Supporting Information For

Nickel-Catalyzed Reductive Monofluoroalkylation of Alkyl Tosylate with

Bromofluoromethane to Primary Alkyl Fluoride

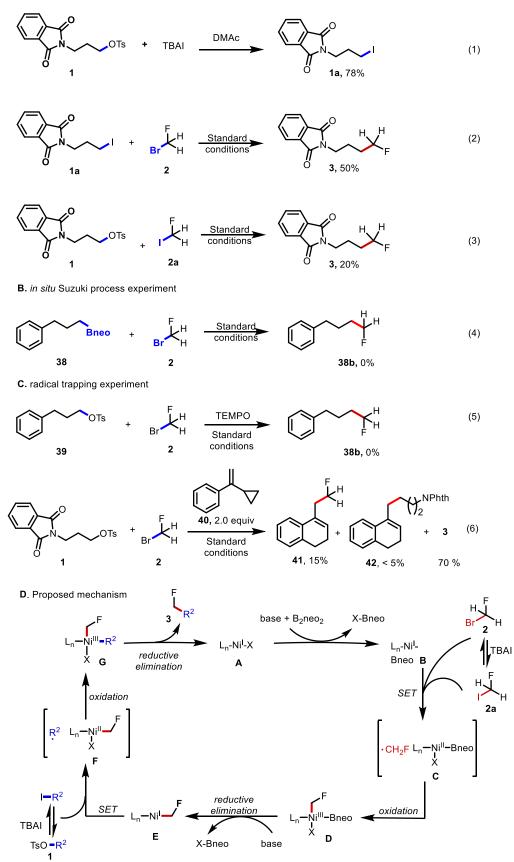
Ru Cui,[‡] Jie Sheng,[‡] Bing-Bing Wu, Duo-Duo Hu, Hong-Qian Zheng and Xi-Sheng Wang*

Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.

Tabel of Contents

General Information:	
Figure S1 Mechanistic study experiments and proposed mechanism	4
Tables of the Optimization of Monofluoromethylation Reaction Conditions	
Table S1. Ligands Screening	
Table S2 Reductants Screening	6
Table S3. Base Screening	6
Table S4. Catalysts Screening	7
Table S5 Additive screening	7
Table S6 Temperature Screening	
Table S7 Optimization the amount of reagents	
Table S8 Solvent Screening	9
Table S9. Optimization the amount of bromofluoromethane	9
Preparation of Substrates	
Preparation of Bioactive Molecule Alkyl tosylates	
Preparation of BrCFH ₂ Stock Solution	
General Procedure for Nickel-catalyzed Cross-Coupling between Alkyl tosylates and Bromofluoromethane	
Mechanistic Studies	
In-situ generation of 1a	
In-situ Suzuki process	
Radical Trapping Experiment with TEMPO	

Radical Clock Experiment:	31
Large scale reaction	
Monofluoroalkylation of alkyl tosylate:	
References:	
NMR Spectra of Substrates (¹ H NMR, ¹⁹ F NMR, ¹³ C NMR)	34


General Information:

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on Bruker 400 MHz spectrometer(400 MHz for ¹H; 101 MHz for ¹³C and 376 MHz for ¹⁹F) or Bruker 500 MHz spectrometer(500 MHz for ¹H; 126 MHz for ¹³C and 470 MHz for ¹⁹F) in CDCl₃ unless otherwise noted. Signal positions were recorded in ppm with the abbreviations s, d, t, dd, dt, tt and m denoting singlet, doublet, triplet, doublet of doublets, doublet of triplets, triplets of triplets and multiplet respectively. All NMR chemical shifts were referenced to residual solvent peaks or to Si(CH₃)₄ as an internal standard. For ¹H NMR: CDCl₃ = δ 7.26 ppm, Si(CH₃)₄ = δ 0 ppm. For ¹³C NMR: CDCl₃ = δ 77.16 ppm. High resolution mass spectra (HRMS) were recorded on P-SIMS-Gly of Bruker Daltonics Inc. using ESI-TOF (electrospray ionization-time of flight) or Micromass GCT using EI (electron impact). GC-MS analysis was performed on an Aglient 7890 GC/MS gas chromatograph mass spectrometer. Organic solutions were concentrated under reduced pressure on Heidolph rotary evaporator. TLC was performed on silica gel Huanghai HSGF₂₅₄ plates and visualized by quenching of UV fluorescence (λ max= 254 nm). Preparative TLC was performed on silica gel Xinnuo HSGF₂₅₄ preparative TLC plates. Silica gel (200–300 mesh) was purchased from Qingdao Haiyang Chemical Co., China.

The following chemicals were purchased as follow: Bromofluoromethane (CAS: 373-52-4, Shangfluoro, 98%); nickel(II) chloride ethylene glycol dimethyl ether complex (CAS: 29046-78-4, Strem, 98%); anhydrous potassium carbonate (CAS: 584-08-7, Sinopharm, 99%); bis(neopentyl glycolato)diboron (CAS: 201733-56-4, TCI, 98%); Tetrabutylammonium iodide (CAS: 311-28-4, Sigma-Aldrich, 99%); *N*, *N*-Dimethylacetimide (CAS: 127-19-5, J&K, 99.5%, Water<0.005%). Unless otherwise noted, all other reagents and starting materials were purchased from commercial sources and used without further purification.

Figure S1 Mechanistic study experiments and proposed mechanism.

A. in situ generation of alkyl iodide 1a

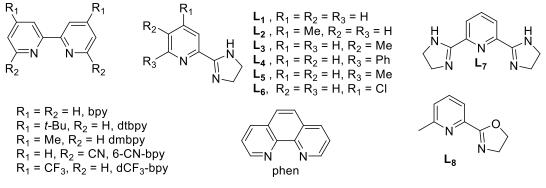

Tables of the Optimization of Monofluoromethylation Reaction Conditions

Table S1. Ligands Screening^a

	O N O 1	BrCH ₂ F 2	Nil ₂ (10 mol%) Ligand (12 mol%) LiOMe, B ₂ (pin) ₂ TBAI, NMP N ₂ , 60 °C, 24 h		F
	Entry	Ligano	d (x mol%)	Yield (%) ^b	
-	1	bp	oy (12)	8	
	2	dtb	ру (12)	10	
	3	phe	en (12)	8	
	4	neocu	prine (12)	10	
	5	dmbpy (12)		11	
	6 6-CN		-bpy (12)	trace	
	7	dCF ₃	-bpy (12)	0	
	8	P	y (24)	0	
	9	DM	AP (24)	0	
	10	4-CN	I-Py (24)	0	
	11	PP	h ₃ (24)	trace	
	12	L	₁ (12)	23	
	13	L	₂ (12)	20	
	14	L	₃ (12)	15	
	15	L,	₄ (12)	12	
	16	L	₅ (12)	16	
	17	L,	₆ (12)	18	
	18	L	₇ (12)	11	
	19	L,	₈ (12)	10	

^aUnless otherwise noted, the reaction conditions were as follows: **1** (0.2 mmol, 1.0 equiv), **2** (0.3 mmol, 1.5 equiv), Nil₂ (10 mol%), Ligand (x mmol%), B₂(pin)₂ (0.4 mmol, 2 equiv), LiOMe (0.5 mmol, 2.5 equiv), TBAI (0.4 mmol, 2 equiv), NMP (1.0 mL), 60 °C, 24 h.

 b Yields determined by 19 F NMR using PhCF₃ as an internal standard.

Table S2 Reductants Screening^a

O O O 1 O T O T O T S +	Nil ₂ (10 mol%) L1 (12 mol%) BrCH ₂ F LiOMe, Reductant TBAI, NMP N ₂ , 60 °C, 24 h	
Entry	Reductant	Yield (%) ^b
1	Mn	0
2	Zn	0
3	Fe	0
4	$B_2(pin)_2$	21
5	B ₂ (neo) ₂	30

^aUnless otherwise noted, the reaction conditions were as follows: **1** (0.2 mmol), **2** (0.3 mmol, 1.5 equiv.),Nil₂ (10 mol%), **L**₁ (12 mol%), reductant (0.4 mmol, 2 equiv), LiOMe (0.5 mmol, 2.5 equiv), TBAI (0.4 mmol, 2 equiv), NMP (1.0 mL), 60 °C, 24 h. ^bYield was determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard.

Table S3. Base Screening^a

	OTs	+ BrCH ₂ F	Nil ₂ (10 mol ligand (12 mo Base, B ₂ (ne TBAI, NMI N ₂ , 60 °C, 2	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	N N F O 3
Entry	Base	Yield (%)	Entry	Base	Yield (%) ^b
1	KHCO ₃	65	6	NaHCO ₃	52
2	KF	trace	7	Na ₂ CO ₃	65
3	K ₃ PO ₄	20	8	LiOMe	32
4	Cs_2CO_3	32	9	LiOtBu	20
5	KOtBu	trace	10	K ₂ CO ₃	68

^aUnless otherwise noted, the reaction conditions were as follows: **1** (0.2 mmol), **2** (0.3 mmol, 1.5 equiv.), Nil₂ (10 mol%), L_1 (12 mol%), B_2 (neo)₂ (0.4 mmol, 2 equiv), Base (0.5 mmol, 2.5 equiv), TBAI (0.4 mmol, 2 equiv), NMP (1.0 mL), 60 °C, 24 h.

 b Yield was determined by 19 F NMR spectroscopy using PhCF₃ as an internal standard.

Table S4. Catalysts Screening^a

	0 // OTs + 0 1	N BrCH ₂ F — 2	ii catalysts (10 L ₁ (12 mol9 K ₂ CO ₃ , B ₂ (no TBAI, NMI N ₂ , 60 °C, 2	$\stackrel{(6)}{\underset{P}{\longrightarrow}}$ $\stackrel{(7)}{\underset{O}{\longrightarrow}}$ $\stackrel{(7)}{\underset{O}{\longrightarrow}}$ $\stackrel{(7)}{\underset{O}{\longrightarrow}}$	F 3
Entry	[Ni]	Yield (%) ^b	Entry	[Ni]	Yield (%) ^b
1	No	0	6	NiCl ₂ (dtbpy)	18
2	NiBr ₂	70	7	NiBr ₂ (dtbpy)	26
3	Nil ₂	72	8	Nil ₂ (dtbpy)	20
4	NiCl ₂	70	9	Ni(NO ₃) ₂ •6H ₂ O	trace
5	Ni(OAc) ₂ •4H ₂ O	23	10	NiBr₂●(DME)	75

^aUnless otherwise noted, the reaction conditions were as follows: **1** (0.2 mmol), **2** (0.3 mmol, 1.5 equiv.), [Ni] (10 mol%), L_1 (12 mol%), B_2 (neo)₂ (0.4 mmol, 2 equiv), K_2CO_3 (0.5 mmol, 2.5 equiv), TBAI (0.4 mmol, 2 equiv), NMP (1.0 mL), 60 °C, 24 h.

^bYield was determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard.

Table S5 Additive screening^a

O N O 1		Br₂•DME (10 mol%) L₁ (12 mol%) K₂CO₃, B₂(neo)₂ Additive, NMP N₂, 60 °C, 24 h	
Entry	Additiv	е	Yield (%) ^b
1	no		19
2	KI		65
3	Nal		65
4	TBAI		70
5	TBAC		50
6	TBAB		60

^aUnless otherwise noted, the reaction conditions were as follows: **1** (0.2 mmol), **2** (0.3 mmol, 1.5 equiv.),NiBr₂•DME (10 mol%), **L**₁ (12 mol%), B₂(neo)₂ (0.4 mmol, 2 equiv), K₂CO₃ (0.5 mmol, 2.5 equiv), Additive (0.4 mmol, 2 equiv), NMP (1.0 mL), 60 °C, 24 h; TBAI = Tetrabutylammonium iodide; TBAB = Tetrabutylammonium bromide ; TBAC = Tetrabutyl ammonium chloride. ^bYield was determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard.

Table S6 Temperature Screening^a

	NiBr ₂ •DME (10 mol%) L ₁ (12 mol%) K ₂ CO ₃ , B ₂ (neo) ₂ TBAI, NMP N ₂ , T, 24 h	F O O 3
Entry	T/ °C	Yield (%) ^b
1	30	SM reserved
2	40	SM reserved
3	50	43
4	60	75
5	70	70
6	80	68

^aUnless otherwise noted, the reaction conditions were as follows: **1** (0.2 mmol), **2** (0.3 mmol, 1.5 equiv.),NiBr₂•DME (10 mol%), **L**₁ (12 mol%), B₂(neo)₂ (0.4 mmol, 2 equiv), K₂CO₃ (0.5 mmol, 2.5 equiv), TBAI (0.4 mmol, 2 equiv), NMP (1.0 mL), T °C, 24 h; ^bYield was determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard.

Table S7 Optimization the amount of reagents^a

	OTs + BrCl 1 2	- NMP, N ₂	%) uiv) quiv) <u>iiv)</u>	F 3
entry	x (equiv)	y (equiv)	z (equiv)	yield (%) ^b
1	2.0	2.0	2.0	65
2	2.5	2.0	2.0	75
3	3.0	2.0	2.0	74
4	2.5	1.5	2.0	48
5	2.5	2.5	2.0	68
6	2.5	2.0	1.0	40
7	2.5	2.0	1.5	61
8	2.5	2.0	2.5	70

^aUnless otherwise noted, the reaction conditions were as follows: **1** (0.2 mmol), **2** (0.3 mmol, 1.5 equiv.), NiBr₂•DME (10 mol%), L_1 (12 mol%), K_2CO_3 (x equiv), B_2neo_2 (y equiv), TBAI (z equiv), NMP (1.0 mL), 60 °C, 24 h.

^bYield was determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard.

Table S8 Solvent Screening^a

	D N OTs +	BrCH ₂ F $\frac{K_2(K_2)}{T}$	DME (10 mol ⁹ ₁ (12 mol%) CO ₃ , B ₂ (neo) ₂ BAI, solvent ₂ , 60°C, 24h		∽ ∽ F
Entry	solvent	Yield (%) ^b	Entry	solvent	Yield (%) ^b
1	THF	31	8	NMP	73
2	dioxane	trace	9	DMF	38
3	DMSO	NR	10	DMAc	80
4	DCE	0	11	DMPU	36
5	MeCN	40	12	NMP/DMAc(1:1)	NR
6	NMP/THF(7:3)	73	13	NMP/DMAc(3:7)	60
7	NMP/THF(1:1)	52	14	PhNO ₂	0

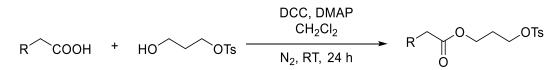
^aUnless otherwise noted, the reaction conditions were as follows: **1** (0.2 mmol), **2** (0.3 mmol, 1.5 equiv.), NiBr₂•DME (10 mol%), L_1 (12 mol%), B_2 (neo)₂ (0.4 mmol, 2 equiv), K_2CO_3 (0.5 mmol, 2.5 equiv), TBAI (0.4 mmol, 2 equiv), solvent (1.0 mL), 60 °C, 24 h.

^bYield was determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard

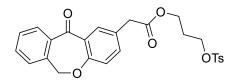
Table S9. Optimization the amount of bromofluoromethane^a

\bigcirc		OTs ₊ BrCH ₂ F – 2 (x equiv)	NiCl ₂ ●DME(10 mol%) L ₁ (y mol%) K ₂ CO ₃ , B ₂ (neo) ₂ TBAI, DMAc N ₂ , 60°C, 24h		∕ F
	Entry	BrCH ₂ F (x equiv)	L ₁ (y mol%)	Yield (%) ^b	
	1	1.0	L ₁ (12)	36	
	2	1.5	L ₁ (12)	63	
	3	2.0	L ₁ (12)	83	
	4	2.5	L ₁ (12)	72	
	5	2.0	L₁ (10)	71	
	6 ^c	2.0	L₁ (13.5)	80	
	7	2.0	L ₁ (13.5)	87(85)	

^aUnless otherwise noted, the reaction conditions were as follows: **1** (0.2 mmol), **2** (x equiv.),NiCl₂•DME (10 mol%), **L**₁ (y mol%), B₂(neo)₂ (0.4 mmol, 2 equiv), K₂CO₃ (0.5 mmol, 2.5 equiv), TBAI (0.4 mmol, 2 equiv), DMAc (1.0 mL), 60 °C, 24 h; ^bYield was determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard; numbers in parentheses were yields of isolated products.^cNiBr₂•DME.

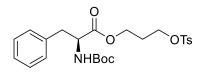

Preparation of Substrates:

Unless otherwise noted, all the alkyl alcohols were purchased from commercial sources and alkyl tosylates were prepared in the reported literature. Ligans L_1 - L_5 were synthesized using known method¹, alkyl Bneo 38^2 , alkene 40^3 was synthesized according to the references. Compound 43^4 was synthesized through known method.


Preparation of Bioactive Molecule Alkyl tosylates.

To a flask equipped with a magnetic stir bar were added 1,3-diol (25 mmol, 1 equiv) and 4-(dimethylamino)pyridine (0.375 mmol, 1.5 mol %) dissolved in DCM (40 mL), triethylamine (27.5 mmol, 1.1 equiv) were added. The mixture was stirred for 15 min before *p*-toluenesulfonyl chloride (25 mmol, 1.0 equiv) in dichloromethane (8 mL) was added dropwise and stirred at 30 °C for another 4 hours. The reaction mixture was then filtrated, 100 ml of dichloromethane were added and the organic solution was washed with 1% HCl (2 × 40 mL), saturated sodium bicarbonate (2 × 40 mL), brine (2 × 40 mL), dried over magnesium sulfate and concentrated in vacuo. The product was purified by column chromatography on silica gel (silica gel, PE/EA 2:1) to afford the desired *mono*-tosylated alcohol.

To a solution of acid (5 mmol), 3-OTs-1-propanol (6 mmol) and DMAP (0.5 mmol) dissolved in 20 mL CH₂Cl₂, a solution of DCC (6 mmol) in DCM (10 mL) was slowly added under stirring and proceeded at room temperature overnight. The reaction mixture was then filtered and the solid was rinsed with DCM (2 x 10 mL). The combined filtrates were concentrated under vacuum and purified by column chromatography affording desired product.

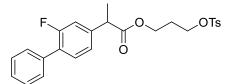


The 3-(tosyloxy)propyl 2-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin-2-yl)acetate was purified with silica gel chromatography (PE/EA = 3:1) as a colorless solid (2.1 g, 89% yield).

¹<u>H NMR</u> (500 MHz, CDCl₃): δ 8.08 (d, J = 2.4 Hz, 1H), 7.89 (dd, J = 7.6, 1.4 Hz, 1H), 7.77 (d, J = 8.4 Hz, 2H), 7.57 (td, J = 7.4, 1.4 Hz, 1H), 7.48 (td, J = 7.6, 1.3 Hz, 1H), 7.42 – 7.30 (m, 4H), 7.03 (d, J = 8.4 Hz, 1H), 5.19 (s, 2H), 4.13 (t, J = 6.1 Hz, 2H), 4.09 (t, J = 6.1 Hz, 2H), 3.57 (s, 2H), 2.44 (s, 3H), 1.98 (q, J = 6.2 Hz, 2H).

13C NMR (126 MHz, CDCl₃): δ 190.91, 171.20, 160.64, 145.04, 140.52, 136.38, 135.67, 132.96, 132.95, 132.50, 130.02, 129.62, 129.40, 128.03, 127.96, 127.64, 125.25, 121.26, 73.77, 66.86, 60.78, 40.14, 28.30, 21.78.

<u>HRMS</u> ESI (m/z): $[M+H]^+$ calcd. for C₂₆H₂₅O₇S: 481.1316, found: 481.1313.

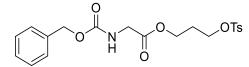


The Boc-L-phenylalanine alkyl tosylate was purified with silica gel chromatography (PE/EA = 8:1) as a colorless solid (1.8 g, 74% yield).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 7.80 – 7.75 (m, 2H), 7.34 (d, J = 8.1 Hz, 2H), 7.31 – 7.17 (m, 3H), 7.15 – 7.04 (m, 2H), 5.05 (d, J = 8.3 Hz, 1H), 4.46 (d, J = 7.3 Hz, 1H), 4.10 (t, J = 6.1 Hz, 2H), 3.99 (t, J = 6.3 Hz, 2H), 2.99 (d, J = 6.5 Hz, 2H), 2.42 (s, 3H), 1.89 (m, 2H), 1.41(s, 9H).

13C NMR (126 MHz, CDCl₃): δ 171.61, 154.99, 144.94, 135.94, 132.75, 129.88, 129.15, 128.48, 127.80, 126.97, 79.82, 66.63, 60.83, 54.44, 38.28, 28.22, 28.06, 21.54.

HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₄H₃₁NO₇SNa: 500.1713, found: 500.1720.

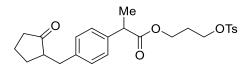


The 3-(tosyloxy) propyl 2-(2-fluoro-[1,1'-biphenyl]-4-yl) propanoate was purified with silica gel chromatography (PE/EA = 6:1) as a colorless soild (2.0 g, 90% yield).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 7.76 (d, J = 8.2 Hz, 2H), 7.53 (d, J = 8.1 Hz, 2H), 7.44 (t, J = 7.5 Hz, 2H), 7.38 (m, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.15 – 7.03 (m, 2H), 4.14 (t, J = 6.1 Hz, 2H), 4.03 (t, J = 6.1 Hz, 2H), 3.69 (q, J = 7.1 Hz, 1H), 2.43 (s, 3H), 2.01 – 1.90 (m, 2H), 1.49 (d, J = 7.2 Hz, 3H).

 $\frac{^{13}$ C NMR (126 MHz, CDCl₃): δ 173.77, 159.79 (d, *J* = 248.5Hz), 145.02, 141.70 (d, *J* = 7.7Hz), 135.54, 133.03, 130.99 (d, *J* = 4.0 Hz), 130.01, 129.08 (d, *J* = 2.9 Hz), 128.59, 128.02 (d, *J* = 13.5Hz), 128.00, 127.84, 123.62 (d, *J* = 3.3 Hz), 115.30 (d, *J* = 23.6Hz), 66.80, 60.79, 45.03, 28.36, 21.77, 18.33.

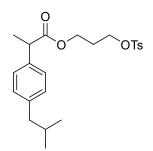
HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₅H₂₅FO₅SNa: 479.1299, found: 479.1302.



N-Carbobenzyloxyglycine alkyl tosylate was purified with silica gel chromatography (PE/EA = 8:1) as a colorless soild (1.7 g, 80% yield).

¹<u>H NMR</u> (400 MHz, Chloroform-*d*): δ 7.78 (d, J = 8.2 Hz, 2H), 7.41 – 7.31 (m, 7H), 5.24 (t, J = 5.9 Hz, 1H), 5.13 (s, 2H), 4.19 (t, J = 6.1 Hz, 2H), 4.10 (t, J = 6.0 Hz, 2H), 3.90 (d, J = 5.6 Hz, 2H), 2.44 (s, 3H), 1.99 (m, 2H).

<u>1³C NMR</u> (126 MHz, Chloroform-*d*): δ 169.84, 156.35 145.15, 136.30, 132.89, 130.04, 128.67, 128.36, 128.25, 128.03, 67.26, 66.67, 61.23, 42.77, 28.19, 21.76.


<u>HRMS</u> ESI (m/z): $[M+Na]^+$ calcd. for C₂₀H₂₃NO₇SNa: 444.1087, found: 444.1088.

The 3-(tosyloxy)propyl 2-(4-((2-oxocyclopentyl)methyl)phenyl)propanoate was purified with silica gel chromatography (PE/EA = 7:1) as a colorless solid (2.0 g, 87% yield).

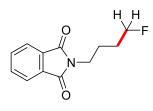
<u>**1H NMR**</u> (400 MHz, Chloroform-*d*): δ 7.75 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.3 Hz, 2H), 7.11 (d, J = 8.2 Hz, 2H), 4.08 (t, J = 6.1 Hz, 2H), 4.00 (t, J = 6.2 Hz, 2H), 3.62 (q, J = 7.2 Hz, 1H), 3.11 (dd, J = 13.8, 4.1 Hz, 1H), 2.55 – 2.47 (m, 1H), 2.45 (s, 3H), 2.39 – 2.29 (m, 2H), 2.20 – 2.04 (m, 2H), 2.01 – 1.86 (m, 2H), 1.84 – 1.64 (m, 1H), 1.62 – 1.48 (m, 1H), 1.43 (d, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 220.12, 174.20, 144.90, 138.94, 138.09, 132.84, 129.88, 129.11, 127.82, 127.41, 77.48, 77.16, 76.84, 66.75, 60.26, 50.92, 44.92, 38.13, 35.13, 29.17, 28.15, 21.62, 20.49, 18.27.
 HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₅H₃₀O₆SNa: 481.1655., found: 481.1659.

The 3-(tosyloxy)propyl 2-(4-isobutylphenyl)propanoate was purified with silica gel chromatography (PE/EA = 7:1) as a colorless solid (1.8 g, 87% yield).

