Supporting Information for:

Facile PCET enabled by coordination-induced E–H bond weakening to a redoxactive boron center (E = N, O, S)

Anthony Wong,^a Arunavo Chakraborty,^a Deependra Bawari,^b Guang Wu,^a Roman Dobrovetsky^b and Gabriel Ménard*^a

^a Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States ^b School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel

Table of Contents

1. Materials and Physical Methods	2
2. Synthesis of Compounds	4
Synthesis of 1-SPh	4
Synthesis of 1-OC₀F ₅	4
Synthesis of 1-NHPh	5
Synthesis of 1-NH	6
Synthesis of 1-NH ₃	6
Synthesis of 1-NH₂K	7
Synthesis of 2	7
3. Supplemental Figures for NMR Spectroscopy	9
³¹ P NMR Spectra for Gutmann-Beckett AN Value Determination of 1 and 1 ⁻	43
Crude NMR Spectra of 1 + ArEH	45
Crude NMR Spectra of 1 ⁻ + ArEH or NH₃ With and Without HAA	. 51
Crude NMR Spectra of 1-NH ₃ + $CoCp_2^*$	64
Crude NMR Spectra of 1-NH₂K + Kryptofix-222	. 68
Crude NMR Spectra for pK _a Determination of N–H Bond in 1-NH ₃	72
4. Supplemental Figures for GC-TCD Experiments	. 74
5. Supplemental Figures for X-ray Crystallography	. 75
6. Supplemental Figures for Cyclic Voltammetry	. 82
7. DFT Methods and Results	. 84
8. References	. 87

1. Materials and Physical Methods

General Considerations. All manipulations were performed under an atmosphere of dry, oxygen-free N₂ or Ar through standard Schlenk or glovebox techniques (MBraun UNIlab Pro SP Eco equipped with a -38 °C freezer). Pentane, diethyl ether, benzene, toluene, tetrahydrofuran (THF), and dichloromethane (DCM) were dried using an Mbraun solvent purification system. 2,2,4-trimethylpentane (iso-octane), acetonitrile, acetonitrile-*d*₃, benzene-*d*₆, bromobenzene, bromobenzene-*d*₅, chloroform, chloroform-*d*, and dichloromethane-*d*₂ were purchased from Aldrich or Cambridge Isotope Laboratories, degassed by freeze-pump-thaw, and stored on activated 4 Å molecular sieves prior to use. Anhydrous NH₃, NH₃ (0.4 M in THF), HCl (2.0 M in Et₂O), PhNH₂, C₆F₅OH, PhSH, 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane (Kryptofix-222 = krypt), and TEMPO were purchased from Aldrich, Strem, or other commercial vendors and used as received. Co(C₅Me₅)₂ was purchased from Aldrich and filtered through celite using pentane and then freshly crystallized from pentane prior to use. [CoCp₂*][(N(CH₂CH₂N(C₆F₅))₃)V(μ -N)B(C₆F₅)₂] (1⁻), N(CH₂CH₂N(C₆F₅))₃V(μ -N)Li(THF)₃ (VNLi), Gomberg's dimer, and benzyl potassium (KBn) were prepared according to literature procedure.¹⁻⁴ Elemental analyses (C, N, H) were performed at the University of California, Berkeley, using a PerkinElmer 2400 Series II combustion analyzer.

Spectroscopic Analyses. NMR spectra were obtained on a Varian Unity Inova 600 MHz, Varian Unity Inova 500 MHz, Bruker Avance NEO 500 MHz, Bruker Avance III HD 400 MHz, or Agilent Technologies 400 MHz spectrometers, and referenced to the residual solvent of acetonitrile- d_3 (1.94 ppm), benzene- d_6 (7.16 ppm), bromobenzene- d_5 (7.28 ppm for *m*-CH), chloroform-d (7.26 ppm), dichloromethane- d_2 (5.32 ppm), or externally (¹¹B: BF₃·Et₂O; ¹⁹F: CFCl₃; ⁵¹V: VOCl₃; ³¹P: 85% H₃PO₄). Chemical shifts (δ) are recorded in ppm, and the coupling constants are in Hz.

X-ray crystallography. Data were collected on a Bruker KAPPA APEX II diffractometer equipped with an APEX II CCD detector using a TRIUMPH monochromator with a Mo K α X-ray source (α = 0.71073 Å). The crystals were mounted on a cryoloop with Paratone-N oil, and all data were collected at 100(2) K using an Oxford nitrogen gas cryostream system. A hemisphere of data was collected using ω scans with 0.5° frame widths. Data collection and cell parameter determination were conducted using the SMART program. Integration of the data frames and final cell parameter refinement were performed using SAINT software. Absorption correction of the data was carried out using SADABS. Structure determination was done using direct or Patterson methods and difference Fourier techniques. All hydrogen atom positions were idealized and rode on the atom of attachment. Structure solution, refinement, graphics, and creation of publication materials were performed using SHELXTL or OLEX2. All POV-Ray depictions of the solid-state molecular structures are shown at the 50 % probability ellipsoid level unless otherwise noted.

Electrochemical Analyses. Cyclic voltammetry was performed on a CH Instruments 630E electrochemical analysis potentiostat, equipped with a 3 mm diameter glassy carbon working electrode, a Ag wire pseudoreference electrode, and a Pt counter electrode with $[Bu_4N][PF_6]$ (0.1 M) supporting electrolyte solution in acetonitrile (CH₃CN). The glassy carbon working electrode was cleaned prior to each experiment by polishing with 1, 0.3, and 0.05 mm alumina (CH Instruments) in descending order, followed by sonication in distilled water for 2 min. All voltammograms were referenced to the Fc/Fc⁺ redox couple.

GC-TCD. The headspace from the reactions of **1**⁻ and PhSH or **1**⁻ and C₆F₅OH were sampled with a gastight syringe and analyzed using an Agilent 6890N GC with a CP Molsieve 5Å column (50 m long, 0.53 mm OD) equipped with a TCD detector to qualitatively test for H₂ formation from these reactions. High purity argon (99.998%) from Praxair was used as the eluent.

Method parameters used for the GC-TCD runs are below.

Parameter	Value
Inlet mode	Splitless
Inlet pressure	0.387 bar
Inlet temperature	225°C
Inlet flow rate	31.6 mL/min
Inlet purge flow	20 mL/min@0.5 min
Column mode	Constant flow
Column flow rate	9.5 mL/min
Oven temperature	35°C
Detector temperature	225°C
Makeup flow	0.5 mL/min
Column + Makeup flow	10 mL/min
Reference flow	26.4 mL/min
Detector sampling rate	20 Hz
Computer interfacing software	ChemStation Version N.05.04

100 μ L of gas samples were analyzed on the GC-TCD unless otherwise mentioned. All injections were performed manually at ~ 20 μ L/s to minimize carrier gas laminar flow at the inlet.

The elution times for O₂ (~12.3 minutes) and N₂ (~25.7 minutes) were determined by injecting 20 μ L samples of air into the GC-TCD. To determine the elution time of H₂, we trapped 5 μ mol H₂ gas generated by electrolyzing 1 mM aqueous H₂SO₄ using two Pt wire electrodes in a sealed vial with a septum. We sampled the headspace (~10 mL) of this vial and analyzed it to establish the elution time of H₂ to be ~7.3 minutes.

