	C14	109.3(5)

C15	N1	C18	121.6(5)	01	C3	N3	127.6(6)
C15	N1	C17	106.8(5)	01	C3	C2	125.0(6)
C18	N2	C2	129.2(5)	N3	C3	C2	107.4(5)
C5	N3	C1	123.7(5)	C20	C19	C17	172.9(7)
C3	N3	C5	112.0(5)	C16	C17	N1	108.5(5)
C3	N3	C1	124.3(5)	C16	C17	C19	128.4(6)
O2	C18	N1	123.6(6)	C19	C17	N1	123.2(6)
O2	C18	N2	123.4(5)	C11	C10	C12	120.5(6)
N2	C18	N1	113.0(5)	C4	C9	C8	118.7(6)
C15	C11	C2	116.5(5)	C24	C25	S 1	112.7(5)
C10	C11	C15	116.7(6)	C24	C25	C26	111.2(6)
C10	C11	C2	126.7(6)	C26	C25	S 1	110.4(5)
C14	C13	C12	118.8(6)	C5	C4	C2	108.0(5)
C19	C20	S 1	179.4(6)	C9	C4	C2	131.0(6)
N1	C15	C11	125.3(5)	C9	C4	C5	120.6(6)
N1	C15	C14	110.0(5)	C5	C6	C7	118.1(6)
C11	C15	C14	124.8(6)	C13	C12	C10	121.5(6)
C7	C8	C9	120.2(6)	C29	C27	S 1	113.3(5)
C13	C14	C15	117.7(6)	C29	C27	C28	107.4(6)
C13	C14	C16	137.0(6)	C28	C27	S 1	111.9(4)
C15	C14	C16	105.3(5)	C6	C7	C8	121.3(6)
N2	C2	C11	109.8(5)	C21	C22	S 1	117.7(6)
N2	C2	C3	111.2(5)	C21	C22	C23	113.3(8)
N2	C2	C4	115.9(5)	C23	C22	S 1	114.3(6)

Table 6 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²× 10³) for 22020487TIPS1_0m.

Atom x		у	Z	U(eq)
H2	486.18	8291.85	3135.03	22
H13	8894.48	8404.69	3722.09	22
H8	1243.66	13835.59	3094.34	30
H16	7001.39	5887.75	4041.66	24
H10	5738.91	10634.1	2969.07	24
H9	1661.24	11459.56	3352.88	26
H25	2286.77	3831.92	4997.71	34
H6	2398.39	12254.8	2118.2	26
H12	8444.18	10305	3296.77	26
H27	-795.7	1585.81	4461.57	32
H1A	2131.26	9553.44	1828.4	42
H1B	3407.94	8192.79	1921.68	42

H1C 4155.22	9840.16	1921.24	42
H7 1631.86	14213.25	2484.87	30
H29A-817.96	3750.27	4815.37	55
H29B -2316.11	3850.88	4492.64	55
H29C -552.92	4749.03	4468.81	55
H28A-318.64	3498.97	3854.92	52
H28B -2102.12	2689.49	3917.82	52
H28C -449.38	1737.18	3831.14	52
H21A 948.18	-744.15	4310.65	78
H21B 2583.47	-1515.32	4153.84	78
H21C 1550.43	-243.86	3927.43	78
H24A 5175.43	1867.36	5000.92	60
H24B 4948.92	3121.44	5296.92	60
H24C 5218.67	3572.8	4888.83	60
H22 3387.37	97.85	4596.22	54
H23A 4742.85	1347.27	4000.36	73
H23B 5138.23	-333.19	4112.53	73
H23C 5681.33	971.6	4389.91	73
H26A 595.81	1796.48	5142.66	69
H26B 2150.31	2009.96	5449.79	69
H26C 2249.18	735.63	5153.62	69

6. References

[1] Zhang, L.-B.; Zhu, M.-H.; Ni, S.-F.; Wen, L.-R.; Li, M. ACS Catal. 2019, 9, 1680.

[2] Brand, J.; Charpentier, J.; Waser, J. Angew. Chem. Int. Ed. 2009, 48, 9346.

[3] Ma, B.; Wu, P.; Wang, X.; Wang, Z.-Y.; Lin, H.-X.; Dai, H.-X. Angew. Chem. Int. Ed. 2019, 58, 13335.

[4] Dhara, K.; Mandal, T.; Das, J.; Dash, J. Angew. Chem. Int. Ed. 2015, 54, 15831.

[5] Oseka, M.; Kimm, M.; Kaabel, S.; Jarving, I.; Rissanen, K.; Kanger, T. Org. Lett. 2016, 18, 1358.

[6] Khake, S. M.; Soni, V.; Gonnade, R. G.; Punji, B. Chem. Eur. J. 2017, 23, 2907.

[7] Reader, P. W.; Pfukwa, R.; Jokonya, S.; Arnott, G. E.; Klumperman, B. *Polym. Chem.* **2016**, *7*, 6450.

[8] Favalli, N.; Bassi, G.; Zanetti, T.; Scheuermann, J.; Neri, D. Helv. Chim. Acta 2019, 102, e1900033.

7. Analytical Data

Characterization of Substrates

N-(pivaloyloxy)-1H-indole-1-carboxamide

1a: Pale yellow solid (58% yield, eluent = PE/EtOAc (10/1)); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.85 (s, 1H), 8.16 (d, *J* = 8.2 Hz, 1H), 7.56 (d, *J* = 7.7 Hz, 1H), 7.47 (d, *J* = 3.7 Hz, 1H), 7.36 – 7.30 (m, 1H), 7.29 – 7.23 (m, 1H), 6.61 (d, *J* = 3.7 Hz, 1H), 1.37 (s, 9H).

4-methyl-N-(pivaloyloxy)-1H-indole-1-carboxamide

1b: Yellow solid (54% yield, eluent = PE/EtOAc (10/1)); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (d, J = 8.0 Hz, 1H), 7.48 (d, J = 3.8 Hz, 1H), 7.29 – 7.20 (m, 1H), 7.07 (d, J = 7.3, 1H), 6.69 (d, J = 3.7, 1H), 2.52 (s, 3H), 1.38 (s, 9H).

4-methoxy-N-(pivaloyloxy)-1H-indole-1-carboxamide

1c: White solid (56% yield, eluent = PE/ EtOAc (10/1)); ¹H NMR (500 MHz, Chloroform-*d*) δ 8.90 (s, 1H), 7.73 (d, J = 8.4, 1H), 7.39 (d, J = 3.8 Hz, 1H), 7.29 – 7.25 (m, 1H), 6.80 (d, J = 3.7 Hz, 1H), 6.70 (d, J = 8.0 Hz, 1H), 3.95 (s, 3H), 1.38 (s, 9H).

4-fluoro-N-(pivaloyloxy)-1H-indole-1-carboxamide

1d: Yellow oil (55% yield, eluent = PE/ EtOAc (10/1)); ¹H NMR (500 MHz, Chloroform-*d*) δ 8.99 (s, 1H), 7.92 (d, J = 7.5 Hz, 1H), 7.44 (d, J = 3.7 Hz, 1H), 7.33 – 7.18 (m, 1H), 6.94 (t, J = 10.0 Hz, 1H), 6.76 – 6.73 (m, 1H), 1.38 (s, 9H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 177.7, 155.9 (d, J = 248.4 Hz), 152.2, 137.2 (d, J = 9.5 Hz), 125.7 (d, J = 7.4 Hz), 123.4, 119.0 (d, J = 22.6 Hz), 110.9 (d, J = 3.8 Hz), 108.6 (d, J = 18.7 Hz), 104.7, 38.5, 27.0. ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -121.3. HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₄H₁₄FN₂O₃ 277.0994; Found 277.0989.

5-methyl-N-(pivaloyloxy)-1H-indole-1-carboxamide

1e: White solid (58% yield, eluent = PE/ EtOAc (10/1)); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (d, J = 8.5 Hz, 1H), 7.44 (d, J = 3.7 Hz, 1H), 7.36 (s, 1H), 7.15 (dd, J = 8.6, 1.7 Hz, 1H), 6.57 (d, J = 3.7, 1H), 2.44 (s, 3H), 1.38 (s, 9H).

5-methoxy-N-(pivaloyloxy)-1H-indole-1-carboxamide

1f: White solid (56% yield, eluent = PE/ EtOAc (10/1)); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.03 (d, *J* = 9.0 Hz, 1H), 7.44 (d, *J* = 3.7 Hz, 1H), 7.03 (d, *J* = 2.5 Hz, 1H), 6.94 (dd, *J* = 9.0, 2.6 Hz, 1H), 6.57 (d, *J* = 3.6 Hz, 1H), 3.85 (s, 3H), 1.37 (s, 9H).

5-fluoro-N-(pivaloyloxy)-1H-indole-1-carboxamide

1g: White solid (55% yield, eluent = PE/ EtOAc (10/1)); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.90 (s, 1H), 8.12 (dd, *J* = 9.0, 4.5 Hz, 1H), 7.49 (d, *J* = 3.8 Hz, 1H), 7.23 (dd, *J* = 8.7, 2.6 Hz, 1H), 7.07 (td, *J* = 9.1, 2.6 Hz, 1H), 6.62 (d, *J* = 3.7, 1H), 1.38 (s, 9H).

5-chloro-N-(pivaloyloxy)-1H-indole-1-carboxamide

1h: White solid (57% yield, eluent = PE/ EtOAc (10/1)); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.92 (s, 1H), 8.08 (d, *J* = 8.0 Hz, 1H), 7.54 (d, *J* = 2.1 Hz, 1H), 7.47 (d, *J* = 3.8 Hz, 1H), 7.29 (dd, *J* = 8.8, 2.1 Hz, 1H), 6.59 (d, *J* = 3.8, 1H), 1.38 (s, 9H).

