Electronic Supplementary Information for the paper

Entitled

Formation of Silaimines from a Sterically Demanding Iminophosphonamido

Chlorosilylene via intramolecular N-P bond Cleavage

Shintaro Takahashi, Akihiko Ishii, and Norio Nakata*

Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan

Table of Contents

1-	General procedureS2
2-	Experimental procedures and characterization dataS2
	2.1 Synthesis of dichlorosiliane 7S2
	2.2 Synthesis of chlorosilylene 5S6
	2.3 Reaction of 5 with KN(SiMe ₃) ₂ S9
	2.4 Reaction of 5 with K[CpFe(CO) ₂]S12
3-	Crystallographic data collection and structure determinationS15
4-	Computational detailsS19
5-	ReferencesS39

1- General procedure

Unless otherwise noted, all experiments were carried out under an argon atmosphere by using standard Schlenk techniques or in a UNICO glovebox. All solvents were dried by 4A molecular sieves or potassium mirror before use. ¹H, ¹³C, and ³¹P NMR spectra were recorded on a Bruker AVANCE-400 (400, 100, and 162 MHz, respectively) spectrometer, ²⁹Si NMR spectra were recorded on a Bruker AVANCE-500 (99 MHz) spectrometer. All melting points were determined on a Mel-Temp capillary tube apparatus and were uncorrected. Elemental analyses were carried out at the Molecular Analysis and Life Science Center of Saitama University. All materials were obtained from commercial supplier and used without further purification except **6**^{S1} and 1,3-diisopropyl-4,5-dimethyl-imidazole-2-ylidene^{S2} that were prepared by the respective literature procedures.

2- Experimental procedures and characterization data

2-1 Synthesis of dichlorosilane 7.

To a mixture of iminophosphonamide **6** (6.30 g, 11.7 mmol) and NEt₃ (2.0 mL, 14.3 mmol) in THF (80 mL), HSiCl₃ (1.2 mL, 11.9 mmol) was added at –80 °C and then the reaction mixture was stirred at –80 °C for 30 min. The mixture was gradually warmed up to room temperature, and it was kept stirring at this temperature for 9 hours. The reaction mixture was filtered and all volatiles of the filtrate were removed under reduced pressure. The residue was washed with hexane and dried under reduced pressure to give the corresponding dichlorosilane **7** (6.35 g, 84%) as colorless crystals. Mp: 171–173 °C (decomp.). ¹H NMR (400 MHz, 25 °C, C₆D₆): δ 0.57 (br d, $J_{HH} = 6.7$ Hz, 12H, CH_{3/Pr}), 1.42 (br d, $J_{HH} = 6.7$ Hz, 12H, CH_{3/Pr}), 3.80 (sept, $J_{HH} = 6.7$ Hz, 4H, CH_{*i*Pr}), 6.69 (td, $J_{HH} = 7.8$ Hz, $J_{HP} = 3.5$ Hz, 4H, CH_{Ar}), 6.89 (t, $J_{HH} = 7.2$ Hz, 2H, CH_{Ar}), 6.94 (d, $J_{HP} = 2.7$ Hz, 1H, Si-H), 7.08–7.11 (m, 3H, CH_{Ar}), 7.15–7.19 (m, 3H, CH_{Ar}), 7.36 (dd, $J_{HP} = 11.6$ Hz, $J_{HH} = 8.1$ Hz, CH_{Ar}). ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆): δ 24.1

(br s, CH_{3*i*Pr}), 25.9 (br s, CH_{3*i*Pr}), 29.5 (CH_{*i*Pr}), 125.1 (d, $J_{CP} = 1.2$ Hz, CH_{Ar}), 127.5 (d, $J_{CP} = 2.1$ Hz, CH_{Ar}), 128.4 (d, $J_{CP} = 13.1$ Hz, CH_{Ar}), 128.9 (C_{Ar}), 133.4 (d, $J_{CP} = 2.7$ Hz, CH_{Ar}), 133.8 (d, $J_{CP} = 10.0$ Hz, CH_{Ar}), 134.2 (C_{Ar}), 148.9 (d, $J_{CP} = 3.9$ Hz, C_{Ar}). ³¹P{¹H} NMR (162 MHz, 25 °C, C₆D₆): δ 25.5. ²⁹Si NMR (99 MHz, 25 °C, C₆D₆): δ -89.4 (dd, $J_{SiH} = 369.8$ Hz, $J_{SiP} = 2.3$ Hz).

Figure S1. ¹H NMR spectrum (400 MHz, 25 °C, C₆D₆) of **7**.

ure S3. ${}^{31}P{}^{1}H$ NMR spectrum (162 MHz, 25 °C, C₆D₆) of 7.

Figure S5. ²⁹Si-¹H HETCOR NMR spectrum (25 °C, C_6D_6) of 7.

2-2 Synthesis of chlorosilylene 5.

A toluene (30 mL) solution of 1,3-diisopropyl-4,5-dimethylimidazole-2-ylidene (2.25 g, 12.5 mmol) and dichlorosilane 7 (6.35 g, 10 mmol) was heated at 60 °C for 25 hours. The resulting precipitates were filtered off and the filtrate was concentrated under reduced pressure. Recrystallization from a saturated toluene solution at ambient temperature give the corresponding chlorosilylene 5 (4.20 g, 70%) as yellow crystals. Single crystals suitable for Xray diffraction analysis were obtained from a C₆D₆ solution at 10 °C. Mp: 205-206 °C (decomp.). ¹H NMR (400 MHz, 25 °C, C₆D₆): δ 0.43 (d, $J_{\text{HH}} = 6.7$ Hz, 6H, CH_{3*i*Pr}), 0.97 (d, $J_{\rm HH} = 6.7$ Hz, 6H, CH_{3*i*Pr}), 1.41 (d, $J_{\rm HH} = 6.5$ Hz, 6H, CH_{3*i*Pr}), 1.46 (d, $J_{\rm HH} = 6.5$ Hz, 6H, CH_{3*i*Pr}), 4.11 (sept, $J_{\text{HH}} = 6.7$ Hz, 2H, CH_{*i*Pr}), 4.25 (sept, $J_{\text{HH}} = 6.5$ Hz, 2H, CH_{*i*Pr}), 6.63 (td, $J_{\text{HH}} = 7.7$ Hz, $J_{HP} = 3.3$ Hz, 2H, CH_{Ar}), 6.85–6.90 (m, 3H, CH_{Ar}), 6.93–6.97 (m, 1H, CH_{Ar}), 7.00–7.11 (m, 5H, CH_{Ar}), 7.13–7.16 (m, 5H, CH_{Ar}), 8.17 (dd, J_{HP} = 11.8 Hz, J_{HH} = 7.9 Hz, CH_{Ar}). ¹³C{¹H} NMR (100 MHz, 25 °C, C₆D₆): δ 23.1 (CH_{3iPr}), 23.9 (CH_{3iPr}), 25.6 (CH_{3iPr}), 29.0 (CH_{iPr}), 29.4 (CH_{3iPr}) , 30.0 (CH_{iPr}) , 125.0 (CH_{Ar}) , 127.0 $(d, J_{CP} = 2.8 \text{ Hz}, CH_{Ar})$, 128.4 $(d, J_{CP} = 2.2 \text{ Hz})$, CH_{Ar}), 128.5 (d, J_{CP} = 3.2 Hz, CH_{Ar}), 129.0 (d, J_{Cp} = 89.8 Hz, C_{Ar}), 131.1 (d, J_{CP} = 8.3 Hz, CH_{Ar}), 131.4 (d, J_{Cp} = 92.9 Hz, C_{Ar}), 132.8 (d, J_{CP} = 2.7 Hz, CH_{Ar}), 133.4 (d, J_{Cp} = 2.9 Hz, CH_{Ar}), 134.7 ($J_{CP} = 1.6 \text{ Hz}, C_{Ar}$), 148.7 (d, $J_{CP} = 6.3 \text{ Hz}, C_{Ar}$), 148.8 (d, $J_{CP} = 7.8 \text{ Hz}, C_{Ar}$). ³¹P{¹H} NMR (162 MHz, 25 °C, C₆D₆): δ 44.1. ²⁹Si{¹H} NMR (99 MHz, 25 °C, C₆D₆): δ 62.6 $(d, J_{SiP} = 11.6 \text{ Hz})$. Anal. Calcd for C₃₆H₄₄ClN₂PSi: C, 72.15; H, 7.40; N, 7.68. Found: C, 71.77; H, 7.40; N, 4.28.

