Enantioselective assembly of 3,3-disubstituted succinimides via

three-component reaction of vinyl diazosuccinimides with alcohols

and imines

Haoxuan Yuan, Kemiao Hong, Xiangrong Liu, Yu Qian, Xinfang Xu, * and Wenhao Hu^{\ast}

Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China

Email: xuxinfang@mail.sysu.edu.cn

huwh9@mail.sysu.edu.cn

Table of Contents

1. General Information	S2
2. General Procedure for the Synthesis of Diazo Compounds 1	S2-S6
3. General Procedure for the Asymmetric Cascade Reaction	S7-S24
4. General Procedure for Scale Up and Derivatizations	S25-S27
5. Control Experiments	S28-S29
6. References	S29
7. NMR Spectra for 4, 6 and 7	S30-S60
8. HPLC Analyses Figures for 4, 6 and 7	S61-S84
9. Single-Crystal X-ray Diffraction of 4u and 6	S85-86

General Information

All reactions were carried out in oven-dried glassware. Flash column chromatography was performed using silica gel (300-400 mesh). Analytical thin-layer chromatography was performed using glass plates pre-coated with 200-300 mesh silica gel impregnated with a fluorescent indicator (254 nm). ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ on a 400 MHz spectrometer; chemical shifts were reported in ppm with the solvent signal as reference, and coupling constants (*J*) were given in Hertz. The peak information was described as: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, comp = composite. Enantioselectivity was determined on HPLC using Chiralpak IA, IB-3, IC, and AD-H column. High-resolution mass spectra (HRMS) were recorded on a commercial apparatus (ESI Source) and (CI Source).

General Procedure for the Synthesis of Diazo Compounds 1.¹

<u>Synthesis of S2</u>: To a solution of *N*-phenylmaleimide (1.73 g, 10mmol, 1.0 equiv.) in EtOH (100 mL), was added triphenylphosphine (2.75 g, 10.5 mmol, 1.05 equiv.) at room temperature under argon atmosphere, then aldehyde (11 mmol, 1.1 equiv.) was added to the reaction mixture after stirring for 20 min. The reaction mixture was stirred at room temperature overnight. When the reaction was completed (monitored by TLC), the reaction mixture was filtered, the precipitation was wash with ethanol and dry by air to afford **S2** in >80% yields, which was used in the next step without further purification.

<u>Synthesis of 1:</u> To a 50-mL oven-dried flask containing a magnetic stirring bar, S2 (1.5 mmol), and *p*-ABSA (4-acetamidobenzenesulfonyl azide, 468 mg, 1.95 mmol,

1.3 equiv.) in DCM (10 mL), was added DBU (1,8-diazabicyclo[5.4.0]undec-7-ene, 342 mg, 2.25 mmol, 1.5 equiv.) in DCM (2.0 mL) slowly at 0 °C, and the resulting reaction mixture was stirred at room temperature for 20 min. The reaction mixture was diluted with ethyl acetate (10 mL) and washed with saturated aqueous NH₄Cl (20 mL), saturated aqueous NaHCO₃ (20 mL), and saturated aqueous NaCl (20 mL) in sequence, and the separated organic phase was dried with anhydrous Na₂SO₄. The solvent was evaporated in vacuo after filtration, and the residue was purified by column chromatography on silica gel (Hexanes : EtOAc = 5:1) to provide diazo compounds **1** as orange solid (> 90% yield).

(*E*)-3-Benzylidene-4-diazo-1-phenylpyrrolidine-2,5-dione (1a). Orange solid. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.76 (s, 1H), 7.52 – 7.35 (comp, 10H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 166.3, 164.1, 133.5, 131.9, 129.7, 129.3, 129.1, 128.9, 128.6, 128.3, 126.6, 116.7. HRMS (TOF MS ESI⁺) calculated for C₁₇H₁₂N₃O₂ [M + H]⁺: 290.0924, found: 290.0919.