N-(pivaloyloxy)-5-(trifluoromethyl)-1H-indole-1-carboxamide

1i: White solid (52% yield, eluent = PE/ EtOAc (10/1), mp: 78-80 °C); ¹H NMR (400 MHz, Chloroform-*d*) δ 9.02 (s, 1H), 8.26 (d, J = 8.0, 1H), 7.84 (s, 1H), 7.57 (dd, J = 8.8, 1.8 Hz, 1H), 7.54 (d, J = 3.7 Hz, 1H), 6.70 (d, J = 3.8, 1H), 1.38 (s, 9H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 177.8, 152.0, 136.8, 129.6, 125.7 (q, J = 32.5 Hz) 124.9, 124.5 (q, J = 270.0 Hz), 121.7 (q, J = 3.7 Hz), 118.7 (q, J = 4.1 Hz), 115.3, 109.1, 38.5, 27.0. ¹⁹F NMR (375 MHz, Chloroform-*d*) δ -61.07. HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₅H₁₄F₃N₂O₃ 327.0962; Found 327.0955.

6-fluoro-N-(pivaloyloxy)-1H-indole-1-carboxamide

1*j*: White solid (55% yield, eluent = PE/ EtOAc (10/1), mp: 66-68 °C); ¹H NMR (500 MHz, Chloroform-*d*) δ 8.88 (s, 1H), 7.93 (dd, *J* = 10.0, 2.4 Hz, 1H), 7.50 (dd, *J* = 8.5, 5.3 Hz, 1H), 7.42

(d, J = 3.7 Hz, 1H), 7.02 (td, J = 8.9, 2.4 Hz, 1H), 6.64 (d, J = 3.8, 1H), 1.38 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 177.8, 161.1 (d, J = 241.2 Hz), 152.1, 135.5 (d, J = 12.6 Hz), 126.1, 123.4 (d, J = 4.1 Hz), 121.7 (d, J = 10.0 Hz), 111.6 (d, J = 24.5 Hz), 108.8, 102.5 (d, J = 28.8 Hz), 38.4, 26.9. ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -116.5. HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₄H₁₄FN₂O₃ 277.0994; Found 277.0988.

6-chloro-N-(pivaloyloxy)-1H-indole-1-carboxamide

1k: White solid (56% yield, eluent = PE/ EtOAc (10/1)); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 (d, J = 1.9 Hz, 1H), 7.47 (d, J = 8.4 Hz, 1H), 7.42 (d, J = 3.7 Hz, 1H), 7.23 (dd, J = 8.4, 1.9 Hz, 1H), 6.62 (dd, J = 3.7, 0.8 Hz, 1H), 1.38 (s, 9H).

5-bromo-3-methyl-N-(pivaloyloxy)-1H-indole-1-carboxamide

1: White solid (55% yield, eluent = PE/ EtOAc (10/1), mp: 93-95 °C); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.90 (s, 1H), 8.01 (d, *J* = 8.8 Hz, 1H), 7.59 (d, *J* = 1.9 Hz, 1H), 7.40 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.18 (d, *J* = 1.5 Hz, 1H), 2.21 (s, 3H), 1.37 (s, 9H). ¹³C NMR (100 MHz, Chloroform-d) δ 177.9, 152.0, 134.2, 132.6, 127.7, 122.0, 121.1, 117.8, 116.5, 116.4, 38.4, 27.0, 9.5. HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₅H₁₆BrN₂O₃ 351.0350; Found 351.0343.

$1-((triisopropylsilyl)ethynyl)-1\lambda^3-benzo[d][1,2]iodaoxol-3(1H)-one$

2: White solid (90% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.43 – 8.37 (m, 1H), 8.32 – 8.24 (m, 1H), 7.80 – 7.69 (m, 2H), 1.19 – 1.10 (m, 21H).

3-diazo-1-methylindolin-2-one

4a: Red solid (85% yield, eluent = PE/ EtOAc (1/1)); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.22 – 7.16 (m, 2H), 7.11 – 7.04 (m, 1H), 6.94 – 6.87 (m, 1H), 3.31 (s, 3H).

3-diazo-1,5-dimethylindolin-2-one

4b: Light red solid (87% yield, eluent = PE/ EtOAc (1/1)); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.01 (dd, *J* = 7.4, 1.5 Hz, 1H), 6.96 (t, *J* = 7.5 Hz, 1H), 6.91 (dd, *J* = 7.6, 1.6, 1H), 3.59 (s, 3H), 2.59 (s, 3H).

3-diazo-5-methoxy-1-methylindolin-2-one

4c: Red solid (84% yield, eluent = PE/ EtOAc (1/1)); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.94 – 6.59 (m, 3H), 3.80 (s, 3H), 3.28 (s, 3H).

3-diazo-5-fluoro-1-methylindolin-2-one

4d: Orange solid (88% yield, eluent = PE/ EtOAc (1/1)); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.97 – 6.87 (m, 2H), 6.82 (dd, J = 8.5, 4.2 Hz, 1H), 3.32 (s, 3H).

5-chloro-3-diazo-1-methylindolin-2-one

4e: Red solid (86% yield, eluent = PE/ EtOAc (1/1)); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.20 – 7.14 (m, 2H), 6.82 (d, *J* = 8.2, 1H), 3.31 (s, 3H).

3-diazo-1-methyl-5-(trifluoromethoxy)indolin-2-one

4f: Orange solid (84% yield, eluent = PE/ EtOAc (1/1)); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.12 – 7.00 (m, 2H), 6.88 (d, *J* = 8.4, 1H), 3.32 (s, 3H).

3-diazo-6-methoxy-1-methylindolin-2-one

4g: Red solid (86% yield, eluent = PE/ EtOAc (1/1)); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.06 (d, *J* = 8.3 Hz, 1H), 6.63 (dd, *J* = 8.3, 2.3 Hz, 1H), 6.51 (d, *J* = 2.2 Hz, 1H), 3.83 (s, 3H), 3.29 (s, 3H).

6-bromo-3-diazo-1-methylindolin-2-one

4h: Orange solid (86% yield, eluent = PE/ EtOAc (1/1)); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.21 (dd, *J* = 8.1, 1.7 Hz, 1H), 7.07 – 7.02 (m, 2H), 3.30 (s, 3H).

3-diazo-1,7-dimethylindolin-2-one

4i: Dark yellow solid (87% yield, eluent = PE/ EtOAc (1/1)); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.04 – 6.97 (m, 2H), 6.80 (d, *J* = 7.9 Hz, 1H), 3.30 (s, 3H), 2.36 (s, 3H).

3-diazo-7-fluoro-1-methylindolin-2-one

4j: Dark yellow solid (88% yield, eluent = PE/ EtOAc (1/1)); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.09 – 6.74 (m, 3H), 3.53 (d, *J* = 2.5 Hz, 3H).

3-diazo-1-phenylindolin-2-one

4k: Red solid (89% yield, eluent = PE/ EtOAc (1/1)); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 – 7.50 (m, 2H), 7.48 – 7.39 (m, 3H), 7.30 – 7.23 (m, 1H), 7.17 – 7.10 (m, 2H), 6.98 – 6.87 (m, 1H).

$$\underset{H}{\overset{N_2}{\underset{H}{\overset{}}}} \circ$$

3-diazoindolin-2-one

4I: Pale red solid (82% yield, eluent = PE/ EtOAc (1/1)); ¹H NMR (400 MHz, DMSO- d_6) δ 10.68 (s, 1H), 7.40 (d, J = 7.6, 1H), 7.09 (td, J = 7.7, 1.3 Hz, 1H), 6.99 (td, J = 7.6, 1.1 Hz, 1H), 6.91 (d, J = 7.7 Hz, 1H).

1-allyl-3-diazoindolin-2-one

4m: Pale red solid (81% yield, eluent = PE/ EtOAc (10/1)); ¹H NMR (400 MHz, CDCl₃) δ 7.22 (t, J = 5.7 Hz, 1H), 7.18 (d, J = 7.7 Hz, 1H), 7.10 (t, J = 7.5 Hz, 1H), 6.94 (d, J = 7.8 Hz, 1H), 5.88 (ddd, J = 22.1, 10.5, 5.3 Hz, 1H), 5.23 (dd, J = 13.6, 6.1 Hz, 2H), 4.47 (d, J = 5.2 Hz, 2H).

1-benzyl-3-diazoindolin-2-one

4n: Pale red solid (79% yield, eluent = PE/ EtOAc (10/1)); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.36 – 7.32 (m, 4H), 7.31 – 7.27 (m, 1H), 7.25 – 7.22 (m, 1H), 7.13 (td, *J* = 7.6, 1.6 Hz, 1H), 7.09 (td, *J* = 7.5, 1.4 Hz, 1H), 6.93 – 6.70 (m, 1H), 5.06 (s, 2H).

methyl 2-(3-diazo-2-oxoindolin-1-yl)acetate

4o: Pale red solid (80% yield, eluent = PE/ EtOAc (10/1)); ¹H NMR (500 MHz, CDCl₃) δ 7.25 (d, *J* = 7.6 Hz, 1H), 7.21 (dd, *J* = 7.7, 6.9 Hz, 1H), 7.13 (t, *J* = 7.5 Hz, 1H), 6.84 (d, *J* = 7.8 Hz, 1H), 4.60 (s, 2H), 4.25 (q, *J* = 7.1 Hz, 2H), 1.30 (t, *J* = 7.1 Hz, 3H).