Figure S7. ¹³C{¹H} NMR spectrum (100 MHz, 25 °C, C₆D₆) of 5.

gure S8. ${}^{31}P{}^{1}H$ NMR spectrum (162 MHz, 25 °C, C₆D₆) of 5.

Figure S9. ${}^{29}Si{}^{1}H$ NMR spectrum (99 MHz, 25 °C, C₆D₆) of 5.

2-3 Reaction of 5 with KN(SiMe₃)₂

To a mixture of chlorosilylene **5** (590 mg, 0.983 mmol) and KN(SiMe₃)₂ (200 mg, 0.983 mmol), toluene (15 mL) was added at ambient temperature and stirred for 12 hours. The insoluble precipitates were filtered off and all volatiles of the filtrate were removed under reduced pressure. Recrystallization from a saturated toluene solution gave the corresponding silaimine **9** (610 mg, 86%) as yellow crystals. Mp: 85–86 °C (decomp.). ¹H NMR (400 MHz, 25 °C, C₆D₆): δ 0.24 (d, *J*_{HH} = 6.6 Hz, 6H, CH_{3/Pr}), 0.57 (s, 18H, Si-CH₃), 1.16 (d, *J*_{HH} = 6.8 Hz, 12H, CH_{3/Pr}), 1.21 (d, *J*_{HH} = 6.7 Hz, 6H, CH_{3/Pr}), 3.26 (sept, *J*_{HH} = 6.7 Hz, 2H, CH_{*i*Pr}), 3.42 (sept, *J*_{HH} = 6.8 Hz, 2H, CH_{*i*Pr}), 6.89–7.03 (m, 10H, CH_{Ar}), 7.10–7.14 (m, 2H, CH_{Ar}), 7.28–7.32 (m, 4H, CH_{Ar}). ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆): δ 4.3 (SiCH₃), 4.4 (SiCH₃), 23.6 (CH_{3/Pr}), 24.6 (CH_{3/Pr}), 26.3 (CH_{3/P}), 27.8 (CH_{*i*Pr}), 29.9 (CH_{*i*Pr}), 119.0 (CH_{Ar}), 122.9 (CH_{Ar}), 125.1 (CH_{Ar}), 127.2 (CH_{Ar}), 128.4 (d, *J*_{CP} = 7.3 Hz, CH_{Ar}), 130.2 (CH_{Ar}), 135.2 (d, *J*_{CP} = 24.2 Hz, CH_{Ar}), 137.1 (d, *J*_{CP} = 21.5 Hz, C_{Ar}), 139.4 (d, *J*_{CP} = 6.8 Hz, C_{Ar}), 139.6 (C_{Ar}), 143.0 (C_{Ar}), 146.9 (C_{Ar}). ³¹P {¹H} NMR (162 MHz, 25 °C, C₆D₆): δ 58.8. ²⁹Si {¹H} NMR (99 MHz, 25 °C, C₆D₆): δ -33.5 (d, *J*_{SiP} = 51.4 Hz, *Si*=N), 6.2 (d, *J*_{SiP} = 3.3 Hz, *Si*Me₃). Anal. Calcd for C₄₂H₆₂N₃PSi₃: C, 69.66; H, 8.63; N, 5.80. Found: C, 70.04; H, 8.71; N, 5.62.

Figure S11. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, 25 °C, C₆D₆) of 9.

Figure S12. ³¹P{¹H} NMR spectrum (162 MHz, 25 °C, C₆D₆) of **9**.

Figure S13. ²⁹Si{¹H} NMR spectrum (99 MHz, 25 °C, C₆D₆) of 9.

2-4 Reaction of 5 with K[CpFe(CO)₂]

In a Schlenk tube, to a mixture of chlorosilylene **5** (320 mg, 0.534 mmol) and K[CpFe(CO)₂] (125 mg, 0.579 mmol), 5 mL of toluene was added at ambient temperature and kept stirring for 18 hours at this temperature. The insoluble salts were removed by filtrate and all volatiles were removed under reduced pressure. Recrystallization from saturated toluene solution gave **11** (178 mg, 48%) as dark red crystals. Mp: 155–156 °C (decomp.). ¹H NMR (400 MHz, 25 °C, C₆D₆): δ 0.50 (br s, 6H, CH_{3iPr}), 1.18 (br s, 6H, CH_{3iPr}), 1.28 (d, *J*_{HH} = 6.7 Hz, 6H, CH_{3iPr}), 1.40 (br d, *J*_{HH} = 5.5 Hz, 6H, CH_{3iPr}), 3.48 (br s, 2H, CH_{iPr}), 3.53 (br s, 2H, CH_{iPr}), 4.37 (s, 5H, CH_{Cp}), 6.89 (t, *J*_{HH} = 7.5 Hz, 1H, CH_{Ar}), 7.00–7.09 (m, 9H, CH_{Ar}), 7.20 (d, *J*_{HH} = 7.5 Hz, 2H, CH_{Ar}), 7.53 (br s, 4H, CH_{Ar}). ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆): δ 23.1 (CH_{3iPr}), 23.6 (CH_{3iPr}), 23.7 (CH_{3iPr}), 26.4 (CH_{3iPr}), 28.5 (CH_{iPr}), 30.0 (CH_{iPr}), 83.8 (C_{Cp}), 117.2 (CH_{Ar}), 122.7 (CH_{Ar}), 124.6 (CH_{Ar}), 126.8 (CH_{Ar}), 128.3 (d, I_{CP} = 6.9 Hz, CH_{Ar}), 134.4 (C_{Ar}), 134.9 (br d, *J*_{CP} = 15.2 Hz, CH_{Ar}), 141.6 (C_{Ar}), 141.7 (C_{Ar}), 147.5 (C_{Ar}), 213.8 (CO). ³¹P {¹H} NMR (162 MHz, 25 °C, C₆D₆): δ 43.0 (d, *J*_{SiP} = 68.5 Hz). Anal. Calcd for C₃₉H₄₇FeN₂O₂PSi: C, 67.82; H, 6.86; N, 4.06. Found: C, 67.90; H, 6.92; N, 4.16.

Figure S15. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, 25 °C, C₆D₆) of 11.

3- Crystallographic data collection and structure determination

Colorless single crystals of 7 and yellow single crystals of 5 were grown of saturated C_6D_6 toluene solution at room temperature. Yellow single crystals of 9 were obtained from toluene solution at -10 °C. Red single crystals of 10 were obtained from a C_6D_6 solution at 10 °C. The intensity data were collected at 100, 150, or 173 K on a Bruker SMART APEX or APEX II diffractometer employing graphite-monochromated MoK α radiation ($\lambda = 0.71073$ Å). Structures were solved by direct methods (SHELXT)^{S3} and refined by full-matrix least-squares procedures on F^2 for all reflections (SHELXL).^{S4} Hydrogen atoms were located by assuming ideal geometry and were included in the structure calculations without further refinement of the parameters. Hydrogen atoms were located by assuming ideal geometry and were included in this paper have been deposited with The Cambridge Crystallographic Data Centre as supplementary publication nos. 2082216 (5), 2082217 (7), 2082218 (9), and 2082219 (11).