<u>¹H NMR</u> (400 MHz, CDCl₃): δ 7.84 – 7.70 (m, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.1 Hz, 2H), 7.07 (d, *J* = 8.0 Hz, 2H), 4.08 (t, *J* = 6.1 Hz, 2H), 3.99 (t, *J* = 6.2 Hz, 2H), 3.61 (q, *J* = 7.1 Hz, 1H), 2.45 (s, 3H), 1.90 (tt, *J* = 6.3, 3.1 Hz, 2H), 1.86 – 1.77 (m, 1H), 1.44 (d, *J* = 7.2 Hz, 3H), 0.89 (d, *J* = 6.6 Hz, 6H).

13C NMR (101 MHz, CDCl₃): δ 174.47, 144.93, 140.69, 137.58, 133.00, 129.96, 129.42, 127.96, 127.15, 66.85, 60.32, 45.10, 45.08, 30.27, 28.30, 22.47, 21.74, 18.39.

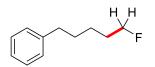

HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₃H₃₀O₅SNa: 441.1706, found: 441.1710.

Preparation of BrCFH₂ Stock Solution

Anhydrous DMAc (~23 mL) was added to a Schlenk graduated cylinder under nitrogen. The vessel and solvent were weighed. Next, BrCFH₂ was bubbled through the DMAc solution using a long needle until the total volume of the solution reached approximately 25 mL. The vessel was sealed weighed again. The concentration of the BrCFH₂ stock solution was calculated based on the mass of BrCFH₂ added and the total volume of the solution (~2.0 mol/L).

General Procedure for Nickel-catalyzed Cross-Coupling between Alkyl tosylates and Bromofluoromethane

In glove box, alkyl tosylate 1 (if solid, 1.0 equiv, 0.2 mmol), NiCl₂•DME (10 mol %, 0.02 mmol, 4.4 mg), L₁ (13.5 mol%, 0.027 mmol, 4.0 mg), Bis(neopentyl glycolato)diboron (2.0 equiv, 0.4 mmol, 90.4 mg), K₂CO₃ (2.5 equiv, 0.5 mmol, 69 mg) and Tetrabutylammonium iodide (2.0 equiv, 0.4 mmol, 148 mg) were combined in a 5 mL oven-dried sealing tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times), and alkyl tosylate 1 (if liquid, 1.0 equiv, 0.2 mmol), Bromofluoromethane 2 (2.0 equiv, 0.4 mmol dissolved in DMAc) and *N*, *N*-Dimethylacetamide (1.0 mL) were then added via syringe. The tube was sealed with a Teflon lined cap and heated in a preheated oil bath at 60 °C for 24 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (\sim 20 mL) and filtered through a pad of celite. The filtrate was added brine (20 mL) and extracted with EtOAc (2×15 mL), the combined organic layer was dried over Na₂SO₄, filtrated and concentrated under vacuum. The residue was then purified by flash column chromatography to give desired product as a colorless solid or oil.

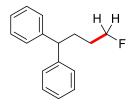

The product **3** was purified with silica gel chromatography (PE/EA = 5:1) as a colorless solid (37.6 mg, 85% yield).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 7.85 (dd, J = 5.4, 3.1 Hz, 2H), 7.72 (dd, J = 5.4, 3.1 Hz, 2H), 4.48 (dt, J = 47.6, 5.7 Hz, 2H), 3.75 (t, J = 6.8 Hz, 2H), 1.88 – 1.67 (m, 4H).

¹³C NMR (126 MHz, CDCl₃): δ 168.55, 134.11, 132.21, 123.39, 83.51 (d, J = 165.3 Hz), 37.60, 27.91 (d, J = 20.0 Hz), 24.74 (d, J = 4.8 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃): δ -218.82 (tt, J = 46.9, 25.0 Hz).

HRMS ESI (m/z): $[M+H]^+$ calcd. for C₁₂H₁₃FNO₂: 222.0925, found: 222.0915.

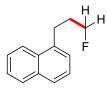

The product **4** was purified with silica gel chromatography (PE/EA = 100:1) as a colorless oil (18.9 mg, 57% yield).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 7.31 – 7.27 (m, 2H), 7.21 – 7.15 (m, 3H), 4.44 (dt, *J* = 47.3, 6.1 Hz, 2H), 2.65 – 2.60 (m, 2H), 1.78 – 1.62 (m, 4H), 1.50 – 1.40 (m, 2H).

<u>1³C NMR</u> (126 MHz, CDCl₃): δ 142.52, 128.51, 128.42, 125.84, 84.24 (d, *J* = 164.1 Hz), 35.95, 31.26, 30.42 (d, *J* = 19.4 Hz), 24.99 (d, *J* = 5.5 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃): δ -218.06 (tt, J = 47.1, 24.9 Hz).

<u>HRMS</u> EI (m/z): $[M]^+$ calcd. for C₁₁H₁₅F: 166.1158, found: 166.1151.

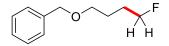

The product **5** was purified with silica gel chromatography (PE/EA = 75:1) as a colorless oil (29.7 mg, 65% yield).

<u>**1H NMR**</u> (400 MHz, CDCl₃): δ 7.31 – 7.22 (m, 8H), 7.20 – 7.14 (m, 2H), 4.43 (dt, *J* = 47.3, 6.0 Hz, 2H), 3.92 (t, *J* = 7.9 Hz, 1H), 2.23 – 2.12 (m, 2H), 1.75 – 1.57 (m, 2H).

<u>1³C NMR</u> (101 MHz, CDCl₃): δ 144.75, 128.64, 127.94, 126.38, 84.13 (d, *J* = 164.8 Hz), 51.06, 31.41 (d, *J* = 4.6 Hz), 29.16 (d, *J* = 19.7 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃): δ -218.47 (tt, *J* = 47.5, 26.0 Hz).

HRMS EI (m/z): [M]⁺ calcd. for C₁₆H₁₇F: 228.1309, found: 228.1304.

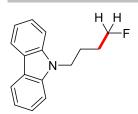

The product **6** was purified with silica gel chromatography (PE/EA = 50:1) as a colorless oil (23 mg, 61% yield).

<u>**H NMR**</u> (500 MHz, CDCl₃): δ 7.96 (d, J = 8.3 Hz, 1H), 7.83 – 7.76 (m, 1H), 7.65 (d, J = 8.2 Hz, 1H), 7.48 – 7.37 (m, 2H), 7.33 (t, J = 7.5 Hz, 1H), 7.27 (d, J = 7.0 Hz, 1H), 4.44 (dt, J = 47.2, 5.8 Hz, 2H), 3.19 – 3.10 (m, 2H), 2.15 – 1.99 (m, 2H).

<u>**13C** NMR</u> (126 MHz, CDCl₃): δ 137.28, 134.04, 131.86, 128.96, 127.03, 126.39, 126.06, 125.67, 123.75, 83.51 (d, *J* = 164.9 Hz), 31.50 (d, *J* = 19.8 Hz), 28.62 (d, *J* = 5.0 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃): δ -219.85 (tt, *J* = 47.2, 26.4 Hz).

HRMS EI (m/z): [M]+ calcd. for C₁₃H₁₃F: 188.1001, found: 188.0994.

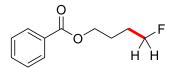

The product **7** was purified with silica gel chromatography (PE/EA = 80:1) as a colorless oil (17.5 mg, 48% yield).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 7.38 – 7.31 (m, 4H), 7.31 – 7.26 (m, 1H), 4.51 (s, 2H), 4.47 (dt, J = 47.3, 5.8 Hz, 2H), 3.52 (t, J = 6.3 Hz, 2H), 1.88 – 1.68 (m, 4H).

<u>1³C NMR</u> (101 MHz, CDCl₃): δ 138.60, 128.51, 127.74, 127.70, 84.10 (d, *J* = 164.2 Hz), 73.03, 69.82, 27.48 (d, *J* = 19.8 Hz), 25.70 (d, *J* = 5.2 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃): δ -218.25 (tt, J = 47.7, 25.6 Hz).

HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₁H₁₅FONa: 205.0999, found: 205.1013.

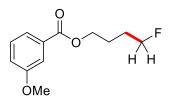

The product **8** was purified with silica gel chromatography (PE/EA = 6:1) as a colorless oil (41.0 mg, 85% yield).

<u>**H NMR**</u> (400 MHz, CDCl₃): δ 8.01 (d, *J* = 7.7 Hz, 2H), 7.37 (m, 2H), 7.29 (d, *J* = 8.2 Hz, 2H), 7.19 – 7.11 (m, 2H), 4.31 (dt, *J* = 47.3, 5.8 Hz, 2H), 4.24 (t, *J* = 7.1 Hz, 2H), 1.96 – 1.86 (m, 2H), 1.71 – 1.54 (m, 2H).

1³C NMR (126 MHz, CDCl₃): δ 140.39, 125.78, 122.94, 120.50, 118.99, 108.68, 83.85 (d, J = 165.2 Hz), 42.59, 28.21 (d, J = 19.8 Hz), 25.23 (d, J = 4.1 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃): δ -218.47 (tt, *J* = 47.4, 26.3 Hz).

<u>HRMS</u> ESI (m/z): $[M+H]^+$ calcd. for C₁₆H₁₇FN: 242.1340, found: 242.1339.

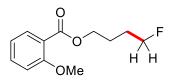

The product **9** was purified with silica gel chromatography (PE/EA = 10:1) as a colorless oil (22.8 mg, 58% yield).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 8.11 – 7.97 (m, 2H), 7.62 – 7.51 (m, 1H), 7.50 – 7.40 (m, 2H), 4.53 (dt, J = 47.3, 5.7 Hz, 2H), 4.38 (t, J = 6.3 Hz, 2H), 2.01 – 1.76 (m, 4H).

<u>1³C NMR</u> (101 MHz, CDCl₃): δ 166.70, 133.08, 130.37, 129.66, 128.50, 83.67 (d, *J* = 165.1 Hz), 64.52, 27.33 (d, *J* = 20.1 Hz), 24.91 (d, *J* = 5.1 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃): δ -218.83 (tt, J = 46.8, 25.3 Hz).

<u>HRMS</u> ESI (m/z): $[M+H]^+$ calcd. for C₁₁H₁₄FO₂: 197.0972, found: 197.0967.

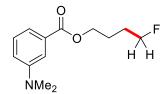

The product **10** was purified with silica gel chromatography (PE/EA = 8:1) as a colorless oil (32.6 mg, 72% yield).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 7.63 (dt, *J* = 7.6, 1.3 Hz, 1H), 7.56 (dd, *J* = 2.7, 1.5 Hz, 1H), 7.35 (t, *J* = 7.9 Hz, 1H), 7.10 (ddd, *J* = 8.3, 2.7, 1.1 Hz, 1H), 4.52 (dt, *J* = 47.1, 5.6 Hz, 2H), 4.37 (t, *J* = 6.2 Hz, 2H), 3.85 (s, 3H), 2.01 – 1.76 (m, 4H).

¹³C NMR (101 MHz, CDCl₃): δ 166.56, 159.69, 131.70, 129.53, 122.05, 119.47, 114.25, 83.64 (d, J = 165.1 Hz), 64.62, 55.57, 27.33 (d, J = 20.0 Hz), 24.91 (d, J = 5.0 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ -218.88 (tt, J = 47.2, 25.4 Hz).

<u>HRMS</u> ESI (m/z): $[M+H]^+$ calcd. for C₁₂H₁₆FO₃: 227.1078, found: 227.1081.

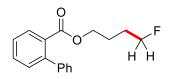

The product **11** was purified with silica gel chromatography (PE/EA = 8:1) as a colorless oil (36.2 mg, 80% yield).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 7.79 (dd, J = 7.9, 1.6 Hz, 1H), 7.55 – 7.40 (m, 1H), 7.06 – 6.91 (m, 2H), 4.52 (dt, J = 47.6, 5.5 Hz, 2H), 4.35 (t, J = 5.9 Hz, 2H), 3.90 (s, 3H), 2.02 – 1.80 (m, 4H).

 $\frac{^{13}\text{C NMR}}{\text{Hz}}$ (101 MHz, CDCl₃): δ 166.38 , 159.26 , 133.62 , 131.66 , 120.24 , 112.13 , 83.71 (d, *J* = 164.8 Hz), 64.34 , 56.04 , 27.33 (d, *J* = 20.0 Hz), 24.81 (d, *J* = 5.3 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃): δ -218.71 (tt, *J* = 46.4, 25.9Hz).

<u>HRMS</u> ESI (m/z): $[M+H]^+$ calcd. for C₁₂H₁₆FO₃: 227.1078, found: 227.1085.


The product **12** was purified with silica gel chromatography (PE/EA = 8:1) as a colorless oil (28.7 mg, 60% yield).

<u>¹H NMR</u> (400 MHz, CDCl₃): δ 7.43 – 7.35 (m, 2H), 7.30 (d, *J* = 8.0 Hz, 1H), 6.91 (dd, *J* = 8.3, 2.8 Hz, 1H), 4.52 (dt, *J* = 47.3, 5.7 Hz, 2H), 4.36 (t, *J* = 6.2 Hz, 2H), 2.99 (s, 6H), 1.83 (m, 4H).

 $\frac{^{13}\text{C NMR}}{^{165.0}\text{ Hz}}$ (126 MHz, CDCl₃): δ 167.36, 150.49, 130.96, 129.11, 117.58, 116.91, 113.30, 83.71 (d, J = 165.0 Hz), 64.38, 40.69, 27.32 (d, J = 19.9 Hz), 24.86 (d, J = 5.1 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃): δ -218.79 (tt, J = 47.6, 26.0 Hz).

<u>HRMS</u> ESI (m/z): $[M+H]^+$ calcd. for C₁₃H₁₉FNO₂: 240.1394, found: 240.1399.

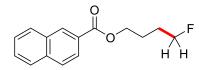


The product **13** was purified with silica gel chromatography (PE/EA = 8:1) as a colorless oil (35.4 mg, 65% yield).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 7.85 – 7.79 (m, 1H), 7.53 (td, *J* = 7.6, 1.2 Hz, 1H), 7.45 – 7.30 (m, 7H), 4.28 (dt, *J* = 47.5, 5.9 Hz, 2H), 4.07 (t, *J* = 6.1 Hz, 2H), 1.53 – 1.30 (m, 4H).

¹³C NMR (126 MHz, CDCl₃): δ 169.13, 142.32, 141.69, 131.33, 131.24, 130.78, 129.91, 128.45, 128.21, 127.33, 127.30, 83.53 (d, J = 164.8 Hz), 64.50, 26.81 (d, J = 19.8 Hz), 24.25 (d, J = 5.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃): -219.01 (tt, J = 47.6, 26.0 Hz).

HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₇H₁₇FO₂Na: 295.1105, found: 295.1109.

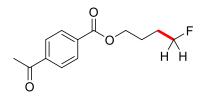

The product **14** was purified with silica gel chromatography (PE/EA = 8:1) as a colorless oil (40.8 mg, 75% yield).

<u>**H NMR**</u> (500 MHz, CDCl₃): δ 8.02 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 7.2 Hz, 2H), 7.41 – 7.31 (m, 2H), 7.30 (t, J = 7.3 Hz, 1H), 4.44 (dt, J = 47.6, 5.7 Hz, 2H), 4.30 (t, J = 6.2 Hz, 2H), 1.89 – 1.69 (m, 4H).

<u>13</u>C NMR (126 MHz, CDCl₃): δ 166.54, 145.77, 140.08, 130.17, 129.09, 129.04, 128.26, 127.37, 127.16, 83.64 (d, J = 165.2 Hz), 64.51, 27.32 (d, J = 19.9 Hz), 24.93 (d, J = 5.1 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃): δ -218.78 (tt, J = 47.4, 25.7 Hz).

HRMS ESI (m/z): [M+Na] ⁺ calcd. for C₁₇H₁₇FO₂Na: 295.1105, found: 295.1113.

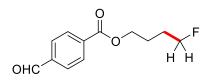


The product **15** was purified with silica gel chromatography (PE/EA = 10:1) as a colorless oil (42.8 mg, 87% yield).

¹<u>H NMR</u> (500 MHz, CDCl₃): δ 8.93 (d, J = 8.7 Hz, 1H), 8.19 (dd, J = 7.3, 1.1 Hz, 1H), 8.03 (d, J = 8.2 Hz, 1H), 7.89 (d, J = 8.1 Hz, 1H), 7.63 (m, 1H), 7.58 – 7.46 (m, 2H), 4.56 (dt, J = 47.6, 5.6 Hz, 2H), 4.44 (t, J = 6.1 Hz, 2H), 2.04 – 1.85 (m, 4H).

<u>1³C NMR</u> (126 MHz, CDCl₃): 166.88, 135.66, 132.61, 131.14, 129.49, 128.40, 128.31, 127.91, 127.62, 126.80, 125.32, 83.71 (d, J = 165.1 Hz), 64.69, 27.38 (d, J = 20.1 Hz), 24.99 (d, J = 5.1 Hz). <u>1⁹F NMR</u> (376 MHz, CDCl₃): δ -218.79 (tt, J = 47.5, 26.1 Hz).

HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₅H₁₅FO₂Na: 269.0954, found: 269.0951.

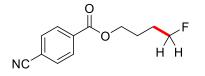

The product **16** was purified with silica gel chromatography (PE/EA = 10:1) as a colorless oil (35.7 mg, 75% yield).

<u>**1H NMR**</u> (400 MHz, CDCl₃): δ 8.13 (d, J = 8.4 Hz, 2H), 8.02 (d, J = 8.4 Hz, 2H), 4.54 (dt, J = 47.5, 5.6 Hz, 2H), 4.41 (t, J = 6.2 Hz, 2H), 2.65 (s, 3H), 2.01 – 1.79 (m, 4H).

 $\frac{^{13}\text{C NMR}}{^{13}\text{C NMR}} (101 \text{ MHz, CDCl}_3): \delta 197.64, 165.79, 140.35, 134.11, 129.90, 128.33, 83.58 (d,$ *J*= 165.2 Hz), 64.99, 27.26 (d,*J*= 20.1 Hz), 27.00, 24.88 (d,*J*= 4.9 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃): δ -218.91 (tt, *J* = 46.8, 25.4 Hz).

HRMS ESI (m/z): [M+H] ⁺calcd. for C₁₃H₁₆FO₃: 239.1078, found: 239.1074.

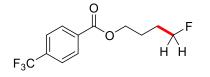

The product **17** was purified with silica gel chromatography (PE/EA = 6:1) as a colorless oil (30.5 mg, 68% yield).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 10.11 (s, 1H), 8.27 – 8.15 (m, 2H), 7.96 (d, *J* = 8.1 Hz, 2H), 4.54 (dt, *J* = 47.6, 5.7 Hz, 2H), 4.42 (t, *J* = 6.3 Hz, 2H), 2.04 – 1.75 (m, 4H).

¹³C NMR (126 MHz, CDCl₃): δ 191.81, 165.68, 139.30, 135.35, 130.30, 129.68, 83.59 (d, J = 165.3 Hz), 65.19, 27.28 (d, J = 20.2 Hz), 24.91 (d, J = 5.1 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃): δ -218.89 (tt, *J* = 51.1, 25.9Hz).

HRMS ESI (m/z): [M+H]⁺ calcd. for C₁₂H₁₄FO₃: 225.0921, found: 225.0925.

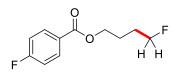

The product **18** was purified with silica gel chromatography (PE/EA = 6:1) as a colorless oil (31.0 mg, 70% yield).

<u>¹H NMR</u> (400 MHz, CDCl₃): δ 8.14 (d, *J* = 8.4 Hz, 2H), 7.76 (d, *J* = 8.4 Hz, 2H), 4.53 (dt, *J* = 47.5, 5.6 Hz, 2H), 4.42 (t, *J* = 6.2 Hz, 2H), 1.99 – 1.80 (m, 4H).

<u>1³C NMR</u> (126 MHz, CDCl₃): δ 165.03, 134.19, 132.38, 130.20, 118.10, 116.57, 83.53 (d, *J* = 165.5 Hz), 65.39, 27.25 (d, *J* = 20.2 Hz), 24.91 (d, *J* = 4.8 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃): δ -219.00 (tt, J = 47.2, 26.0 Hz).

HRMS ESI (m/z): [M+Na] ⁺calcd. for C₁₂H₁₂FO₂NNa:244.0744, found: 244.0737.

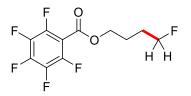

The product **19** was purified with silica gel chromatography (PE/EA = 8:1) as a colorless oil (38.6 mg, 73% yield).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 8.16 (d, J = 8.1 Hz, 2H), 7.71 (d, J = 8.2 Hz, 2H), 4.53 (dt, J = 47.6, 5.7 Hz, 2H), 4.41 (t, J = 6.2 Hz, 2H), 2.01 – 1.82 (m, 4H).

 $\frac{^{13}\text{C NMR}}{^{126}}$ (126 MHz, CDCl₃): δ 165.47, 134.58 (q, *J* = 32.7 Hz), 133.58, 130.09, 125.56 (q, *J* = 3.7 Hz), 123.76 (q, *J* = 272.6 Hz), 83.59 (d, *J* = 165.3 Hz), 65.12, 27.28 (d, *J* = 20.1 Hz), 24.91 (d, *J* = 4.9 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃): δ -63.11 (s, 3F), -218.98 (tt, J = 47.4, 25.5 Hz, 1F).

<u>HRMS</u> ESI (m/z): $[M+H]^+$ calcd. for C₁₂H₁₃F₄O₂: 265.0846, found: 265.0840.

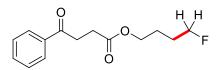

The product **20** was purified with silica gel chromatography (PE/EA = 12:1) as a colorless oil (31.3 mg, 73% yield).

<u>**1H NMR**</u> (400 MHz, CDCl₃): δ 8.27 – 7.65 (m, 2H), 7.17 – 7.04 (m, 2H), 4.52 (dt, *J* = 47.4, 5.6 Hz, 2H), 4.37 (t, *J* = 6.3 Hz, 2H), 1.98 – 1.78 (m, 4H).

 $\frac{^{13}\text{C NMR}}{^{126}\text{ MHz}, \text{CDCl}_3): \delta 165.91 \text{ (d, } J = 253.8 \text{ Hz}), 165.73, 132.22 \text{ (d, } J = 9.4 \text{ Hz}), 126.64 \text{ (d, } J = 2.9 \text{ Hz}), 115.67 \text{ (d, } J = 22.0 \text{ Hz}), 83.62 \text{ (d, } J = 165.3 \text{ Hz}), 64.67, 27.31 \text{ (d, } J = 20.1 \text{ Hz}), 24.93 \text{ (d, } J = 5.0 \text{ Hz}).$

¹⁹**F NMR** (376 MHz, CDCl₃): δ -105.71 (tt, J = 8.4, 5.5 Hz, 1F), -218.87 (dt, J = 47.3, 25.7 Hz, 1F)

<u>HRMS</u> ESI (m/z): $[M+Na]^+$ calcd. for C₁₁H₁₂F₂O₂Na: 237.0698, found: 237.0687.

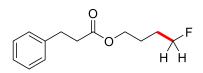

The product **21** was purified with silica gel chromatography (PE/EA = 10:1) as a colorless oil (34.3 mg, 60% yield).

¹<u>H NMR</u> (500 MHz, CDCl₃): δ 4.57 (t, *J* = 5.5 Hz, 1H), 4.45 (td, *J* = 6.1, 5.9, 4.6 Hz, 3H), 1.97 – 1.75 (m, 4H).

<u>1³C NMR</u> (101 MHz, CDCl₃): δ 159.18, 83.46 (d, J = 165.3 Hz), 66.41, 27.06 (d, J = 20.2 Hz), 24.74 (d, J = 4.7 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃): δ -136.25 – -141.78 (m, 2F), -148.55 (tt, J = 21.0, 4.8Hz, 1F), -160.20 – -160.48 (m, 2F), -219.30 (tt, J = 47.2, 26.4 Hz, 1F).

<u>HRMS</u> ESI (m/z): $[M+H]^+$ calcd. for C₁₁H₉F₆O₂: 287.0501, found: 287.0512.

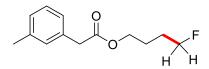

The product **22** was purified with silica gel chromatography (PE/EA = 10:1) as a colorless oil (37.8 mg, 75% yield).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 8.01 – 7.93 (m, 2H), 7.63 – 7.54 (m, 1H), 7.52 – 7.39 (m, 2H), 4.47 (dt, J = 47.2, 5.7 Hz, 2H), 4.16 (t, J = 6.2 Hz, 2H), 3.33 (t, J = 6.6 Hz, 2H), 2.77 (t, J = 6.6 Hz, 2H), 1.83 – 1.67 (m, 4H).

 $\frac{^{13}\text{C NMR}}{^{13}\text{C NMR}}$ (101 MHz, CDCl₃): δ 198.23, 173.05, 136.65, 133.40, 128.77, 128.17, 83.67 (d, *J* = 164.8 Hz), 64.25, 33.49, 28.35, 27.17 (d, *J* = 20.0 Hz), 24.77 (d, *J* = 5.1 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃): δ -218.89 (tt, J = 47.4, 26.3 Hz).

HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₄H₁₇FO₃Na: 275.1054, found: 275.1065.