Ethyl (3*R***,4***R***,5***S***)-4-acetamido-5-azido-3-(pentan-3-yloxy)cyclohex-1-ene-1-carboxylate 7a: White solid (72% yield, eluent = DCM/ MeOH (10/1)); ¹H NMR (500 MHz, Chloroform-***d***) δ 6.82 (t,** *J* **= 2.5 Hz, 1H), 5.80 (d,** *J* **= 7.4 Hz, 1H), 4.65 – 4.60 (m, 1H), 4.36 (td,** *J* **= 10.8, 5.8 Hz, 1H), 4.29 – 4.19 (m, 2H), 3.39 – 3.33 (m, 1H), 3.33 – 3.27 (m, 1H), 2.89 (dd,** *J* **= 17.7, 5.8, 1H), 2.30 – 2.21 (m, 1H), 2.07 (s, 3H), 1.61 – 1.46 (m, 4H), 1.32 (t,** *J* **= 7.1 Hz, 3H), 0.96 – 0.90(m, 6H).**

Characterization of products

N-(pivaloyloxy)-2-((triisopropylsilyl)ethynyl)-1 H-indole-1-carboxamide

3a: Yellow oil (82% yield, eluent = PE/ EtOAc (10/1)); ¹H NMR (400 MHz, Chloroform-*d*) δ 10.55 (s, 1H), 8.36 (dd, J = 8.5, 1.0 Hz, 1H), 7.52 (dt, J = 7.7, 1.0 Hz, 1H), 7.38 (ddd, J = 8.5, 7.2, 1.3 Hz, 1H), 7.26 (td, J = 7.4, 1.0 Hz, 1H), 7.03 (s, 1H), 1.38 (s, 9H), 1.21 – 1.09 (m, 21H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 176.5, 151.9, 136.8, 128.0, 126.5, 123.7, 120.7, 118.2, 116.9, 116.3, 102.8, 98.2, 38.2, 26.9, 18.5, 11.1. HRMS (ESI) m/z: [M-H]⁻ Calcd for C₂₅H₃₅N₂O₃Si 439.2422; Found 439.2416.

Т

4-methyl-N-(pivaloyloxy)-2-((triisopropylsilyl)ethynyl)-1H-indole-1-carboxamide

3b: Yellow oil (74% yield, eluent = PE/ EtOAc (10/1)); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.55 (s, 1H), 8.18 (d, *J* = 8.9 Hz, 1H), 7.29 – 7.25 (m, 1H), 7.08 – 7.04 (m, 2H), 2.50 (s, 3H), 1.38 (s, 9H), 1.23 – 1.09 (m, 21H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 176.5, 151.9, 136.7, 130.2, 127.7, 126.6, 124.0, 116.8, 116.3, 113.8, 102.5, 98.4, 38.2, 26.9, 18.5, 18.3, 11.1. HRMS (ESI) m/z: [M-H]⁻ Calcd for C₂₆H₃₇N₂O₃Si 453.2579; Found 453.2575.

$\label{eq:linear} 4-methoxy-N-(pivaloyloxy)-2-((triisopropylsilyl)ethynyl)-1 \\ H-indole-1-carboxamide$

3c: Yellow oil (81% yield, eluent = PE/ EtOAc (10/1)); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.56 (s, 1H), 7.93 (d, J = 8.5 Hz, 1H), 7.29 (t, J = 8.2 Hz, 1H), 7.16 (d, J = 0.7 Hz, 1H), 6.65 (d, J

= 8.0 Hz, 1H), 3.91 (s, 3H), 1.37 (s, 9H), 1.21 – 1.08 (m, 21H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 176.4, 152.5, 151.9, 137.9, 127.6, 118.7, 115.6, 115.5, 109.2, 103.5, 102.2, 98.4, 55.3, 38.2, 26.9, 18.5, 11.1. HRMS (ESI) m/z: [M-H]⁻ Calcd for C₂₆H₃₇N₂O₄Si 469.2528; Found 469.2524.

4-fluoro-N-(pivaloyloxy)-2-((triisopropylsilyl)ethynyl)-1H-indole-1-carboxamide

3d: Yellow oil (72% yield, eluent = PE/ EtOAc (10/1)); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.54 (s, 1H), 8.13 (d, *J* = 8.4 Hz, 1H), 7.30 (td, *J* = 8.3, 5.5 Hz, 1H), 7.11 (d, *J* = 0.8 Hz, 1H), 6.93 (dd, *J* = 9.4, 8.0 Hz, 1H), 1.37 (s, 9H), 1.21 – 1.11 (m, 21H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 176.4, 155.1 (d, *J* = 249.8 Hz), 151.6, 138.4 (d, *J* = 8.7 Hz), 127.2 (d, *J* = 7.2 Hz), 117.4 (d, *J* = 22.2 Hz), 117.1, 113.4, 112.4 (d, *J* = 3.9 Hz), 108.7 (d, *J* = 18.0 Hz), 103.3, 97.6, 38.2, 26.9, 18.5, 11.1. ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -121.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₃₆FN₂O₃Si 459.2474; Found 459.2485.

$\label{eq:second} 5-methyl-N-(pivaloyloxy)-2-((triisopropylsilyl)ethynyl)-1 H-indole-1-carboxamide$

3e: Yellow oil (72% yield, eluent = PE/ EtOAc (10/1)); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.50 (s, 1H), 8.22 (d, *J* = 8.6 Hz, 1H), 7.30 – 7.27 (m, 1H), 7.19 (dd, *J* = 8.6, 1.7 Hz, 1H), 6.95 (d, *J* = 0.8 Hz, 1H), 2.42 (s, 3H), 1.37 (s, 9H), 1.25 – 1.09 (m, 21H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 176.5, 151.9, 135.1, 133.3, 128.2, 128.0, 120.4, 118.0, 116.9, 116.0, 102.6, 98.4, 38.2, 27.0, 21.2, 18.5, 11.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₃₉N₂O₃Si 455.2724; Found 455.2732.

5-methoxy-N-(pivaloyloxy)-2-((triisopropylsilyl)ethynyl)-1H-indole-1-carboxamide

3f: Yellow oil (77% yield, eluent = PE/ EtOAc (10/1)); ¹H NMR (400 MHz, Chloroform-*d*) δ 10.52 (s, 1H), 8.25 (d, *J* = 9.1 Hz, 1H), 6.99 (dd, *J* = 9.2, 2.6 Hz, 1H), 6.95 (s, 1H), 6.93 (d, *J* = 2.5 Hz, 1H), 3.83 (s, 3H), 1.37 (s, 9H), 1.23 – 0.96 (m, 21H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 176.5, 156.4, 151.9, 131.5, 128.8, 117.9, 117.3, 117.2, 115.7, 102.8, 102.4, 98.3, 55.5, 38.2, 26.9, 18.5, 11.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₃₉N₂O₄Si 471.2674; Found 471.2667.

$\label{eq:solution} 5-fluoro-N-(pivaloyloxy)-2-((triisopropylsilyl)ethynyl)-1 \\ H-indole-1-carboxamide$

3g: Yellow oil (70% yield, eluent = PE/ EtOAc (10/1)); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.52 (s, 1H), 8.32 (dd, *J* = 9.2, 4.6 Hz, 1H), 7.16 (dd, *J* = 8.4, 2.6 Hz, 1H), 7.09 (td, *J* = 9.1, 2.6 Hz, 1H), 6.98 (s, 1H), 1.37 (s, 9H), 1.21 – 1.09 (m, 21H). ¹³C NMR (125 MHz, Chloroform-*d*) δ

176.5, 159.6 (d, J = 240.6 Hz), 151.6, 133.1, 128.8 (d, J = 10.4 Hz), 118.4, 117.5, 117.5 (d, J = 14.1 Hz), 114.4 (d, J = 25.3 Hz), 105.8 (d, J = 23.8 Hz), 103.6, 97.7, 38.2, 26.9, 18.5, 11.1. ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -121.2. HRMS (ESI) m/z: [M-H]⁻ Calcd for C₂₅H₃₄FN₂O₃Si 457.2328; Found 457.2329.

5-chloro-N-(pivaloyloxy)-2-((triisopropylsilyl)ethynyl)-1H-indole-1-carboxamide

3h: Yellow oil (74% yield, eluent = PE/ EtOAc (10/1)); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.52 (s, 1H), 8.28 (d, *J* = 9.0 Hz, 1H), 7.47 (d, *J* = 2.2 Hz, 1H), 7.31 (dd, *J* = 9.0, 2.1 Hz, 1H), 6.95 (d, *J* = 0.7 Hz, 1H), 1.37 (s, 9H), 1.19 – 1.10 (m, 21H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 176.4, 151.5, 135.0, 129.3, 129.1, 126.6, 120.0, 118.2, 117.4, 117.0, 103.7, 97.6, 38.2, 26.9, 18.5, 11.1. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₅H₃₅ClN₂NaO₃Si 497.1998; Found 497.1990.