(*E*)-**3-Diazo-4-(4-fluorobenzylidene)-1-phenylpyrrolidine-2,5-dione** (**1k**). Orange solid. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.70 (s, 1H), 7.51 – 7.47 (m, 2H), 7.42 –

7.40 (comp, 3H), 7.34 (m, 2H), 7.14 (t, J = 8.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 166.1, 164.0, 163.3 (d, J = 252.0 Hz), 131.9, 131.0 (d, J = 8.5 Hz), 129.7 (d, J = 3.4 Hz), 129.3, 128.7, 127.1, 126.6, 116.7, 116.2 (d, J = 22.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) (δ , ppm) -109.70; HRMS (TOF MS ESI⁺) calculated for C₁₇H₁₁FN₃O₂ [M + H]⁺: 308.0830, found: 308.0826.

(*E*)-3-(4-Chlorobenzylidene)-4-diazo-1-phenylpyrrolidine-2,5-dione (11). Orange solid. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.67 (s, 1H), 7.50 (d, *J* = 7.8 Hz, 2H), 7.44 (s, 1H), 7.41 (d, *J* = 3.1 Hz, 3H), 7.40 (s, 1H), 7.29 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 166.0, 163.9, 135.8, 131.94, 131.85, 130.3, 129.32, 129.25, 128.7, 126.7, 126.6, 117.3; HRMS (TOF MS ESI⁺) calculated for C₁₇H₁₁ClN₃O₂ [M + H]⁺: 324.0534, found: 324.0541.

(*E*)-**3**-(**4**-**Bromobenzylidene**)-**4**-**diazo-1**-**phenylpyrrolidine**-**2**,**5**-**dione** (**1m**). Orange solid. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.64 (s, 1H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.51 – 7.47 (m, 2H), 7.45 - 7.42 (comp, 3H), 7.21 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 166.0, 163.9, 132.4, 132.2, 131.8, 130.5, 129.3, 128.7, 126.7,

126.5, 124.0, 117.3; HRMS (TOF MS ESI⁺) calculated for $C_{17}H_{11}BrN_3O_2 [M + H]^+$: 368.0029, found: 368.0039.

(*E*)-3-Diazo-4-(4-methylbenzylidene)-1-phenylpyrrolidine-2,5-dione (1n). Orange solid. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.72 (s, 1H), 7.54 - 7.50 (m, 2H), 7.46 - 7.43 (comp, 3H), 7.24 (s, 4H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 166.4, 164.2, 140.2, 132.0, 130.7, 129.6, 129.2, 129.1, 128.6, 128.5, 126.6, 115.8, 21.6; HRMS (TOF MS ESI⁺) calculated for C₁₈H₁₄N₃O₂ [M + H]⁺: 304.1081, found: 304.1078.

(*E*)-3-(3-Bromobenzylidene)-4-diazo-1-phenylpyrrolidine-2,5-dione (10). Orange solid. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.64 (s, 1H), 7.51 – 7.47 (comp, 4H), 7.42 – 7.38 (comp, 3H), 7.30 (m, 2H).; ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 163.8, 135.5, 132.6, 131.8, 131.7, 130.3, 129.3, 128.7, 127.5, 126.5, 126.0, 123.0, 118.1; HRMS (TOF MS ESI⁺) calculated for C₁₇H₁₁BrN₃O₂ [M + H]⁺: 368.0029, found: 368.0015.

(*E*)-3-(2-Bromobenzylidene)-4-diazo-1-phenylpyrrolidine-2,5-dione (1p).

Orange solid. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.77 (s, 1H), 7.67 (d, *J* = 7.9 Hz, 1H), 7.52 – 7.47 (m, 2H), 7.41 - 7.46 (comp, 4H), 7.30 – 7.27 (m, 1H), 7.26 – 7.22 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 165.8, 163.6, 133.8, 133.6, 131.8, 131.0, 129.8, 129.3, 128.7, 127.1, 126.9, 126.6, 125.0, 118.8; HRMS (TOF MS ESI⁺) calculated for C₁₇H₁₁BrN₃O₂ [M + H]⁺: 368.0029, found: 368.0023.