	5	7
Formula	C ₃₆ H ₄₄ ClN ₂ PSi, 2 (C ₆ H ₆)	$C_{36}H_{45}Cl_2N_2PSi$
Formula weight	755.45	635.70
Color	colorless	colorless
Crystal size / mm	$0.10\times0.08\times0.07$	$0.14 \times 0.08 \times 0.06$
Temperature / K	100	150
Crystal system	orthorhombic	monoclinic
Space group	P212121	<i>P</i> 2 ₁ / <i>n</i>
a /Å	11.8829(11)	10.5282(8)
b /Å	15.5031(14)	37.197(3)
c /Å	23.241(2)	17.9830(17)
<i>a</i> / deg.	90	90
<i>b</i> / deg.	90	103.1270(10)
<i>g</i> / deg.	90	90
$V/Å^3$	4281.4(7)	6858.4(10)
Ζ	4	8
D_{calcd} / g cm ⁻³	1.172	1.231
No. of unique data	7888	12557
No. of parameters	486	781
No. of restraints	0	6
$R_1 (I > 2s(I))$	0.0446	0.0663
wR_2 (all data)	0.0906	0.1668
GOF	1.010	1.047
Flack parameter	0.04(6)	-

 Table S1. Crystallographic data and details of refinement for 5 and 7.

	9	11
Formula	C ₄₂ H ₆₂ N ₃ PSi ₃	C43H49FeN2O2PSi
Formula weight	724.18	740.75
Color	yellow	red
Crystal size / mm	$0.54 \times 0.30 \times 0.20$	$0.22 \times 0.20 \times 0.19$
Temperature / K	100	173
Crystal system	monoclinic	monoclinic
Space group	$P2_{1}/c$	$P2_{1}/n$
a /Å	19.7520(8)	10.6138(9)
b /Å	18.9120(8)	18.8185(16)
c /Å	22.5192(9)	19.6086(17)
<i>a</i> / deg.	90	90
<i>b</i> / deg.	92.0010(10)	92.1190(10)
<i>g</i> / deg.	90	90
$V/Å^3$	8406.9(6)	3913.9(6)
Ζ	8	4
D_{calcd} / g cm ⁻³	1.144	1.257
No. of unique data	15636	7208
No. of parameters	911	459
No. of restraints	0	0
$R_1 (I > 2s(I))$	0.0695	0.0354
wR_2 (all data)	0.1993	0.0854
GOF	1.053	1.010

 Table S2. Crystallographic data and details of refinement for 9 and 11.

Figure S18. ORTEP of 7 with 50% thermal ellipsoids. All hydrogen atoms and one of the two independent molecules of 7 in the unit cell are omitted for clarity. Selected bond lengths [Å] and angles [deg]: Si1–N1 = 1.947(3), Si1–N2 = 1.803(3), Si1–Cl1 = 2.0852(13), Si1–Cl2 = 2.1743(13), N1–Si1–N2 = 76.15(11), N1–Si1–Cl2 = 168.52(9), N2–Si1–Cl1 = 117.88(9), N2–Si1–H1 = 126.9(14), Cl1–Si1–H1 = 115.2(14).

4- Computational details

Geometries of all systems have been optimized with the Gaussian-09 program using^{S5} B3LYP-D3^{S6}/def2-svp for Fe and 6-31+G(d,p) for the others level of theory on **5**, **8**, **9**, **10**, **13**, **14**, and **15**. Harmonic vibrational frequencies were calculated in order to verify that these structures correspond to energy minima (all frequencies are real).

Atomic Coordinates for **5** at B3LYP-D3/6-31+G(d,p) level of theory.

Р	0.01931191	0.23930272	0.38341173	Н	-1.69493783	-1.62151378	1.90735097
Cl	-0.36628446	1.90438888	-2.96984405	С	1.90551737	-2.74238455	-0.90513673
Si	-0.12569128	-0.20125149	-2.24209258	Н	0.89939254	-2.32480449	-0.84575491
Ν	1.12956855	0.12088091	-0.83112057	С	4.26145911	-1.90511487	-0.60872190
Ν	-1.21020778	-0.14008435	-0.64385582	Н	4.57265379	-2.94557152	-0.60323874
С	0.33303245	-0.88820138	1.77395688	С	4.83558651	0.43087546	-0.53507774
С	2.51363473	-0.23177059	-0.74240580	Н	5.58909422	1.20995355	-0.46671336
С	3.11043598	2.26271042	-0.74400817	С	5.22495211	-0.90543531	-0.49442827
Н	2.05072533	2.30737062	-0.99457872	Н	6.27422810	-1.16716200	-0.39013024
С	3.48903082	0.79111392	-0.67511438	С	-3.55605885	0.59112806	-0.36360298
С	-2.99790317	-1.80710467	-0.36125447	С	-2.01987739	-2.96064018	-0.56445108
С	-0.08734132	1.87719178	1.18856031	Н	-1.01556665	-2.58333459	-0.36541542
С	2.90033930	-1.59910793	-0.73296221	С	-5.30087106	-1.07786189	-0.04049009
С	-0.06436495	3.04073623	0.40003537	Н	-6.34706972	-1.32274444	0.12000698
Н	0.01316735	2.96576008	-0.67898169	С	3.31942413	2.95380978	0.61662590
С	-0.15029718	4.29477474	0.99895154	Н	4.37711267	2.94220675	0.90448701
Н	-0.12835257	5.18505836	0.37758150	Н	2.74684686	2.45743947	1.40654892
С	1.61518381	-0.91412745	2.35061098	Н	2.98872102	3.99701877	0.57373469
Н	2.41817138	-0.31211943	1.93808564	С	3.86235722	3.00453946	-1.86391449
С	-0.26586855	4.40699005	2.38824095	Н	3.70081091	2.51945912	-2.83139759
Н	-0.33252321	5.38700794	2.85169795	Н	4.94155339	3.04380509	-1.67734732
С	-2.59350278	-0.44391778	-0.43338998	Н	3.50061301	4.03622410	-1.93713611
С	-0.21059923	1.99548857	2.58321629	С	-0.30048896	3.25628977	3.17807795
Н	-0.23329274	1.11178434	3.21075818	Н	-0.39544604	3.33511289	4.25690458
С	-3.19659150	2.05573815	-0.55988156	С	1.86413742	-1.72955207	3.45455463
Н	-2.12801330	2.10800367	-0.75347474	Н	2.85918538	-1.75570529	3.88803262
С	-0.69652433	-1.66081068	2.32719972	С	-3.50157276	2.89678886	0.69226431

Н	-2.96992299	2.51251337	1.56831911	Н	1.29473192	-4.16189038	-2.44248275
Н	-4.57353882	2.90080009	0.92020312	С	-4.89874526	0.24877338	-0.14974151
Н	-3.18679136	3.93405692	0.53797683	Н	-5.64085633	1.03915982	-0.08559477
С	2.00822951	-3.81667623	0.19239734	С	-3.88917584	2.63801000	-1.80647767
Н	1.89164152	-3.38552791	1.18912377	Н	-4.97987738	2.64575589	-1.69839849
Н	2.96942330	-4.34088823	0.15861853	Н	-3.63306549	2.05926080	-2.69839396
Н	1.22109838	-4.56598286	0.05185736	Н	-3.55777586	3.66935142	-1.97054673
С	0.83916043	-2.51394453	3.99370424	С	-2.25380984	-4.15128762	0.38333461
Н	1.03693492	-3.15033159	4.85118270	Н	-3.17282523	-4.69416594	0.13797060
С	-4.35378010	-2.09312796	-0.16206604	Н	-2.31844360	-3.83920770	1.42949724
Н	-4.67713328	-3.12773747	-0.10823776	Н	-1.42416833	-4.86099873	0.29501884
С	-0.43941794	-2.47629619	3.43181254	С	-2.05365032	-3.44380418	-2.02938803
Н	-1.23954560	-3.07817319	3.85194889	Н	-1.81202924	-2.63340989	-2.72177243
С	2.04816126	-3.37852020	-2.30229563	Н	-3.04896329	-3.82776371	-2.28114775
Н	3.03882414	-3.83114028	-2.42481277	Н	-1.325394	-4.24853	-2.18379401
Н	1.91070770	-2.63223293	-3.08966103				

Figure S19. Optimized geometry of 5.