N-(pivaloyloxy)-5-(trifluoromethyl)-2-((triisopropylsilyl)ethynyl)-1*H***-indole-1-carboxamide 3i**: Yellow oil (70% yield, eluent = PE/ EtOAc (10/1)); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.55 (s, 1H), 8.46 (d, *J* = 8.9 Hz, 1H), 7.81 (s, 1H), 7.60 (dd, *J* = 8.9, 1.8 Hz, 1H), 7.07 (s, 1H), 1.38 (s, 9H), 1.25 – 1.07 (m, 21H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 176.4, 151.3, 138.2, 127.6, 126.1 (q, *J* = 32.5 Hz), 124.4 (q, *J* = 271.9 Hz), 122.9 (q, *J* = 3.7 Hz), 118.8, 118.1 (q, *J* = 4.1 Hz), 117.7, 116.7, 104.2, 97.3, 38.3, 26.9, 18.5, 11.1. ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -61.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₃₆F₃N₂O₃Si 509.2442; Found 509.2456.

6-fluoro-N-(pivaloyloxy)-2-((triisopropylsilyl)ethynyl)-1H-indole-1-carboxamide

3j: Yellow oil (60% yield, eluent = PE/ EtOAc (10/1)); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.54 (s, 1H), 8.11 (dd, J = 10.6, 2.4 Hz, 1H), 7.44 (dd, J = 8.7, 5.5 Hz, 1H), 7.02 (td, J = 8.9, 2.4 Hz, 1H), 6.99 (d, J = 0.8 Hz, 1H), 1.37 (s, 9H), 1.22 – 1.08 (m, 21H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 176.5, 162.2 (d, J = 243.3 Hz), 151.7, 137.0 (d, J = 13.3 Hz), 124.3, 121.4 (d, J = 9.8 Hz), 117.8, 117.4 (d, J = 4.5 Hz), 112.4 (d, J = 24.8 Hz), 103.7 (d, J = 29.4 Hz), 103.0, 97.9, 38.3, 26.9, 18.5, 11.1. ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -113.7. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₅H₃₅FN₂NaO₃Si 481.2293; Found 481.2304.

$\label{eq:chloro-N-(pivaloyloxy)-2-((triisopropylsilyl)ethynyl)-1 \\ H-indole-1-carboxamide$

3k: Yellow oil (84% yield, eluent = PE/ EtOAc (10/1)); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.52 (s, 1H), 8.42 (d, *J* = 1.8 Hz, 1H), 7.41 (d, *J* = 8.4 Hz, 1H), 7.23 (dd, *J* = 8.4, 1.9 Hz, 1H), 6.98 (d, *J* = 0.8 Hz, 1H), 1.37 (s, 9H), 1.20 – 1.10 (m, 21H). ¹³C NMR (125 MHz, Chloroform-*d*)

δ 176.4, 151.5, 137.0, 132.6, 126.4, 124.5, 121.3, 117.7, 117.6, 116.5, 103.5, 97.7, 38.2, 26.9, 18.5, 11.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₃₆ClN₂O₃Si 475.2178; Found 475.2175.

5-bromo-3-methyl-N-(pivaloyloxy)-2-((triisopropylsilyl)ethynyl)-1*H*-indole-1-carboxamide **3l**: Yellow oil (84% yield, eluent = PE/ EtOAc (10/1)); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.54 (s, 1H), 8.23 (d, *J* = 8.9 Hz, 1H), 7.61 (d, *J* = 2.0 Hz, 1H), 7.45 (dd, *J* = 9.0, 2.0 Hz, 1H), 2.35 (s, 3H), 1.36 (s, 9H), 1.24 - 1.09 (m, 21H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 176.5, 151.7, 135.0, 130.6, 129.4, 126.6, 121.7, 117.8, 116.7, 115.8, 106.5, 97.2, 38.2, 26.9, 18.5, 11.1, 9.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₃₈BrN₂O₃Si 533.1830; Found 533.1841.

1-methyl-5'-((triisopropylsilyl)ethynyl)spiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2 '*H*)-dione

5aa: White solid (91% yield, eluent = PE/ EtOAc (2/1), mp: >200 °C); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.44 – 7.40 (m, 2H), 7.29 – 7.25 (m, 2H), 7.11 (t, *J* = 7.6 Hz, 1H), 7.05 (t, *J* = 7.7 Hz, 1H), 6.95 (d, *J* = 7.9 Hz, 1H), 6.45 (d, *J* = 7.4 Hz, 1H), 5.34 (s, 1H), 3.23 (s, 3H), 1.19 – 1.16 (m, 21H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 174.9, 147.7, 143.5, 133.1, 130.8, 130.3, 126.8, 125.3, 124.0, 124.0, 120.6, 120.2, 118.9, 117.2, 115.3, 108.7, 99.8, 96.7, 66.0, 26.7, 18.6, 11.3. HRMS (EI) m/z: [M]⁺ Calcd for C₂₉H₃₃O₂N₃Si 483.1398; Found 483.1411.

5'-ethynyl-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-ij]quinazoline]-2,3'(2'H)-dione

6aa: White solid (81% yield, eluent = PE/ EtOAc (2/1) mp: >200 °C); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.49 – 7.40 (m, 2H), 7.30 (dd, *J* = 7.4, 1.2 Hz, 1H), 7.16 – 7.05 (m, 2H), 6.98 (s, 1H), 6.95 (d, *J* = 7.9 Hz, 1H), 6.50 (d, *J* = 9.0 Hz, 1H), 5.61 (s, 1H), 3.58 (s, 1H), 3.23 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 174.8, 148.0, 143.6, 133.3, 130.9, 129.9, 126.5, 125.4, 124.2, 124.0, 120.9, 119.4, 118.8, 117.3, 116.1, 108.7, 84.5, 74.6, 65.9, 26.7. HRMS (EI) m/z: [M]⁺ Calcd for C₂₀H₁₃O₂N₃ 327.1002; Found 327.1010.

5'-ethynyl-1,7'-dimethylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'H)-dione

6ba: White solid (86% yield, eluent = PE/ EtOAc (2/1) mp: >200 °C); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.42 (td, *J* = 7.8, 1.3 Hz, 1H), 7.29 (dd, *J* = 7.5, 1.2 Hz, 1H), 7.12 (td, *J* = 7.6, 1.0 Hz, 1H), 7.00 (s, 1H), 6.95 (d, *J* = 7.9 Hz, 1H), 6.87 (dd, *J* = 7.5, 1.0 Hz, 1H), 6.40 (d, *J* = 7.6 Hz, 1H), 5.51 (s, 1H), 3.58 (s, 1H), 3.23 (s, 3H), 2.46 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 174.9, 148.2, 143.6, 133.1, 131.2, 130.8, 130.0, 126.3, 125.3, 124.4, 123.9, 119.5, 118.2, 115.0, 114.7, 108.7, 84.3, 74.7, 65.8, 26.7, 18.2. HRMS (EI) m/z: [M]⁺ Calcd for C₂₁H₁₅O₂N₃ 341.1159; Found 341.1155.

5'-ethynyl-7'-methoxy-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'*H*)-dio ne

6ca: White solid (88% yield, eluent = PE/ EtOAc (2/1) mp: >200 °C); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.43 (td, *J* = 7.8, 1.4 Hz, 1H), 7.30 (dd, *J* = 7.5, 1.2 Hz, 1H), 7.13 (td, *J* = 7.6, 0.9 Hz, 1H), 7.05 (s, 1H), 6.94 (d, *J* = 7.9 Hz, 1H), 6.51 – 6.37 (m, 2H), 5.44 (s, 1H), 3.88 (s, 3H), 3.55 (s, 1H), 3.22 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 175.0, 153.2, 148.2, 143.6, 134.7, 130.8, 130.0, 125.4, 123.9, 120.8, 117.3, 116.7, 113.9, 110.0, 108.7, 104.4, 83.9, 74.7, 65.6, 55.7, 26.7. HRMS (EI) m/z: [M]⁺ Calcd for C₂₁H₁₅O₃N₃ 357.1108; Found 357.1106.

5'-ethynyl-7'-fluoro-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij***]quinazoline]-2,3'(2'***H***)-dione 6da**: White solid (98% yield, eluent = PE/ EtOAc (2/1) mp: >200 °C); ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.60 (s, 1H), 7.46 (td, *J* = 7.8, 1.3 Hz, 1H), 7.33 (d, *J* = 5.0 Hz, 1H), 7.23 (s, 1H), 7.20 (d, *J* = 7.8 Hz, 1H), 7.12 (t, *J* = 7.5 Hz, 1H), 6.94 (dd, *J* = 10.3, 8.1 Hz, 1H), 6.46 (dd, *J* = 8.2, 4.1 Hz, 1H), 4.79 (s, 1H), 3.18 (s, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 174.7, 154.0 (d, *J* = 249.8 Hz), 147.2, 143.4, 134.9 (d, *J* = 11.5 Hz), 130.7, 130.4, 124.8, 123.5, 120.6 (d, *J* = 7.6 Hz), 118.5, 114.5 (d, *J* = 4.0 Hz), 114.2 (d, *J* = 23.4 Hz), 110.7, 109.5 (d, *J* = 20.0 Hz), 109.4, 88.2, 74.4, 64.9, 26.5. ¹⁹F NMR (470 MHz, DMSO-*d*₆) δ -120.1. HRMS (EI) m/z: [M]⁺ Calcd for C₂₀H₁₂O₂N₃F 345.0908; Found 345.0908.