General Procedure for the Asymmetric Three-component Reaction

To a 10-mL oven-dried vial containing a magnetic stirring bar, $Rh_2(OAc)_4$ (0.50 mg, 1.0 mol%), **5e** (7.2 mg, 10 mol%), **2** (0.10 mmol, 1.0 equiv.), imine **3** (0.10 mmol, 1.0 equiv.), and 5 Å MS (100 mg) in DCM (1.0 mL), was added as a solution of diazo compound **1** (0.12 mmol, 1.2 equiv.) in DCM (1.0 mL) *via* a syringe pump in 2 h under argon atmosphere at 0 °C. After addition, the reaction mixture was stirred for additional 1 h under these conditions. Until consumption of the material (monitored by TLC), the crued reaction mixture was subjected to proton NMR analysis to determine the *dr* values, and the product was purified by column chromatography on silica gel without any additional treatment (Hexanes : EtOAc = 10:1) to give the pure products **4** in good to high yields with excellent enantioselectivity.

(*S*)-4-((*E*)-Benzylidene)-3-(benzyloxy)-1-phenyl-3-((*S*)-phenyl(phenylamino)meth yl)pyrrolidine-2,5-dione (4a). Yellow oil. 46.8 mg, 85% yield. >20:1 *dr*, 88% *ee*, $[\alpha]_D^{20} = -135.1$ (c = 0.033, DCM); ¹H NMR (500 MHz, CDCl₃) (δ, ppm) 8.11 (d, *J* = 7.3 Hz, 2H), 8.07 (s, 1H), 7.50 – 7.44 (comp, 3H), 7.39 - 7.34 (comp, 4H), 7.31 – 7.25 (comp, 6H), 7.23 (s, 2H), 7.21 (s, 1H), 7.03 (t, *J* = 7.7 Hz, 2H), 6.85 (d, *J* = 7.6 Hz, 2H), 6.62 (t, *J* = 7.3 Hz, 1H), 6.46 (d, *J* = 8.0 Hz, 2H), 5.74 (d, *J* = 4.4 Hz, 1H), 5.31 (d, *J* = 4.4 Hz, 1H), 4.51 (d, *J* = 10.0 Hz, 1H), 4.48 (d, *J* = 10.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 173.3, 167.7, 147.2, 141.6, 137.2, 136.2, 133.2, 132.4, 131.8, 131.1, 129.6, 129.12, 129.06, 128.9, 128.7, 128.62, 128.55, 128.4, 128.3, 126.3, 124.1, 117.5, 113.7, 83.4, 68.7, 61.1; HRMS (TOF MS ESI⁺) calculated for C₃₇H₃₁N₂O₃ [M + H]⁺: 551.2329, found: 551.2333; HPLC conditions for determination of enantiomeric excess: Daicel Chiralcel IB-3, λ = 300 nm, hexane : 2-propanol = 97:3, flow rate = 1.0 mL/min, *t*_{major} = 11.4 min, *t*_{minor} = 13.4 min.