Atomic Coordinates for **8** at B3LYP-D3/6-31+G(d,p) level of theory.

Si	0.16563215	0.72768955	-1.58399487	Н	-1.24391121	4.92916621	1.34978215
Р	-0.20505564	-0.72200017	0.68659261	Н	0.41271623	4.34123108	1.55167320
Si	2.31302190	2.84813332	-1.51345205	С	-0.13139687	-0.76546052	3.54455113
Si	-0.49709207	3.68862201	-0.66840189	Н	-0.56369920	-1.75946813	3.51136024
Ν	0.66011677	2.40420383	-1.04670708	С	0.96482703	1.80394964	3.66089767
Ν	-1.23798912	0.17451106	-0.22804919	Н	1.38415742	2.80482067	3.69960719
С	-2.48476961	-1.03478952	-2.67174720	С	3.57222723	-0.10819751	1.31109348
Н	-1.42611396	-1.00871365	-2.41688469	Н	2.75162073	0.59326810	1.15732977
Ν	1.09769698	-0.48810560	-0.28540790	С	0.71380174	1.09580554	4.84176968
С	-2.67003578	0.09375420	-0.33031488	Н	0.94381607	1.54420982	5.80392785
С	-3.51202930	0.58908649	0.70345489	С	3.18580671	3.60830267	-0.01521026
С	2.18760553	-1.40970114	-0.44114975	Н	2.71131866	4.55349640	0.27279292
C	-5.49084125	-0.04796944	-0.57031753	Н	4.23926559	3.81811723	-0.23551578
Н	-6.57170954	-0.10263030	-0.66274195	Н	3.14875876	2.93840836	0.84934571
С	-2.98353626	1.22804305	1.97842991	С	4.42604629	-2.16139808	0.15154687
Н	-1.90751175	1.34962177	1.86932632	Н	5.33118297	-2.04170280	0.73904970
С	-0.64501845	-2.46877604	0.95291580	С	0.34190289	-3.33040713	1.46636667
С	0.12284973	-0.06182111	2.36004551	Н	1.33702802	-2.95624411	1.68334550
С	0.67790309	1.22652010	2.42731757	С	-4.66788423	-0.50860215	-1.59125530
Н	0.87620922	1.77017046	1.50881331	Н	-5.11914764	-0.92299099	-2.48757186
С	3.38031644	-1.24407233	0.31512854	С	0.16828082	-0.18812861	4.78148274
С	4.89029772	0.66034406	1.09561809	Н	-0.03020241	-0.74131318	5.69468212
Н	5.76286804	0.03567677	1.31405917	С	2.08938276	-2.48943440	-1.36252273
Н	4.93251975	1.52521767	1.76656111	С	-3.27059876	-0.46528293	-1.49676326
Н	4.98300337	1.02330061	0.06969719	С	3.50596589	-0.62986911	2.75956655
C	-2.20862788	3.31867631	-1.37555408	Н	4.33762190	-1.31563499	2.95850639
Н	-2.14021100	3.16727553	-2.45943114	Н	2.57367885	-1.16452533	2.95481368
Н	-2.85587692	4.18795196	-1.20547459	Н	3.56784502	0.19909914	3.47212899
Н	-2.70651471	2.44863050	-0.94882590	С	-3.24647628	0.32185539	3.19700062
С	-0.58438582	4.06842706	1.18550780	Н	-4.32202238	0.23767130	3.38977812
Н	-0.95106431	3.24676387	1.79876833	Н	-2.76738645	0.72949901	4.09317811

S21

Н	-2.85990006	-0.68857059	3.03678974	Н	-2.02314092	-0.54950596	-4.74235307	
С	4.33751367	-3.21267756	-0.75506006	Н	-2.33887347	0.86806515	-3.73164193	
Н	5.16496022	-3.90602750	-0.87689234	С	-1.92329482	-2.97121316	0.66930347	
С	-1.22525902	-5.17305358	1.40142847	Н	-2.69478767	-2.31907430	0.27986182	
Н	-1.45001397	-6.22191030	1.57144317	С	0.85913955	-2.74179583	-2.22482769	
С	3.28860494	1.36356748	-2.16634495	Н	0.05392919	-2.10946232	-1.85258061	
Н	3.33321710	0.48970783	-1.51950519	С	1.11945217	-2.33950540	-3.68935304	
Н	4.31873763	1.70411771	-2.33437442	Н	1.40972232	-1.28830181	-3.76056520	
Н	2.89315754	1.04258284	-3.13650581	Н	0.21397215	-2.48208001	-4.29026096	
С	0.05063778	-4.67630630	1.68684473	Н	1.91739927	-2.95246517	-4.12463536	
Н	0.82196851	-5.33557260	2.07309414	С	3.17755088	-3.36006913	-1.50773492	
С	-0.05908141	5.37738342	-1.41552131	Н	3.10984922	-4.17448087	-2.22220816	
Н	0.88296820	5.79462042	-1.04678524	С	-2.85362404	-2.50025838	-2.96989178	
Н	-0.85924888	6.06363000	-1.11001753	Н	-2.70192363	-3.13646847	-2.09291677	
Н	-0.02967816	5.36737684	-2.50844525	Н	-2.22358883	-2.88484374	-3.77895531	
С	0.36283586	-4.19772451	-2.14215790	Н	-3.89631548	-2.60491785	-3.28845647	
Н	1.08497172	-4.89916399	-2.57335352	С	-3.57723114	2.62986720	2.21961371	
Н	-0.57038961	-4.30505046	-2.70231698	Н	-4.65068346	2.58320349	2.43063575	
Н	0.17617237	-4.49770032	-1.10844889	Н	-3.43072797	3.27721096	1.35148739	
С	-4.90290395	0.48909776	0.56797242	Н	-3.09107505	3.10004932	3.08138549	
Н	-5.53693571	0.85473499	1.36975890	С	2.44016514	4.06542301	-2.96552488	
С	-2.20830693	-4.32043281	0.89410460	Н	1.69227777	3.83606625	-3.73310755	
Н	-3.20026388	-4.70093363	0.66986592	Н	3.42970698	3.94578676	-3.42403286	
С	-2.64785687	-0.16219426	-3.92980521	Н	2.330455	5.11498	-2.6859301	0
Н	-3.68869479	-0.14824969	-4.27339541					

Figure S20. Optimized geometry of 8.

Atomic Coordinates for **9** at B3LYP-D3/6-31+G(d,p) level of theory.