The reactions for headspace analysis were performed in crimp top vials with an approximate total volume of 4 mL and headspace volume of ~ 1 mL. To a frozen bromobenzene solution of 1^{-} in a crimp top vial was added either PhSH or C₆F₅OH in bromobenzene. The crimp top vial was sealed and the reactions were allowed to warm up to room temperature and react for a designated period. Before analyzing the reaction headspace, we ran samples of the glovebox atmosphere on the GC-TCD to confirm the absence of any extraneous/adventitious H₂ sources. For these samples, we observe N₂ from the glovebox atmosphere as well as a small signal for O₂ from air in the syringe needle and gas lock valve assembly.

Mass Spectrometry. HRMS data was collected on a Waters LCT Premier ESI-MS. The data was worked up using MassLynx software and then plotted.

2. Synthesis of Compounds

Synthesis of $[CoCp_2^*][(N(CH_2CH_2N(C_6F_5))_3)V(\mu-N)B(SC_6H_5)(C_6F_5)_2]$ (1-SPh). To a frozen solution of 1⁻ (0.050 g, 0.0362 mmol) in bromobenzene (2 mL) was added PhSH (0.004 g, 0.0362 mmol) in bromobenzene (0.5 mL) to give an orange solution upon warming up to room temperature. The solution was stirred at room temperature for 1 hour at which point the solution color turned to dark-yellow. The reaction mixture was then treated with pentane (5 mL) to precipitate out an orange oily residue that was washed with more pentane (3 × 1 mL). The residue was treated with diethyl ether after which 1-SPh precipitated from solution upon standing at room temperature (0.0264 g, 0.0177 mmol, 48.9 % yield). Single crystals suitable for XRD studies were grown from a solution of 1-SPh in diethyl ether at room temperature. ¹H NMR (400 MHz, CD₃CN, 25 °C): δ = 6.68 (m, 3H; overlapping *m*-C₆H₅ and *p*-C₆H₅), 6.40 (d, ³J_{HH} = 7.1 Hz, 2H; S *o*-C₆H₅), 3.68 (t, ³J_{HH} = 5.6 Hz, 6H; CH₂), 2.98 (t, ³J_{HH} = 5.6 Hz, 6H; CH₂), 1.69 (s, 30H; $C_{10}Me_{10}$). ¹³**C** NMR (126 MHz, CD₃CN, 25 °C): δ = 131.9 (S *m*-CH), 128.0 (S *p*-CH), 123.4 (S *o*-CH), 95.1 (C₁₀Me₁₀), 60.8 (tren CH₂), 54.5 (tren CH₂), 8.3 (C₁₀Me₁₀). The signal-to-noise ratio was too low for properly identifying the ispo C or any C₆F₅ ¹³C resonance. ⁵¹V NMR (132 MHz, CD₃CN, 25 °C): δ = -272.1 (br). ¹¹B NMR (128 MHz, CD₃CN, 25 °C): δ = -4.3 (br). ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ = -130.3 (d, ³J_{FF} = 24.1 Hz, 4F; B o-C₆F₅), -148.3 (br, 6F; tren o-C₆F₅), -162.7 (t, ³J_{FF} = 20.4 Hz, 2F; B p-C₆F₅), -167.5 (m, 10F; overlapping B m-C₆F₅ and tren m-C₆F₅), -168.1 (t, ${}^{3}J_{FF}$ = 22.2 Hz, 3F; tren p-C₆F₅). HRMS (ESI-TOF) m/z Calcd for C₄₂H₁₇BF₂₅N₅SV⁻[M]⁻: 1160.0345. Found: 1160.0319.

Synthesis of $[CoCp_2^*][(N(CH_2CH_2N(C_6F_5))_3)V(\mu-N)B(OC_6F_5)(C_6F_5)_2]$ (1-OC₆F₅). To a stirring solution of 1⁻ (0.030 g, 0.0217 mmol) in DCM (2 mL) was added C₆F₅OH (0.004 g, 0.0217 mmol) in DCM (1 mL) to give an immediate lightening of the solution to orange. The solution was allowed to stir for 2 hours before all volatiles were removed in vacuo. The residue was then washed with pentane (5 × 1 mL) and diethyl ether (5 × 0.5 mL) to give a yellow-orange powder upon removal of the remaining wash solvent in vacuo (0.019 g, 0.0122 mmol, 55.9 % yield). Single crystals suitable for XRD studies were grown from slow vapor diffusion of iso-octane into a saturated solution of 1-OC₆F₅ in DCM. ¹H NMR (400 MHz, CD₂Cl₂, 25 °C): $\delta = 3.68$ (t, ³J_{HH} = 5.2 Hz, 6H; CH₂), 2.99 (t, 6H; ³J_{HH} = 5.4 Hz, 6H; CH₂), 1.69 (s, 30H; C₁₀Me₁₀). ¹³C NMR (100 MHz, CD₂Cl₂, 25 °C): $\delta = 94.6$ (C_{10} Me₁₀), 60.3 (CH_2), 53.7 (CH_2), 8.3 ($C_{10}Me_{10}$). The signal-to-noise ratio was too low for properly identifying any C₆F₅ ¹³C resonance. ⁵¹V NMR (105 MHz, CD₂Cl₂, 25 °C): $\delta = -302.5$ (br). ¹¹B NMR (128 MHz, CD₂Cl₂, 25 °C): $\delta = -2.2$ (br). ¹⁹F NMR (376 MHz, CD₃CN, 25 °C): $\delta = -332.4$ (d, ³J_{FF} = 23.7 Hz, 4F; B *o*-C₆F₅), -148.7 (br, 6F; tren *o*-C₆F₅), -158.9 (d, ³J_{FF} = 20.6 Hz, 2F; O *o*-C₆F₅), -168.5 (t, ³J_{FF} = 20.0 Hz, 4F; B *m*-C₆F₅), -169.6 (br, 6F; tren *m*-C₆F₅)

169.8 (t, ${}^{3}J_{FF}$ = 20.2 Hz, 2F; O *m*-C₆F₅), -170.7 (t, ${}^{3}J_{FF}$ = 21.1 Hz, 3F; O tren *p*-C₆F₅), -175.5 (m, 1F; O *p*-C₆F₅). **Elemental analysis** (%) calc. for C₆₂H₄₂BCoF₃₀N₅OV: C, 47.62; H, 2.71; N, 4.48. Found: C, 48.00; H, 2.90; N, 5.54.

Synthesis of $[CoCp_2^*][(N(CH_2CH_2N(C_6F_5))_3)V(\mu-N)B(NHC_6H_5)(C_6F_5)_2]$ (1-NHPh). Method 1: To a thawing solution of 1⁻ (0.010 g, 0.00724 mmol) in bromobenzene- d_5 (0.4 mL) was added a solution of PhNH₂ (0.0007 g, 0.00724 mmol) in bromobenzene- d_5 (0.2 mL). The resulting solution became dark yellow and analysis of the resulting crude product by NMR spectroscopy revealed a mixture of 1-NHPh, 2, and C₆F₅H.