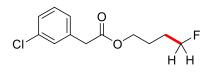


The product **23** was purified with silica gel chromatography (PE/EA = 20:1) as a colorless oil (43.5 mg, 60% yield).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 7.35 – 7.25 (m, 2H), 7.24 – 7.15 (m, 3H), 4.44 (dt, *J* = 47.6, 5.2 Hz, 2H), 4.11 (t, *J* = 6.1 Hz, 2H), 2.95 (t, *J* = 7.8 Hz, 2H), 2.64 (t, *J* = 7.8 Hz, 2H), 1.83 – 1.62 (m, 4H). ¹³<u>C NMR</u> (126 MHz, CDCl₃): δ 173.05, 140.56, 128.62, 128.41, 126.39, 83.63 (d, *J* = 165.0 Hz), 64.00, 35.99, 31.09, 27.11 (d, *J* = 20.0 Hz), 24.74 (d, *J* = 5.0 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃): δ -218.86 (tt, J = 47.8, 26.1 Hz).

HRMS ESI (m/z): [M+H]⁺ calcd. for C₁₃H₁₇FO₂Na: 247.1105 found: 247.1108.

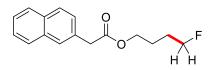

The product **24** was purified with silica gel chromatography (PE/EA = 12:1) as a colorless oil (29.2 mg, 65% yield).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 7.20 (s, 1H), 7.18 (m, 3H), 4.42 (dt, *J* = 47.5, 5.4 Hz, 2H), 4.13 (t, *J* = 6.2 Hz, 2H), 3.64 (s, 2H), 2.32 (s, 3H), 1.94 – 1.62 (m, 4H).

¹³C NMR (101 MHz, CDCl₃): δ 171.64, 136.88, 132.86, 130.45, 130.23, 127.52, 126.25, 83.60 (d, J = 165.0 Hz), 64.37, 39.34, 27.09 (d, J = 20.0 Hz), 24.70 (d, J = 5.1 Hz), 19.74.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -218.83 (tt, J = 47.3, 25.7 Hz).

HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₃H₁₇FO₂Na: 247.1105, found: 247.1103.

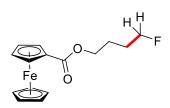

The product **25** was purified with silica gel chromatography (PE/EA = 10:1) as a colorless oil (34.3 mg, 70% yield).

<u>¹H NMR</u> (400 MHz, CDCl₃): δ 7.28 (s, 1H), 7.26 (d, *J* = 1.0 Hz, 1H), 7.25 (d, *J* = 1.3 Hz, 1H), 7.16 (m, 1H), 4.44 (dt, *J* = 47.3, 5.6 Hz, 2H), 4.15 (t, *J* = 6.2 Hz, 2H), 3.60 (s, 2H), 1.81 – 1.64 (m, 4H).

¹³C NMR (101 MHz, CDCl₃): δ 171.06, 135.92, 134.39, 129.91, 129.54, 127.60, 127.47, 83.57 (d, J = 165.0 Hz), 64.64, 41.03, 27.07 (d, J = 20.1 Hz), 24.70 (d, J = 5.0 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃): δ -218.89 (tt, J = 47.5, 26.1 Hz).

HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₂H₁₄ClFO₂Na: 267.0559, found: 267.0557.

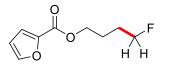

The product **26** was purified with silica gelchromatography (PE/EA = 10:1) as a colorless oil (33.8 mg, 65% yield).

<u>**H NMR**</u> (400 MHz, CDCl₃): δ 7.99 (d, J = 8.5 Hz, 1H), 7.86 (dd, J = 8.2, 1.4 Hz, 1H), 7.79 (dd, J = 7.6, 2.1 Hz, 1H), 7.58 – 7.44 (m, 2H), 7.47 – 7.37 (m, 2H), 4.33 (dt, J = 47.5, 5.8 Hz, 2H), 4.12 (t, J = 6.3 Hz, 2H), 4.07 (s, 2H), 1.76 – 1.50 (m, 4H).

<u>13C</u> NMR (126 MHz, CDCl₃): δ 171.69, 133.89, 132.15, 130.67, 128.85, 128.18, 128.10, 126.44, 125.90, 125.60, 123.86, 83.51 (d, J = 165.0 Hz), 64.46, 39.39, 26.99 (d, J = 20.0 Hz), 24.63 (d, J = 5.1 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃): δ -218.88 (tt, J = 47.5, 25.7 Hz).

<u>HRMS</u> ESI (m/z): $[M+H]^+$ calcd. for C₁₆H₁₈FO₂: 261.1285, found: 261.1288.

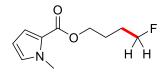

The product **27** was purified with silica gel chromatography (PE/EA = 3:1) as a red oil (47.4 mg, 78% yield).

<u>**1H NMR**</u> (500 MHz, CDCl₃): δ 4.81 (t, J = 1.9 Hz, 2H), 4.54 (dt, J = 47.0, 5.2 Hz, 2H), 4.43 – 4.36 (m, 2H), 4.27 (t, J = 5.9 Hz, 2H), 4.20 (s, 5H), 1.95 – 1.76 (m, 4H).

¹³C NMR (126 MHz, CDCl₃): 171.84, 83.72 (d, *J* = 165.1 Hz), 71.30, 71.43, 70.25, 69.87, 63.77, 27.39 (d, *J* = 20.1 Hz), 25.09 (d, *J* = 5.1 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃): δ -218.60 (tt, J = 47.2, 25.9 Hz).

HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₅H₁₇FO₂FeNa: 327.0454, found: 327.0455.

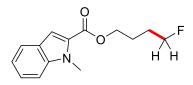

The product **28** was purified with silica gel chromatography (PE/EA = 5:1) as a colorless oil (20.5 mg, 55% yield).

¹<u>H NMR</u> (500 MHz, CDCl₃): δ 7.57 (dd, J = 1.7, 0.8 Hz, 1H), 7.17 (dd, J = 3.5, 0.8 Hz, 1H), 6.51 (dd, J = 3.5, 1.7 Hz, 1H), 4.50 (dt, J = 47.3, 5.7 Hz, 2H), 4.35 (t, J = 6.3 Hz, 2H), 1.94 – 1.77 (m, 4H).

<u>1³C NMR</u> (126 MHz, CDCl₃): δ 158.86, 146.46, 144.79, 118.03, 111.97, 83.60 (d, *J* = 165.1 Hz), 64.47,
27.19 (d, *J* = 20.1 Hz), 24.89 (d, *J* = 5.3 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃): δ -218.88 (tt, *J* = 47.2, 25.2 Hz).

HRMS ESI (m/z): [M+Na]⁺ calcd. for C₉H₁₁FO₃Na: 209.0584, found: 209.0589.

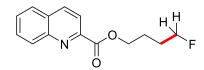

The product **29** was purified with silica gel chromatography (PE/EA = 5:1) as a colorless oil (27.9 mg, 70% yield).

 $\frac{1}{11} \text{ NMR} (500 \text{ MHz, CDCl}_3): \delta 6.94 (dd, J = 3.8, 1.6 \text{ Hz}, 1\text{H}), 6.78 (t, J = 2.2 \text{ Hz}, 1\text{H}), 6.11 (dd, J = 3.6, 2.7 \text{ Hz}, 1\text{H}), 4.51 (dt, J = 47.2, 5.6 \text{ Hz}, 2\text{H}), 4.27 (t, J = 6.0 \text{ Hz}, 2\text{H}), 3.92 (s, 3\text{H}), 1.92 - 1.76 (m, 4\text{H}).$

<u>1³C NMR</u> (126 MHz, CDCl₃): δ 161.42, 129.68, 122.62, 117.91, 107.98, 83.73 (d, J = 165.0 Hz), 63.32, 36.95, 27.38 (d, J = 20.2 Hz), 25.01 (d, J = 5.4 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃): δ -218.74 (tt, J = 46.7, 25.7 Hz).

<u>HRMS</u> ESI (m/z): $[M+H]^+$ calcd. for C₁₀H₁₄FNO₂: 200.1081, found: 200.1085.

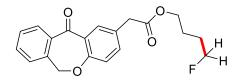

The product **30** was purified with silica gel chromatography (PE/EA = 8:1) as a colorless oil (31.4 mg, 63% yield).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 7.67 (dt, J = 8.1, 1.0 Hz, 1H), 7.41 – 7.33 (m, 2H), 7.29 (d, J = 0.9 Hz, 1H), 7.15 (m, 1H), 4.53 (dt, J = 47.3, 5.6 Hz, 2H), 4.36 (t, J = 6.2 Hz,2H), 4.07 (s, 3H), 2.02 – 1.82 (m, 4H).

 $\frac{^{13}\text{C NMR}}{^{11}\text{MHz}}$ (101 MHz, CDCl₃): δ 162.30, 139.75, 127.79, 125.90, 125.13, 122.67, 120.69, 110.37, 110.27, 83.69 (d, *J* = 165.0 Hz), 64.05, 31.74, 27.33 (d, *J* = 20.1 Hz), 24.91 (d, *J* = 5.1 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃): δ -218.77 (tt, *J* = 47.5, 25.7Hz).

<u>HRMS</u> ESI (m/z): $[M+H]^+$ calcd. for C₁₄H₁₇FNO₂: 250.1238, found: 250.1243.


The product **31** was purified with silica gel chromatography (PE/EA = 5:1) as a colorless oil (29.7 mg, 60% yield).

<u>**H NMR**</u> (400 MHz, CDCl₃): δ 8.32 (m, 2H), 8.17 (d, J = 8.5 Hz, 1H), 7.89 (dd, J = 8.2, 1.5 Hz, 1H), 7.83 – 7.72 (m, 1H), 7.69 – 7.60 (m, 1H), 4.55 (dt, J = 47.4, 5.9 Hz, 2H), 4.55 (t, J = 6.5 Hz, 2H), 2.12 – 1.82 (m, 4H).

 $\frac{^{13}\text{C NMR}}{^{12}\text{C NMR}}$ (126 MHz, CDCl₃): δ 165.47, 148.15, 147.75, 137.39, 130.92, 130.37, 129.41, 128.73, 127.64, 121.09, 83.64 (d, *J* = 165.3 Hz), 65.67, 27.21 (d, *J* = 20.0 Hz), 24.91 (d, *J* = 5.1 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃): δ -218.73 (tt, J = 47.1, 25.4 Hz).

<u>HRMS</u> ESI (m/z): $[M+H]^+$ calcd. for C₁₄H₁₅FNO₂: 248.1081, found: 248.1078.

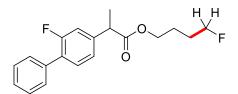

The product **32** was purified with silica gel chromatography (PE/EA = 5:1) as a colorless oil (47.9 mg, 70% yield).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 8.11 (d, J = 2.3 Hz, 1H), 7.88 (dd, J = 7.7, 1.0 Hz, 1H), 7.55 (td, J = 7.4, 1.3 Hz, 1H), 7.50 – 7.39 (m, 2H), 7.36 (d, J = 7.4 Hz, 1H), 7.02 (d, J = 8.4 Hz, 1H), 5.18 (s, 2H), 4.44 (dt, J = 47.4, 5.5 Hz, 2H), 4.14 (t, J = 6.2 Hz, 2H), 3.64 (s, 2H), 1.81 – 1.66 (m, 4H).

<u>**13C**NMR</u> (101 MHz, CDCl₃): δ 190.89, 171.47, 160.56, 140.51, 136.39, 135.64, 132.87, 132.50, 129.55, 129.34, 127.90, 127.89, 125.22, 121.14, 83.52 (d, *J* = 165.1 Hz), 73.70, 64.50, 40.31, 27.08 (d, *J* = 20.0 Hz), 24.69 (d, *J* = 5.1 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃): δ -218.81 (tt, J = 47.3, 25.7 Hz).

HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₀H₁₉FO₄Na: 365.1165, found: 365.1160.

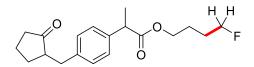

The product **33** was purified with silica gel chromatography (PE/EA = 5:1) as a colorless oil (39.2 mg, 70% yield).

<u>¹H NMR</u> (400 MHz, CDCl₃): δ 7.19 (d, *J* = 8.1 Hz, 2H), 7.09 (d, *J* = 8.1 Hz, 2H), 4.37 (dt, *J* = 47.5, 5.8 Hz, 2H), 4.10 (m, 2H), 3.68 (d, *J* = 7.2 Hz, 1H), 2.44 (d, *J* = 7.2 Hz, 2H), 1.90-1.78 (m, 1H), 1.74 – 1.57 (m, 4H), 1.49 (d, *J* = 7.2 Hz, 3H), 0.89 (d, *J* = 6.6 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃): δ 174.84, 140.66, 137.90, 129.43, 127.25, 83.53 (d, J = 165.0 Hz), 64.14, 45.29, 45.14, 30.31, 27.03 (d, J = 20.0 Hz), 24.68 (d, J = 5.2 Hz), 22.47, 18.47.

¹⁹**F** NMR (376 MHz, CDCl₃): δ -218.87 (tt, J = 47.2, 25.7 Hz).

HRMS ESI (m/z): [M+H]⁺ calcd. for C₁₇H₂₆FO₂: 281.1911, found: 281.1913.

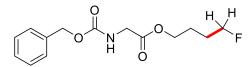

The product **34** was purified with silica gel chromatography (PE/EA = 8:1) as a colorless oil (42.7 mg, 67% yield).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 7.62 – 7.50 (m, 2H), 7.48 – 7.34 (m, 4H), 7.21 – 7.08 (m, 2H), 4.43 (dt, J = 47.4, 5.6 Hz, 2H), 4.16 (t, J = 6.3 Hz, 2H), 3.77 (q, J = 7.1 Hz, 1H), 1.82 – 1.71 (m, 3H), 1.69 – 1.63 (m, 1H), 1.55 (d, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 174.07, 159.77 (d, J = 248.5 Hz), 141.93 (d, J = 7.7 Hz), 135.57, 130.91 (d, J = 4.0 Hz), 129.05 (d, J = 2.8 Hz), 128.57, 127.92 (d, J = 13.7 Hz), 127.79, 123.64 (d, J = 3.5 Hz), 115.32 (d, J = 23.8 Hz), 83.53 (d, J = 165.2 Hz), 64.52, 45.15 (d, J = 1.6 Hz), 27.05 (d, J = 19.9 Hz), 24.69 (d, J = 5.0 Hz), 18.40.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -117.63 – -117.73 (m), -218.84 (tt, J = 47.4, 25.9 Hz)..

<u>HRMS</u> ESI (m/z): $[M+Na]^+$ calcd. for C₁₉H₂₀F₂O₂Na: 341.1324 found: 341.1331.

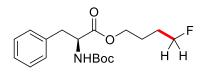


The product **35** was purified with silica gel chromatography (PE/EA = 6:1) as a colorless oil (46.8 mg, 73% yield).

¹<u>H NMR</u> (400 MHz, CDCl₃): δ 7.20 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H), 4.38 (dt, J = 47.5, 5.7 Hz, 2H), 4.10 (t, J = 6.2 Hz, 2H), 3.69 (q, J = 7.1 Hz, 1H), 3.12 (dd, J = 13.9, 4.1 Hz, 1H), 2.51 (dd, J = 13.9, 9.5 Hz, 1H), 2.38 – 2.29 (m, 2H), 2.16 – 2.01 (m, 2H), 1.99 – 1.92 (m, 1H), 1.76 – 1.65 (m, 4H), 1.65 – 1.58 (m, 2H), 1.48 (d, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 220.34, 174.74, 139.02, 138.51, 129.25, 127.64, 83.56 (d, J = 165.2 Hz), 64.25, 51.11, 45.29, 38.32, 35.32, 29.34, 27.07 (d, J = 20.2 Hz), 24.69 (d, J = 5.3 Hz), 20.67, 18.51. ¹⁹F NMR (376 MHz, CDCl₃): δ -218.75 (tt, J = 47.5, 25.6 Hz).

HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₂₅FO₃Na: 343.1680, found: 343.1689.

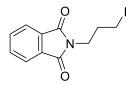

The product **36** was purified with silica gel chromatography (PE/EA = 8:1) as a colorless oil (46.5 mg, 82% yield).

<u>**1H NMR**</u> (400 MHz, CDCl₃): δ 7.41 – 7.29 (m, 5H), 5.34 (s, 1H), 5.12 (s, 2H), 4.46 (dt, *J* = 47.2, 5.5 Hz, 2H), 4.19 (t, *J* = 6.1 Hz, 2H), 3.97 (d, *J* = 5.6 Hz, 2H), 1.97 – 1.62 (m, 4H).

<u>1³C NMR</u> (126 MHz, CDCl₃): δ 170.12, 156.37, 136.29, 128.62, 128.30, 128.21, 83.48 (d, J = 165.2 Hz), 67.18, 64.97, 42.81, 26.98 (d, J = 20.0 Hz), 24.68 (d, J = 4.8 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃): δ -218.96 (tt, J = 47.0, 26.8 Hz).

HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₄H₁₈FNO₄Na: 306.1112, found: 306.1111.

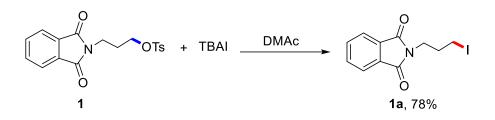


The product **37** was purified with silica gel chromatography (PE/EA = 8:1) as a colorless oil (50.2 mg, 74% yield).

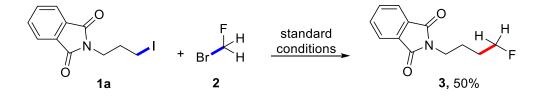
¹<u>H NMR</u> (500 MHz, CDCl₃): δ 7.27 (m, 3H), 7.14 (d, J = 7.2 Hz, 2H), 5.00 (d, J = 8.0 Hz, 1H), 4.57 (dd, J = 14.1, 6.4 Hz, 1H), 4.42 (dt, J = 47.4, 5.6 Hz, 2H), 4.19 – 4.06 (m, 2H), 3.15 – 3.00 (m, 2H), 1.81 – 1.58 (m, 4H), 1.42 (s, 9H).

¹³C NMR (126 MHz, CDCl₃): δ 172.10, 155.19, 136.16, 129.41, 128.67, 127.13, 83.48 (d, J = 165.3 Hz), 80.04, 64.83, 54.64, 38.62, 28.41, 27.00 (d, J = 20.1 Hz), 24.66 (d, J = 5.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃): δ -219.01 (tt, J = 47.1, 25.6 Hz).

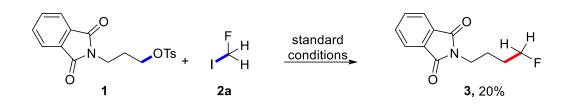
HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₈H₂₆FNO₄Na: 362.1738, found: 362.1743.


The product was purified with silica gel chromatography (PE/EA = 10:1) as a white solid (49.2 mg, 78% yield).

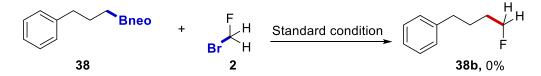
¹<u>H NMR</u> (500 MHz, CDCl₃): δ 7.85 (dd, J = 5.4, 3.1 Hz, 2H), 7.73 (dd, J = 5.5, 3.1 Hz, 2H), 3.78 (t, J = 6.8 Hz, 2H), 3.17 (t, J = 7.1 Hz, 2H), 2.30 – 2.22 (m, 2H).


¹³C NMR (126 MHz, CDCl₃): δ 168.35, 134.18, 132.09, 123.45, 38.76, 32.68, 1.33.

Mechanistic Studies


In-situ generation of 1a

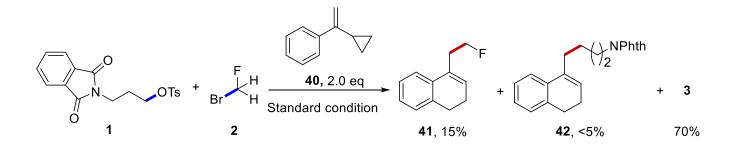
In glove box, alkyl tosylate 1 (1.0 equiv, 0.2 mmol, 72 mg), Tetrabutylammonium iodide (2.0 equiv, 0.4 mmol, 148 mg) were combined in a 5 mL oven-dried sealing tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times) and *N*, *N*-Dimethylacetamide (1.0 mL) were then added via syringe. The tube was sealed with a Teflon lined cap and heated in a preheated oil bath at 60 °C for 24 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (~20 mL). The filtrate was added brine (20 mL) and extracted with EtOAc (2×15 mL), the combined organic layer was dried over Na₂SO₄, filtrated and concentrated under vacuum. The residue was then purified by flash column chromatography to give product **1a** in 78% yield.



In glove box, NiCl₂•DME (10 mol %, 0.02 mmol, 4.4 mg), L₁ (13.5 mol%, 0.027 mmol, 4.0 mg), Bis(neopentyl glycolato)diboron (2.0 equiv, 0.4 mmol, 90.4 mg), K₂CO₃ (2.5 equiv, 0.5 mmol, 69 mg) were combined in a 5 mL oven-dried sealing tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times), and alkyl idioine **1a** (1.0 equiv, 0.2 mmol), **2** (2.0 equiv, 0.4 mmol) and *N*, *N*-Dimethylacetamide (1.0 mL) were then added via syringe. The tube was sealed with a Teflon lined cap and heated in a preheated oil bath at 60 °C for 24 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (~20 mL) and filtered through a pad of celite. The filtrate was added brine (20 mL) and extracted with EtOAc (2×15 mL), the combined organic layer was dried over Na₂SO₄, filtrated and concentrated under vacuum. The residue was then purified by flash column chromatography to give product **3** in 50% yield.

In glove box, NiCl₂•DME (10 mol%, 0.02 mmol, 4.4 mg), L_1 (13.5 mol%, 0.027 mmol, 4.0 mg), Bis(neopentyl glycolato)diboron (2.0 equiv, 0.4 mmol, 90.4 mg), K₂CO₃ (2.5 equiv, 0.5 mmol, 69.0 mg) were combined in a 5 mL oven-dried sealing tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times), and alkyl tosylate 1 (1.0 equiv, 0.2 mmol), 2a (2.0 equiv, 0.4 mmol) and *N*, *N*-Dimethylacetamide (1.0 mL) were then added via syringe. The tube was sealed with a Teflon lined cap and heated in a preheated oil bath at 60 °C for 24 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (~20 mL) and filtered through a pad of celite. The filtrate was added brine (20 mL) and extracted with EtOAc (2×15 mL), the combined organic layer was dried over Na₂SO₄, filtrated and concentrated under vacuum. The residue was then purified by flash column chromatography to give product 3 in 20% yield.

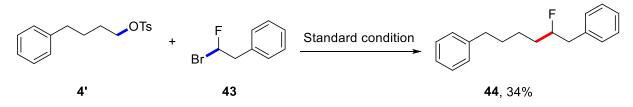
In-situ Suzuki process


In glove box, NiCl₂•DME (10 mol%, 0.02 mmol, 4.4 mg), L₁ (13.5 mol%, 0.027 mmol, 4.0 mg), Bis(neopentyl glycolato)diboron (2.0 equiv, 0.4 mmol, 90.4 mg), K₂CO₃ (2.5 equiv, 0.5 mmol, 69 mg) and Tetrabutylammonium iodide (2.0 equiv, 0.4 mmol, 148 mg) were combined in a 5 mL oven-dried sealing tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times), and alkyl-Bneo **38** (1.0 equiv, 0.2 mmol), **2** (2.0 equiv, 0.4 mmol) and *N*, *N*-Dimethylacetamide (1.0 mL) were then added via syringe. The tube was sealed with a Teflon lined cap and heated in a preheated oil bath at 60 °C for 24 h. The reaction mixture was then cooled to room temperature. No product **38b** was detected by crude ¹⁹F NMR.

Radical Trapping Experiment with TEMPO.

In glove box, NiCl₂•DME (10 mol%, 0.02 mmol, 4.4 mg), L₁ (13.5 mol%, 0.027 mmol, 4.0 mg), Bis(neopentyl glycolato)diboron (2.0 equiv, 0.4 mmol, 90.4 mg), Tetrabutylammonium iodide (2.0 equiv, 0.4 mmol, 148 mg) and K₂CO₃ (2.5 equiv, 0.5 mmol, 69 mg) were combined in a 5 mL ovendried sealing tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times), radical inhibitors (TEMPO, 2.0 equiv, 0.4 mmol), alkyl tosylate **39** (1.0 equiv, 0.2 mmol), **2** (2.0 equiv, 0.4 mmol) and *N*, *N*-Dimethylacetamide (1.0 mL) were then added via syringe. The tube was sealed with a Teflon lined cap and heated in a preheated oil bath at 60 °C for 24 h. The reaction mixture was then cooled to room temperature. No product **38b** was detected by crude ¹⁹F NMR.