Р	-2.18389727	0.85486926	-0.76402567	Н	-6.00277351	-2.49263908	-3.42980683	
Si	0.74085415	0.45549592	-0.12890346	С	-3.72179376	-0.02899501	-2.87022091	
Si	1.66734770	2.82028741	1.33048114	Н	-3.24452455	0.80415343	-3.37931166	
Si	0.61268648	3.17088072	-1.58829356	С	-3.02027559	-0.86835019	3.23516378	
Ν	-0.87639955	-0.16699510	-0.11970971	Н	-3.76139708	-0.71455039	2.44811308	
Ν	1.93502409	-0.55914029	0.00131723	Н	-3.12250583	-0.04711198	3.95215154	
Ν	0.83484468	2.17096977	-0.12091757	Н	-3.26231614	-1.80230604	3.75461218	
С	3.22036440	-1.03081673	0.11121984	С	-0.57291763	-1.15646116	3.79307928	
С	-1.07295577	-1.56898768	0.22231952	Н	-0.74309409	-2.12610446	4.27350553	
С	4.29910547	-0.47675375	-0.64841848	Н	-0.65854386	-0.38081694	4.56237129	
С	-0.91684397	-2.56460262	-0.77360051	Н	0.44961959	-1.14749241	3.41519101	
С	3.48262297	-2.13173256	0.97924178	С	-1.69483871	-3.26798796	1.83170044	
С	-1.44723077	-1.91952368	1.54162363	Н	-1.98446225	-3.54793208	2.84014275	
С	-3.37907948	-0.31244363	-1.53768202	С	2.36422756	-2.79833327	1.76729197	
С	-3.12861305	1.49131457	0.69504254	Н	1.44888133	-2.23441138	1.57626939	
С	5.58151714	-1.01530737	-0.50406364	С	-4.93905370	-2.17814180	-1.57786116	
Н	6.40260306	-0.59985806	-1.07941926	Н	-5.40405522	-3.01912097	-1.07181929	
С	-0.45077739	-2.26999622	-2.19560230	С	-1.42044811	-2.81890989	-3.25997535	
Н	-0.40706975	-1.18505934	-2.32555351	Н	-1.41974254	-3.91436851	-3.27136090	
С	-1.17206982	-3.89708896	-0.42711881	Н	-1.11052998	-2.48145039	-4.25539801	
Н	-1.05080549	-4.67166612	-1.17783053	Н	-2.44459382	-2.48503218	-3.08835043	
С	-4.00530451	-1.39728903	-0.89676978	С	-4.66667460	-0.80379666	-3.54959717	
Н	-3.76349737	-1.63806376	0.13156951	Н	-4.91891401	-0.56926561	-4.57952334	
С	-1.58965359	-0.90241879	2.66630778	С	1.02766866	4.56100684	1.68897720	
Н	-1.37969016	0.08163368	2.24989377	Н	1.30618925	5.28831058	0.92073715	
С	4.78648920	-2.62477972	1.09114407	Н	1.46102585	4.90352308	2.63629038	
Н	4.97921237	-3.46297037	1.75596292	Н	-0.06245111	4.57874636	1.79162271	
С	5.83951730	-2.07672776	0.36340934	С	0.96628822	-2.83362090	-2.42462928	
Н	6.84602491	-2.47299224	0.46304850	Н	1.66978480	-2.44589022	-1.68621597	
С	4.04597092	0.62509446	-1.66932595	Н	1.32472949	-2.56865725	-3.42584226	
Н	3.22424153	1.24018275	-1.29058782	Н	0.96163901	-3.92721259	-2.35203915	
С	-4.51822093	1.37047040	0.85188191	С	-1.56954571	-4.25307131	0.85763066	
Н	-5.09508855	0.76162882	0.16443915	Н	-1.76343926	-5.29369843	1.10190862	
С	-2.42630819	2.31809092	1.59153241	С	-0.84298385	4.35006960	-1.39192786	
Н	-1.36100385	2.46333561	1.45404880	Н	-1.75553494	3.81651899	-1.11527956	
С	-5.27407560	-1.88245368	-2.90395318	Н	-1.02596211	4.87364743	-2.33834709	

Н	-0.64273330	5.10687721	-0.62728331	Н	2.69747449	-0.60228364	-2.87752582
С	-5.17706390	2.02502014	1.89808699	С	5.24426143	1.56038738	-1.89772993
Н	-6.25213627	1.91185582	2.00665617	Н	5.62160015	1.96880079	-0.95537142
С	1.26619733	1.72887848	2.81713600	Н	4.95150155	2.39701956	-2.54214697
Н	0.19409347	1.62993202	3.00938684	Н	6.07166392	1.04820557	-2.40069232
Н	1.72051792	2.18134127	3.70726603	С	0.38149143	2.04884787	-3.08862877
Н	1.69059473	0.72545004	2.71343412	Н	1.17288291	1.29697699	-3.16376986
С	2.16347311	4.20080640	-1.91436791	Н	0.43322028	2.66318357	-3.99602404
Н	2.40274156	4.89615546	-1.10424038	Н	-0.58534105	1.54033489	-3.08326008
Н	2.00116303	4.79816147	-2.81996945	С	-4.46113980	2.80974441	2.80369781
Н	3.03735324	3.56545520	-2.08494313	Н	-4.97424727	3.31055539	3.61945465
С	3.53673967	2.82861191	1.12730563	С	2.63562569	-2.78049752	3.28302910
Н	3.91036730	1.80512339	1.01697200	Н	3.52620044	-3.36593038	3.53787992
Н	4.00562933	3.26474571	2.01781402	Н	1.78843198	-3.20844574	3.83068669
Н	3.86352874	3.40380555	0.25723573	Н	2.79759906	-1.75931957	3.64586173
С	-3.07849517	2.95616794	2.64465357	С	2.11834784	-4.23837229	1.27729360
Н	-2.51080120	3.57603353	3.33331706	Н	1.88855219	-4.25076327	0.20810880
С	3.59307500	0.00988663	-3.00941964	Н	1.27040135	-4.68376056	1.80882616
Н	4.38168676	-0.63457195	-3.41420638	Н	2.99933881	-4.86933867	1.44447893
Н	3.37877950	0.78958730	-3.75081809				

Figure S21. Optimized geometry of 9.

Atomic Coordinates for **10** at B3LYP-D3/Def2-svp for Fe, 6-31+G(d,p) for the others level of theory.

Р	-0.86906700	-0.64714100	0.52264300	С	-2.46624300	2.63569500	0.44302200	
Si	0.79377400	0.62726900	-1.16359600	С	-2.13158400	0.54512500	-2.81863600	
Ν	0.58752900	-1.02680800	-0.13589800	Н	-1.33591000	-0.07118600	-2.39569000	
Ν	-0.83656800	0.87765200	-0.11718800	С	-4.24290300	3.21829300	-1.11470600	
C	-2.32137000	-1.60859800	-0.01151000	Н	-5.11974100	3.81091100	-1.36041000	
С	1.32416100	-2.24927100	-0.21087200	С	1.99742100	-2.43617200	3.39183100	
С	2.40596800	-1.75437500	2.07516700	Н	2.60064400	-3.33109400	3.58177200	
Н	1.80232100	-0.85664000	1.95872100	Н	0.94536000	-2.73319100	3.37654100	
С	2.16642400	-2.63893700	0.86044100	Н	2.14053500	-1.74968100	4.23230800	
С	-2.61969500	1.50602900	-1.73717300	С	3.87613900	-1.29627900	2.13090100	
С	-0.99239600	-0.79792300	2.34599600	Н	4.16882100	-0.82805900	1.18772500	
С	1.26534300	-3.04297400	-1.39390300	Н	4.55274900	-2.13828600	2.31460900	
С	-0.29278900	0.08921700	3.17663500	Н	4.01272700	-0.56392200	2.93358700	
Н	0.30501500	0.87930000	2.74969800	С	-1.80195700	-1.95760300	4.32455000	
С	-0.35390700	-0.03764700	4.56224900	Н	-2.38759300	-2.75893700	4.76516400	
Н	0.19408100	0.66283400	5.18510800	С	-3.32368300	-3.65110000	-0.84576700	
С	-2.18763300	-2.90559500	-0.52014300	Н	-3.21119600	-4.65490000	-1.24437400	
Н	-1.20379000	-3.34044300	-0.64248600	С	-2.71076400	2.30896400	2.92789200	
С	-1.11105800	-1.05948200	5.14126400	Н	-2.94426200	1.25065600	2.77769500	
Н	-1.15886900	-1.15829500	6.22180500	Н	-3.65635400	2.86145800	2.97182900	
С	-1.98005300	1.67285800	-0.47646900	Н	-2.21415800	2.40426500	3.89942900	
С	-1.74570400	-1.82952700	2.93518200	С	-0.28604700	-3.74331200	-3.32481900	
Н	-2.29238200	-2.53442000	2.31968600	Н	-0.92737800	-4.28014500	-2.62108700	
С	-1.81594200	2.86007700	1.79975300	Н	0.37388700	-4.47759200	-3.79926200	
Н	-0.87752100	2.30508900	1.79737800	Н	-0.92514200	-3.32555000	-4.11004800	
С	-3.60388500	-1.07096600	0.19892500	С	-4.59638400	-3.10912500	-0.65175500	
Н	-3.72303400	-0.07331800	0.60851100	Н	-5.47873000	-3.68924600	-0.90549800	
С	0.51234800	-2.60974400	-2.65032600	С	-3.74249500	2.29316400	-2.02586200	
Н	-0.19539600	-1.82734800	-2.36801800	Н	-4.23508200	2.17694700	-2.98665700	
С	1.98881500	-4.24179100	-1.43276600	С	-4.73451400	-1.82001000	-0.12582400	
Н	1.94820500	-4.85503700	-2.32731400	Н	-5.72156500	-1.39444000	0.02720800	
С	2.85918600	-3.85388700	0.77186900	С	1.49110200	-2.00027000	-3.67622800	
Н	3.49455500	-4.16126600	1.59732700	Н	2.22469800	-2.74901200	-3.99780800	
С	2.76634800	-4.66187900	-0.35627200	Н	2.02618200	-1.14686300	-3.25338300	
Н	3.31150800	-5.60018100	-0.40703300	Н	0.94630300	-1.64697200	-4.55944900	