(*S*)-4-((*E*)-Benzylidene)-3-(benzyloxy)-3-((*S*)-(4-bromophenyl)(phenylamino)met hyl)-1-phenylpyrrolidine-2,5-dione (4b). Yellow solid. mp = 86 – 89 °C. 53.4 mg, 85% yield. >20:1 *dr*, 72% *ee*, [α]_D²⁰ = -175.6 (c = 0.033, DCM); ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 8.09 (s, 1H), 8.07 (d, *J* = 6.9 Hz, 2H), 7.50 – 7.46 (m, 2H), 7.44 (d, *J* = 6.5 Hz, 2H), 7.41 (d, *J* = 7.8 Hz, 2H), 7.37 (d, *J* = 7.1 Hz, 1H), 7.34 (s, 1H), 7.32 (s, 1H), 7.30 (d, *J* = 2.8 Hz, 2H), 7.28 – 7.25 (m, 2H), 7.10 (d, *J* = 8.2 Hz, 2H), 7.04 (t, *J* = 7.8 Hz, 2H), 6.87 (d, *J* = 8.0 Hz, 2H), 6.64 (t, *J* = 7.3 Hz, 1H), 6.43 (d, *J* = 8.0 Hz, 2H), 5.68 (d, *J* = 4.1 Hz, 1H), 5.25 (d, *J* = 4.1 Hz, 1H), 4.52 (d, *J* = 10.1 Hz, 1H), 4.48 (d, *J* = 10.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 173.1, 167.6, 146.8, 142.0, 136.5, 136.0, 133.1, 132.2, 132.0, 131.9, 131.0, 130.0, 129.7, 129.2, 129.0, 128.7, 128.6, 128.5, 126.24, 126.17, 123.6, 122.8, 117.9, 113.7, 83.1, 68.8, 60.7; HRMS (TOF MS ESI⁺) calculated for C₃₇H₃₀BrN₂O₃ [M + H]⁺: 629.1434, found: 629.1429; HPLC conditions for determination of enantiomeric excess: Daicel Chiralcel IB-3, λ = 300 nm, hexane : 2-propanol = 97:3, flow rate = 1.0 mL/min, *t*_{major} = 12.9 min, *t*_{minor} = 17.9 min.

(*S*)-4-((*E*)-Benzylidene)-3-(benzyloxy)-3-((*S*)-(3-bromophenyl)(phenylamino)met hyl)-1-phenylpyrrolidine-2,5-dione (4c). Yellow oil. 55.3 mg, 88% yield. >20:1 *dr*, 77% *ee*, $[\alpha]_D^{20} = -223.2$ (c = 0.033, DCM); ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.09 - 8.08 (comp, 3H), 7.51 - 7.47 (comp, 3H), 7.45 - 7.42 (comp, 4H), 7.38 (t, *J* = 6.9 Hz, 2H), 7.30 (d, J = 1.6 Hz, 1H), 7.27 – 7.25 (comp, 3H), 7.10 – 7.03 (comp, 4H), 6.97 (d, J = 7.8 Hz, 2H), 6.66 (t, J = 7.3 Hz, 1H), 6.46 (d, J = 7.7 Hz, 2H), 5.72 (d, J =4.0 Hz, 1H), 5.25 (d, J = 4.0 Hz, 1H), 4.58 (d, J = 10.0 Hz, 1H), 4.48 (d, J = 10.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 173.2, 167.5, 147.0, 142.1, 134.0, 136.0, 133.1, 132.3, 132.00, 131.97, 131.02, 130.96, 130.2, 129.7, 129.2, 129.4, 128.7, 128.6, 128.5, 127.3, 126.3, 123.7, 123.1, 117.9, 113.7, 83.1, 68.8, 60.8; HRMS (TOF MS ESI⁺) calculated for C₃₇H₃₀BrN₂O₃ [M + H]⁺: 629.1434, found: 629.1429; HPLC conditions for determination of enantiomeric excess: Daicel Chiralcel IB-3, $\lambda = 300$ nm, hexane : 2-propanol = 97:3, flow rate = 1.0 mL/min, $t_{major} = 12.2$ min, $t_{minor} =$ 16.1 min.