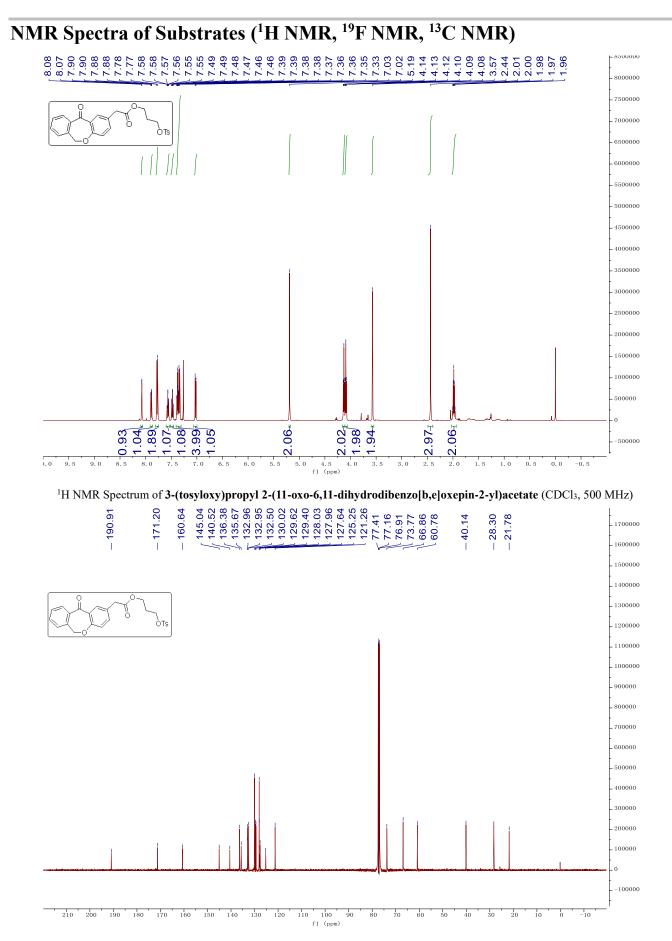
Radical Clock Experiment:

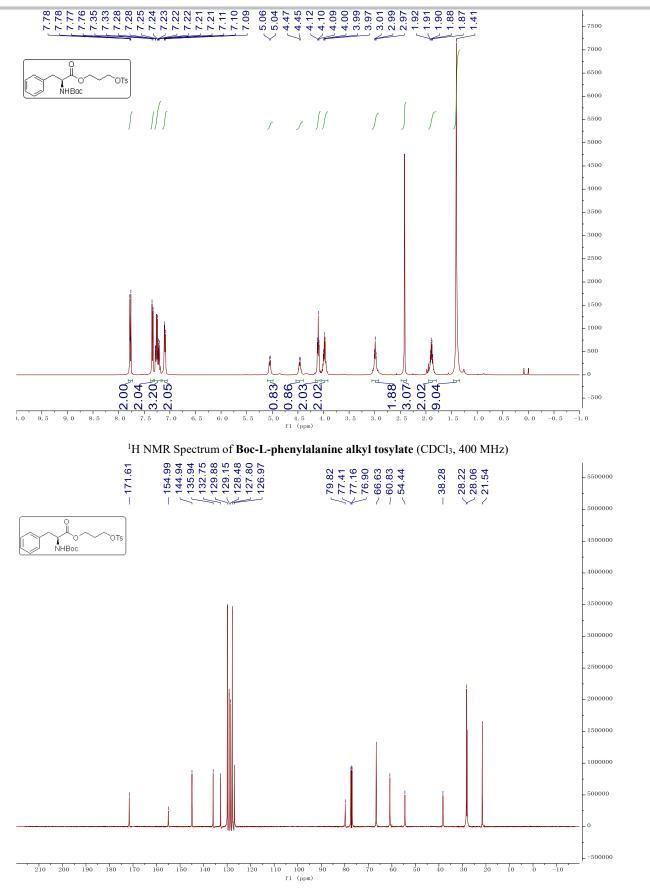


In glove box, NiCl₂•DME (10 mol%, 0.02 mmol, 4.4 mg), L₁ (13.5 mol%, 0.027 mmol, 4.0 mg), Bis(neopentyl glycolato)diboron (2.0 equiv, 0.4 mmol, 90.4 mg), K₂CO₃ (2.5 equiv, 0.5 mmol, 69 mg) and Tetrabutylammonium iodide (2.0 equiv, 0.4 mmol, 148 mg) were combined in a 5 mL oven-dried sealing tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times), and alkyl tosylate 1 (1.0 equiv, 0.2 mmol), 2 (2.0 equiv, 0.4 mmol) and *N*, *N*-Dimethylacetamide (1.0 mL) were then added via syringe. The tube was sealed with a Teflon lined cap and heated in a preheated oil bath at 60 °C for 24 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (~20 mL) and filtered through a pad of celite. The filtrate was added brine (20 mL) and extracted with EtOAc (2×15 mL), the combined organic layer was dried over Na₂SO₄, filtrated and concentrated under vacuum. The residue was then purified by flash column chromatography to give product **3** in 70% yield. The yield of product **41** was determined by crude ¹⁹F NMR. Note: The structures of **41** and **42** were determined by GC-MS and HRMS. Compound **41**: HRMS ESI (m/z): $[M+H]^+$ calcd. for C₁₂H₁₄F: 177.1074, found: 177.1113. Compound **42**: HRMS ESI (m/z): $[M+H]^+$ calcd. for C₂₂H₂₁NNaO₂⁺: 354.1465, found: 354.1471.

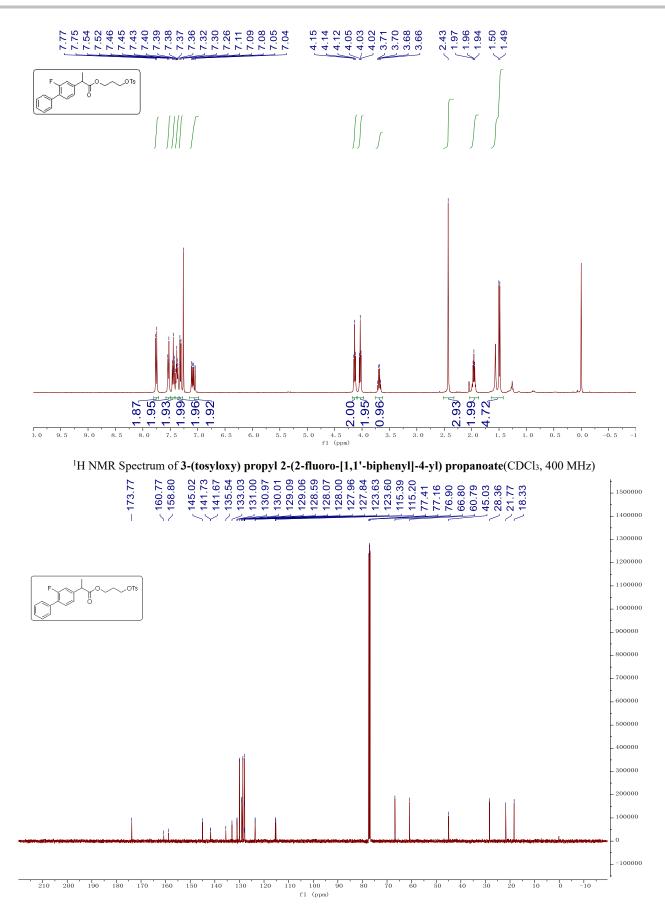
Large scale reaction:

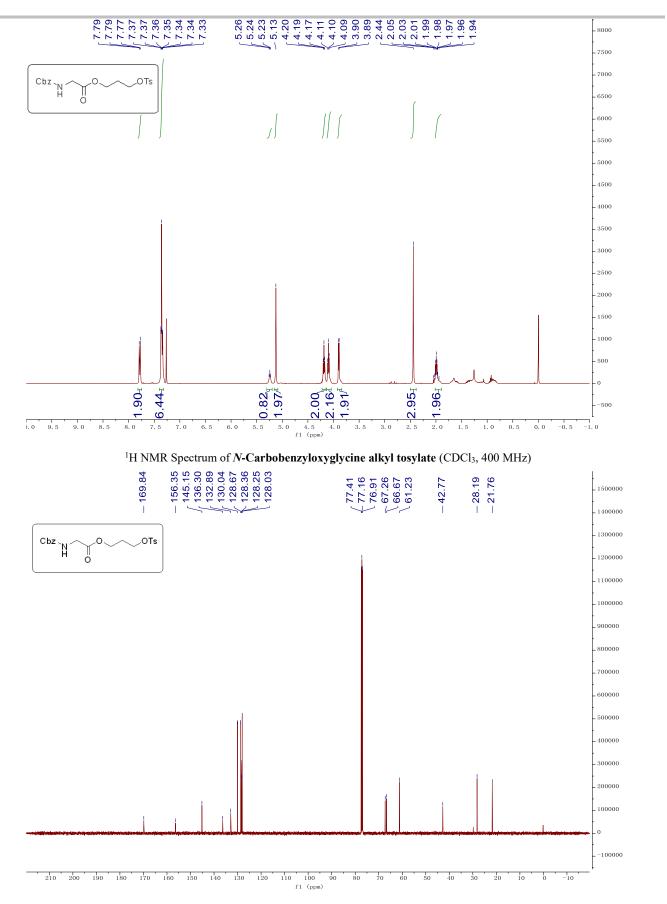
In glove box, NiCl₂•DME (10 mol%, 0.5 mmol, 110 mg), L₁ (13.5 mol%, 0.675 mmol, 99 mg), Bis(neopentyl glycolato)diboron (2.0 equiv, 10 mmol, 2.3 g), K₂CO₃ (2.5 equiv, 12.5 mmol, 1.7 g) and Tetrabutylammonium iodide (2.0 equiv, 10 mmol, 3.7 g) were combined in a 100 mL round-bottom flask. The vessel was evacuated and backfilled with N₂ (repeated for 3 times), and alkyl tosylate **1** (1.0 equiv, 5 mmol), Bromofluoromethane **2** (2.0 equiv, 10 mmol dissolved in DMAc) and *N*, *N*-Dimethylacetamide (30 mL) were then added via syringe. The tube was sealed with a Teflon lined cap and heated in a preheated oil bath at 60 °C for 24 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (~20 mL) and filtered through a pad of celite. The filtrate was added brine (2×20 mL) and extracted with EtOAc (2×25 mL), the combined organic layer was dried over Na₂SO₄, filtrated and concentrated under vacuum. The residue was then purified by flash column chromatography to give desired product **3** as a colorless solid.

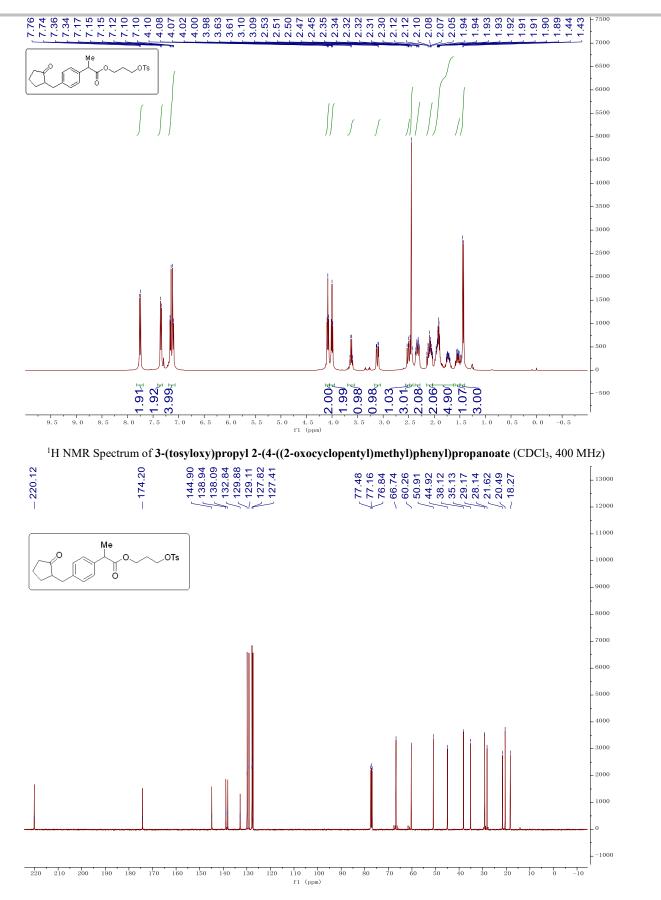

Monofluoroalkylation of Alkyl Tosylate:

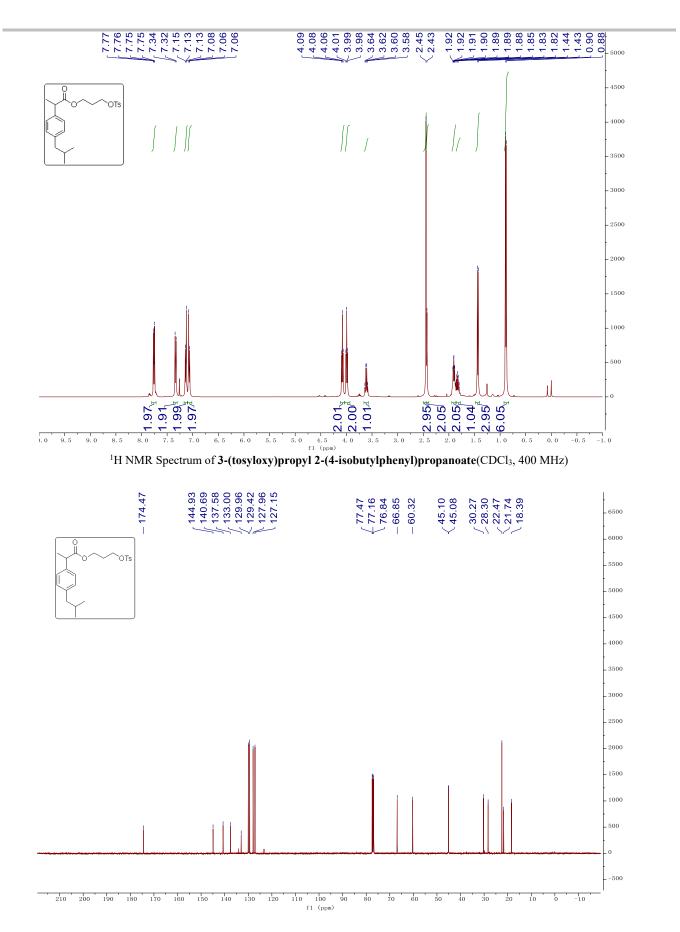

In glove box, NiCl₂•DME (10 mol%, 0.02 mmol, 4.4 mg), L₁ (13.5 mol%, 0.027 mmol, 4.0 mg), Bis(neopentyl glycolato)diboron (2.0 equiv, 0.4 mmol, 90.4 mg), K₂CO₃ (2.5 equiv, 0.5 mmol, 69 mg) and Tetrabutylammonium iodide (2.0 equiv, 0.4 mmol, 148 mg) were combined in a 5 mL oven-dried sealing tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times), and 4-phenylbutyl 4-methylbenzenesulfonate **4'** (1.0 equiv, 0.2 mmol), (2-bromo-2-fluoroethyl) benzene **43** (2.0 equiv, 0.4 mmol) and *N*, *N*-Dimethylacetamide (1.0 mL) were then added via syringe. The tube was sealed with a Teflon lined cap and heated in a preheated oil bath at 60 °C for 24 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (~20 mL) and filtered through a pad of celite. The filtrate was added brine (20 mL) and extracted with EtOAc (2×15 mL), the combined organic layer was dried over Na₂SO₄, filtrated and concentrated under vacuum. The product **44** was purified with silica gel chromatography (PE/EA = 100:1) as a colorless oil. (17.4mg, 34% yield). Note: The structures of 44⁵ was known. Compound 44: ¹H NMR (400 MHz, CDCl₃): δ 7.34– 7.25 (m, 5H), 7.23– 7.12 (m, 5H), 4.78– 4.54 (m, 1H), 3.03– 2.74 (m, 2H), 2.60 (t, *J* = 7.6 Hz, 2H), 1.71–1.61 (m, 3H), 1.58–1.49 (m, 2H), 1.48–1.35 (m, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 142.56, 137.52 (d, *J* = 4.8 Hz), 129.50, 128.56, 128.52, 128.43, 126.66, 125.84, 94.62 (d, *J* = 170.9 Hz), 41.80 (d, *J* = 21.6 Hz), 35.96, 34.64 (d, *J* = 20.8 Hz), 31.38, 24.94 (d, *J*= 4.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -178.38– -178.76 (m).

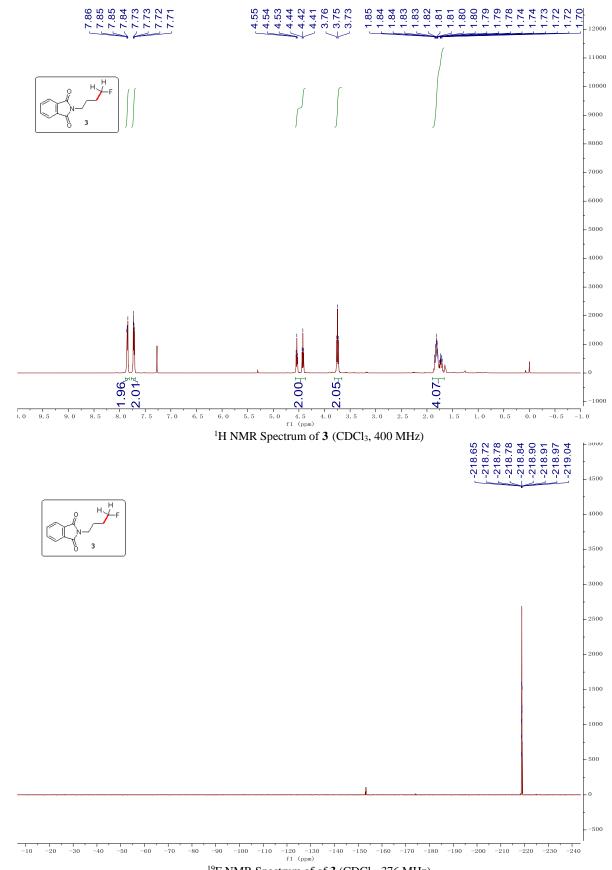
References:

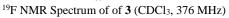

- 1. H. Xu, C. Zhao, Q. Qian, W. Deng and H. Gong, Chem. Sci. 2013, 4, 4022-4029.
- A. Joshi-Pangu, X. Ma, M. Diane, S. Iqbal, R. J. Kribs, R. Huang, C.-Y. Wang and M. R. Biscoe, J. Org. Chem. 2012, 77, 6629-6633.
- 3. T. W. Liwosz and S. R. Chemler, Chem. Eur. J. 2013, 19, 12771-12777.
- 4. X. Jiang, S. Sakthivel, K. Kulbitski, G. Nisnevich and M. Gandelman, J. Am. Chem. Soc. 2014, 136, 9548–9551.
- 5. J. Sheng, H.-Q. Ni, S.-X. Ni, Y. He, R. Cui, G.-X. Liao, K.-J. Bian, B.-B. Wu and X.-S. Wang, *Angew.Chem. Int. Ed.* **2021**, *60*,15020–15027.

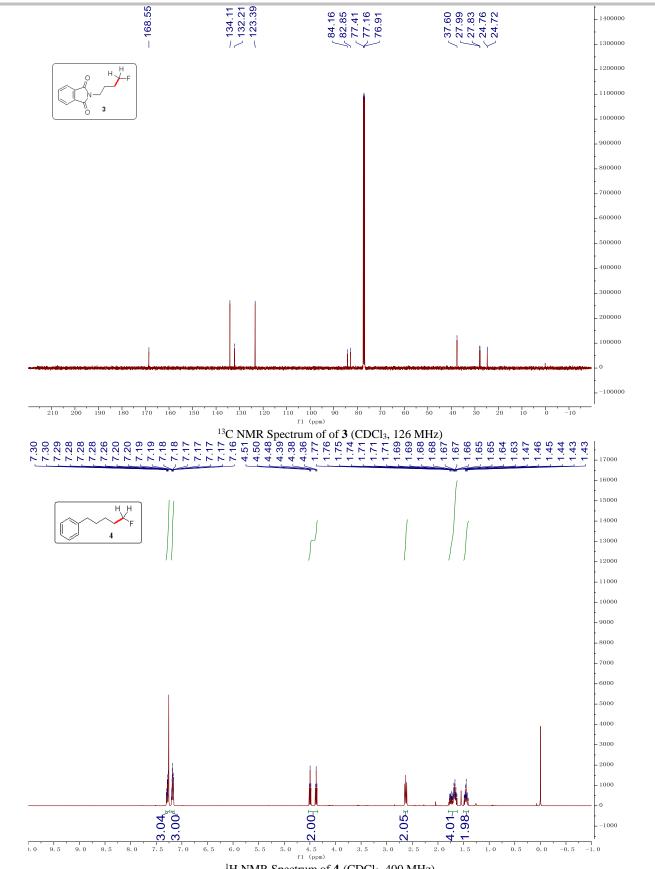

¹³C NMR Spectrum of 3-(tosyloxy)propyl 2-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin-2-yl)acetate (CDCl₃, 126 MHz)

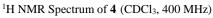


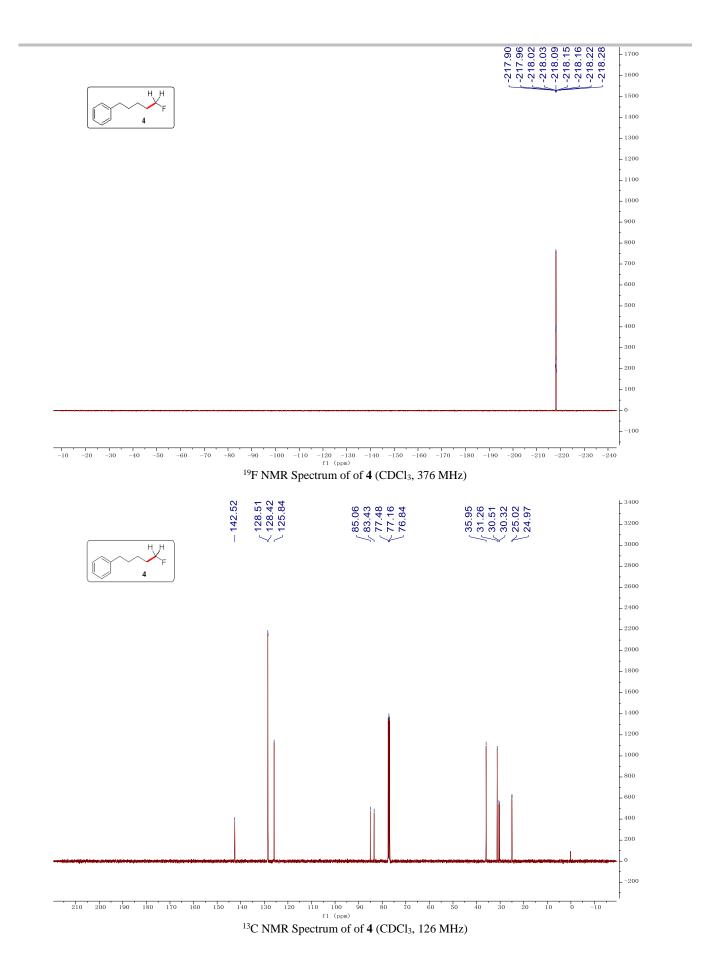

¹³C NMR Spectrum of **3-(tosyloxy) propyl 2-(2-fluoro-[1,1'-biphenyl]-4-yl) propanoate** (CDCl₃, 126 MHz)

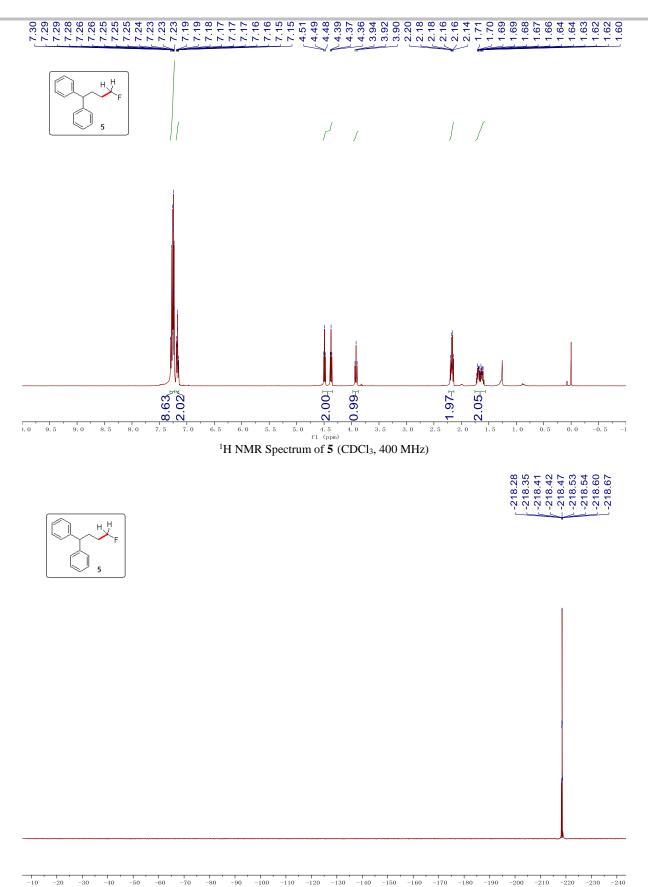

¹³C NMR Spectrum of *N*-Carbobenzyloxyglycine alkyl tosylate (CDCl₃, 126 MHz)