С	-3.60125700	3.38449800	0.10873200	С	4.01362700	0.77917100	-1.42697600
Н	-3.98369700	4.11333200	0.81713100	Н	3.91670600	-0.29694600	-1.46883300
С	-1.47084100	4.33817900	2.05960800	С	3.53856800	1.70920800	-2.38953300
Н	-2.37211000	4.95375000	2.15916300	С	4.65266000	1.52565600	-0.38521400
Н	-0.86428600	4.74915100	1.24974500	Н	2.97173500	1.47147600	-3.27812300
Н	-0.90699300	4.42857400	2.99521600	С	3.86822700	3.02109000	-1.93467700
С	-3.22207200	-0.41114600	-3.33474100	Н	5.11055100	1.11064800	0.50126800
Н	-4.01993100	0.12456100	-3.86042700	С	4.58489100	2.90945200	-0.70989600
Н	-3.67534400	-0.98160500	-2.52221400	Н	3.61264200	3.94399200	-2.43734200
Н	-2.78206000	-1.12138300	-4.04417400	Н	4.95755500	3.72569200	-0.10800100
С	-1.50230100	1.32444700	-3.99010100	С	1.33316100	3.31348300	-0.58268200
Н	-0.68391500	1.96039800	-3.64121500	С	2.33051700	1.84076200	1.22166300
Н	-2.24764300	1.95843500	-4.48396100	0	0.54058300	4.15917900	-0.68491400
Н	-1.09507400	0.62907600	-4.73336500	0	2.25648300	1.74286100	2.38353800
Fe	2.58491200	2.10200000	-0.46661900				

Figure S22. Optimized geometry of 10.

Atomic Coordinates for **12** at B3LYP-D3/6-31+G(d,p) level of theory.

Р	1.39808400	-0.01491300	-0.00632200	Н	-3.55875200	-2.65099000	1.68671700
Si	-1.02474600	-1.04701700	-0.17269200	Н	-5.28806100	-2.57895700	1.29976600
Si	-2.80294000	1.61930200	0.40037900	С	1.59811200	-0.30975100	3.27271500
Si	-3.95075300	-1.13058700	-0.25087700	Н	2.55852200	-0.33694600	2.74695300
Ν	0.29437200	-0.40950700	1.14759800	Н	1.74067500	-0.79565600	4.24382700
Ν	0.25239400	0.01312500	-1.17657000	Н	1.33210400	0.73498100	3.45355500
С	2.66195500	-1.32423500	-0.25030200	С	4.83068700	-2.32904400	0.19053800
Ν	-2.53652400	-0.06549500	-0.04708000	Н	5.82563200	-2.25833800	0.62036200
С	-3.97169100	1.75414000	1.89149900	С	-1.01226200	-0.05062000	-3.26100500
Н	-4.97428100	1.35480400	1.71419400	Н	-1.09158600	-1.14138700	-3.21950300
Н	-4.07985500	2.80699700	2.18123500	Н	-1.02543200	0.25724100	-4.31170300
Н	-3.54581000	1.21471800	2.74586400	Н	-1.88746200	0.37301000	-2.76246500
С	2.39971000	1.50986900	0.21351200	С	2.26314600	-2.50526500	-0.89864300
С	3.44822600	1.78518700	-0.68326300	Н	1.25350000	-2.58698500	-1.29073300
Н	3.70967300	1.06871000	-1.45503000	С	0.49752100	-1.03783800	2.48137300
С	-3.71774300	-2.45919400	-1.58138400	С	-5.48792000	-0.18353200	-0.83782800
Н	-4.69363000	-2.92054000	-1.78468900	Н	-5.33343900	0.23463900	-1.83847600
Н	-3.01689100	-3.24098000	-1.28107000	Н	-5.81834800	0.62225800	-0.17815400
Н	-3.35316000	-2.02159800	-2.51732700	Н	-6.30828200	-0.90885800	-0.90804700
С	0.29011000	0.43179500	-2.59604500	С	3.86431500	3.90051500	0.41410000
С	4.17099600	2.97384600	-0.58779400	Н	4.42778400	4.82583400	0.49070800
Н	4.97454500	3.17345000	-1.29060800	С	2.83377500	3.62962300	1.31681800
С	0.35420200	1.97068000	-2.68623000	Н	2.59142800	4.34210500	2.09974000
Н	-0.49877400	2.41486600	-2.16741400	С	-1.22882200	2.49275300	0.94335200
Н	0.32929000	2.29541400	-3.73280400	Н	-0.82017300	2.01903900	1.83789100
Н	1.26856500	2.36078500	-2.23175200	Н	-1.46561300	3.53833900	1.17525600
С	1.48202900	-0.18605000	-3.35289000	Н	-0.45931300	2.47953400	0.17048400
Н	2.44019000	0.10836700	-2.91469500	С	3.14297800	-3.58098500	-1.00860800
Н	1.47925800	0.14605500	-4.39674900	Н	2.82167600	-4.48861400	-1.51103600
Н	1.42954800	-1.27779200	-3.33878800	С	0.85891200	-2.53628600	2.37917600
С	3.95089200	-1.24887200	0.29975900	Н	0.12930000	-3.06229300	1.75750100
Н	4.27373400	-0.35180900	0.81803800	Н	0.86211900	-2.99038300	3.37677800
С	4.42966400	-3.49524700	-0.46586500	Н	1.84915300	-2.68089500	1.93974900
Н	5.11378300	-4.33460700	-0.55087600	С	2.10305600	2.44377500	1.21464100
С	-4.37246700	-1.98106600	1.38625500	Н	1.29835300	2.25091800	1.90955100
Н	-4.51749000	-1.24681000	2.18631500	С	-0.83966100	-0.89039000	3.23193800

Н	-1.12345100	0.16330000	3.31123400	Н	-2.88182900	2.51880200	-1.93549000
Н	-0.75804500	-1.30851700	4.24100200	Н	-3.49045900	3.70598900	-0.77222800
Н	-1.64328200	-1.41618800	2.70837600	Н	-4.52509100	2.37085600	-1.29943500
С	-3.49891400	2.64139300	-1.03818000				

Figure S23. Optimized geometry of 12.

Atomic Coordinates for **13** at B3LYP-D3/6-31+G(d,p) level of theory.