5'-ethynyl-1,8'-dimethylspiro[indoline-3,1'-pyrrolo[3,2,1-ij]quinazoline]-2,3'(2'H)-dione

6ea: White solid (86% yield, eluent = PE/ EtOAc (2/1) mp: >200 °C); ¹H NMR (500 MHz, DMSO- d_6) δ 8.41 (s, 1H), 7.45 (td, J = 7.7, 1.3 Hz, 1H), 7.32 – 7.27 (m, 2H), 7.19 (d, J = 7.9 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 7.06 (s, 1H), 6.28 (d, J = 1.3 Hz, 1H), 4.71 (s, 1H), 3.18 (s, 3H), 2.23 (s, 3H). ¹³C NMR (125 MHz, DMSO- d_6) δ 174.8, 147.4, 143.5, 133.5, 131.3, 131.0, 130.2, 125.9, 124.7, 123.4, 120.2, 120.1, 118.0, 117.6, 114.9, 109.3, 87.6, 75.0, 65.2, 26.5, 21.1. HRMS (EI) m/z: [M]⁺ Calcd for C₂₁H₁₅O₂N₃ 341.1159; Found 341.1159.

5'-ethynyl-8'-methoxy-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'*H*)-dio ne

6fa: White solid (87% yield, eluent = PE/ EtOAc (2/1) mp: >200 °C); ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.42 (s, 1H), 7.46 (t, *J* = 7.7 Hz, 1H), 7.30 (d, *J* = 7.4 Hz, 1H), 7.18 (d, *J* = 7.9 Hz, 1H), 7.11 (t, *J* = 7.5 Hz, 1H), 7.06 (s, 2H), 6.00 (d, *J* = 2.1 Hz, 1H), 4.72 (s, 1H), 3.67 (s, 3H), 3.18 (s, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 174.6, 156.9, 147.4, 143.4, 130.7, 130.3, 127.7, 126.2, 124.6, 123.4, 118.8, 118.2, 115.1, 109.3, 108.9, 102.3, 87.8, 75.0, 65.2, 55.6, 26.5. HRMS (EI) m/z: [M]⁺ Calcd for C₂₁H₁₅O₃N₃ 357.1108; Found 357.1109.

5'-ethynyl-8'-fluoro-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij***]quinazoline]-2,3'(2'H)-dione 6ga**: White solid (96% yield, eluent = PE/ EtOAc (2/1) mp: >200 °C); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.44 (td, *J* = 7.8, 1.2 Hz, 1H), 7.30 (dd, *J* = 7.5, 1.2 Hz, 1H), 7.17 – 7.07 (m, 2H), 6.96 (d, *J* = 7.9 Hz, 1H), 6.93 (s, 1H), 6.25 (dd, *J* = 9.1, 2.1 Hz, 1H), 5.91 (s, 1H), 3.61 (s, 1H), 3.24 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 174.4, 160.3 (d, *J* = 240.7 Hz), 147.9, 143.5, 131.1, 129.8, 129.3 (d, *J* = 3.8 Hz), 127.1(d, *J* = 10.0 Hz), 125.3, 124.1, 120.2, 118.3(d, *J* = 10.0 Hz), 115.7 (d, *J* = 4.4 Hz), 108.9, 107.9 (d, *J* = 28.5 Hz), 106.6 (d, *J* = 25.2 Hz), 85.2, 74.2, 49.9, 26.8. ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -117.7. HRMS (EI) m/z: [M]⁺ Calcd for C₂₀H₁₂O₂N₃F 345.0908; Found 345.0908.

8'-chloro-5'-ethynyl-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'H)-dione 6ha: White solid (96% yield, eluent = PE/ EtOAc (2/1) mp: >200 °C); ¹H NMR (500 MHz, DMSO- d_6) δ 8.60 (s, 1H), 7.62 (d, J = 1.7 Hz, 1H), 7.48 (td, J = 7.8, 1.2 Hz, 1H), 7.35 (d, J = 8.2 Hz, 1H), 7.20 (d, J = 7.9 Hz, 1H), 7.16 – 7.10 (m, 2H), 6.47 (d, J = 1.8 Hz, 1H), 4.81 (s, 1H), 3.19 (s, 3H). ¹³C NMR (125 MHz, DMSO- d_6) δ 204.3, 177.0, 173.5, 161.5, 160.5, 160.4, 158.4, 156.9, 154.8, 153.6, 150.1, 149.6, 149.4, 148.9, 144.5, 139.6, 118.7, 104.5, 95.0, 56.6. HRMS (EI) m/z: [M]⁺ Calcd for C₂₀H₁₂O₂N₃Cl 361.0613; Found 361.0613.

5'-ethynyl-1-methyl-8'-(trifluoromethyl)spiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'*H*)-dione

6ia: White solid (94% yield, eluent = PE/ EtOAc (2/1) mp: >200 °C); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.78 (s, 1H), 7.47 (td, J = 7.8, 1.3 Hz, 1H), 7.31 (dd, J = 7.5, 1.2 Hz, 1H), 7.16 (td, J = 7.5, 0.9 Hz, 1H), 7.04 (s, 1H), 7.00 (d, J = 7.8 Hz, 1H), 6.69 (s, 1H), 5.81 (s, 1H), 3.61 (s, 1H), 3.25 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 174.3, 147.6, 143.7, 135.0, 131.4, 128.8, 127.0 (q, J = 32.4 Hz), 126.2, 125.5, 124.3, 124.1 (q, J = 272.1 Hz), 120.7, 118.7 (q, J = 4.4 Hz), 118.2, 116.2 (q, J = 3.5 Hz), 115.9, 109.1, 85.7, 73.9, 65.7, 26.9. ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -60.8. HRMS (EI) m/z: [M]⁺ Calcd for C₂₁H₁₂O₂N₃F₃ 395.0876; Found 395.0881.

5'-ethynyl-9'-fluoro-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij***]quinazoline]-2,3'(2'H)-dione 6ja**: White solid (70% yield, eluent = PE/ EtOAc (2/1) mp: >200 °C); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.44 – 7.38 (m, 2H), 7.27 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.09 (td, *J* = 7.6, 1.0 Hz, 1H), 6.96 (s, 1H), 6.94 (d, *J* = 7.9 Hz, 1H), 6.85 (dd, *J* = 10.8, 8.6 Hz, 1H), 5.47 (s, 1H), 3.59 (s, 1H), 3.30 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.2, 155.9 (d, *J* = 248.1 Hz), 147.1, 143.0, 134.0 (d, *J* = 8.4 Hz), 130.9, 129.5, 124.8, 123.9, 122.7, 122.2 (d, *J* = 9.3 Hz), 119.3 (d, *J* = 4.5 Hz), 115.8, 112.9 (d, *J* = 23.1 Hz), 108.9, 104.4 (d, *J* = 18.4 Hz), 84.7, 74.3, 63.7, 26.9. ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -122.1. HRMS (EI) m/z: [M]⁺ Calcd for C₂₀H₁₂O₂N₃F 345.0908; Found 345.0910.

9'-chloro-5'-ethynyl-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij***]quinazoline]-2,3'(2'H)-dione 6ka: White solid (59% yield, eluent = PE/ EtOAc (2/1) mp: >200 °C); ¹H NMR (500 MHz, Chloroform-***d***) \delta 7.46 – 7.37 (m, 2H), 7.18 (dd,** *J* **= 7.5, 1.3 Hz, 1H), 7.12 (d,** *J* **= 8.4 Hz, 1H), 7.08 (td,** *J* **= 7.5, 0.9 Hz, 1H), 6.97 (s, 1H), 6.92 (d,** *J* **= 7.8 Hz, 1H), 5.41 (s, 1H), 3.61 (s, 1H), 3.31 (s,**

3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 172.6, 146.6, 143.7, 134.5, 130.9, 129.2, 126.8, 126.2, 125.2, 125.0, 123.9, 121.9, 119.1, 115.7, 114.7, 108.8, 85.1, 74.1, 65.7, 26.8. HRMS (EI) m/z: [M]⁺ Calcd for C₂₀H₁₂O₂N₃Cl 361.0613; Found 361.0613.

8'-bromo-5'-ethynyl-1,6'-dimethylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'*H*)dione

61a: White solid (82% yield, eluent = PE/ EtOAc (2/1) mp: >200 °C); ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.48 (s, 1H), 7.80 (s, 1H), 7.47 (t, *J* = 7.7 Hz, 1H), 7.32 (d, *J* = 7.4 Hz, 1H), 7.20 (d, *J* = 7.9 Hz, 1H), 7.12 (t, *J* = 7.5 Hz, 1H), 6.57 (s, 1H), 4.93 (s, 1H), 3.19 (s, 3H), 2.33 (s, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 174.3, 146.9, 143.5, 131.3, 130.5, 128.2, 124.8, 124.1, 123.5, 121.9, 121.4, 119.9, 116.6, 115.9, 109.5, 91.1, 73.8, 64.7, 26.6, 9.3. HRMS (EI) m/z: [M]⁺ Calcd for C₂₁H₁₄O₂N₃Br 419.0264; Found 419.0263.

5'-ethynyl-1,5-dimethylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'H)-dione

6ab: White solid (96% yield, eluent = PE/ EtOAc (2/1) mp: >200 °C); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.44 (d, *J* = 7.9 Hz, 1H), 7.14 (t, *J* = 8.2 Hz, 2H), 7.09 (t, *J* = 7.7 Hz, 1H), 7.02 – 6.95 (m, 2H), 6.52 (d, *J* = 7.5 Hz, 1H), 5.49 (s, 1H), 3.58 (s, 1H), 3.50 (s, 3H), 2.64 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 175.5, 148.0, 141.2, 134.5, 133.3, 130.7, 126.5, 124.2, 123.9, 123.4, 120.8, 120.4, 119.4, 118.8, 117.7, 116.1, 84.5, 74.6, 65.5, 30.1, 19.0. HRMS (EI) m/z: [M]⁺ Calcd for C₂₁H₁₅O₂N₃ 341.1159; Found 341.1161.