Method 2: To a thawing solution of $\mathbf{1}^-$ (0.010 g, 0.00724 mmol) and TEMPO (0.0012 g, 0.00724 mmol) in bromobenzene- d_5 (0.4 mL) was added a solution of PhNH₂ (0.0007 g, 0.00724 mmol) in bromobenzene- d_5 (0.2 mL). The mixture was allowed to stand at room temperature for 1 hour and analysis of the resulting crude NMR spectra revealed the formation of TEMPO–H and **1-NHPh**.

Method 3: To a stirring solution of 1⁻ (0.050 g, 0.0362 mmol) and Gomberg's dimer (0.0088 g, 0.0181 mmol) in bromobenzene (1.5 mL) was added PhNH₂ (0.0034 g, 0.0362 mmol) in bromobenzene (0.5 mL) to give a gradual lightening of the dark-red solution to pale orange over the course of 1 hour. The solution was then treated with pentane (10 mL) to precipitate out an oily solid that was subsequently washed with more pentane (5 × 0.5 mL), diethyl ether (2 × 0.5 mL), benzene (2 × 0.5 mL), and cold chloroform (1 \times 0.25 mL) to remove residual starting material and the triphenylmethane (Ph₃CH) byproduct. The remaining yellow solid was extracted into DCM and filtered through a celite plug before being dried in vacuo to afford the product as a light-yellow solid (0.0418 g, 0.0282 mmol, 77.8 % yield). Single crystals suitable for XRD studies were grown from slow evaporation of a chloroform solution of the product after several days. ¹H NMR (600 MHz, CD₂Cl₂, 25 °C): δ = 6.62 (td, J_{HH} = 7.9, 7.0 Hz, 2H; *m*-C₆H₅), 6.06 (t, 3 J_{HH} = 7.0 Hz, 1H; p-C₆H₅), 5.71 (d, 3 J_{HH} = 8.0 Hz, 2H; o-C₆H₅), 3.67 (t, 3 J_{HH} = 6.0 Hz, 6H; tren CH₂), 3.65 (s, 1H; NHPh), 2.98 (t, ³J_{HH} = 6.0 Hz, 6H; tren CH₂), 1.68 (s, 30H; C₁₀Me₁₀). ¹³C NMR (126 MHz, CD₂Cl₂, 25 °C): δ = 151.9 (ipso C), 128.2 (o-CH), 113.9 (m-CH), 111.9(p-CH), 94.6 (C₁₀Me₁₀), 60.2 (CH₂), 53.2 (CH₂), 8.4 ($C_{10}Me_{10}$). The signal-to-noise ratio was too low for properly identifying any C_6F_5 ¹³C resonance. ⁵¹V NMR (132 MHz, CD₂Cl₂, 25 °C): δ = -312.2 (br). ¹¹B NMR (160 MHz, CD₂Cl₂, 25 °C): δ = -6.0 (br). ¹⁹F NMR (376 MHz, CD₂Cl₂, 25 °C): δ = -133.8 (br, 4F; B *o*-C₆F₅), -149.5 (br, 6F; tren *o*-C₆F₅), -163.3 (t, ³J_{FF} = 20.3 Hz, 2F; B *p*-C₆F₅), -167.8 (br, 6F; tren *m*-C₆F₅), -168.1 (t, ³J_{FF} = 22.4 Hz, 4F; B *m*-C₆F₅), -168.5 (t, ${}^{3}J_{FF}$ = 21.6 Hz, 3F; tren *p*-C₆F₅). **HRMS (ESI-TOF)** m/z Calcd for C₄₂H₁₈BF₂₅N₆V⁻[*M*]⁻: 1143.0734. Found: 1143.0734.

Synthesis of 1-NH. *Method 1:* To a thawing solution of **1**⁻ (0.020 g, 0.0145 mmol) in bromobenzene- d_5 (0.5 mL) was added NH₃ (0.4 M in THF) (40.0 µL, 0.0160 mmol) via syringe to give an orange-red solution. The crude NMR spectra revealed a complex mixture of diamagnetic resonances consistent with V^V trenbased products (**1-NH** and **2**) and some C₆F₅H. The reaction mixture was layered with pentane and left to stand at room temperature for several days at which point the title compound precipitated as orange single crystals suitable for XRD studies.

Method 2: Method 2 was carried out in an identical manner to that of Method 1 except TEMPO was added to 1^{-} prior to the addition of NH₃. TEMPO–H was observed in the ¹H NMR spectrum.

Method 3: Method 3 was carried out in an identical manner to that of Method 1 except $Ph_3C \bullet$ was added to **1**⁻ prior to the addition of NH₃. Ph_3C-H was observed in the ¹H NMR spectrum.

Method 4: To a thawing suspension of **1-NH₃** (0.025 g, 0.0234 mmol) in bromobenzene (1.0 mL) was added Co(C₅Me₅)₂ (0.0077 g, 0.0234 mmol) in bromobenzene (0.3 mL) to initially give a dark-red solution that faded to orange over the course of 30 minutes. The crude NMR spectra revealed the presence of **1-NH** and C₆F₅H as the main diamagnetic products. The solution was then treated with pentane (10 mL) to precipitate out an oily solid that was subsequently washed with more pentane (5 × 0.5 mL), diethyl ether (2 × 0.5 mL), and benzene (2 × 0.5 mL). After removal of all volatile components in vacuo, **1-NH** was obtained as a light orange solid (0.011 g, 0.0105 mmol, 44.9 % yield). ¹**H NMR** (600 MHz, C₆D₅Br, 25 °C): δ = 4.23 (br), 3.82 (br), 3.57 (br), 2.83 (br), 2.67 (br), 1.15 (s, 30H; C₁₀*Me*₁₀). ¹³**C NMR** (126 MHz, C₆D₅Br, 25 °C): δ = 93.5 (*C*₁₀*Me*₁₀), 60.6, 57.1 (br), 54.6, 7.3 (C₁₀*Me*₁₀). The signal-to-noise ratio was too low for properly identifying any C₆F₅ ¹³C resonance. ⁵¹**V NMR** (105 MHz, C₆D₅Br, 25 °C): δ = -274.3. ¹¹**B NMR** (128 MHz, C₆D₅Br, 25 °C): δ = -4.2. ¹⁹**F NMR** (376 MHz, C₆D₅Br, 25 °C): δ = -132.8 (br), -148.2 (br), -149.1 (d, ³J_{FF} = 23.4 Hz, 1F; S_NAr tren C₆F₄), -158.8 (d, ³J_{FF} = 26.3 Hz, 1F; S_NAr tren C₆F₄), -165.8 (br), -167.0 (br), -171.8 (t, ³J_{FF} = 24.6 Hz, 1F; S_NAr tren C₆F₄), -173.3 (t, ³J_{FF} = 23.0 Hz, 1F; S_NAr tren C₆F₄). **Elemental analysis** (%) Calcd for C₅₆H₄₃BCOF₂₄N₆V: C, 48.86; H, 3.15; N, 6.10. Found: C, 48.49; H, 3.44; N, 5.73.