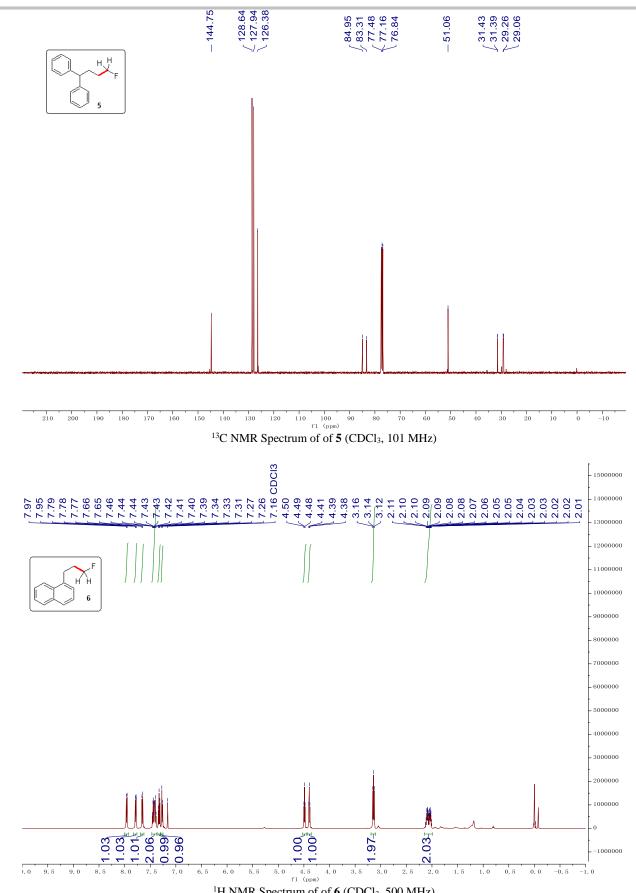

¹³C NMR Spectrum of 3-(tosyloxy)propyl 2-(4-((2-oxocyclopentyl)methyl)phenyl)propanoate (CDCl₃, 126 MHz)

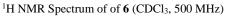


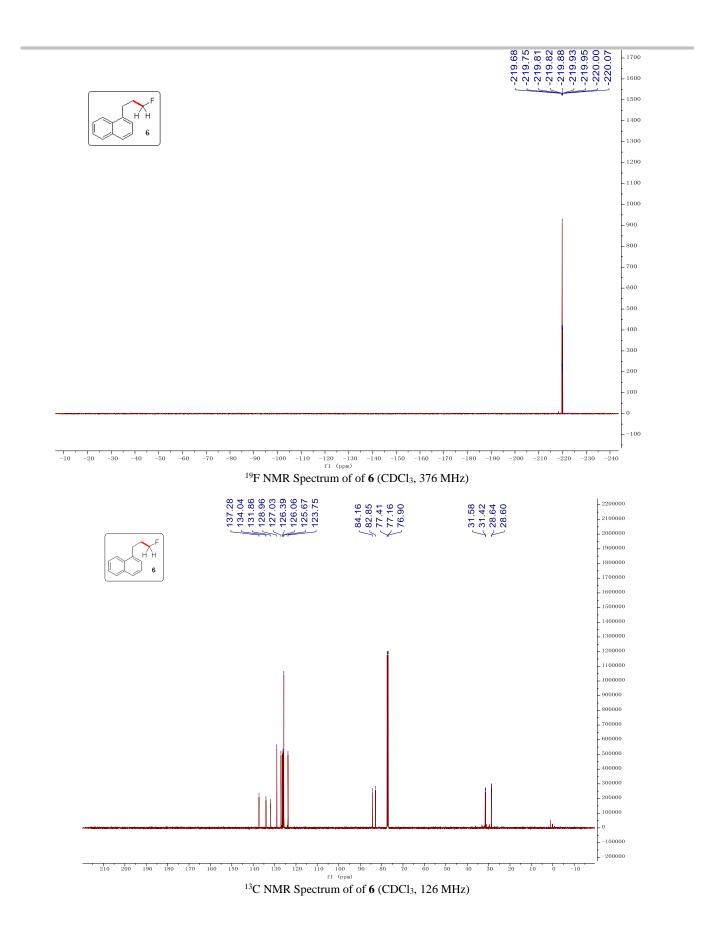

¹³C NMR Spectrum of **3-(tosyloxy)propyl 2-(4-isobutylphenyl)propanoate** (CDCl₃, 126 MHz)

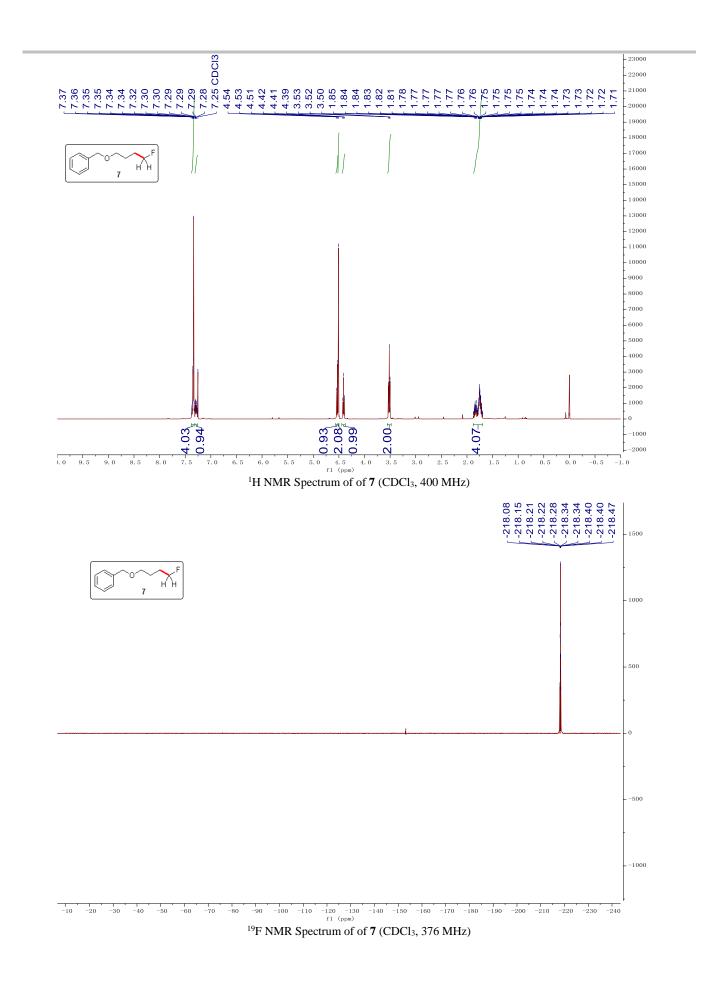


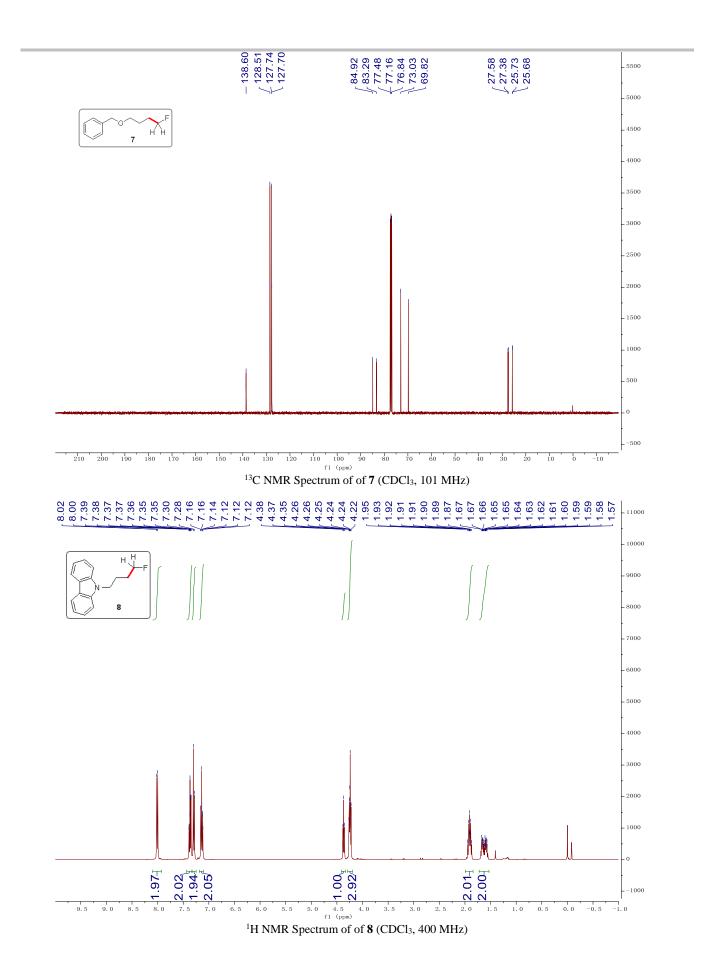

NMR Spectra of Products (¹H NMR, ¹⁹F NMR, ¹³C NMR)

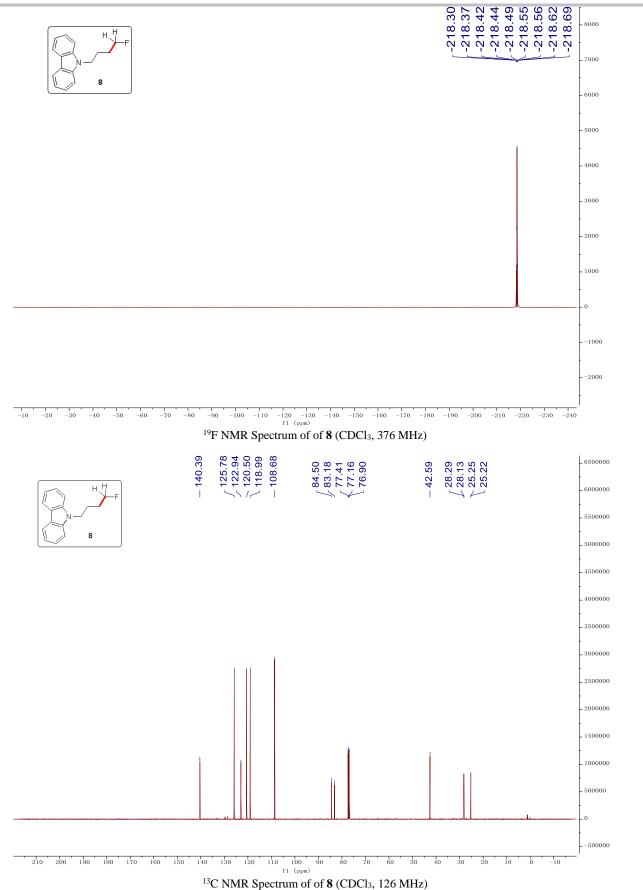


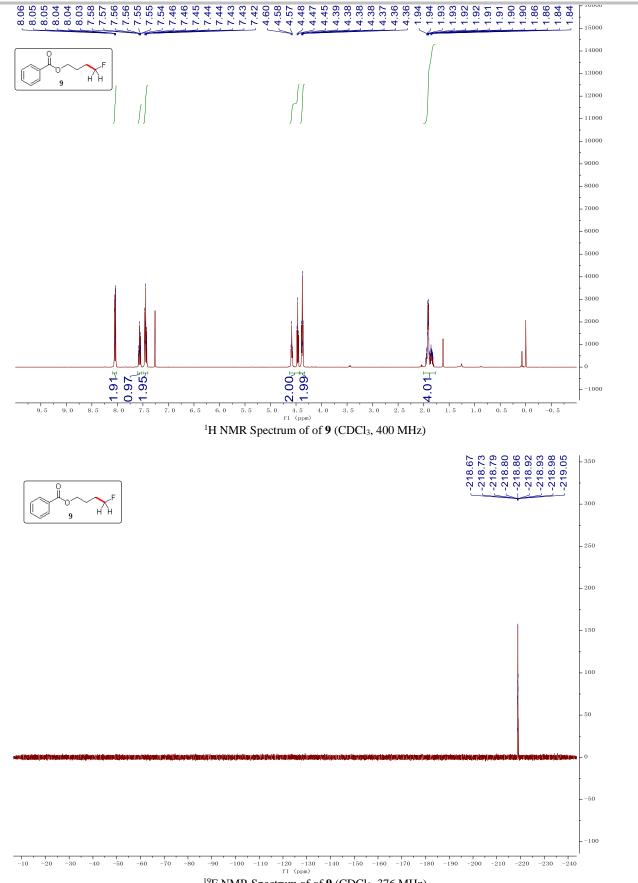


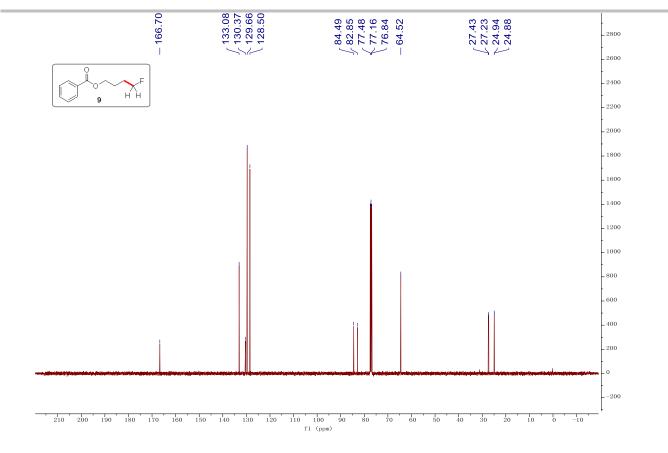


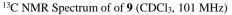


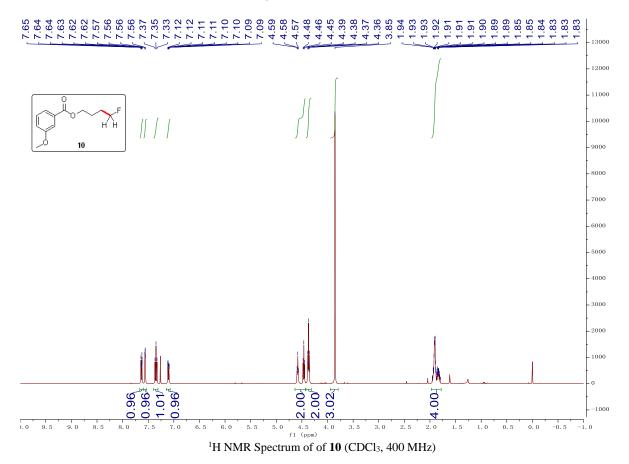

⁸⁰ -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 19 F NMR Spectrum of of **5** (CDCl₃, 376 MHz) -20 -240 -40 -60 -70 -30 -50 -80

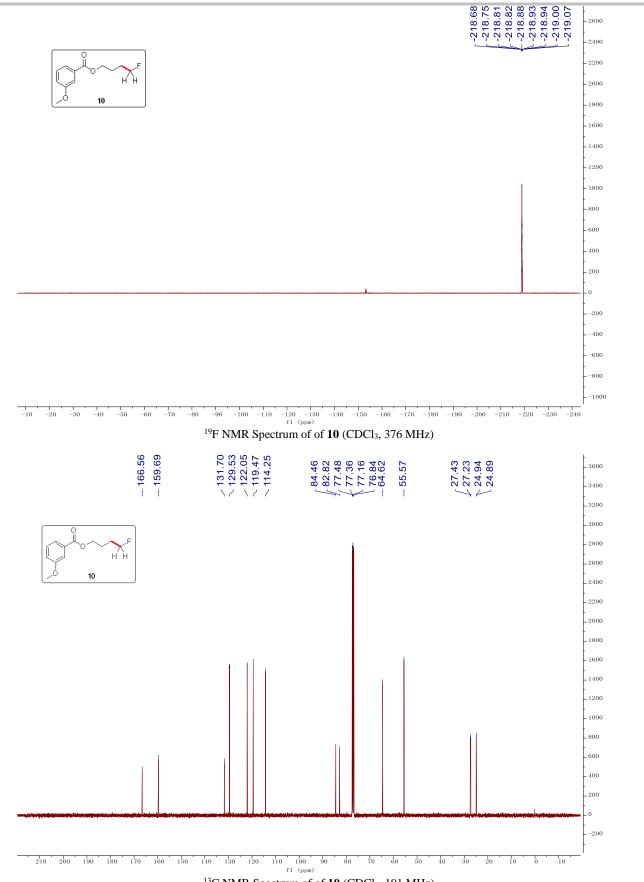


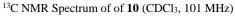


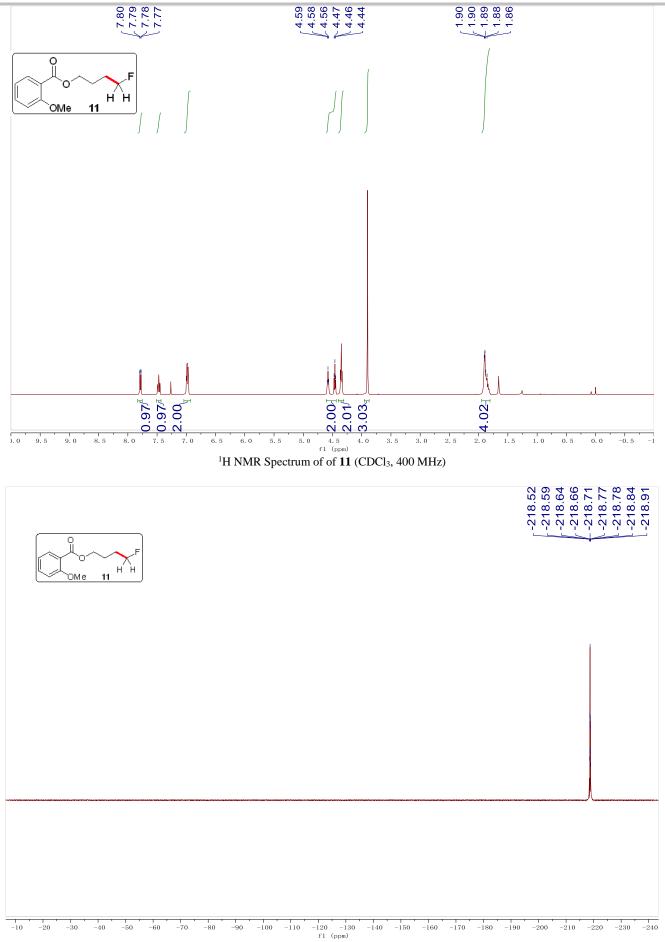


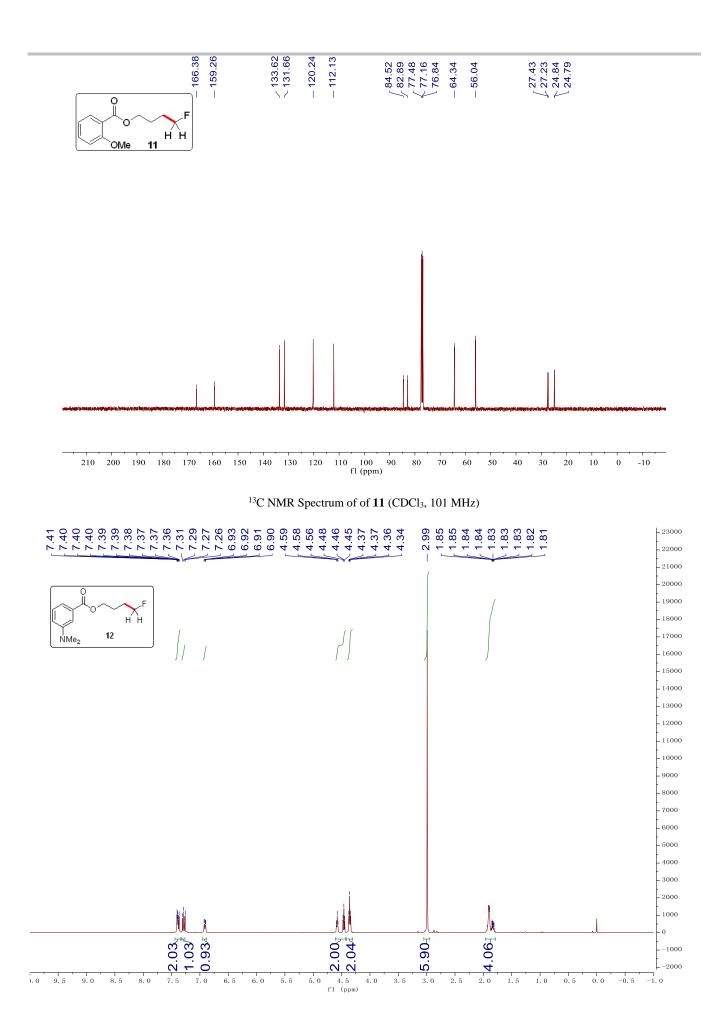


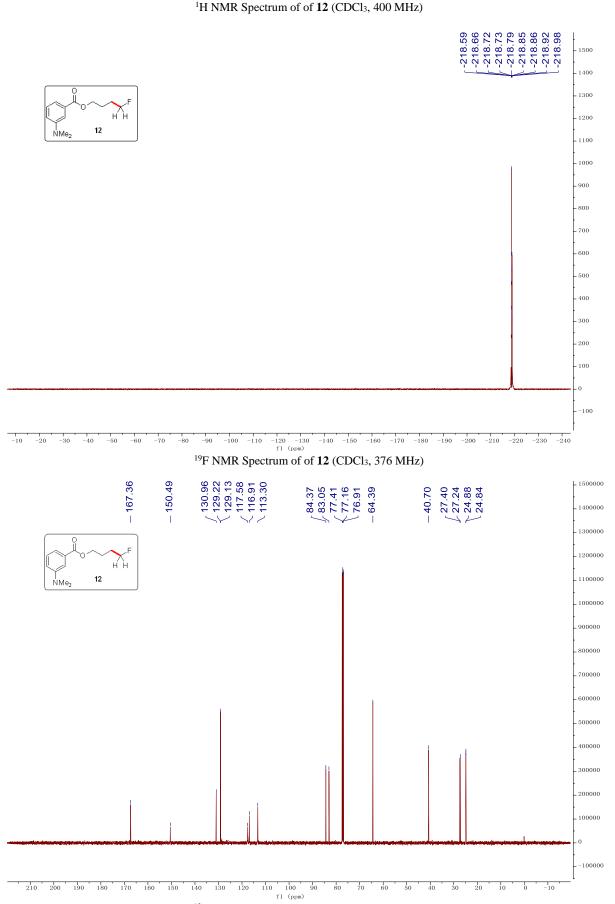


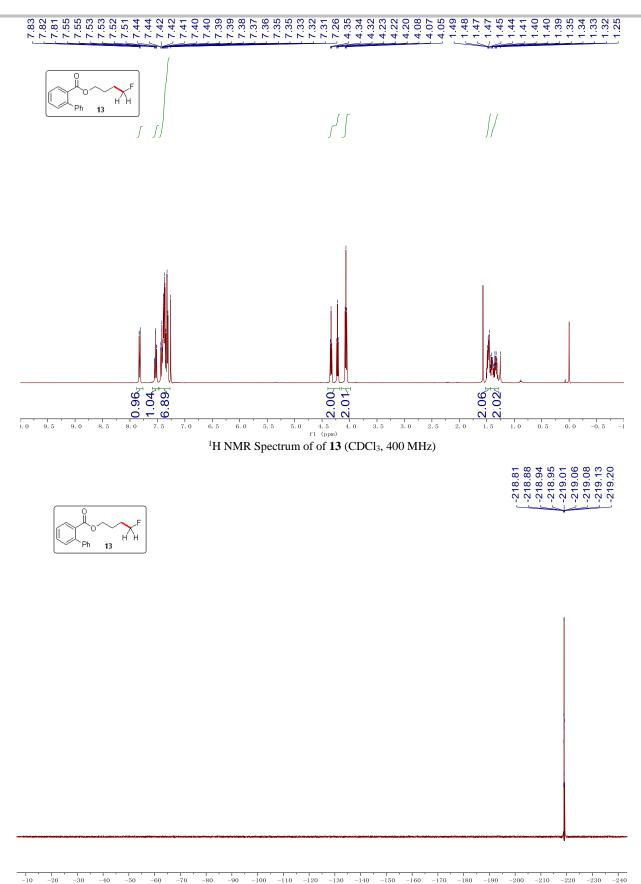



¹⁹F NMR Spectrum of of 9 (CDCl₃, 376 MHz)