Р	-1.24557700	0.29612300	0.00899900	Н	1.70230700	-3.65216500	-2.15644600
Si	1.14470000	-0.69179400	0.10534000	Н	2.73403800	-4.66876200	-1.13937900
Si	3.78286000	1.20166800	-0.22730100	С	-1.21449300	0.56137600	-3.23504700
Si	1.54210000	-2.99982500	0.29000500	Н	-2.23143400	0.58518100	-2.83060800
Ν	-0.19794700	-0.27077900	-1.12279300	Н	-1.29494200	0.36744800	-4.30948100
Ν	-0.24549600	-0.15431500	1.23644900	Н	-0.76480700	1.54749700	-3.09489200
С	-2.86214300	-0.53729200	0.03716600	С	-5.14616900	-0.82176500	-0.73212400
Ν	2.47603900	0.20565300	0.10185600	Н	-5.99770800	-0.45563900	-1.29788300
С	5.00800200	0.39857000	-1.44148200	С	0.73769000	-0.62979300	3.40275300
Н	5.40579300	-0.53570800	-1.02673000	Н	0.32655000	-1.64344100	3.35506600
Н	5.85602500	1.05616800	-1.67184400	Н	0.80588000	-0.33137800	4.45390700
Н	4.50387200	0.15325300	-2.38474500	Н	1.74880400	-0.64085200	2.98567700
С	-1.52445700	2.08946100	-0.10956400	С	-2.94919500	-1.76111200	0.71920400
С	-2.65222700	2.73753800	0.41646300	Н	-2.08909400	-2.12307000	1.27093800
Н	-3.46855600	2.16365800	0.84350500	С	-0.36475400	-0.53613400	-2.56941600
С	-0.01725000	-4.04464900	0.61965700	С	2.76601200	-3.29005900	1.71210000
Н	0.23202200	-5.11304300	0.62937300	Н	2.32330000	-3.06228600	2.68704100
Н	-0.78912900	-3.88621700	-0.14136600	Н	3.64541900	-2.64968900	1.58540600
Н	-0.44979600	-3.79716100	1.59633500	Н	3.09763000	-4.33574400	1.72536300
С	-0.15587300	0.35568300	2.63080000	С	-1.66829100	4.88439400	-0.11882900
С	-2.72326500	4.13263000	0.40700700	Н	-1.72479800	5.96903400	-0.12138200
Н	-3.59783900	4.63023300	0.81546400	С	-0.53639200	4.24137800	-0.63163700
С	0.48250400	1.75932900	2.67260400	Н	0.29440700	4.81905400	-1.02519200
Н	1.43268500	1.74801700	2.13254000	С	3.24841100	2.85946700	-1.01558600
Н	0.66405500	2.06055800	3.71055500	Н	2.70299300	2.68826300	-1.95327700
Н	-0.16966600	2.50697500	2.21347500	Н	4.10741000	3.50335400	-1.24410500
С	-1.55312400	0.38604700	3.27281300	Н	2.58707800	3.41104200	-0.33557400
Н	-2.22249000	1.07435400	2.74547100	С	-4.12617200	-2.50768200	0.67532200
Н	-1.48027200	0.73135900	4.30930800	Н	-4.18236300	-3.45442800	1.20407000
Н	-2.01072200	-0.60781900	3.27041900	С	-1.03715200	-1.90749400	-2.77666200
С	-3.96848300	-0.07260900	-0.69215700	Н	-0.44561800	-2.69623800	-2.30501200
Н	-3.91637000	0.86790600	-1.23105700	Н	-1.13068100	-2.13805000	-3.84387700
С	-5.22661900	-2.03917800	-0.04964700	Н	-2.03697700	-1.92028600	-2.33179100
Н	-6.14309600	-2.62084500	-0.08393600	С	-0.46162600	2.84994000	-0.62559400
С	2.37805100	-3.64270100	-1.29480100	Н	0.42905600	2.34879500	-0.99058900
Н	3.24275200	-3.02016200	-1.55021200	С	1.03756300	-0.52996200	-3.20374100

S31

Н	1.52784800	0.43479500	-3.04717200	Н	4.07682800	2.14599300	2.07657100
Н	0.96058700	-0.72014700	-4.27936400	Н	5.58356500	2.30819300	1.15250100
Н	1.67785400	-1.30080500	-2.76797100	Н	5.12224200	0.73742300	1.84075300
С	4.73538600	1.64277100	1.35772100				

Figure S24. Optimized geometry of 13.

Atomic Coordinates for 14 at B3LYP-D3/6-31+G(d,p) level of theory.

Р	1.45410088	0.06359643	0.42737668	Н	-2.32743305	0.81485803	-2.81100541
Si	-1.12851360	-0.63798058	-0.31459141	С	-3.50939678	1.47483057	2.75006663
Si	-2.36864979	2.10743739	-0.64572899	Н	-3.74023326	2.51443181	2.49529698
Si	-1.78184837	0.95866719	2.18237378	Н	-3.55942559	1.38939407	3.84248408
Ν	0.50970782	-0.50674104	-0.92115387	Н	-4.28858031	0.83492855	2.32371713
Ν	-1.85906416	-2.03222837	-0.53996028	С	-4.25423422	2.19951973	-0.58617755
Ν	-1.72082290	0.82379938	0.40077040	Н	-4.70562664	1.24692793	-0.88189125
С	2.76835457	-1.18791468	0.78568841	Н	-4.59407297	2.96434859	-1.29587748
С	2.35239720	1.56555586	-0.13788441	Н	-4.64447658	2.46302885	0.39968423
С	4.11818573	-1.09538894	0.41223109	С	2.40734786	3.57555256	-1.51211849
Н	4.46756579	-0.24546374	-0.16501773	Н	2.01161260	4.14630002	-2.34774617
С	3.39272420	2.10268864	0.64282049	С	-1.39039831	-0.70569028	2.98363185
Н	3.77489134	1.54906474	1.49634450	Н	-2.05378188	-1.50748762	2.64829270
С	1.85652796	2.33002881	-1.20465242	Н	-1.51625168	-0.59496460	4.06800225
Н	1.03273058	1.94198963	-1.79150821	Н	-0.35662337	-1.01414186	2.80334416
С	4.60091002	-3.20386092	1.50628406	С	3.45801830	4.08804088	-0.74634304
Н	5.30787943	-3.98157306	1.78022356	Н	3.88718142	5.05706031	-0.98352113
С	2.35809992	-2.29832133	1.54564618	С	-3.13215388	-2.69557652	-0.38264312
Н	1.31834325	-2.38799664	1.84851901	С	-3.60267058	-3.15793957	-1.78050343
С	5.02703598	-2.09402879	0.77181082	Н	-2.83797263	-3.78923353	-2.24407818
Н	6.06713167	-2.00660104	0.47014070	Н	-4.53816894	-3.72682517	-1.71722558
С	3.26058097	-3.30403779	1.89192981	Н	-3.76800580	-2.29058005	-2.42954941
Н	2.91901249	-4.16033733	2.46623653	С	-4.23122459	-1.81075142	0.24513326
С	-1.65713428	3.78470246	-0.15561020	Н	-4.40752087	-0.92452749	-0.37182616
Н	-2.06512415	4.14173635	0.79558020	Н	-5.17724198	-2.35771698	0.33672198
Н	-1.91348744	4.52762484	-0.92067413	Н	-3.93749163	-1.47280483	1.24367728
Н	-0.56647602	3.74563824	-0.06837142	С	-2.91508577	-3.93861751	0.50957677
С	-0.55606714	2.23611955	2.83605769	Н	-2.14706094	-4.58403616	0.07197784
Н	0.45952106	2.02116953	2.49339368	Н	-2.57570759	-3.63622689	1.50610380
Н	-0.55966483	2.20905561	3.93303954	Н	-3.84126179	-4.51595668	0.61864795
Н	-0.81057009	3.25435433	2.52873118	С	0.99960721	-1.29746598	-2.13075089
С	3.94556982	3.34738970	0.33512222	С	-0.04991884	-1.18880628	-3.25191705
Н	4.75548327	3.74001458	0.94359951	Н	-1.00982172	-1.60726454	-2.94128308
С	-1.93131278	1.77012218	-2.45085666	Н	-0.18923341	-0.14999998	-3.56012120
Н	-0.85632297	1.78784722	-2.64196739	Н	0.29707467	-1.75388835	-4.12334737
Н	-2.39029600	2.56062674	-3.05709235	С	1.19849805	-2.78307976	-1.77050899

Н	0.27884447	-3.18752521	-1.34107411	Н	2.64271594	-1.30595354	-3.51993898
Н	1.44601799	-3.34976858	-2.67559283	Н	2.19129744	0.32421852	-2.99680433
Н	2.01519283	-2.91660875	-1.05974109	Н	3.11353195	-0.73871524	-1.92266112
С	2.31537471	-0.70805661	-2.66317199				

Figure S25. Optimized geometry of 14.