5'-ethynyl-5-methoxy-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'*H*)-dio ne

6ac: White solid (87% yield, eluent = PE/ EtOAc (2/1) mp: >200 °C); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.45 (dd, J = 7.9, 0.8 Hz, 1H), 7.10 (t, J = 7.7 Hz, 1H), 6.98 (s, 1H), 6.94 (dd, J = 8.5, 2.6 Hz, 1H), 6.90 (d, J = 2.5 Hz, 1H), 6.86 (d, J = 8.5 Hz, 1H), 6.52 (dd, J = 7.5, 0.8 Hz, 1H), 5.69 (s, 1H), 3.70 (s, 3H), 3.57 (s, 1H), 3.20 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 174.6, 156.9, 148.0, 136.7, 133.3, 131.1, 126.5, 124.3, 120.8, 119.4, 118.8, 117.4, 116.1, 116.0, 111.6,

109.4, 84.5, 74.6, 66.3, 55.7, 26.8. HRMS (EI) m/z: $[M]^+$ Calcd for $C_{21}H_{15}O_3N_3$ 357.1108; Found 357.1105.

5'-ethynyl-5-fluoro-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij***]quinazoline]-2,3'(2'***H***)-dione 6ad**: White solid (96% yield, eluent = PE/ EtOAc (2/1) mp: >200 °C); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.47 (dd, J = 7.9, 0.8 Hz, 1H), 7.18 – 7.04 (m, 3H), 6.98 (s, 1H), 6.89 (dd, J = 8.5, 4.0 Hz, 1H), 6.50 (dd, J = 7.5, 0.8 Hz, 1H), 5.83 (s, 1H), 3.57 (s, 1H), 3.22 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 174.6, 159.7 (d, J = 244.1 Hz), 148.0, 139.5, 133.2, 131.4 (d, J = 7.6 Hz), 126.6, 124.3, 121.1, 119.2, 118.9, 117.3 (d, J = 23.8 Hz), 116.8, 116.2, 113.5 (d, J = 25.5 Hz), 109.5 (d, J = 8.1 Hz), 84.6, 74.5, 66.0, 26.9. ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -117.8. HRMS (EI) m/z: [M]⁺ Calcd for C₂₀H₁₂O₂N₃F 345.0908; Found 345.0909.

5-chloro-5'-ethynyl-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij***]quinazoline]-2,3'(2'***H***)-dione 6ae**: White solid (96% yield, eluent = PE/ EtOAc (2/1) mp: >200 °C); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.47 (d, *J* = 7.8 Hz, 1H), 7.39 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.31 (d, *J* = 2.1 Hz, 1H), 7.11 (t, *J* = 7.7 Hz, 1H), 6.98 (s, 1H), 6.89 (d, *J* = 8.4 Hz, 1H), 6.51 (d, *J* = 7.4 Hz, 1H), 5.81 (s, 1H), 3.57 (s, 1H), 3.22 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 174.4, 147.9, 142.0, 133.2, 131.5, 130.8, 129.4, 126.6, 125.9, 124.3, 121.1, 119.3, 118.9, 116.6, 116.2, 109.8, 84.7, 74.5, 65.8, 26.9. HRMS (EI) m/z: [M]⁺ Calcd for C₂₀H₁₂O₂N₃Cl 361.0613; Found 361.0617.

5'-ethynyl-1-methyl-5-(trifluoromethoxy)spiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3 '(2'*H*)-dione

6af: Amorphous (77% yield, eluent = PE/ EtOAc (2/1)); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.46 (d, *J* = 7.8 Hz, 1H), 7.27 (d, *J* = 6.6 Hz, 1H), 7.20 (d, *J* = 2.3 Hz, 1H), 7.10 (t, *J* = 7.7 Hz, 1H), 6.97 (s, 1H), 6.94 (d, *J* = 8.5 Hz, 1H), 6.48 (d, *J* = 7.4 Hz, 1H), 6.18 (s, 1H), 3.55 (s, 1H), 3.21 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 174.7, 148.0, 145.4, 142.2, 133.1, 131.4, 126.6, 124.4, 123.8, 121.3 (q, *J* = 256.2 Hz), 121.1, 119.2, 118.8, 116.5, 116.2, 109.4, 84.6, 74.4, 65.8, 26.9. ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -58.3. HRMS (EI) m/z: [M]⁺ Calcd for C₂₀H₁₄O₃N₃F₃ 401.0982; Found 401.0982.

5'-ethynyl-6-methoxy-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'*H*)-dio ne

6ag: White solid (85% yield, eluent = PE/ EtOAc (2/1) mp: >200 °C); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.44 (d, J = 7.8 Hz, 1H), 7.20 (d, J = 8.2 Hz, 1H), 7.09 (t, J = 7.7 Hz, 1H), 6.97 (s, 1H), 6.59 (dd, J = 8.3, 2.3 Hz, 1H), 6.54 – 6.47 (m, 2H), 5.57 (s, 1H), 3.86 (s, 3H), 3.58 (s, 1H), 3.20 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 175.2, 162.1, 148.1, 145.1, 133.4, 126.5, 126.4, 124.2, 121.6, 120.8, 119.4, 118.8, 117.8, 116.1, 107.5, 96.7, 84.5, 74.6, 65.6, 55.6, 26.7. HRMS (EI) m/z: [M]⁺ Calcd for C₂₁H₁₅O₃N₃ 357.1108; Found 357.1110.

6-bromo-5'-ethynyl-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]**quinazoline]-2,3'(2'H)-dione 6ah**: White solid (75% yield, eluent = PE/ EtOAc (2/1) mp: >200 °C); ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.45 (s, 1H), 7.53 (d, *J* = 7.9 Hz, 1H), 7.49 (s, 1H), 7.28 (s, 2H), 7.16 – 7.07 (m, 2H), 6.53 (d, *J* = 7.4 Hz, 1H), 4.73 (s, 1H), 3.18 (s, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 174.8, 147.3, 145.1, 132.8, 130.3, 126.5, 126.0, 125.8, 124.2, 123.1, 120.6, 119.2, 118.0, 117.3, 115.3, 112.6, 87.8, 74.9, 64.9, 26.7. HRMS (EI) m/z: [M]⁺ Calcd for C₂₀H₁₂O₂N₃Br 405.0107; Found 405.0088.

5'-ethynyl-1,7-dimethylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'H)-dione

6ai: White solid (95% yield, eluent = PE/ EtOAc (2/1) mp: 178-180 °C); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.45 (dd, J = 8.0, 0.8 Hz, 1H), 7.21 (ddd, J = 8.1, 1.8, 0.9 Hz, 1H), 7.12 – 7.11 (m, 1H), 7.09 (t, J = 7.7 Hz, 1H), 6.98 (s, 1H), 6.84 (d, J = 7.9 Hz, 1H), 6.52 (dd, J = 7.5, 0.8 Hz, 1H), 5.60 (s, 1H), 3.57 (s, 1H), 3.21 (s, 3H), 2.28 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 174.7, 148.0, 141.1, 133.8, 133.3, 131.1, 130.1, 126.5, 126.0, 124.2, 120.8, 119.4, 118.8, 117.5, 116.1, 108.5, 84.5, 74.6, 66.1, 26.7, 20.9. HRMS (EI) m/z: [M]⁺ Calcd for C₂₁H₁₅O₂N₃ 341.1159; Found 341.1160.

5'-ethynyl-7-fluoro-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij***]quinazoline]-2,3'(2'H)-dione 6aj**: White solid (87% yield, eluent = PE/ EtOAc (2/1) mp: >200 °C); ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.48 (s, 1H), 7.54 (dd, *J* = 7.9, 0.8 Hz, 1H), 7.34 (ddd, *J* = 11.9, 8.4, 1.1 Hz, 1H), 7.23 – 7.02 (m, 4H), 6.61 (dd, *J* = 7.5, 0.8 Hz, 1H), 4.74 (s, 1H), 3.35 (d, *J* = 2.8 Hz, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 174.6, 147.5 (d, *J* = 241.2 Hz), 147.2, 134.0, 132.7, 129.9 (d, *J* = 8.4 Hz), 125.8, 124.4 (d, *J* = 6.1 Hz), 124.2, 121.1, 120.7, 119.3, 118.1 (d, *J* = 18.8 Hz), 118.0, 117.4, 115.3, 87.9, 74.9, 65.2, 28.9 (d, *J* = 5.4 Hz). ¹⁹F NMR (470 MHz, DMSO-*d*₆) δ -136.0. HRMS (EI) m/z: [M]⁺ Calcd for C₂₀H₁₂O₂N₃F 345.0908; Found 345.0909.

5'-ethynyl-1-phenylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'H)-dione

6ak: White solid (86% yield, eluent = PE/ EtOAc (2/1) mp: >200 °C); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.54 – 7.49 (m, 2H), 7.48 (d, *J* = 7.9 Hz, 1H), 7.45 – 7.40 (m, 3H), 7.39 – 7.30 (m, 2H), 7.17 – 7.12 (m, 2H), 6.98 (s, 1H), 6.94 (d, *J* = 7.9 Hz, 1H), 6.66 (d, *J* = 7.4 Hz, 1H), 5.95 (s, 1H), 3.56 (s, 1H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 174.0, 148.2, 143.5, 133.7, 133.3, 130.7, 129.7, 128.5, 126.7, 126.4, 125.7, 124.5, 124.4, 121.0, 119.3, 118.9, 117.6, 116.2, 110.1, 84.6, 74.6, 66.2. HRMS (EI) m/z: [M]⁺ Calcd for C₂₅H₁₅O₂N₃ 389.1159; Found 389.1160.