Synthesis of $(N(CH_2CH_2N(C_6F_5))_3)V(\mu-N)B(NH_3)(C_6F_5)_2$ (1-NH₃). In a J. Young NMR tube, a solution of 1 (0.015 g, 0.0143 mmol) in benzene was degassed using three freeze-pump-thaw cycles. Afterwards, the solution was frozen and layered with an atmosphere of NH₃ (excess), and the reaction vessel was subsequently sealed. The solution was allowed to warm to room temperature where the initially dark-green solution lightened to yellow. The reaction stood at room temperature for 15 minutes before being

filtered through a celite plug under an inert N₂ atmosphere. The filtrate was collected, all volatiles were removed in vacuo, and the residue was washed with pentane (3 × 1 mL) and diethyl ether (1 × 0.5 mL) to give a bright-yellow powder (0.0128 g, 0.0120 mmol, 84.2 % yield). Single crystals suitable for XRD studies were grown from slow vapor diffusion of iso-octane into a saturated solution of the product in a 1:1 mixture of DCM and benzene. ¹H NMR (400 MHz, C₆D₅Br, 25 °C): δ = 3.61 (bs, 3H; NH₃), 3.46 (m, 6H; tren CH₂), 2.64 (t, ³J_{HH} = 5.7 Hz, 6H; tren CH₂). ¹³C NMR (126 MHz, CDCl₃, 25 °C): δ = 60.0 (CH₂), 53.2 (CH₂). The signal-to-noise ratio was too low for properly identifying any C₆F₅ ¹³C resonance. ⁵¹V NMR (105 MHz, C₆D₆, 25 °C): δ = -303.5 (br). ¹¹B NMR (128 MHz, C₆D₆, 25 °C): δ = -8.0 (br). ¹⁹F NMR (376 MHz, C₆D₅Br, 25 °C): δ = -134.3 (d, ³J_{FF} = 23.1 Hz, 4F; B *o*-C₆F₅), -148.3 (br, 6F; tren *o*-C₆F₅), -154.2 (t, ³J_{FF} = 20.6 Hz, 2F; B *p*-C₆F₅), -161.6 (m, 4F; B *m*-C₆F₅), -163.6 (br, 9F; overlapping tren *m*-C₆F₅ and *p*-C₆F₅). **Elemental analysis** (%) Calcd for C₃₆H₁₅BF₂₅N₆V: C, 40.48; H, 1.42; N, 7.87. Found: C, 39.10; H, 1.11; N, 7.48.

Synthesis of [K][(N(CH₂CH₂N(C₆F₅))₃)V(μ-N)B(NH₂)(C₆F₅)₂] (1-NH₂K). A suspension of benzyl potassium (KBn) (0.0061 g, 0.0468 mmol) in benzene (0.5 mL) was added to a stirring solution of 1-NH₃ (0.050 g, 0.0468 mmol) in benzene (2 mL) to give a yellow solution and an orange precipitate. The reaction is complete within 15 minutes, as judged by ¹H and ¹⁹F NMR spectroscopy. The mixture was filtered through a plug of celite and the filter was subsequently washed with benzene (5 × 0.5 mL) and the filtrate was collected. After removal of all volatiles, the orange powder was washed with benzene (2 × 0.25 mL) and then cold pentane (5 × 1 mL). The title compound was isolated as a thermally sensitive light-orange powder (0.034 g, 0.0307 mmol, 65.7 % yield). Orange single crystals suitable for XRD studies were grown by slow vapor diffusion of pentane into a solution of 1-NH₂K in a 2:1 benzene:bromobenzene mixture at room temperature. ¹H NMR (600 MHz, C₆D₆, 25 °C): δ = 3.39 (t, ³J_{HH} = 5.6 Hz, 6H; tren CH₂), 2.31 (t, ³J_{HH} = 5.6 Hz, 6H; tren CH₂), -0.34 (s, 2H; NH₂). ¹³C NMR (100 MHz, C₆D₆, 25 °C): δ = 59.4 (tren CH₂), 53.2 (tren CH₂). The signal-to-noise ratio was too low for properly identifying any C₆F₅ ¹³C resonance. ⁵¹V **NMR** (105 MHz, C₆D₆, 25 °C): δ = -287.7 (br). ¹¹B NMR (128 MHz, C₆D₆, 25 °C): δ = -4.9 (s). ¹⁹F NMR (376 MHz, CD₂Cl₂, 25 °C): δ = -135.5 (d, ³J_{FF} = 24.6 Hz, 4F; B *o*-C₆F₅), -149.5 (br, 6F; tren *o*-C₆F₅), -161.3 (t, ³J_{FF} = 20.1 Hz, 2F; B p-C₆F₅), -165.6 (t, ³J_{FF} = 20.0 Hz, 4F; B m-C₆F₅), -167.8 (br, 6F; tren m-C₆F₅), -168.1 (t, ³J_{FF} = 21.3 Hz, 3F; tren *p*-C₆F₅). Elemental analysis (%) Calcd for C₃₆H₁₄BF₂₅KN₆V: C, 39.08; H, 1.28; N, 7.60. Elemental analysis was not attempted due to the thermal sensitivity of the 1-NH₂K compound.

Synthesis of $(N(CH_2CH_2N(C_6F_5))_3)V(\mu-N)H(2)$. To a stirring solution of VNLi¹ (0.050 g, 0.0537 mmol) in benzene (4 mL) was added HCl (2.0 M in Et₂O) (26.9 μ L, 0.0537 mmol) via a microsyringe resulting in an immediate darkening of the solution to orange. The solution was allowed to stir for 30 minutes before all volatiles were removed in vacuo. The residue was then washed with pentane (5 × 1 mL) and diethyl ether (1 × 1 mL) before being extracted into DCM and filtered through a celite plug to remove LiCl. Upon removal of the solvent, a light-yellow powder was obtained (0.016 g, 0.0226 mmol, 42.1 % yield). Single crystals suitable for XRD studies were grown from slow vapor diffusion of iso-octane into a saturated solution of **2** in DCM. ¹H NMR (400 MHz, C₆D₆, 25 °C): δ = 3.29 (bs, 6H; CH₂), 2.18 (bs, 6H; CH₂). The signal for V=NH was not observed. ¹³C NMR (126 MHz, CDCl₃, 25 °C): δ = 57.8 (CH₂), 53.8 (CH₂). The signal-to-noise ratio was too low for properly identifying any C₆F₅ ¹³C resonance. ⁵¹V NMR (105 MHz, C₆D₆, 25 °C): δ = -407.3 (br). ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ = -149.8 (d, 6F; *o*-C₆F₅), -165.2 (m, 9F; overlapping tren *m*-C₆F₅ and *p*-C₆F₅). **Elemental analysis** (%) Calcd for C₂₄H₁₃F₁₅N₅V: C, 40.75; H, 1.85; N, 9.90. Found: C, 40.41; H, 1.86; N, 9.56.

3. Supplemental Figures for NMR Spectroscopy

Figure S1. ¹H NMR spectrum of **1-SPh** (400 MHz, CD₃CN, 25 °C). (* = diethyl ether, # = benzene)

Figure S2. ¹³C{¹H} NMR spectrum of 1-SPh (126 MHz, CD₃CN, 25 °C). (* = diethyl ether, # = benzene)

Figure S3. 51 V NMR spectrum of 1-SPh (132 MHz, CD₃CN, 25 °C).

Figure S4. ¹¹B NMR spectrum of 1-SPh (128 MHz, CD₃CN, 25 °C).