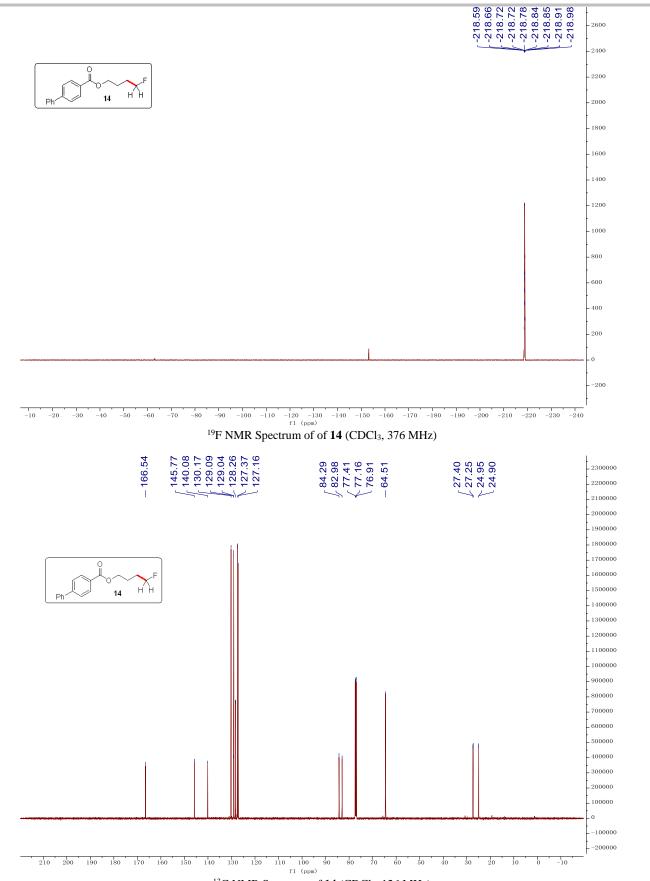


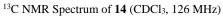


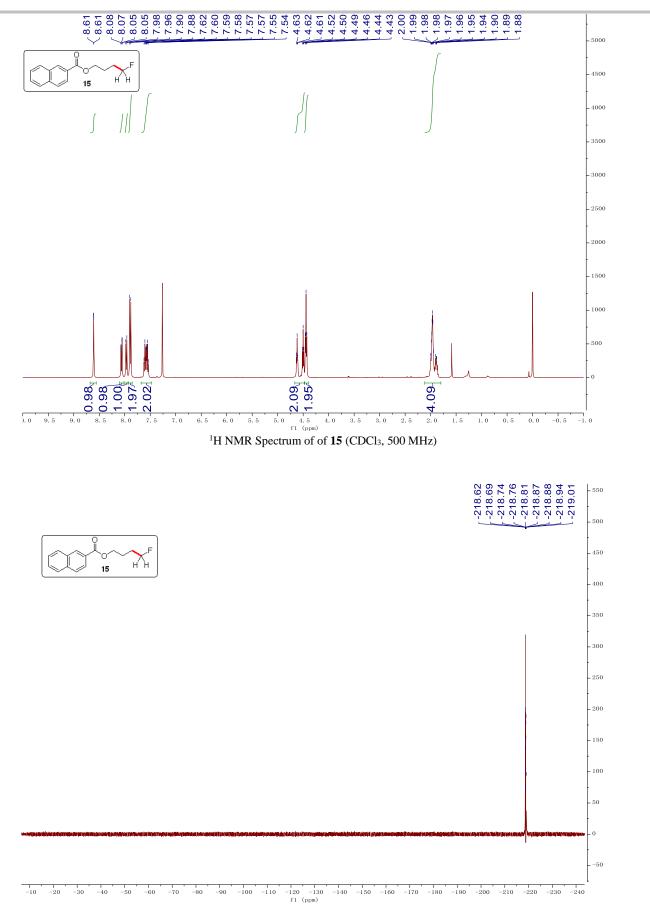


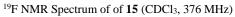


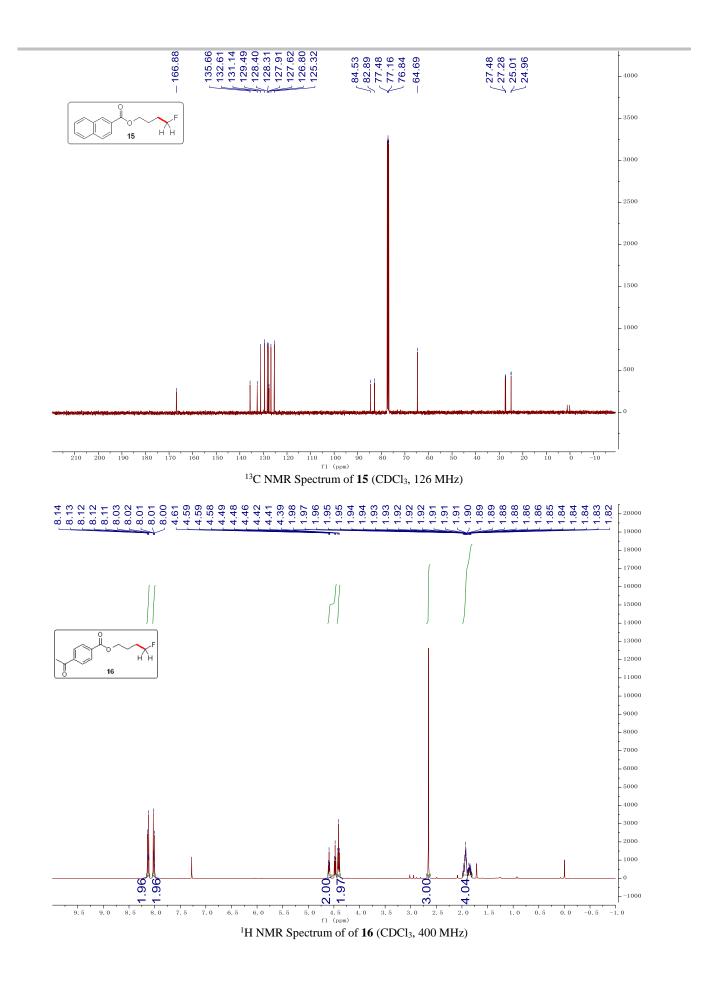
¹⁹F NMR Spectrum of of **11** (CDCl₃, 376 MHz)

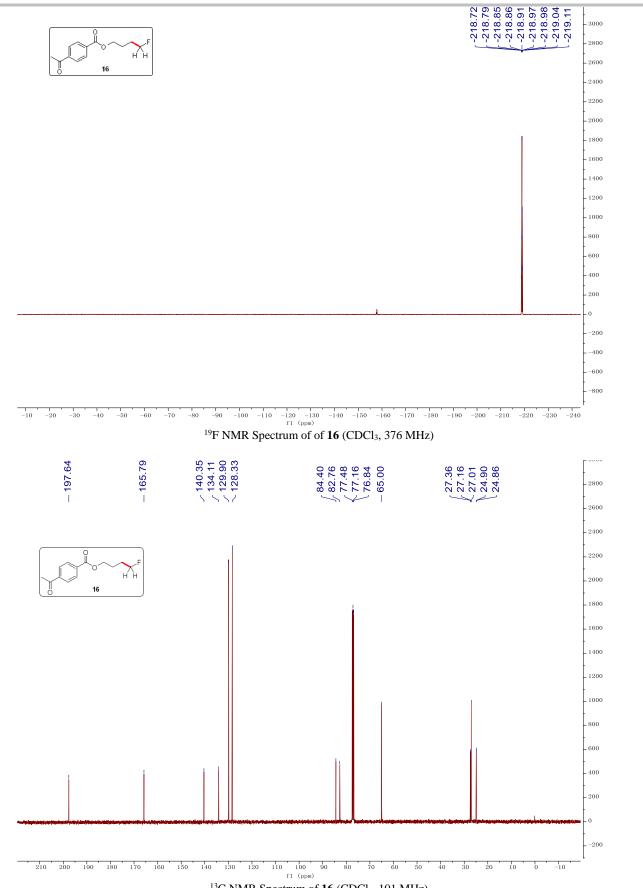


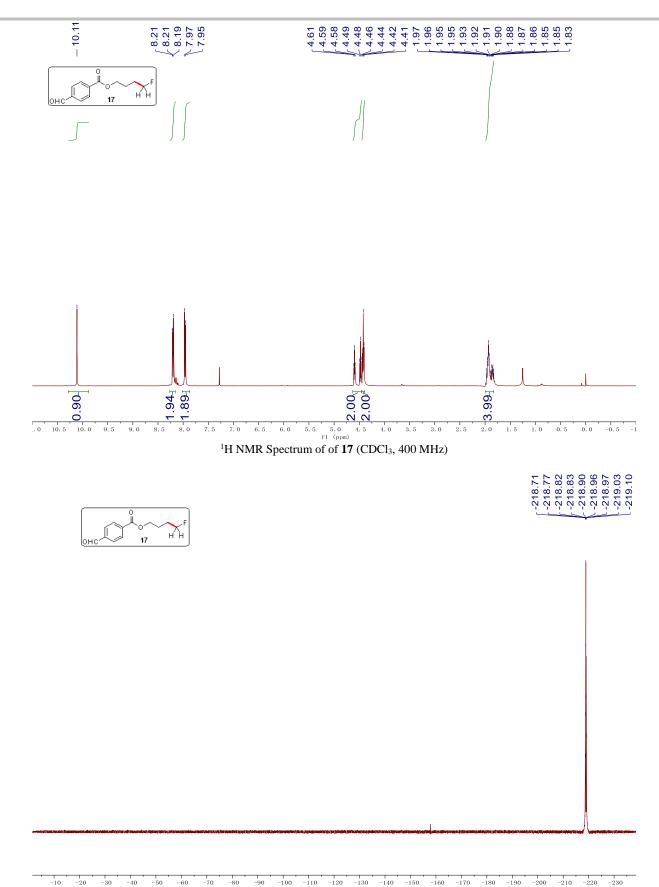

¹³C NMR Spectrum of of **12** (CDCl₃, 126 MHz)

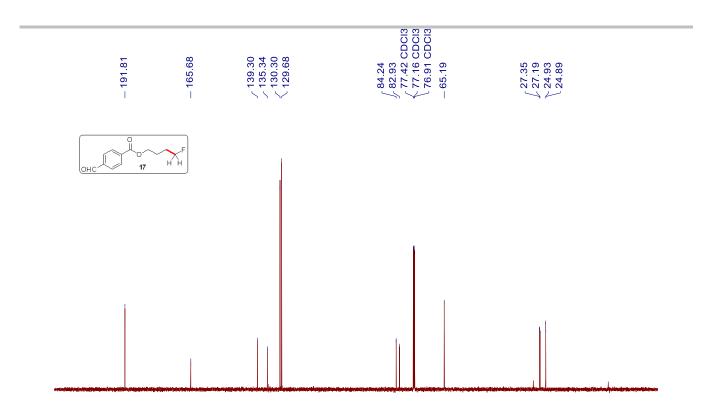


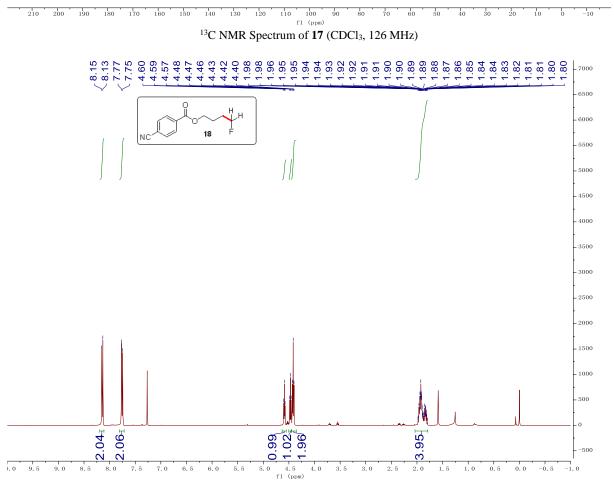

-40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 19 F NMR Spectrum of of **13** (CDCl₃, 376 MHz)

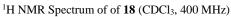


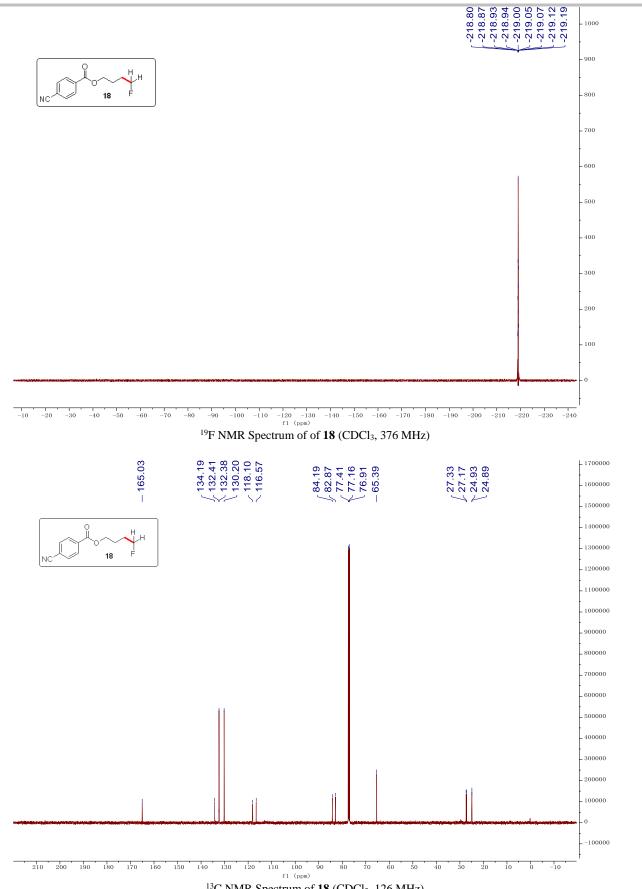


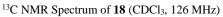


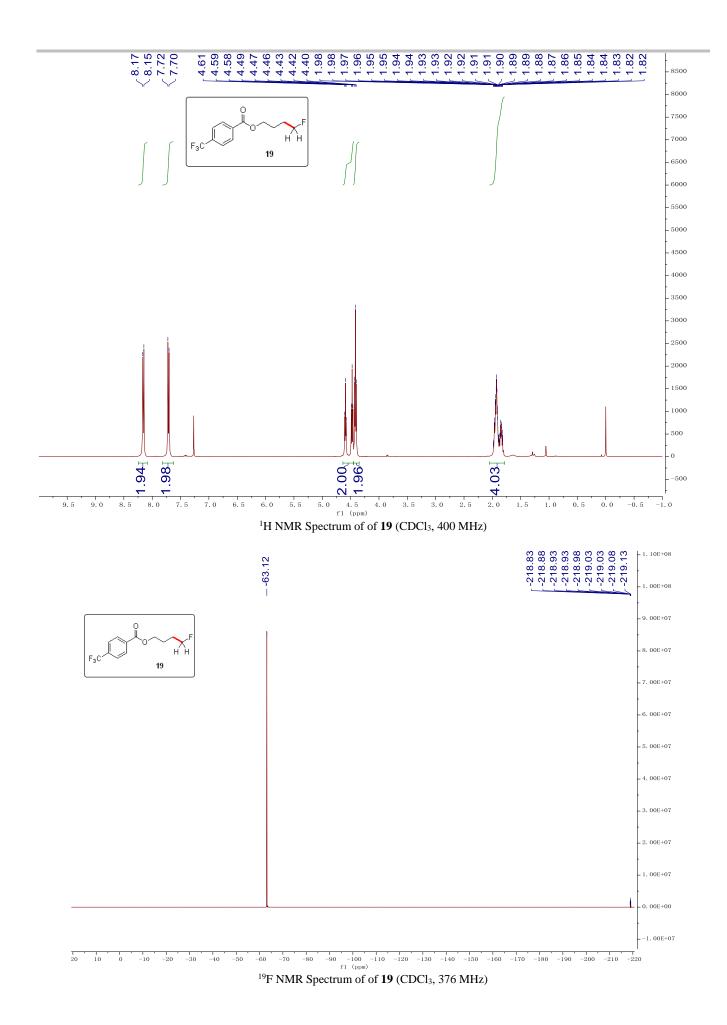


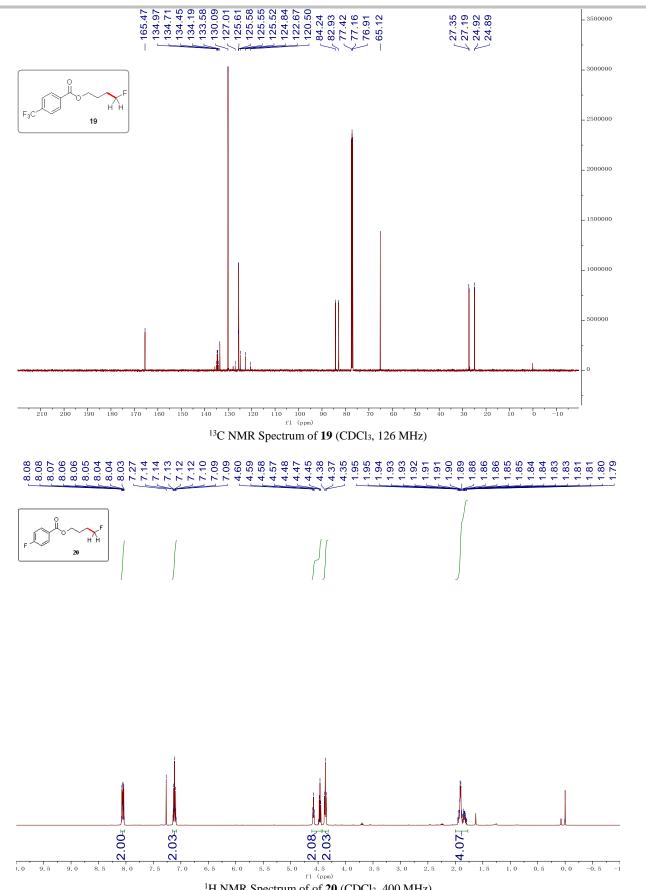


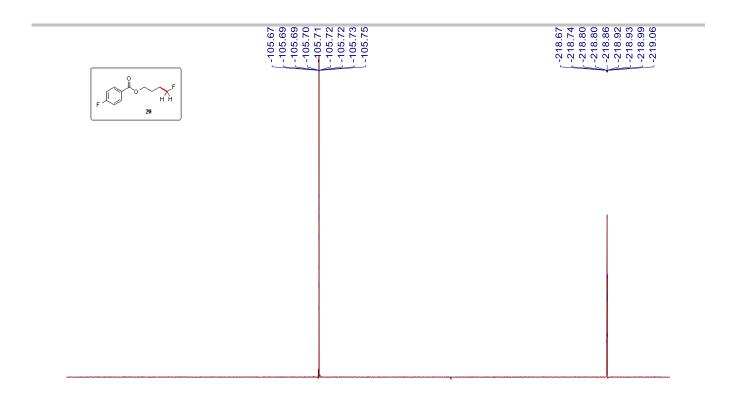


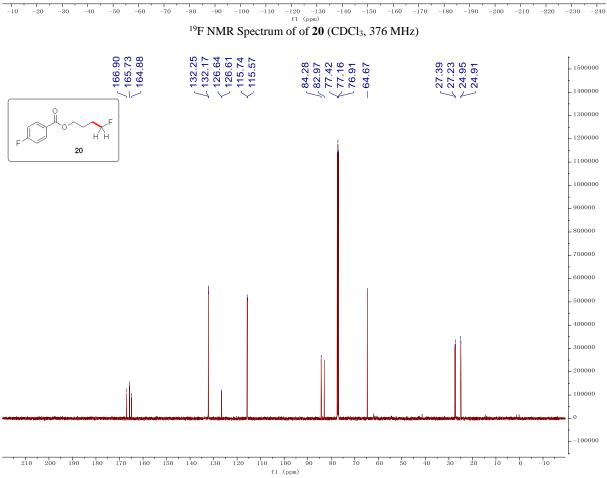


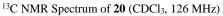

 $\stackrel{-80}{}_{f1} \stackrel{-90}{}_{f1} \stackrel{-100}{}_{f1} \stackrel{-110}{}_{(ppm)} \stackrel{-120}{}_{f1} \stackrel{-130}{}_{(ppm)} \stackrel{-140}{}_{f1} \stackrel{-150}{}_{f1} \stackrel{-160}{}_{f1} \stackrel{-170}{}_{f1} \stackrel{-180}{}_{f1} \stackrel{-190}{}_{-200} \stackrel{-210}{}_{-210}$ -60 -40 -50 -70 -220 -230