Atomic Coordinates for **15** at B3LYP/6-31+G(d,p) level of theory.

Si	-0.87750056	-0.14564594	-1.12855739	Н	-3.32911767	0.15350760	3.71888040
Р	0.71063721	0.23525632	0.89506672	С	-1.79231026	3.14838150	0.96687426
Si	-0.70902097	-0.86803271	-3.36074972	Н	-1.89428470	2.06819512	0.87087508
Si	-4.10193197	-0.33175188	-0.72811478	С	-1.57637810	0.58154022	4.91084970
Ν	-2.42886071	-0.14010365	-0.67913552	Н	-2.12473225	0.65459348	5.84566787
Ν	0.28954971	-1.10065657	0.01675928	С	-2.11398844	-0.04300044	-4.33053542
С	2.69592472	-2.05761841	-1.47352057	Н	-3.07839494	-0.18437566	-3.83696085
Н	2.11729920	-1.14859035	-1.65605471	Н	-2.17426783	-0.47305870	-5.33837406
Ν	0.13256222	1.22550835	-0.30162058	Н	-1.94404644	1.03469694	-4.43524878
С	0.75327752	-2.44268459	0.21162617	С	-0.19063639	4.92616586	0.19669515
С	0.01905108	-3.33763095	1.02778514	Н	-0.80688805	5.63645839	0.73966342
С	0.30796052	2.64358333	-0.44392445	С	3.17727248	1.54545858	1.23016066
С	1.82144988	-4.96339658	0.83320537	Н	2.72568847	2.40609506	0.75120080
Н	2.24814128	-5.92767638	1.09471626	С	2.49355317	-4.11208415	-0.04007325
С	-1.37975998	-3.01505339	1.53016759	Н	3.43729842	-4.43245133	-0.47133616
Н	-1.62595566	-2.00725388	1.19876651	С	-0.19361374	0.77559903	4.89463206
С	2.45505662	0.35371116	1.37442690	Н	0.33816625	1.00443017	5.81334403
С	-0.16015957	0.38214892	2.49709612	С	1.35310008	3.11518234	-1.28441555
С	-1.55503108	0.20355278	2.52088840	С	1.97291875	-2.85911687	-0.39080190
Н	-2.08656992	0.00334063	1.59391670	С	-1.77123498	3.52442940	2.45859064
С	-0.51983598	3.56335499	0.24389987	Н	-1.72779752	4.61104616	2.59340002
С	-3.02322972	3.76204873	0.27112713	Н	-0.91261938	3.08448824	2.97292002
Н	-3.02559053	4.85556897	0.34543541	Н	-2.67847940	3.16237785	2.95212346
Н	-3.94086858	3.39037365	0.73990236	С	-1.47868030	-3.06899553	3.06448739
Н	-3.04942833	3.48989230	-0.78738615	Н	-1.29986839	-4.08242267	3.44122605
С	-4.80627960	-0.40106379	1.04315010	Н	-2.47836714	-2.76284738	3.38983616
Н	-4.35391307	-1.22177508	1.61409899	Н	-0.75447422	-2.39739881	3.53497618
Н	-5.89293012	-0.55048114	1.04365280	С	0.89343959	5.38864616	-0.54150583
Н	-4.59678633	0.53473187	1.57640045	Н	1.13663728	6.44736564	-0.55599838
С	-4.99873939	1.09041339	-1.61536305	С	5.06792343	0.53547389	2.35965722
Н	-4.88957070	2.03470964	-1.07338276	Н	6.08424950	0.60503685	2.73598608
Н	-6.07145659	0.87787663	-1.70883955	С	0.86318512	-0.65705947	-4.41577010
Н	-4.59592335	1.23901607	-2.62403331	Н	0.71953008	0.16725778	-5.11969116
С	0.51453720	0.67838374	3.69398857	Н	1.03639642	-1.56853737	-4.99827043
Н	1.58623106	0.83829956	3.70097846	Н	1.76769422	-0.45278775	-3.84104054
С	-2.25338977	0.29997939	3.72050123	С	4.48522471	1.62931492	1.71552850

Н	5.04271603	2.55298895	1.59302787	Н	1.82480725	1.17423502	-2.03306847
С	-4.66335705	-1.92668751	-1.60286884	С	1.61967337	2.53328223	-3.69055904
Н	-4.38492323	-1.91508177	-2.66348241	Н	0.54228705	2.37096638	-3.79445316
Н	-5.75375402	-2.03975426	-1.54966635	Н	2.13454163	1.90743367	-4.42456430
Н	-4.21093344	-2.81415883	-1.14850395	Н	1.82526093	3.58074455	-3.93599688
С	3.63274378	2.30784650	-2.18664290	С	1.63603206	4.48640020	-1.29991922
Н	3.98688482	3.31452745	-2.43410511	Н	2.44098669	4.85601307	-1.92822411
Н	4.08130452	1.61644334	-2.90859850	С	4.13166620	-1.63563996	-1.10708957
Н	4.01478024	2.04621020	-1.19780640	Н	4.16217269	-0.97241841	-0.24420846
С	0.57862414	-4.58537753	1.33312191	Н	4.58846524	-1.10841990	-1.95216187
Н	0.02683982	-5.27106138	1.96928378	Н	4.75524741	-2.50897044	-0.88494631
С	4.33977586	-0.64701022	2.52746957	С	-2.41180705	-3.95573826	0.87820106
Н	4.78658050	-1.49922624	3.03010942	Н	-2.25573664	-4.99698552	1.18299431
С	2.73885267	-2.87748456	-2.78266334	Н	-2.34688811	-3.90769332	-0.21257004
Н	3.34625845	-3.77940462	-2.65595481	Н	-3.42629115	-3.66419689	1.17092437
Н	3.18586301	-2.28818077	-3.58889400	С	-1.10453906	-2.72056339	-3.16982037
Н	1.74183993	-3.18745813	-3.10128106	Н	-0.41009922	-3.22371419	-2.48930653
С	3.03593340	-0.74025471	2.04281055	Н	-1.05919387	-3.22714027	-4.14210525
Н	2.48073010	-1.66258488	2.17678858	Н	-2.11267291	-2.84528439	-2.76334784
С	2.09812041	2.20763227	-2.25902621				

Figure S26. Optimized geometry of 15.

Figure S27. HOMO diagrams for 5, 8, and 10 (isosurface level = $\pm 0.05 \text{ e/(a.u.)}^3$).

 Table S3. Total energies and Gibbs energies (in a.u.) of calculated structures at B3LYP-D3/6-31+G(d,p).

Compounds	E (a.u.)	E+ZPE (a.u.)	G (a.u.)
8	-3012.37956887	-3011.429328	-3011.547668
10	-3012.40765927	-3011.459169	-2391.812908
12	-2392.93008860	-2392.257265	-2392.328080
13	-2392.93699916	-2392.265303	-2392.339126
14	-2392.93408149	-2392.262759	-2392.336928
15	-3012.37136819	-3011.421919	-3011.510635

5- References

- S1 A. L. Hawley, and A. Stasch, Eur. J. Inorg. Chem., 2015, 258–270.
- S2 R. A. Kunetskiy, I. Císařová, D. Šaman, and I. M. Lyapkalo, *Chem. Eur.*, J. 2009, 15, 9477–9485.
- S3 G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem. 2015, A71, 3.
- S4 G. M. Acta Crystallogr., Sect. C: Struct. Chem. 2015, C71, 3.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman,
 G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li,
 H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara,
 K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,
 T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E.
 Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.
 Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene,
 J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, Gomperts, R. E. Stratmann,
 O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K.
 Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A.
 D. Daniels, O. Farkas, J. B.Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian09,
 Revision D.01, Gaussian, Inc., Wallingford, CT, 2009.
- S6 J.-D. Chai, and M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615–6620.