Figure S5. ¹⁹F NMR spectrum of **1-SPh** (376 MHz, CDCl₃, 25 °C). (% = unidentified resonance)

Figure S6. ¹H NMR spectrum of $1-OC_6F_5$ (400 MHz, CD_2Cl_2 , 25 °C). (* = diethyl ether)

Figure S7. ${}^{13}C{}^{1}H$ NMR spectrum of 1-OC₆F₅ (100 MHz, CD₂Cl₂, 25 °C).

Figure S8. ^{51}V NMR spectrum of of $1\text{-}OC_6F_5$ (105 MHz, CD_2Cl_2, 25 °C).

Figure S9. ¹¹B NMR spectrum of **1-OC**₆**F**₅ (128 MHz, CD₂Cl₂, 25 °C).

Figure S10. ¹⁹F NMR spectrum of **1-OC₆F**₅ (376 MHz, CD₃CN, 25 °C).

Figure S11. ¹H NMR spectrum of 1-NHPh (600 MHz, CD₂Cl₂, 25 °C).

Figure S12. ${}^{13}C{}^{1}H$ NMR spectrum of 1-NHPh (126 MHz, CD₂Cl₂, 25 °C).

Figure S13. ^{51}V NMR spectrum of 1-NHPh (132 MHz, CD_2Cl_2, 25 °C).

Figure S14. ^{11}B NMR spectrum of 1-NHPh (160 MHz, CD_2Cl_2, 25 °C).

Figure S15. ¹⁹F NMR spectrum of **1-NHPh** (376 MHz, CD₂Cl₂, 25 °C).

clarity (bottom) (600 MHz, C₆D₅Br, 25 °C). (# = benzene)

Figure S17. ¹³C{¹H} NMR spectrum of 1-NH (126 MHz, C₆D₅Br, 25 °C). (* = diethyl ether, $^{-}$ = pentane)

Figure S18. ⁵¹V NMR spectrum of **1-NH** (105 MHz, C₆D₅Br, 25 °C).

Figure S19. ¹¹B NMR spectrum of 1-NH (128 MHz, C_6D_5Br , 25 °C).

Figure S20. ¹⁹F NMR spectrum of **1-NH** (376 MHz, C₆D₅Br, 25 °C).

Figure S21. ¹H NMR of 1-NH₃ (400 MHz, C_6D_5Br , 25 °C). (* = diethyl ether, ^ = pentane, # = benzene)

Figure S22. ¹³C{¹H} NMR of 1-NH₃ (126 MHz, CDCl₃, 25 °C). (* = diethyl ether, ^ = pentane)

Figure S23. ⁵¹V NMR of **1-NH**₃ (105 MHz, C₆D₆, 25 °C).

Figure S24. ¹¹B NMR of 1-NH₃ (128 MHz, C₆D₆, 25 °C). (# = borosilicate resonance from NMR tube)

Figure S25. ¹⁹F NMR of **1-NH**₃ (376 MHz, C₆D₅Br, 25 °C).

Figure S26. ¹H NMR of **1-NH₂K** (600 MHz, C₆D₆, 25 °C). (* = diethyl ether, ^ = pentane)

Figure S27. ¹³C{¹H} NMR of 1-NH₂K (100 MHz, C₆D₆, 25 °C). (* = diethyl ether, ^ = pentane)

Figure S28. 51 V NMR of 1-NH₂K (105 MHz, C₆D₆, 25 °C).

Figure S29. ¹¹B NMR of 1-NH₂K (105 MHz, C₆D₆, 25 °C). (# = borosilicate resonance from NMR tube)

Figure S30. ¹⁹F NMR of 1-NH₂K (376 MHz, C₆D₆, 25 °C).

Figure S31. ¹H NMR of 2 (400 MHz, C₆D₆, 25 °C). (* = diethyl ether, ^ = pentane, & = DCM)

Figure S32. ¹³C{¹H} NMR of 2 (126 MHz, CDCl₃, 25 °C). (* = diethyl ether, ^ = pentane)

Figure S33. 51 V NMR of 2 (105 MHz, C₆D₆, 25 °C).

Figure S34. ^{19}F NMR of 2 (376 MHz, CDCl₃, 25 °C).

Figure S35. Overlayed ³¹P NMR spectra (162 MHz, C₆D₅Br, 25 °C) resulting from the combination of **1**⁻ and Et₃PO (black) and ³¹P NMR spectrum of free Et₃PO (red). The chemical shift difference ($\Delta\delta_P$) is 0.5, leading to a calculated acceptor number (AN) value of 13.9 indicative of diminished, but non-negligible Lewis acidity of **1**⁻ compared to **1**. We note that this assgined value is tentative given that the paramagnetic nature of **1**⁻ may unpredictably affect the chemical shift value.

Figure S36. Overlayed ³¹P NMR spectra (162 MHz, C₆D₆, 25 °C) resulting from the combination of **1** and Et₃PO (black) and ³¹P NMR spectrum of free Et₃PO (red). The chemical shift difference ($\Delta\delta_P$) is 29.1, leading to a calculated acceptor number (AN) value of 77.1.

Figure S37. Crude ⁵¹V NMR spectrum resulting from the reaction between **1** and PhNH₂ to produce a mixture of **2** (-400 ppm), the presumed unstable 1-PhNH₂ adduct (-289 ppm) that undergoes protonolysis to **2**, and a minor unidentified resonance at -247 ppm (105 MHz, C_6D_6 , 25 °C).

Figure S38. Crude ¹¹B NMR spectrum (128 MHz, C₆D₆, 25 °C) resulting from the reaction between **1** and PhNH₂ showing a broad resonance at 34.8 ppm similar to related (C₆F₅)₂BNHR compounds.⁵ (# = borosilicate resonance from NMR tube)

Figure S39. Crude ¹⁹F NMR spectrum resulting from the reaction between **1** and PhNH₂ to produce a mixture of the putative 1-PhNH₂ adduct and **2** (376 MHz, C_6D_6 , 25 °C).

Figure S40. Crude ⁵¹V NMR spectrum resulting from the reaction between **1** and C₆F₅OH revealing conversion to **2** (105 MHz, C₆D₆, 25°C).

Figure S41. Crude ¹¹B NMR spectrum resulting from the reaction between **1** and C₆F₅OH revealing a broad signal ~40 ppm close to that of $(C_6F_5)_2BOC_6F_5$ (41.2 ppm) (128 MHz, C₆D₆, 25°C). (# = borosilicate resonance from NMR tube)

Figure S42. Crude ¹⁹F NMR spectrum (376 MHz, C₆D₆, 25°C) resulting from the reaction between **1** and C₆F₅OH revealing conversion to **2** (bottom). The ¹⁹F NMR spectrum of isolated **2** is provided for reference (top).

Figure S43. Crude ⁵¹V NMR spectrum from the reaction between 1^{-} and PhSH revealing **1-SPh** as the sole vanadium-containing product (105 MHz, C₆D₅Br, 25°C).

Figure S44. Crude ¹⁹F NMR spectrum (376 MHz, C_6D_5Br , 25°C) of the reaction between **1**⁻ and PhSH revealing resonances for **1-SPh**, a very small amount of free tren ligand, and no C_6F_5H (bottom). The ¹⁹F NMR spectra of isolated **1-SPh** (second from bottom), free tren ligand (third from bottom), and C_6F_5H (top) are provided for reference.