5'-ethynylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'H)-dione

6al: White solid (47% yield, eluent = PE/ EtOAc (2/1) mp: >200 °C); ¹H NMR (500 MHz, DMSO- d_6) δ 10.64 (s, 1H), 8.53 (s, 1H), 7.51 (d, J = 7.8 Hz, 1H), 7.35 (td, J = 7.7, 1.3 Hz, 1H), 7.26 (d, J = 8.0 Hz, 1H), 7.16 – 7.10 (m, 2H), 7.04 (td, J = 7.5, 1.0 Hz, 1H), 6.99 (d, J = 7.8 Hz, 1H), 6.47 (d, J = 7.4 Hz, 1H), 4.72 (s, 1H). ¹³C NMR (125 MHz, DMSO- d_6) δ 176.5, 147.5, 142.0, 132.8, 131.6, 130.1, 125.7, 125.1, 124.2, 122.8, 120.3, 118.8, 118.3, 118.0, 115.2, 110.2, 87.7, 75.0, 65.6. HRMS (EI) m/z: [M]⁺ Calcd for C₁₉H₁₁O₂N₃ 313.0846; Found 313.0848.

1-allyl-5'-ethynylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'H)-dione 6am: White solid (35% yield, eluent = PE/ EtOAc (1/1) mp: >200 °C); ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, J = 7.9 Hz, 1H), 7.43 (t, J = 7.8 Hz, 1H), 7.35 (d, J = 7.4 Hz, 1H), 7.16 (t, J = 5.8 Hz, 1H), 7.13 (t, J = 6.0 Hz, 1H), 7.02 (s, 1H), 6.99 (d, J = 7.9 Hz, 1H), 6.55 (d, J = 7.5 Hz, 1H), 5.89 (ddd, J = 22.4, 10.5, 5.4 Hz, 1H), 5.52 (s, 1H), 5.37 – 5.30 (m, 2H), 4.45 (dd, J = 16.2, 5.3 Hz, 1H), 4.28 (dd, J = 16.2, 5.5 Hz, 1H), 3.63 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 174.5, 148.1, 142.9, 133.5, 130.9, 130.8, 129.9, 126.7, 125.6, 124.4, 124.1, 121.0, 119.3, 119.0, 118.5, 117.5, 116.3, 109.8, 84.7, 74.7, 66.0, 42.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₁₆N₃O₂ 354.1237; Found 354.1241.

1-benzyl-5'-ethynylspiro[indoline-3,1'-pyrrolo[3,2,1-ij]quinazoline]-2,3'(2'H)-dione

6an: yellow oil (69% yield, eluent = PE/ EtOAc (1/1)); ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, *J* = 7.9 Hz, 1H), 7.41 – 7.31 (m, 7H), 7.13 (q, *J* = 7.9 Hz, 2H), 7.03 (s, 1H), 6.90 (d, *J* = 8.0 Hz, 1H), 6.53 (d, *J* = 7.5 Hz, 1H), 5.55 (s, 1H), 5.05 (d, *J* = 15.5 Hz, 1H), 4.79 (d, *J* = 15.5 Hz, 1H), 3.63 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 174.9, 148.1, 142.8, 135.2, 133.5, 130.9, 129.9, 129.0, 128.1, 127.5, 126.7, 125.6, 124.4, 124.1, 121.1, 119.4, 119.0, 117.5, 116.3, 109.9, 84.7, 74.6, 66.1, 44.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₁₈N₃O₂ 404.1394; Found 404.1392.

methyl

2-(5'-ethynyl-2,3'-dioxo-2',3'-dihydrospiro[indoline-3,1'-pyrrolo[3,2,1-ij]quinazolin]-1-yl)ace tate

6ao: Pink solid (78% yield, eluent = PE/ EtOAc (1/1) mp: >185-188 °C); ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.62 (s, 1H), 7.53 (d, *J* = 7.9 Hz, 1H), 7.42 (t, *J* = 7.8 Hz, 1H), 7.33 (d, *J* = 7.4 Hz, 1H), 7.24 – 7.05 (m, 4H), 6.59 (d, *J* = 7.5 Hz, 1H), 4.72 (s, 1H), 4.62 (s, 2H), 4.17 (q, *J* = 7.1 Hz, 2H), 1.20 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 174.8, 167.6, 147.4, 142.2, 132.8, 131.0, 130.3, 125.8, 124.9, 124.2, 123.8, 120.6, 119.4, 118.1, 118.1, 115.4, 109.5, 87.9, 75.0, 65.2, 61.4, 41.3, 14.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₁₈N₃O₄ 400.1292; Found 400.1297.

ethyl(3*R*,4*R*,5*S*)-4-acetamido-5-(4-(1-methyl-2,3'-dioxo-2',3'-dihydrospiro[indoline-3,1'-pyr-r olo[3,2,1-*ij*]quinazolin]-5'-yl)-1*H*-1,2,3-triazol-1-yl)-3-(pentan-3-yloxy)cyclohex-1-ene-1-car-b oxylate

8a: White solid (1: 1 ratio, 90% yield, eluent = DCM/ MeOH (20/1), mp: 165-167 °C); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.39 (s, 1H), 8.30 (s, 1H), 7.50 – 7.28 (m, 6H), 7.24 (s, 2H), 7.11 – 7.02 (m, 4H), 6.98 – 6.90 (m, 2H), 6.87 (s, 1H), 6.83 (s, 1H), 6.54 – 6.37 (m, 4H), 6.32 (s, 1H), 6.14 (s, 1H), 5.64 – 5.54 (m, 1H), 5.45 – 5.35 (m, 1H), 4.89 (d, *J* = 8.8 Hz, 1H), 4.78 (d, *J* = 8.8 Hz, 1H), 4.26 – 4.17 (m, 4H), 3.97 – 3.83 (m, 1H), 3.82 – 3.69 (m, 1H), 3.36 – 3.28 (m, 2H), 3.21 (s, 3H), 3.15 (s, 3H), 3.09 – 3.02 (m, 4H), 1.84 (s, 3H), 1.71 (s, 3H), 1.54 – 1.37 (m, 8H), 1.32 – 1.27 (m, 6H), 0.94 – 0.78 (m, 12H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 174.8, 174.7, 171.4, 171.1, 165.3, 165.3, 148.9, 148.7, 143.5, 143.1, 138.3, 138.2, 138.2, 137.9, 134.0, 133.8, 130.5, 130.3, 130.2, 129.5, 129.3, 127.8, 127.6, 127.0, 127.0, 125.1, 125.0, 124.8, 124.8, 123.7, 123.6, 123.5, 123.4, 120.2, 120.1, 117.7, 117.2, 117.0, 108.5, 108.3, 108.0, 82.1, 81.9, 73.0, 72.8, 65.5, 65.3, 60.6, 57.4, 57.0, 56.3, 55.9, 31.2, 31.1, 26.4, 26.2, 25.8, 25.6, 25.1, 24.9, 23.0, 22.7, 22.2, 13.8, 9.1, 9.1, 8.8, 8.7. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₆H₄₀N₇O₆ 666.3035; Found 666.3036.

 $\label{eq:spinor} 5'-ethynyl-1-methyl-2'-(2-(((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-deca hydro-6H-cyclopenta[a]phenanthren-3-yl)oxy)ethyl)spiro[indoline-3,1'-pyrrolo[3,2,1-ij]quin azoline]-2,3'(2'H)-dione$

(10a) Pink solid (51 mg, 1: 1 ratio, 81% yield, eluent = PE/ EA (1/1), mp: 131-133 °C); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.48 (t, *J* = 7.8 Hz, 1H), 7.43 (d, *J* = 7.9 Hz, 1H), 7.27 (d, *J* = 7.5 Hz, 1H), 7.17 (t, *J* = 7.9 Hz, 1H), 7.11 (d, *J* = 8.5 Hz, 1H), 7.05 (t, *J* = 7.8 Hz, 1H), 7.02 (d, *J* = 7.9 Hz, 1H), 6.98 (s, 1H), 6.56 – 6.49 (m, 2H), 6.38 (d, *J* = 7.5 Hz, 1H), 4.25 – 4.16 (m, 1H), 4.15 – 4.09 (m, 1H), 3.65 (s, 1H), 3.63 – 3.55 (m, 1H), 3.46 – 3.36 (m, 1H), 3.26 (s, 3H), 2.91 – 2.75 (m, 2H), 2.49 (dd, *J* = 19.1, 8.7 Hz, 1H), 2.39 – 2.31 (m, 1H), 2.25 – 2.09 (m, 1H), 2.13 (dt, *J* = 18.7, 8.9 Hz, 1H), 2.07 – 2.01 (m, 1H), 2.00 – 1.90 (m, 2H), 1.62 – 1.53 (m, 2H), 1.53 – 1.44 (m, 3H), 1.43 – 1.35 (m, 1H), 0.89 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 221.0, 174.2, 156.3, 149.1, 143.6, 137.6, 132.6, 132.1, 130.9, 129.5, 126.2, 126.1, 125.7, 124.2, 124.1, 120.8, 119.6, 119.0, 117.5, 116.1, 114.4, 114.4, 112.2, 112.1, 109.0, 84.5, 74.9, 71.5, 65.0, 50.4, 48.0, 45.5, 43.9, 38.3, 35.8, 31.5, 29.7, 29.6, 26.9, 26.5, 25.9, 21.5, 13.8. HRMS (ESI) m/z: [M+H]+ Calcd for C₄₀H₃₈N₃O₄ 624.2857; Found 624.2869.