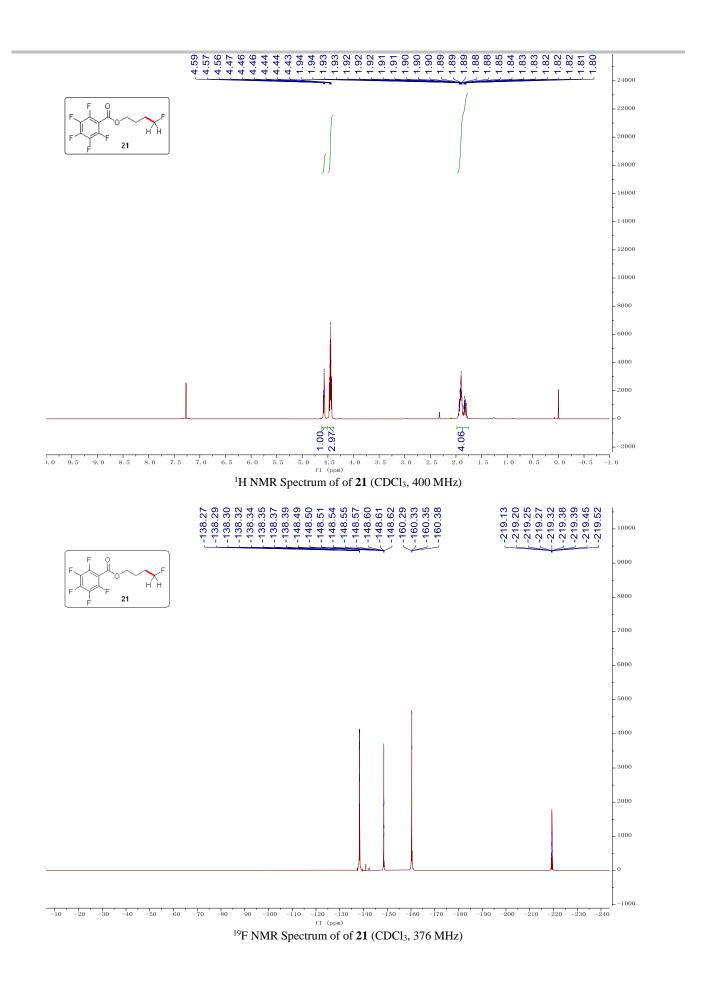


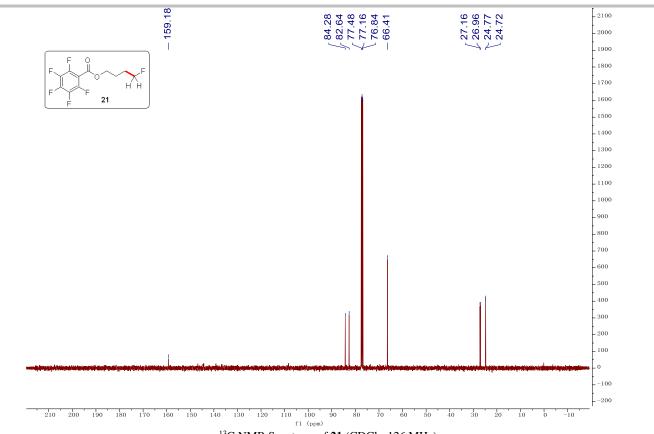


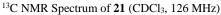


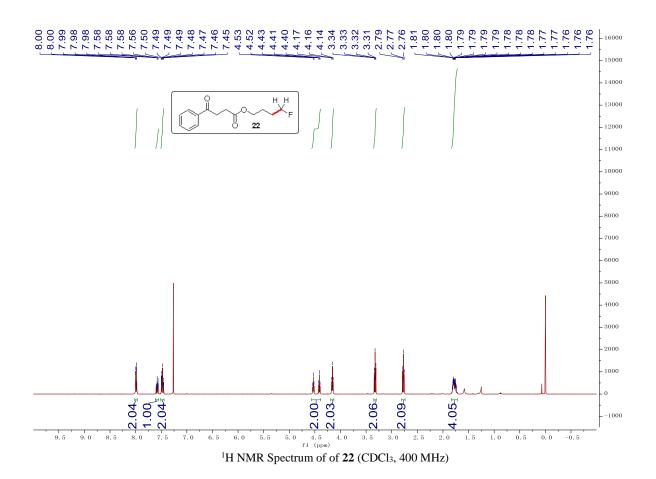


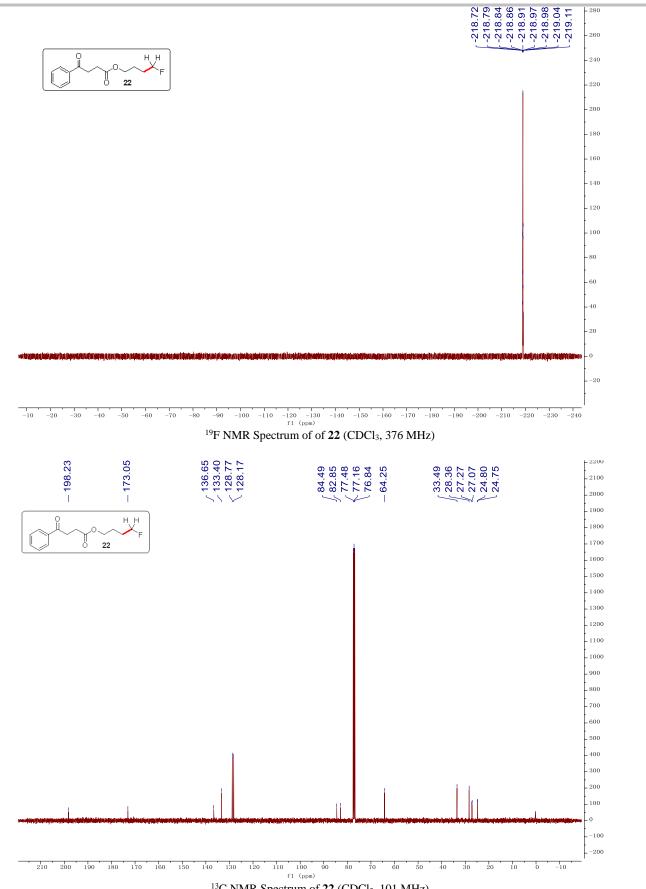


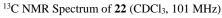


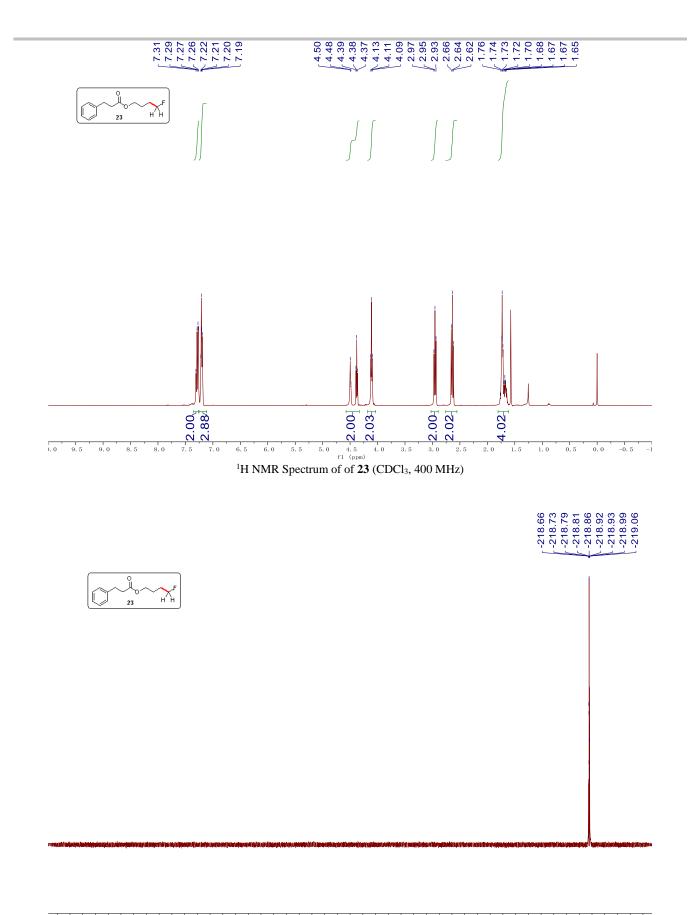


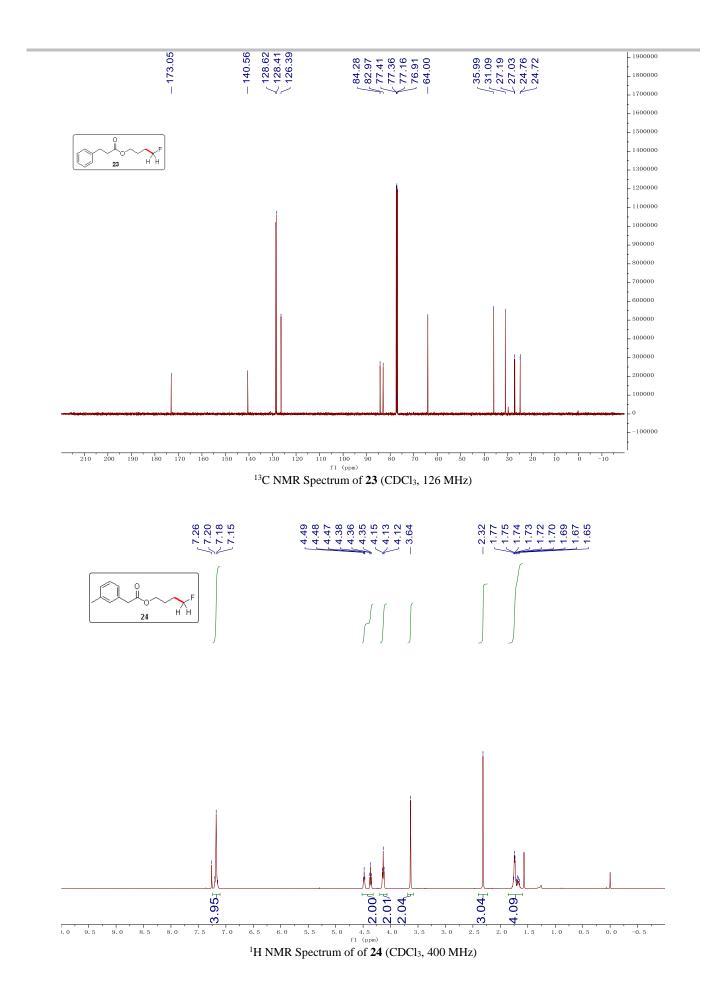


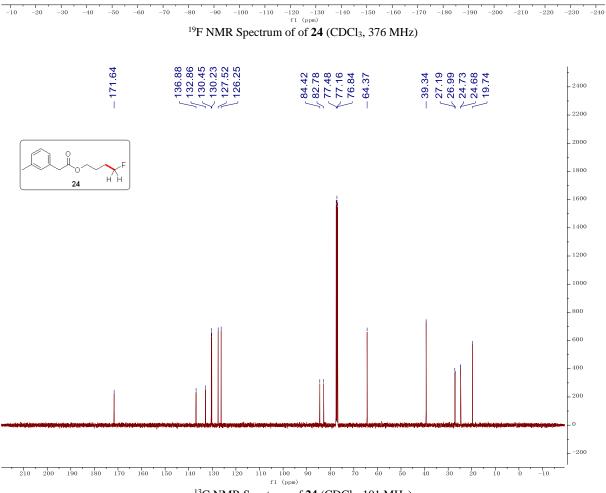


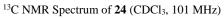


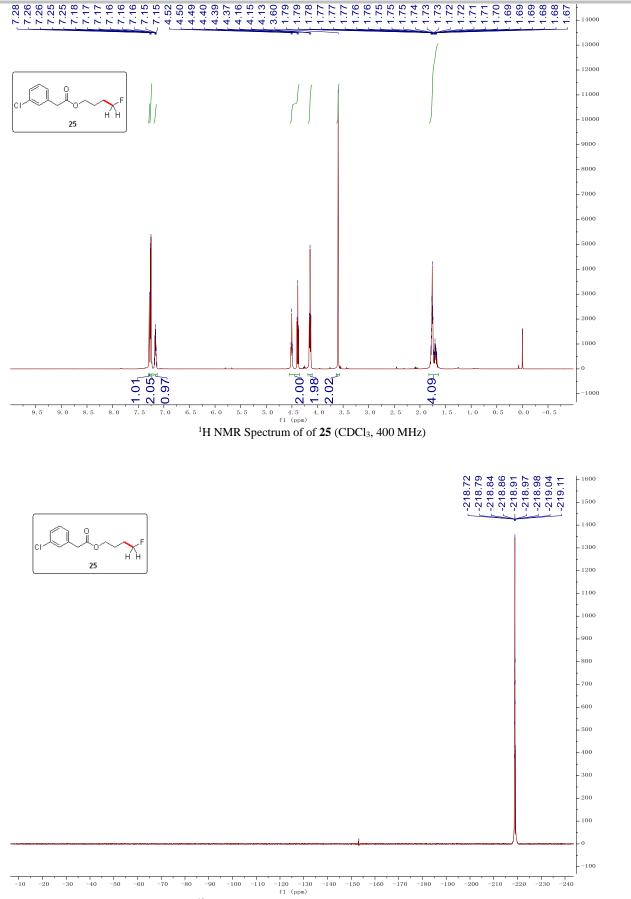


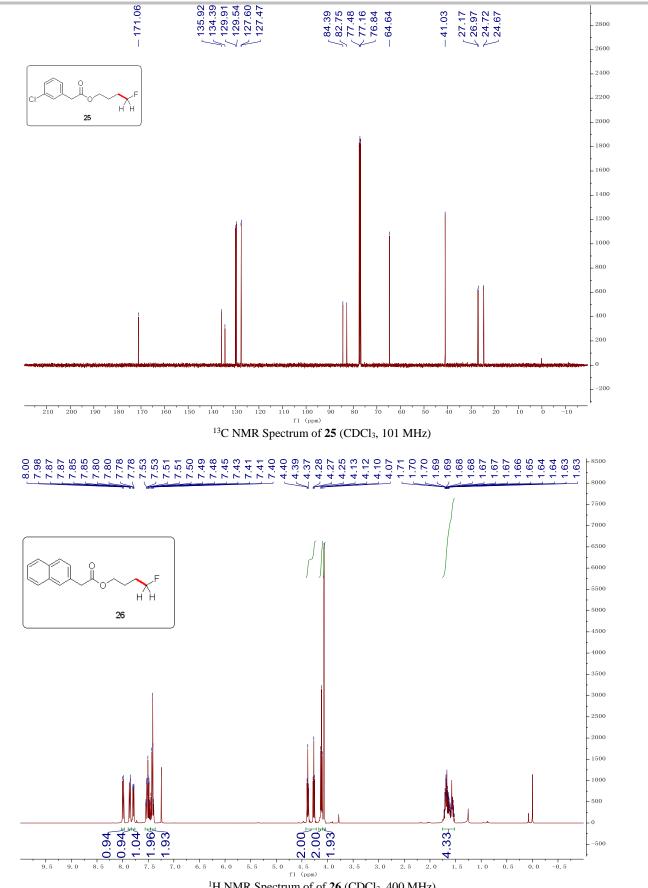


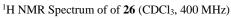


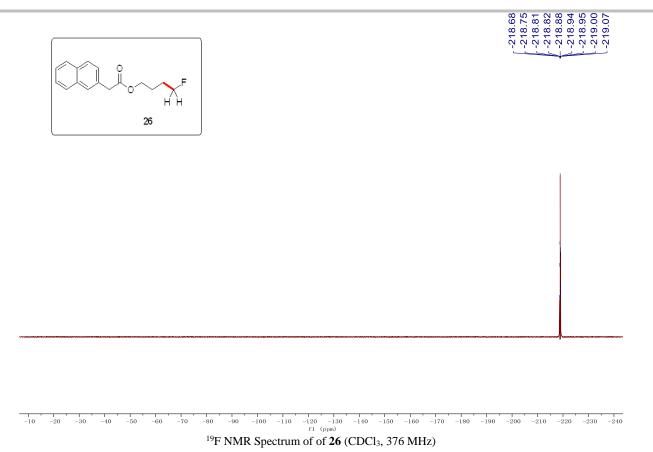


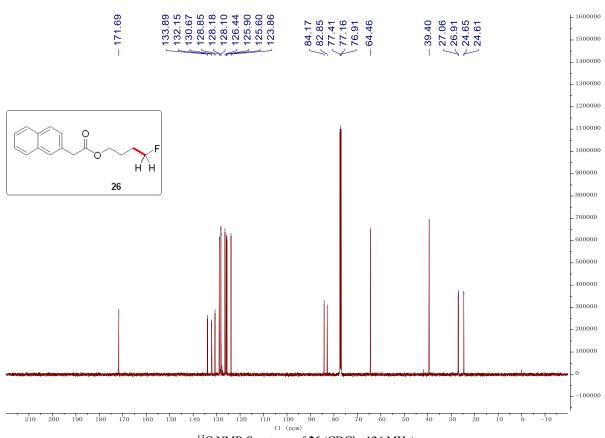


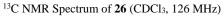


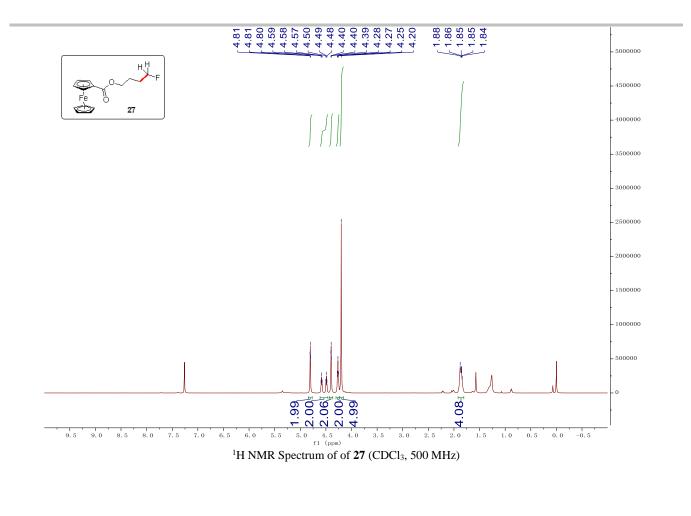


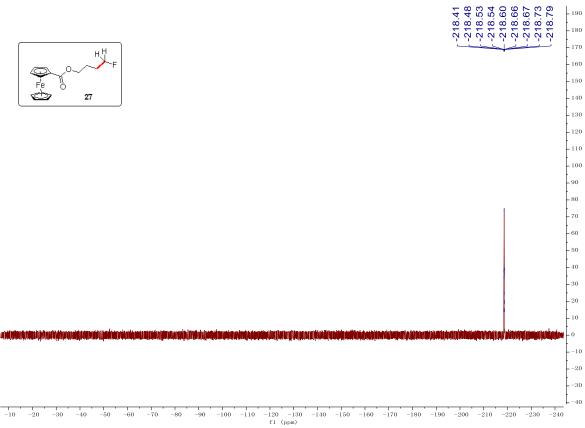


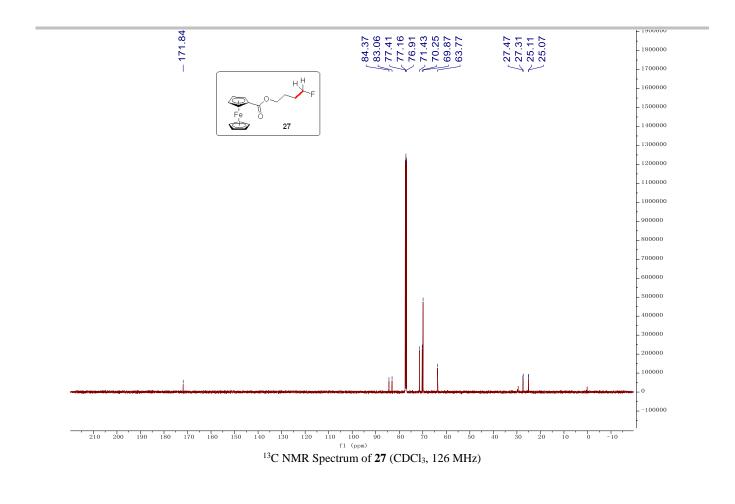


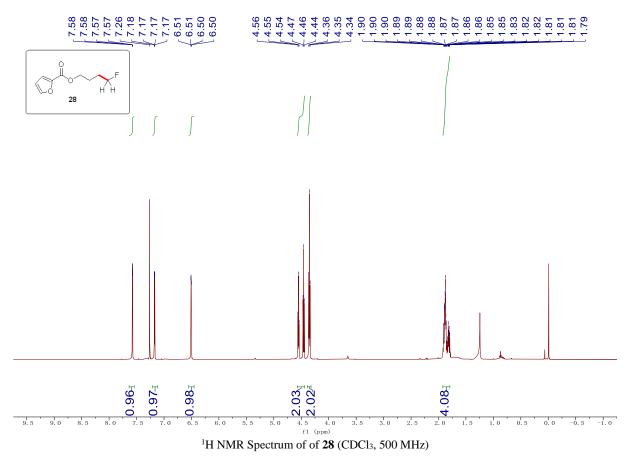


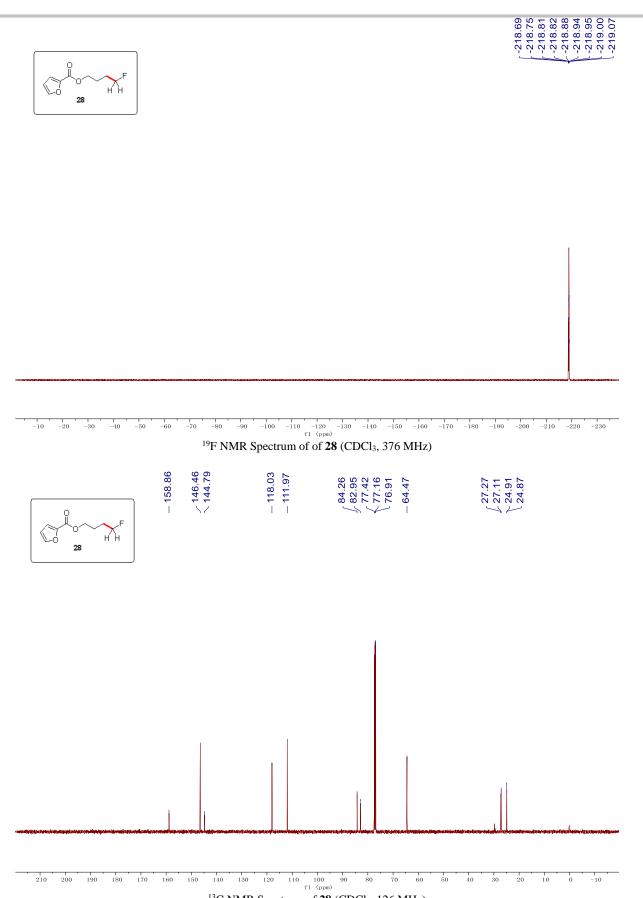

¹⁹F NMR Spectrum of of 25 (CDCl₃, 376 MHz)