Figure S45. Crude ⁵¹V NMR spectrum (105 MHz, C_6D_5Br , 25°C) resulting from the reaction between **1**⁻ and C_6F_5OH revealing **1-OC₆F₅** as the sole V-containing product.

Figure S46. Crude ¹⁹F NMR spectrum (376 MHz, C₆D₅Br, 25°C) resulting from the reaction between **1**⁻ and C₆F₅OH revealing a mixture of **1-OC₆F**₅ and free tren ligand (bottom). The ¹⁹F NMR spectra of isolated **1-OC₆F**₅ (second from bottom), free tren ligand (third from bottom), and C₆F₅H (top) are provided for reference.

Figure S47. Crude ¹H NMR spectrum (400 MHz, C_6D_5Br , 25°C) resulting from the reaction between **1**⁻ and PhSH revealing **1-SPh**. The fate of the putative H• in this transformation remains unclear. (* = diethyl ether, ^ = pentane, % = unidentified resonances)

Figure S48. Crude ¹H NMR spectrum resulting from the reaction between **1**⁻ and C₆F₅OH revealing resonances for **1-OC₆F**₅ (\$) and free tren ligand (&). Inset is a magnified region of the same ¹H NMR spectrum revealing a broad peak consistent with the NH resonance for free tren ligand (bottom). The ¹H NMR spectrum of free tren ligand (top) is provided for reference (400 MHz, C₆D₅Br, 25°C). (* = diethyl ether, ^ = pentane)

Figure S49. ²H NMR spectrum (77 MHz, C₆H₅Br, 25°C) resulting from the reaction between **1**⁻ and the C₆F₅OD isotopologue immediately after addition (bottom), after four hours (second from bottom), and after 24 hours (third from bottom). The broad resonance at ~4 ppm in conjunction with the ¹⁹F NMR suggests the formation of free tren ligand. The ¹H NMR spectrum of free tren ligand (top) is provided for reference.

Figure S50. Crude ¹H NMR spectra (400 MHz, C_6D_5Br , 25°C) resulting from the reaction between **1**⁻ and PhNH₂ in the absence of HAA agent (bottom), with half an equivalent of Gomberg's dimer (second from bottom), with one equivalent of TEMPO (third from bottom) revealing common resonances attributed to **1-NHPh** and the Ph₃C–H (#) and TEMPO–H (%) byproducts expected from HAA. The ¹H NMR spectrum of isolated **1-NHPh** (^) (top) is provided for reference.

Figure S51. Crude ¹⁹F NMR spectra (376 MHz, C_6D_5Br , 25°C) resulting from the reaction between **1**⁻ and PhNH₂ in the absence of HAA (bottom), with half an equivalent of Gomberg's dimer (second from bottom), and with one equivalent of TEMPO (third from bottom) revealing six common resonances attributed to **1-NHPh**. A substantial amount of C_6F_5H (#) is observed in the bottom spectrum while the addition of either HAA agent results in cleaner, faster reactions (second and third from bottom). The ¹H NMR spectrum of isolated **1-NHPh** (^) (top) is provided for reference.

Figure S52. Crude ⁵¹V NMR spectra (105 MHz, C_6D_5Br , 25°C) resulting from the reaction between 1⁻ and PhNH₂ in the absence of HAA (bottom), with half an equivalent of Gomberg's dimer (middle), and with one equivalent of TEMPO (top) revealing a common broad resonance at -312 ppm (**1-NHPh**) and minor amounts of **2** (-400 ppm).

Figure S53. Crude ¹⁹F NMR spectrum resulting from the reaction between **1**⁻ and NH₃ (0.4 M in THF) in the absence of HAA (bottom), ¹⁹F NMR spectrum of isolated **1-NH** (second from bottom), ¹⁹F NMR spectrum of isolated **1-NH₃** (third from bottom), ¹⁹F NMR spectrum of isolated **2** (fourth from bottom), and ¹⁹F NMR spectrum of C₆F₅H (top). The crude reaction contains a mixture of **1-NH**, **2**, C₆F₅H, but no **1-NH₃** (376 MHz, C₆D₅Br, 25°C).

Figure S54. Crude ¹H NMR spectra (400 MHz, C_6D_5Br , 25°C) resulting from the reaction between 1⁻, HAA agent (Ph₃C• (bottom) or TEMPO (top)), and NH₃ (0.4 M in THF). The byproducts of HAA, Ph₃C–H (bottom, #) and TEMPO–H (top, %) are observed along with diamagnetic tren-based resonances indicative of an HAA process.

Figure S55. Crude ⁵¹V NMR spectra (105 MHz, C_6D_5Br , 25°C) resulting from the reaction between 1⁻, HAA (Ph₃C• (bottom) or TEMPO (top)), and NH₃ (0.4 M in THF). Both spectra reveal a broad resonance similar to the **1-NH** product and minor amounts of **2** (-400 ppm), which may be formed from *in situ* generated HF.

Figure S56. Crude ¹H NMR spectrum (400 MHz, C₆D₅Br, 25°C) resulting from the reaction between **1**-**NH**₃ and decamethylcobaltocene revealing resonances ascribed to the **1-NH** product (%) and C₆F₅H (&). The broad decamethylcobaltocenium resonance (@) may be due to the presence of residual decamethylcobaltocene in solution. (* = diethyl ether, # = benzene)

Figure S57. Crude ⁵¹V NMR spectrum (105 MHz, C_6D_5Br , 25°C) resulting from the reaction between **1**-**NH**₃ and decamethylcobaltocene revealing **1-NH** as the sole vanadium-containing product.

Figure S58. Crude ¹¹B NMR spectrum (128 MHz, C_6D_5Br , 25°C) resulting from the reaction between **1**-**NH**₃ and decamethylcobaltocene revealing a sharp resonance at -4.2 ppm (**1-NH**). (% = unidentified boron-containing product)

Figure S59. Crude ¹⁹F NMR spectrum resulting from the reaction between **1-NH**₃ and decamethylcobaltocene revealing multiple resonances attributed to **1-NH** and C₆F₅H (bottom). ¹⁹F NMR spectra of isolated **1-NH** (middle) and C₆F₅H (top) are provided for reference (376 MHz, C₆D₅Br, 25°C). Note that resonances for C₆F₅H in the bottom spectrum are slightly shifted relative to the top spectrum likely due to residual paramagnetism in the former.

Figure S60. Crude ¹H NMR spectrum (400 MHz, C₆D₅Br, 25°C) resulting from the reaction between **1**-**NH**₂**K** and 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane (Kryptofix-222 = krypt) revealing a mixture of **1-NH** (%) and **2**.

Figure S61. Crude ⁵¹V NMR spectrum (105 MHz, C_6D_5Br , 25°C) resulting from the reaction between **1**-**NH**₂**K** and 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane (Kryptofix-222 = krypt) revealing mixture **1-NH** and **2**.

Figure S62. Crude ¹¹B NMR spectrum (128 MHz, C₆D₅Br, 25°C) resulting from the reaction between **1**-**NH**₂**K** and 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane (Kryptofix-222 = krypt) revealing a sharp resonance attributed to **1-NH**.

Figure S63. Crude ¹⁹F NMR spectrum (376 MHz, C₆D₅Br, 25°C) resulting from the reaction between **1**-**NH**₂**K** and 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane (Kryptofix-222 = krypt) revealing mixture **1-NH** (*) and **2** as main products.