(3R, 4R, 5S)-ethyl

 $\label{eq:acetamido-5-(4-(1-methyl-2'-(2-(((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16, 17-decahydro-6H-cyclopenta[a]phenanthren-3-yl)oxy)ethyl)-2,3'-dioxo-2',3'-dihydrospiro[in doline-3,1'-pyrrolo[3,2,1-ij]quinazolin]-5'-yl)-1H-1,2,3-triazol-1-yl)-3-(pentan-3-yloxy)cycloh ex-1-enecarboxylate$

(11a) White solid (25 mg, 1: 1 ratio, 78% yield, eluent = PE/ Acetone (2/1), mp: 160-162 °C); ¹H NMR (500 MHz, Chloroform-d) δ 8.52 (s, 1H), 8.47 (s, 1H), 7.51 – 7.44 (m, 4H), 7.36 (s, 1H), 7.34 – 7.29 (m, 3H), 7.17 (td, J = 7.6, 3.1 Hz, 2H), 7.13 – 7.09 (m, 2H), 7.07 – 7.01 (m, 4H), 6.92 (s, 2H), 6.54 - 6.49 (m, 4H), 6.31 (dd, J = 7.5, 3.8 Hz, 2H), 6.03 (dd, J = 10.5, 7.2 Hz, 2H), 5.59 -5.50 (m, 2H), 4.90 (ddd, J = 18.1, 9.1, 2.5 Hz, 2H), 4.23 (q, J = 7.1 Hz, 4H), 4.20 - 4.08 (m, 2H), 4.23 $4.06-4.00\ (m,\ 2H),\ 3.94-3.89\ (m,\ 1H),\ 3.88-3.82\ (m,\ 1H),\ 3.69-3.57\ (m,\ 2H),\ 3.41-3.35\ (m,\ 2H),\ 3.41-31\ (m,\ 2H),\ 3.41-31\ (m,\ 2H),\ 3.$ 4H), 3.27 (s, 3H), 3.26 (s, 3H), 3.15 – 3.12 (m, 4H), 2.84 – 2.81 (m, 4H), 2.49 (dd, J = 19.1, 8.7 Hz, 2H), 2.36 - 2.33 (m, 2H), 2.24 - 2.17 (m, 2H), 2.14 (t, J = 8.8 Hz, 1H), 2.10 (t, J = 8.8 Hz, 1H), 1.98 – 1.91 (m, 4H), 1.84 (s, 3H), 1.83 (s, 3H), 1.64 – 1.59 (m, 2H), 1.56 – 1.44 (m, 16H), 1.42 - 1.35 (m, 2H), 1.30 (t, J = 7.1 Hz, 8H), 0.93 (t, J = 7.4 Hz, 6H), 0.90 - 0.86 (m, 12H). ¹³C NMR (126 MHz, Chloroform-d) δ 220.9, 220.9, 174.5, 171.4, 171.3, 165.6, 165.6, 156.2, 149.8, 143.7, 143.6, 138.9, 138.8, 138.5, 138.4, 137.6, 133.6, 133.6, 132.1, 132.1, 131.3, 131.2, 130.8, 129.7, 129.6, 128.1, 128.1, 127.0, 126.2, 125.8, 125.5, 125.5, 124.1, 124.1, 123.9, 120.5, 120.5, 118.4, 117.5, 117.5, 114.4, 114.3, 112.1, 112.0, 109.0, 109.0, 108.8, 82.1, 82.1, 73.3, 73.1, 71.4, 71.3, 65.0, 61.0, 58.1, 57.8, 56.8, 56.6, 50.3, 47.9, 45.5, 43.9, 38.3, 35.8, 31.5, 29.6, 29.6, 26.9, 26.4, 26.3, 25.8, 25.5, 23.3, 23.3, 21.5, 14.2, 13.8, 9.6, 9.2. HRMS (ESI) m/z: [M+H]+ Calcd for C₅₆H₆₄N₇O₈ 962.4811; Found 962.4827.

8. NMR Spectra

S40

N-(pivaloyloxy)-5-(trifluoromethyl)-1H-indole-1-carboxamide (1i)

N).5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1 (ppm)

1-benzyl-3-diazoindolin-2-one (4n)

ethyl (*3R*,*4R*,*5S*)-4-acetamido-5-azido-3-(pentan-3-yloxy)cyclohex-1-ene-1-carboxylate (7a)

N-(pivaloyloxy)-2-((triisopropylsilyl)ethynyl)-1H-indole-1-carboxamide (3a)

4-methyl-N-(pivaloyloxy)-2-((triisopropylsilyl)ethynyl)-1*H*-indole-1-carboxamide (3b)

4-methoxy-N-(pivaloyloxy)-2-((triisopropylsilyl)ethynyl)-1*H*-indole-1-carboxamide (3c)

4-fluoro-N-(pivaloyloxy)-2-((triisopropylsilyl)ethynyl)-1*H*-indole-1-carboxamide (3d)

5-chloro-N-(pivaloyloxy)-2-((triisopropylsilyl)ethynyl)-1*H*-indole-1-carboxamide (3h)

6-fluoro-N-(pivaloyloxy)-2-((triisopropylsilyl)ethynyl)-1*H*-indole-1-carboxamide (3j)

 $\label{eq:chloro-N-(pivaloyloxy)-2-((triisopropylsilyl)ethynyl)-1 \emph{H-indole-1-carboxamide} (3k)$

 $\label{eq:starses} 5-brom o- 3-methyl-N-(pivaloyloxy)-2-((triisopropylsilyl)ethynyl)-1 \\ H-indole-1-carboxamide \\ here are a starses and the starses are a starses and the starses are a starses are$

1-methyl-5'-((triisopropylsilyl)ethynyl)spiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2 '*H*)-dione (5aa)

5'-ethynyl-1,7'-dimethylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'*H*)-dione (6ba)

5'-ethynyl-7'-methoxy-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'*H*)-dio ne (6ca)

5'-ethynyl-7'-fluoro-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'*H*)-dione (6da)

5'-ethynyl-1,8'-dimethylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'H)-dione (6ea)

5'-ethynyl-8'-methoxy-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'*H*)-dio ne (6fa)

5'-ethynyl-8'-fluoro-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'H)-dione

8'-chloro-5'-ethynyl-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'*H*)-dione

5'-ethynyl-1-methyl-8'-(trifluoromethyl)spiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'*H*)-dione (6ia)

S79

5'-ethynyl-9'-fluoro-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'*H*)-dione (6ia)

9'-chloro-5'-ethynyl-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'H)-dion

8'-bromo-5'-ethynyl-1,6'-dimethylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'*H*)dione (6la)

5'-ethynyl-1,5-dimethylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'H)-dione (6ab)

5'-ethynyl-5-methoxy-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'*H*)-dio ne (6ac)

5'-ethynyl-5-fluoro-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'*H*)-dione (6ad)

S86

5-chloro-5'-ethynyl-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-ij]quinazoline]-2,3'(2'H)-dione (6ae)

5'-ethynyl-1-methyl-5-(trifluoromethoxy)spiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3 '(2'*H*)-dione (6af)

5'-ethynyl-6-methoxy-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'*H*)-dio ne (6ag)

6-bromo-5'-ethynyl-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'*H*)-dione (6ah)

2.5

0.00E+00

-1.00E+11

-0.5

5'-ethynyl-7-fluoro-1-methylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'*H*)-dione (6aj)

S93

5'-ethynyl-1-phenylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'*H*)-dione (6ak)

5'-ethynylspiro[indoline-3,1'-pyrrolo[3,2,1-*ij*]quinazoline]-2,3'(2'H)-dione (6al)

allyl-5'-ethynylspiro[indoline-3,1'-pyrrolo[3,2,1-ij]quinazoline]-2,3'(2'H)-dione (6am)

1-benzyl-5'-ethynylspiro[indoline-3,1'-pyrrolo[3,2,1-ij]quinazoline]-2,3'(2'H)-dione (6an)

ethyl

2-(5'-ethynyl-2,3'-dioxo-2',3'-dihydrospiro[indoline-3,1'-pyrrolo[3,2,1-ij]quinazolin]-1-yl)ace tate (6ao)

Ethyl(3*R*,4*R*,5*S*)-4-acetamido-5-(4-(1-methyl-2,3'-dioxo-2',3'-dihydrospiro[indoline-3,1'-pyr-rolo[3,2,1-*ij*]quinazolin]-5'-yl)-1*H*-1,2,3-triazol-1-yl)-3-(pentan-3-yloxy)cyclohex-1-ene-1-carboxylate (8a)

5'-Ethynyl-1-methyl-2'-(2-(((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-dec ahydro-6H-cyclopenta[a]phenanthren-3-yl)oxy)ethyl)spiro[indoline-3,1'-pyrrolo[3,2,1-ij]qui nazoline]-2,3'(2'H)-dione

(3R,4R,5S)-Ethyl

 $\label{eq:acetamido-5-(4-(1-methyl-2'-(2-(((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16, 17-decahydro-6H-cyclopenta[a]phenanthren-3-yl)oxy)ethyl)-2,3'-dioxo-2',3'-dihydrospiro[in doline-3,1'-pyrrolo[3,2,1-ij]quinazolin]-5'-yl)-1H-1,2,3-triazol-1-yl)-3-(pentan-3-yloxy)cycloh ex-1-enecarboxylate$

S101