(*S*)-4-((*E*)-Benzylidene)-3-(benzyloxy)-3-((*S*)-(2-bromophenyl)(phenylamino)met hyl)-1-phenylpyrrolidine-2,5-dione (4d). Yellow solid. mp = 181 – 183 °C. 55.3 mg, 88% yield. >20:1 *dr*, 94% *ee*, $[\alpha]_D^{20}$ = -222.2 (c = 0.033, DCM); ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.09 (d, *J* = 7.0 Hz, 2H), 7.99 (s, 1H), 7.51 (d, *J* = 2.2 Hz, 1H), 7.50 – 7.48 (m, 1H), 7.47 (d, *J* = 2.1 Hz, 1H), 7.43 (s, 2H), 7.41 (s, 1H), 7.40 (s, 1H), 7.30 – 7.26 (comp, 3H), 7.21 (m, 2H), 7.14 – 7.08 (comp, 3H), 7.08 – 7.03 (comp, 4H), 6.64 (t, *J* = 7.4 Hz, 1H), 6.51 (d, *J* = 8.0 Hz, 2H), 5.86 (d, *J* = 4.6 Hz, 1H), 5.82 (d, *J* = 4.6 Hz, 1H), 4.43 (d, *J* = 10.0 Hz, 1H), 4.38 (d, *J* = 10.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 173.5, 167.8, 146.7, 143.4, 136.7, 136.1, 133.6, 133.3, 133.1, 131.7, 131.2, 130.02, 129.96, 129.30, 129.28, 129.1, 128.9, 128.7, 128.5, 128.4, 128.0, 126.2, 126.0, 121.6, 117.8, 113.5, 83.5, 68.3, 60.7; HRMS (TOF MS ESI⁺) calculated for C₃₇H₃₀BrN₂O₃ [M + H]⁺: 629.1434, found: 629.1434; HPLC conditions for determination of enantiomeric excess: Daicel Chiralcel IB-3, $\lambda = 300$ nm, hexane : 2-propanol = 97:3, flow rate = 1.0 mL/min, $t_{major} = 11.4$ min, $t_{minor} = 14.5$ min.

(*S*)-4-((*E*)-Benzylidene)-3-(benzyloxy)-3-((*S*)-(2-chlorophenyl)(phenylamino)meth yl)-1-phenylpyrrolidine-2,5-dione (4e). Yellow solid. mp = 84 – 85 °C. 50.2 mg, 86% yield. >20:1 *dr*, 92% *ee*, $[\alpha]_D^{20} = -225.2$ (c = 0.033, DCM); ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.09 (d, *J* = 6.4 Hz, 2H), 7.99 (s, 1H), 7.50 (d, *J* = 9.4 Hz, 1H), 7.47 – 7.34 (comp, 7H), 7.29 - 7.27 (comp, 4H), 7.23 – 7.14 (comp, 3H), 7.12 – 7.01 (comp, 4H), 6.64 (t, *J* = 7.3 Hz, 1H), 6.49 (d, *J* = 8.0 Hz, 2H), 5.93 (d, *J* = 4.8 Hz, 1H), 5.81 (d, *J* = 4.8 Hz, 1H), 4.44 (d, *J* = 10.0 Hz, 1H), 4.41 (d, *J* = 10.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 173.6, 167.8, 146.8, 143.3, 136.1, 135.3 135.2, 133.2, 133.0, 132.0, 131.2, 130.2, 129.7, 129.6, 129.33, 129.29, 129.1, 128.9, 128.7, 128.5, 128.4, 127.4, 126.2, 121.7, 117.8, 113.4, 83.3, 68.4, 58.0; HRMS (TOF MS ESI⁺) calculated for C₃₇H₃₀ClN₂O₃ [M + H]⁺: 585.1939, found: 585.1939; HPLC conditions for determination of enantiomeric excess: Daicel Chiralcel IB-3, λ = 300 nm, hexane : 2-propanol = 97:3, flow rate = 1.0 mL/min, *t*_{major} = 10.1 min, *t*_{minor} = 11.7 min.

(S)-4-((E)-Benzylidene)-3-(benzyloxy)-1-phenyl-3-((S)-(phenylamino)(2-(trifluoro methyl)phenyl)methyl)pyrrolidine-2,5-dione (4f). Yellow oil. 56.2 mg, 91%