Figure S64. Crude ¹⁹F NMR spectra (400 MHz, CD₃CN, 25°C) resulting from the combination of **1-NH**₃ and piperidine in acetonitrile showing no reaction, which sets a lower **1-NH**₃(N–H) pK_a to be 19.35 (bottom). The ¹⁹F NMR spectrum of isolated **1-NH**₃ is provided for reference (top).

Figure S65. Crude ¹⁹F NMR spectrum (400 MHz, CD₃CN, 25°C) resulting from the combination of **1-NH**₃ and 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) in acetonitrile showing the formation of **1-NH** and **2**, which sets an upper **1-NH**₃(N–H) p K_a to be 24.31 (bottom). The ¹⁹F NMR spectrum of isolated **1-NH**₃ is provided for reference (top).

4. Supplemental Figures for GC-TCD Experiments

Figure S66. GC-TCD trace of the sampled headspace (100 μ L) following the reaction between **1**⁻ and PhSH in a sealed crimp-top vial revealing no H₂ gas formation consistent with the ¹H NMR spectrum (Fig. S47).

Figure S67. GC-TCD trace of the sampled headspace (100 μ L) following the reaction between **1**⁻ and C₆F₅OH in a sealed crimp-top vial revealing no H₂ gas formation consistent with the ¹H NMR spectrum (Fig. S48).

5. Supplemental Figures for X-ray crystallography

Figure S68. Solid-state structure of the anion of **1-SPh** (tren-based C_6F_5 groups (except *ipso* carbons), hydrogen atoms, $[CoCp_2^*]^+$ counter-cation, and co-crystallized solvent molecules are omitted for clarity).

Figure S69. Solid-state structure of the anion of **1-OC₆F**₅ (tren-based C₆F₅ groups (except *ipso* carbons), hydrogen atoms, $[CoCp_2^*]^+$ counter-cation, and co-crystallized solvent molecules are omitted for clarity).

Figure S70. Solid-state structure of the anion of **1-NHPh** (tren-based C_6F_5 groups (except *ipso* carbons), hydrogen atoms (except NH), $[CoCp_2^*]^+$ counter-cation, and co-crystallized solvent molecules are omitted for clarity).

Figure S71. a) Solid-state structure of the anion of **1-NH** (all C_6F_5 groups (except *ipso* carbons and except the one undergoing S_NAr , hydrogen atoms (except NH), $[CoCp_2^*]^+$ counter-cation, and co-crystallized solvent molecules are omitted for clarity). b) Solid-state structure of the anion of **1-NH** showing intramolecular π - π stacking (all hydrogen atoms (except NH), $[CoCp_2^*]^+$ counter-cation, and co-crystallized solvent molecules are omitted for clarity).

Figure S72. Solid-state structure of $1-NH_3$ (tren-based C₆F₅ groups (except *ipso* carbons), hydrogen atoms (except NH), and co-crystallized solvent molecules are omitted for clarity).

Figure S73. Solid-state structure of **1-NH₂K** (tren-based C₆F₅ groups (except *ipso* carbons), hydrogen atoms (except NH), and co-crystallized solvent molecules are omitted for clarity).

Figure S74. Solid-state structure of the anion of **2** (tren-based C_6F_5 groups (except *ipso* carbons), hydrogen atoms (except NH), and co-crystallized solvent molecules are omitted for clarity).

6. Supplemental Figures for Cyclic Voltammetry

Figure S75. Cyclic voltammogram of **1-NH**₃ in CH₃CN (1.5 mM) with 0.1 M [Bu₄N][PF₆] electrolyte (glassy carbon working electrode, Ag wire pseudoreference, platinum wire counter, scan rate 250 mV/s, referenced to Fc/Fc⁺). An irreversible reduction event is observed at -1.87 V vs. Fc/Fc⁺.

Figure S76. Cyclic voltammogram of **1-NH**₃ in CH₃CN (1.5 mM) with 0.1 M [Bu₄N][PF₆] electrolyte (glassy carbon working electrode, Ag wire pseudoreference, platinum wire counter, scan rate 5,000 mV/s, referenced to Fc/Fc⁺). No significant return oxidation event is observed upon fast scan rates consistent with the proposed intermediacy of **[1-NH₃]*** in the generation the S_NAr product, **1-NH**.

7. DFT Methods and Results

DFT calculations were performed using Gaussian $09.2.^{6}$ Geometry optimization of all the molecules were carried out using the uM062X/6-311++g(d,p) basis sets⁷ in benzene using the conductor-like polarizable continuum model (CPCM)^{8, 9} implemented in the Gaussian 09 software. Thermal energy corrections were extracted from the results of frequency analysis performed at the same level of theory. Frequency analysis of all the molecules contained no imaginary frequency showing that these are energy minima.

BDFE for $C_6F_5OH = 78.91$ Kcal/mol BDFE for $Ph_3CH = 71.66$ Kcal/mol

Hydrogen radical

, .	
Zero-point correction=	0.000000 (Hartree/Particle)
Thermal correction to Energy=	0.001416
Thermal correction to Enthalpy=	0.002360
Thermal correction to Gibbs Free Ene	ergy= -0.010654
Sum of electronic and zero-point Ene	ergies= -0.498210
Sum of electronic and thermal Energ	ies= -0.496794
Sum of electronic and thermal Entha	lpies= -0.495850
Sum of electronic and thermal Free E	nergies= -0.508865

C₆F₅OH

С	-1.33627800	-0.41960600	0.00000000	
С	-1.02885900	0.93262600	0.00000000	
С	0.29118500	1.34962300	0.00000000	
С	1.33292500	0.42748700	0.00000000	
С	1.00315200	-0.92238800	0.00000000	
С	-0.31257700	-1.35138800	0.00000000	
0	2.60194300	0.87431000	0.00000000	
Н	3.21691500	0.13090600	0.00000000	
F	0.56591600	2.65002300	0.00000000	
F	-2.00652500	1.83003300	0.00000000	
F	-2.60375100	-0.81713800	0.00000000	
F	-0.59050300	-2.64924400	0.00000000	
F	1.99822400	-1.81628600	0.00000000	
Zero-point correction= 0.064872 (Hartree/Particle)				
Thermal correction to Energy= 0.074879				
Thermal correction to Enthalpy= 0.075823				
Thermal correction to Gibbs Free Energy= 0.029612				
Sum of electronic and zero-point Energies= -803.526021				
Sum of electronic and thermal Energies= -803.516013				
Sum of electronic and thermal Enthalpies= -803.515069				
Sum of electronic and thermal Free Energies= -803.561281				

C₆F₅O radical

С	0.00176200	-1.33835300	0.00000000
С	-1.22156100	-0.65281000	0.00000000
С	-1.23019300	0.71331100	0.00000000
С	-0.00186800	1.49450100	0.00000000