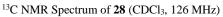


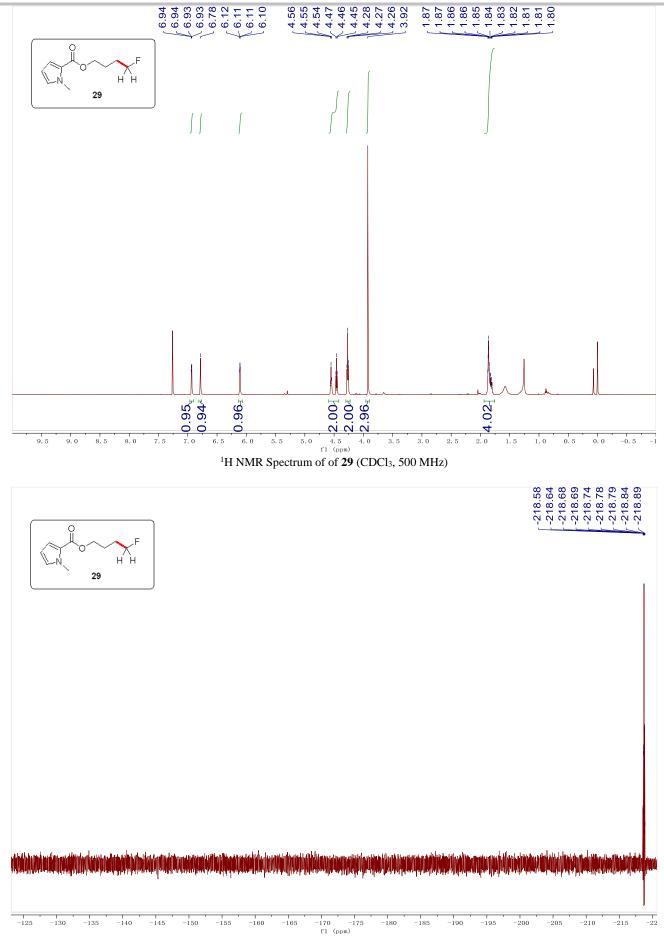


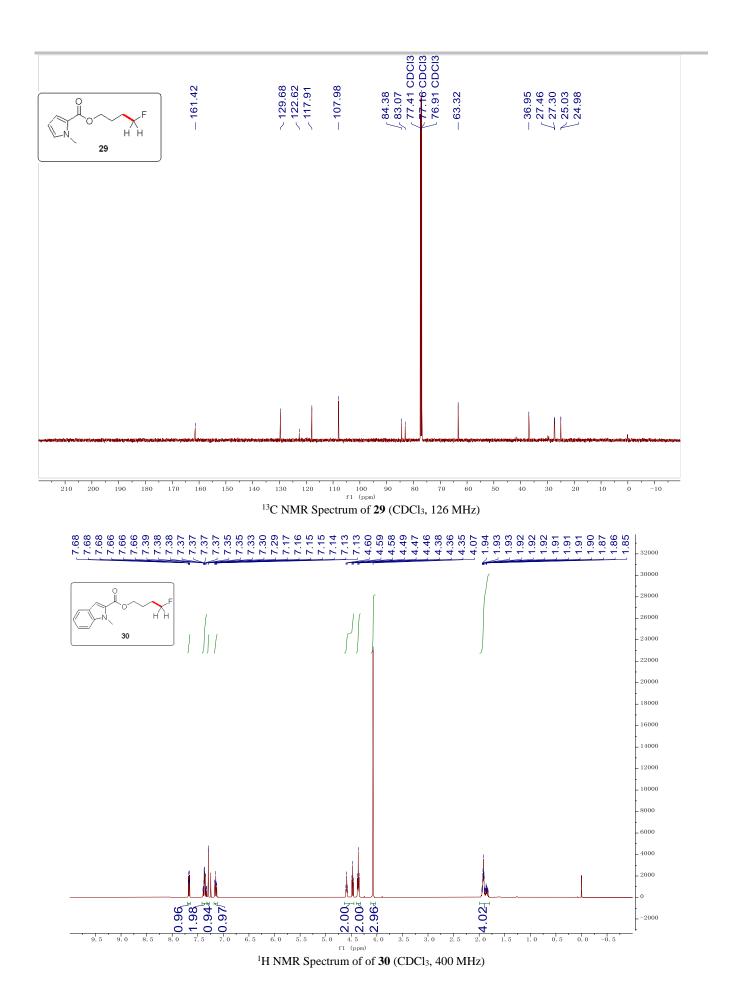


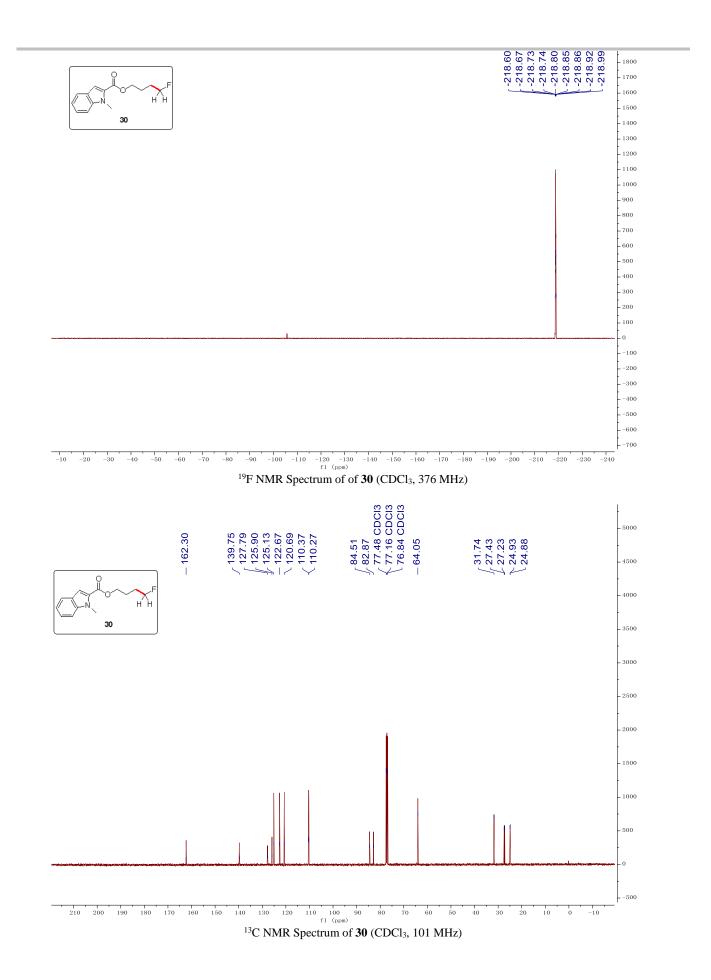


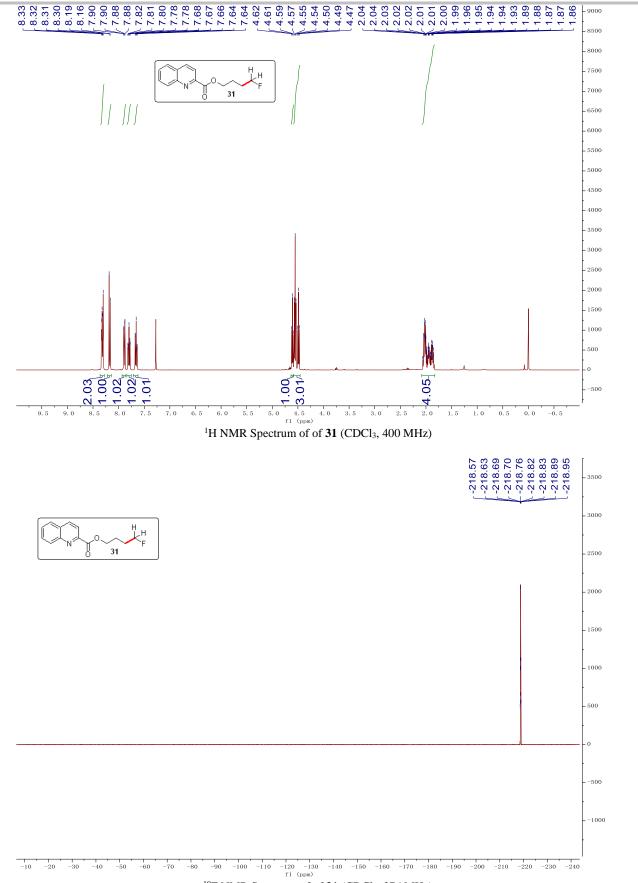


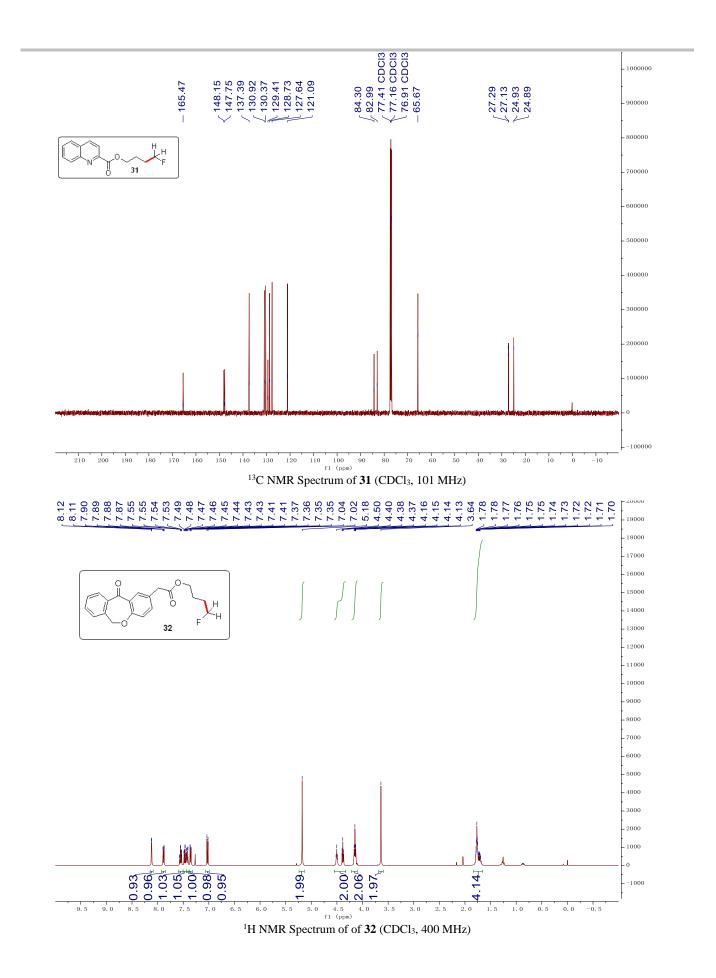


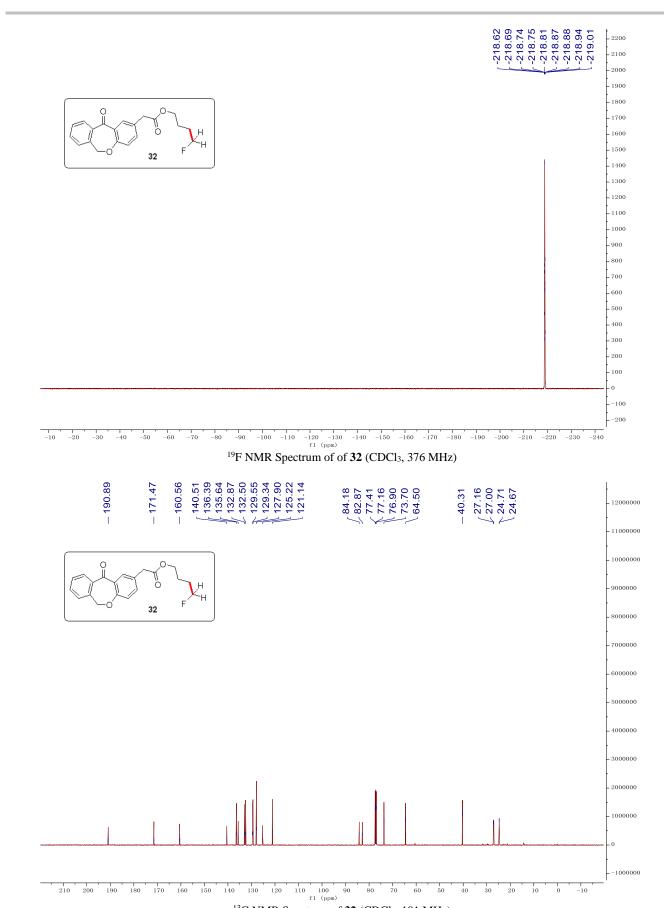

¹⁹F NMR Spectrum of of **27** (CDCl₃, 376 MHz)

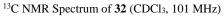


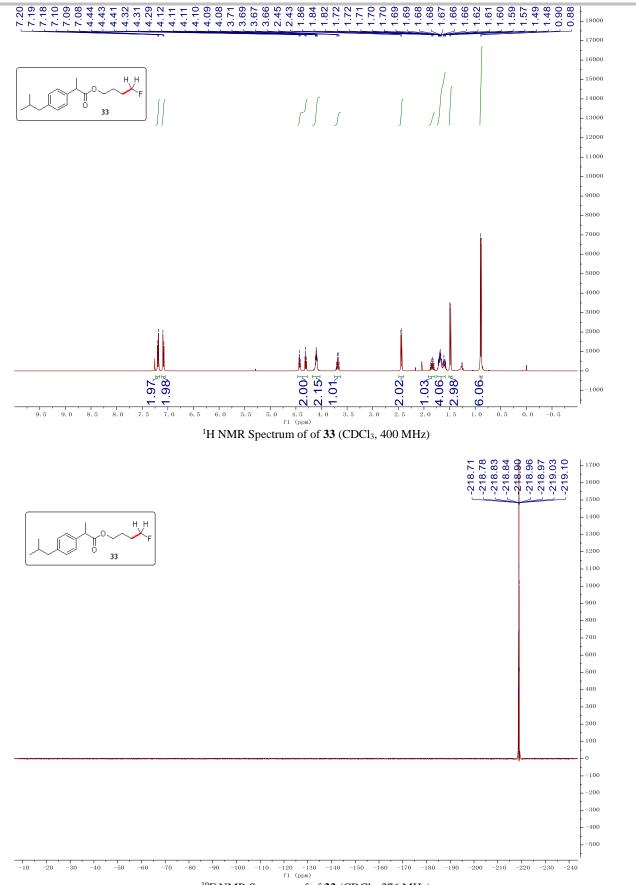


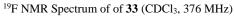


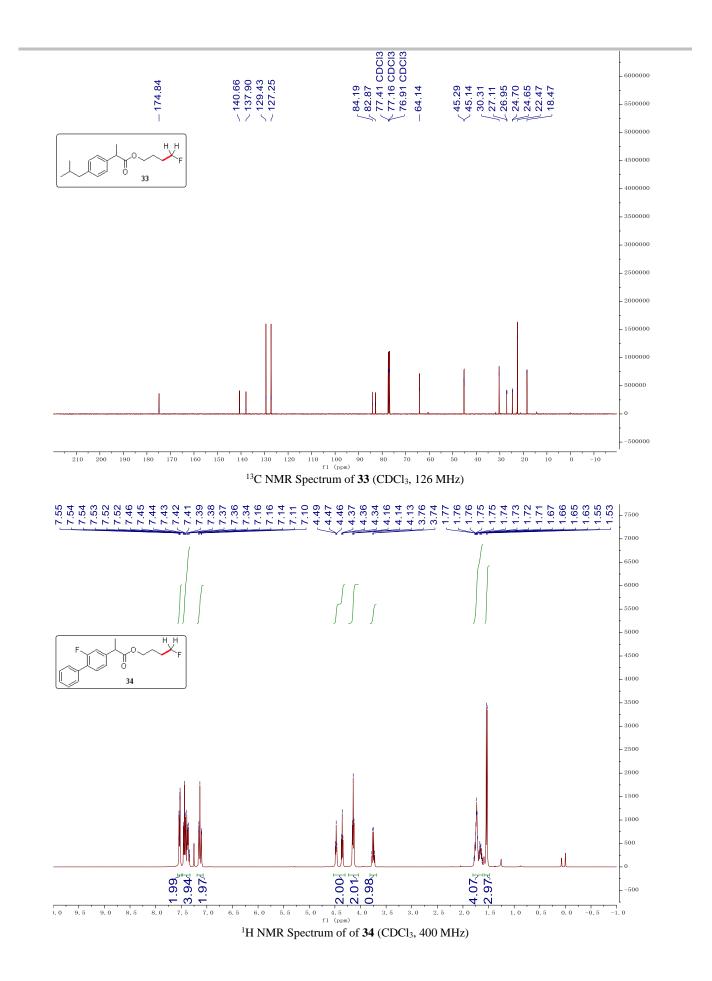

¹⁹F NMR Spectrum of of **29** (CDCl₃, 376 MHz)

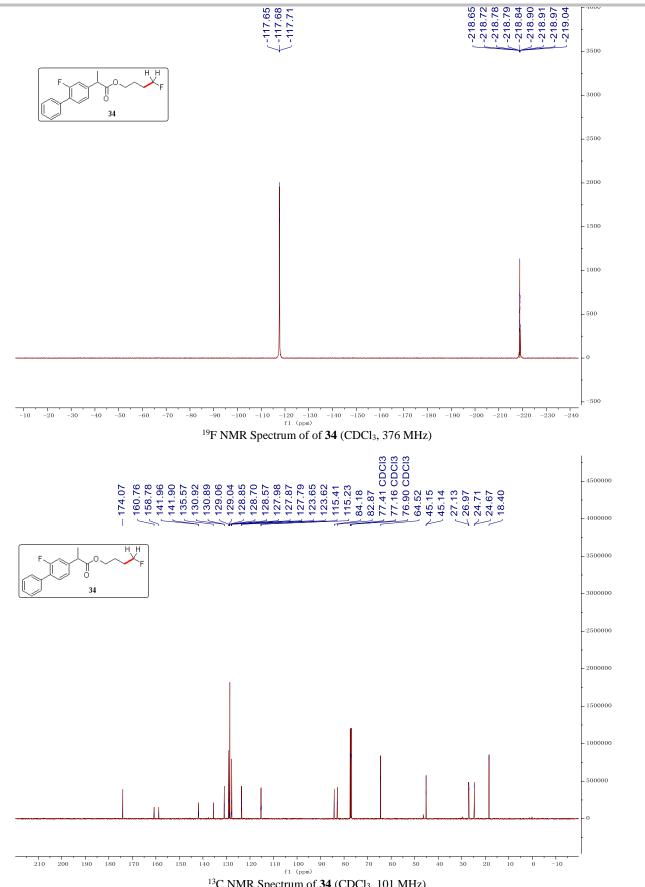


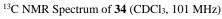


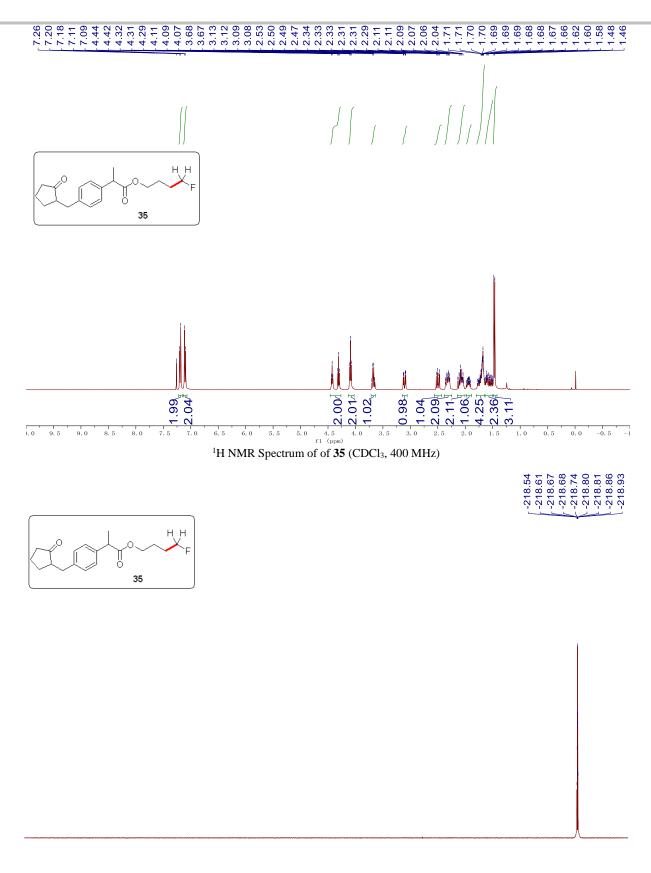


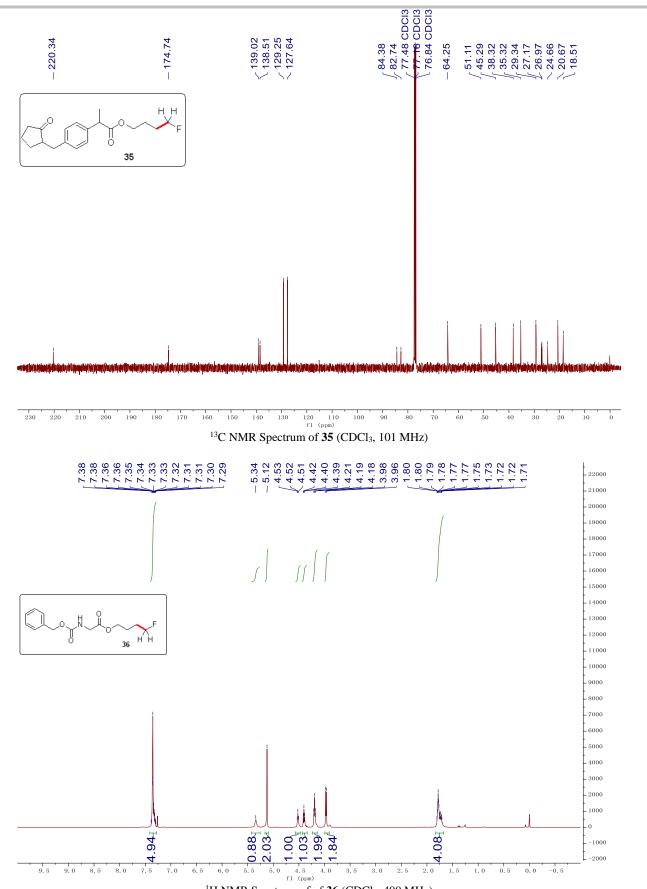

 $^{19}\mathrm{F}$ NMR Spectrum of of **31** (CDCl₃, 376 MHz)

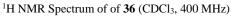


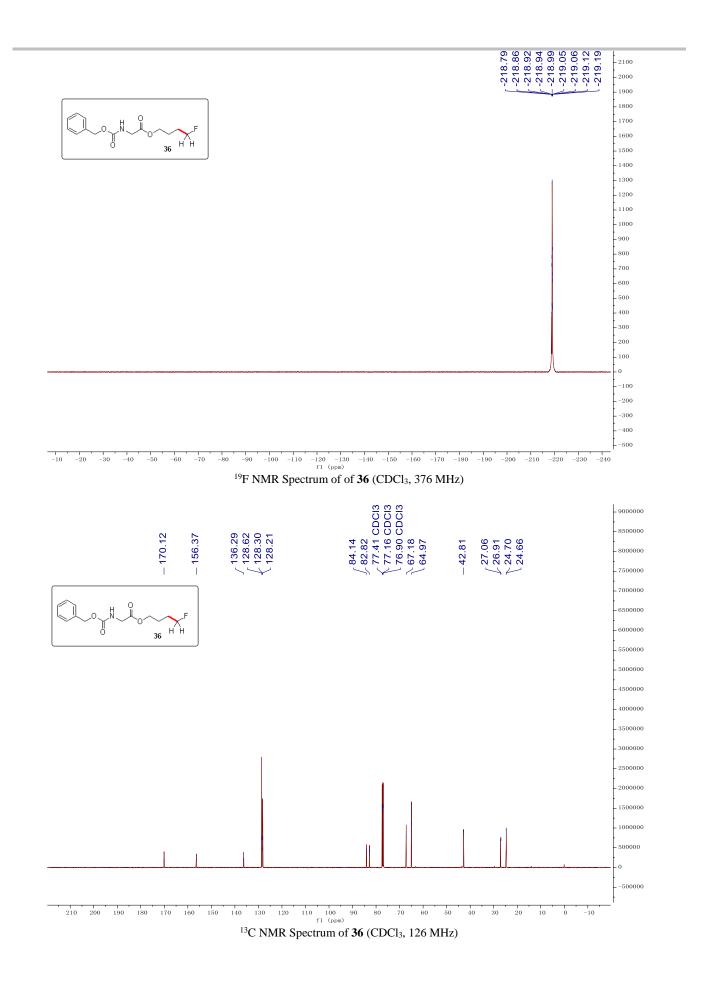


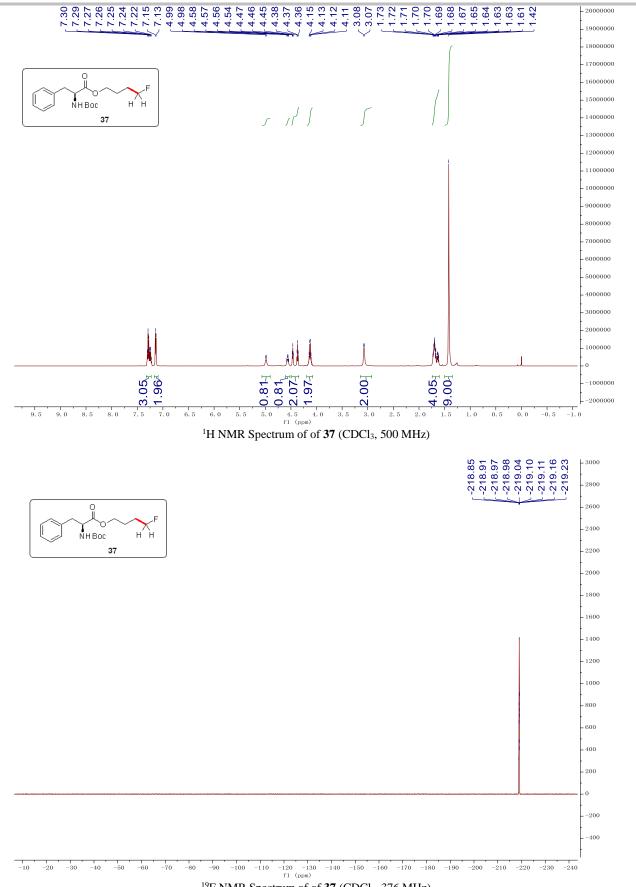


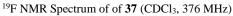


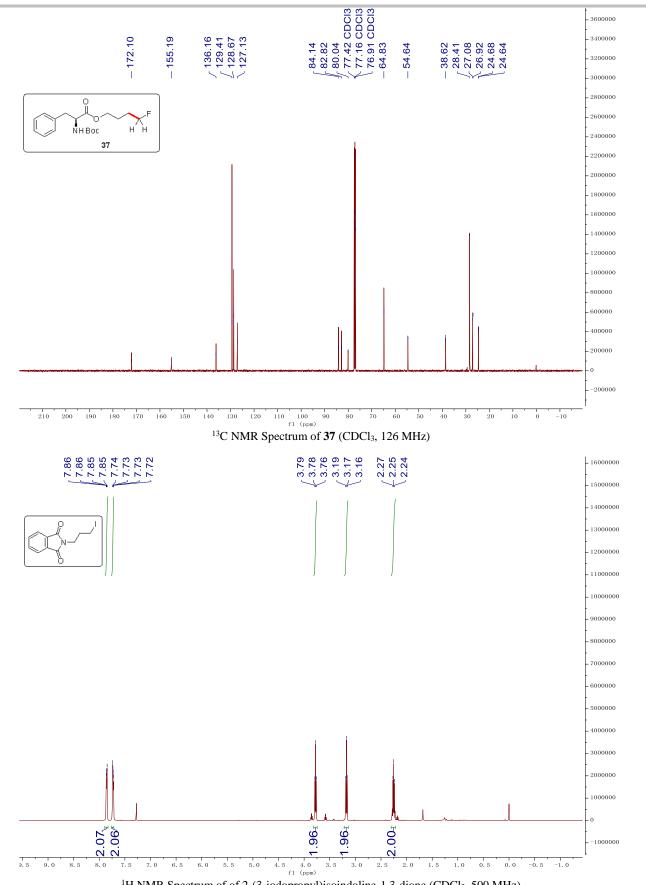


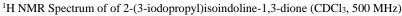


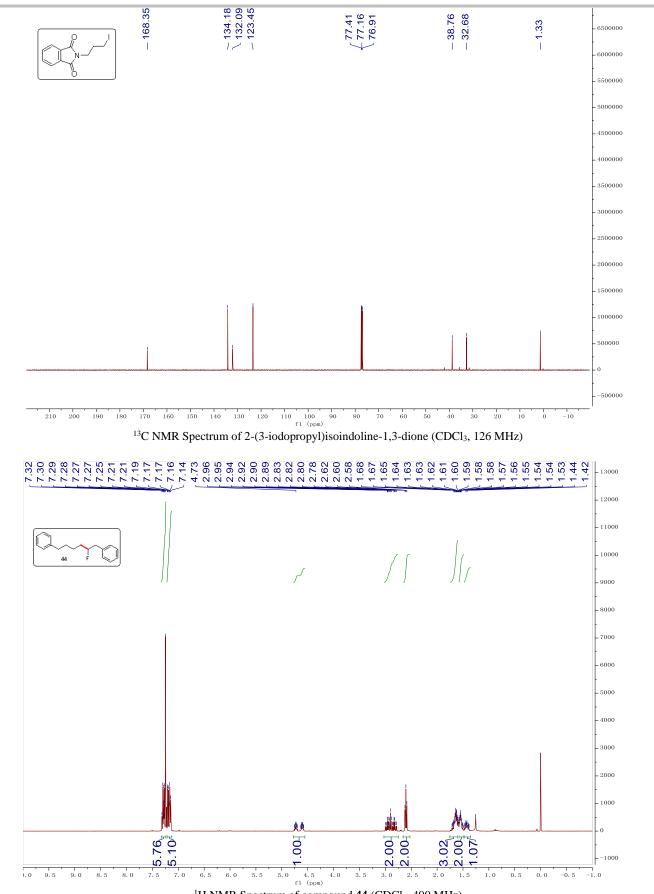


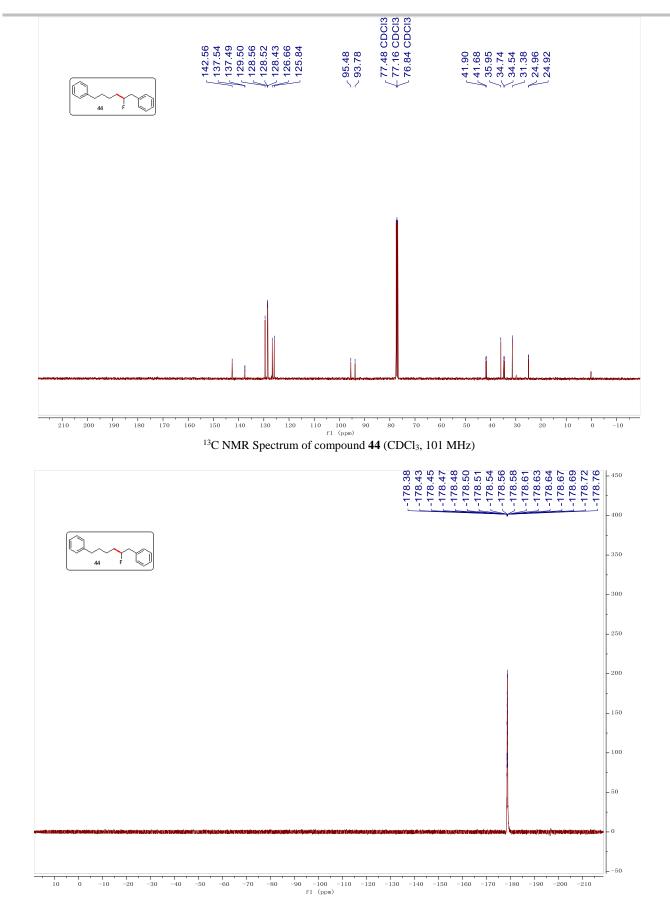












¹⁹F NMR Spectrum of of 44 (CDCl₃, 376 MHz)