С	1.22838000	0.71615800	0.0000	0000	
С	1.22338600	-0.65006200	0.0000	0000	
0	-0.00333600	2.72430800	0.0000	0100	
F	-2.37088600	1.36789900	0.0000	0000	
F	-2.34513200	-1.35293500	0.0000	0000	
F	0.00316300	-2.65139800	-0.0000	0100	
F	2.34867300	-1.34749000	0.0000	0000	
F	2.36721000	1.37381900	0.0000	0000	
Zero-poin	t correction=	C	0.051906	6 (Hartree/Partic	le)
Thermal correction to Energy= 0.061567					
Thermal correction to Enthalpy= 0.062511					
Thermal correction to Gibbs Free Energy= 0.016057					
Sum of electronic and zero-point Energies= -802.890810					
Sum of electronic and thermal Energies= -802.881149					
Sum of electronic and thermal Enthalpies= -802.880205					
Sum of electronic and thermal Free Energies= -802.926659					

Ph₃CH

	0.000	0.42007100
-1.96337300	3.25570100	0.67786500
-1.48325500	2.00977100	1.06216900
-0.45053400	1.38944100	0.35427000
0.09399300	2.04566900	-0.74839600
-0.38834300	3.29381100	-1.13908000
-1.91618400	1.50397600	1.91990200
-2.76223600	3.72340100	1.24148900
-1.78785800	4.87460200	-0.73048200
0.04537200	3.79029000	-1.99935000
0.90131800	1.58341000	-1.30562000
0.00067700	-0.00019600	0.78696400
0.00073700	-0.00026600	1.88274700
1.42970900	-0.30447700	0.35433400
2.48332100	0.28145500	1.06066600
1.72562900	-1.10672900	-0.74649500
3.80233300	0.07338100	0.67671100
2.26167300	0.91119900	1.91696800
3.04764900	-1.31404100	-1.13678300
0.92166500	-1.57632800	-1.30237100
4.08889500	-0.72626900	-0.42786000
4.60682700	0.53269600	1.23921100
3.26077600	-1.94009500	-1.99544600
5.11643300	-0.89175600	-0.72925800
-0.97770600	-1.08521400	0.35410900
-1.81604200	-0.94160900	-0.75023100
-1.00200600	-2.28876900	1.06351600
-2.65734800	-1.98210700	-1.14083100
-1.81630700	-0.01204500	-1.30867500
-1.84258900	-3.32633000	0.67927900
-0.34917100	-2.41097300	1.92248400
	-1.96337300 -1.48325500 -0.45053400 0.09399300 -0.38834300 -1.91618400 -2.76223600 -1.78785800 0.04537200 0.90131800 0.00067700 0.00073700 1.42970900 2.48332100 1.72562900 3.80233300 2.26167300 3.04764900 0.92166500 4.08889500 4.60682700 3.26077600 5.11643300 -0.97770600 -1.81604200 -1.81604200 -1.81630700 -1.84258900 -0.34917100	-1.963373003.25570100-1.483255002.00977100-0.450534001.389441000.093993002.04566900-0.388343003.29381100-1.916184001.50397600-2.762236003.72340100-1.787858004.874602000.045372003.790290000.901318001.583410000.00067700-0.000196000.00073700-0.000266001.42970900-0.304477002.483321000.281455001.72562900-1.106729003.802333000.073381002.261673000.911199003.04764900-1.314041000.92166500-1.576328004.606827000.532696003.26077600-1.940095005.11643300-0.89175600-0.97770600-1.08521400-1.81604200-0.94160900-1.81630700-0.01204500-1.84258900-3.32633000-0.34017100-2.41097300

С	-2.67404200	-3.17587800	-0.42868700
Н	-3.30250600	-1.85456700	-2.00232600
Н	-1.85105000	-4.25127400	1.24409000
Н	-3.33163700	-3.98245600	-0.73044900

Zero-point correction=	0.292201 (Hartree/Particle)
Thermal correction to Energy=	0.307137
Thermal correction to Enthalpy=	0.308081
Thermal correction to Gibbs Free Ene	ergy= 0.247246
Sum of electronic and zero-point Ene	rgies= -733.242591
Sum of electronic and thermal Energi	es= -733.227655
Sum of electronic and thermal Enthal	pies= -733.226711
Sum of electronic and thermal Free E	nergies= -733.287546

Ph₃C radical

С	2.60549200	-3.39501400	-0.00000600
С	1.38565600	-3.44515300	-0.67188200
С	0.53761500	-2.34720900	-0.66930400
С	0.88907600	-1.15881500	0.00017100
С	2.12806600	-1.12657400	0.66936900
С	2.96927800	-2.22989800	0.67212200
Н	-0.40241400	-2.39279600	-1.20680800
Н	1.09744800	-4.34275500	-1.20649500
Н	3.26506600	-4.25444900	-0.00001300
Н	3.91097500	-2.18333200	1.20654600
Н	2.41517900	-0.23045200	1.20712100
С	-0.00020000	0.00002000	-0.00016600
С	0.55902800	1.34940200	-0.00024900
С	1.76415900	1.63882000	-0.66947000
С	-0.08817300	2.40615900	0.66916200
С	2.29120300	2.92223800	-0.67198500
Н	2.27344600	0.84723800	-1.20682100
С	0.44687800	3.68628600	0.67196800
Н	-1.00808700	2.20664000	1.20640400
С	1.63818400	3.95352800	0.00013700
Н	3.21301900	3.12092900	-1.20614100
Н	-0.06416500	4.47856500	1.20647600
Н	2.05320300	4.95425800	0.00035400
С	-1.44837600	-0.19051700	-0.00025600
С	-2.03990400	-1.27964100	0.66896600
С	-2.30186100	0.70853200	-0.66905900
С	-3.41605700	-1.45654900	0.67178100
Н	-1.40728100	-1.97659500	1.20619900
С	-3.67687000	0.52290300	-0.67176800
Н	-1.87159100	1.54574400	-1.20625700
С	-4.24333800	-0.55849600	0.00021100
Н	-3.84644400	-2.29538500	1.20627900
Н	-4.31002800	1.22189800	-1.20570500
Н	-5.31746100	-0.69963800	0.00041600

Zero-point correction= 0.279615 (Hartree/Particle) Thermal correction to Energy= 0.294213 Thermal correction to Enthalpy= 0.295157 Thermal correction to Gibbs Free Energy= 0.236320 Sum of electronic and zero-point Energies= -732.621189 Sum of electronic and thermal Energies= -732.606591 Sum of electronic and thermal Enthalpies= -732.605647 Sum of electronic and thermal Free Energies= -732.664484

8. References

- 1. A. Wong, J. Chu, G. Wu, J. Telser, R. Dobrovetsky and G. Ménard, *Inorg. Chem.*, 2020, **59**, 10343-10352.
- 2. E. S. Jang, C. L. McMullin, M. Käß, K. Meyer, T. R. Cundari and T. H. Warren, *J. Am. Chem. Soc.*, 2014, **136**, 10930-10940.
- 3. M. Gomberg, J. Am. Chem. Soc., 1900, **22**, 757-771.
- 4. S. Kundu, S. Sinhababu, M. M. Siddiqui, A. V. Luebben, B. Dittrich, T. Yang, G. Frenking and H. W. Roesky, *J. Am. Chem. Soc.*, 2018, **140**, 9409-9412.
- 5. P. A. Chase, A. L. Gille, T. M. Gilbert and D. W. Stephan, *Dalton Trans.*, 2009, 7179-7188.
- Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnengerg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
- 7. Y. Zhao and D. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215-241.
- 8. V. Barone and M. Cossi, J. Phys. Chem. A, 1998, **102**, 1995-2001.
- 9. M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem., 2003, 24, 669-681.