yield. >20:1 *dr*, 97% *ee*, $[α]_D^{20} = -223.5$ (c = 0.033, DCM). ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 8.01 (s, 1H), 7.83 (d, J = 7.3 Hz, 2H), 7.71 (d, J = 7.3 Hz, 1H), 7.58 (d, J = 7.7 Hz, 1H), 7.44 – 7.35 (comp, 5H), 7.32 – 7.21 (comp, 6H), 7.18 – 7.13 (m, 2H), 7.10 – 7.03 (comp, 4H), 6.69 (t, J = 7.3 Hz, 1H), 6.60 (d, J = 7.7 Hz, 2H), 5.99 (d, J = 6.7 Hz, 1H), 5.28 (d, J = 6.7 Hz, 1H), 4.44 (d, J = 10.0 Hz, 1H), 4.32 (d, J = 10.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 173.8, 168.1, 146.6, 143.7, 136.5, 136.1, 133.1, 132.6, 132.0, 131.4, 131.3, 129.6, 129.3, 129.1, 129.0, 128.9, 128.8, 128.7, 128.5, 128.4, 128.2, 127.4 (q, J = 5.4 Hz), 126.2, 125.9, 123.1, 122.0, 118.6, 114.2, 85.1, 68.4, 58.6, 58.52, 58.49; ¹⁹F NMR (376 MHz, CDCl₃) (δ, ppm) -54.78; HRMS (TOF MS ESI⁺) calculated for C₃₈H₃₀F₃N₂O₃ [M + H]⁺: 619.2203, found: 619.2204; HPLC conditions for determination of enantiomeric excess: Daicel Chiralpak IB-3, λ = 300 nm, hexane : 2-propanol = 97:3, flow rate = 1.0 mL/min, $t_{major} = 11.9$ min, $t_{minor} = 20.9$ min.

(*S*)-4-((*E*)-Benzylidene)-3-(benzyloxy)-3-((*S*)-(2-bromophenyl)((4-methoxyphenyl)) amino)methyl)-1-phenylpyrrolidine-2,5-dione (4g). Yellow oil. 60.4 mg, 92% yield. >20:1 *dr*, 90% *ee*, $[\alpha]_D^{20} = -189.2$ (c = 0.033, DCM); ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.07 (d, *J* = 7.6 Hz, 2H), 7.98 (s, 1H), 7.54 – 7.35 (comp, 9H), 7.24 – 7.22 (comp, 3H), 7.14 – 7.03 (comp, 4H), 6.67 (d, *J* = 8.4 Hz, 2H), 6.48 (d, *J* = 8.4 Hz, 2H), 5.81 (d, *J* = 4.4 Hz, 1H), 5.51 (d, *J* = 4.4 Hz, 1H), 4.42 (d, *J* = 10.0 Hz, 1H), 4.37 (d, *J* = 10.0 Hz, 1H), 3.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 173.4, 167.8, 152.4, 143.3, 141.1, 137.0, 136.2, 133.6, 133.3, 133.1, 131.6, 131.2, 130.1, 130.0, 129.3, 129.1, 128.9, 128.7, 128.5, 128.3, 128.0, 126.2, 126.0, 121.8, 114.89, 114.87, 83.8, 68.3, 61.5, 55.8; HRMS (TOF MS ESI⁺) calculated for C₃₈H₃₂BrN₂O₄ $[M + H]^+$: 659.1540, found: 659.1532; HPLC conditions for determination of enantiomeric excess: Daicel Chiralcel IB-3 λ = 300 nm, hexane : 2-propanol = 97:3, flow rate = 1.0 mL/min, t_{major} = 18.1 min, t_{minor} = 23.3 min.

(*S*)-4-((*E*)-Benzylidene)-3-(benzyloxy)-3-((*S*)-(2-bromophenyl)((4-fluorophenyl)a mino)methyl)-1-phenylpyrrolidine-2,5-dione (4h). Yellow oil. 61.9 mg, 96% yield. >20:1 *dr*, 90% *ee*, $[α]_D^{20} = -231.2$ (c = 0.033, DCM); ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 8.08 (d, *J* = 7.6 Hz, 2H), 7.99 (s, 1H), 7.51 – 7.44 (comp, 4H), 7.45 – 7.42 (comp, 5H), 7.24 (s, 2H), 7.23 – 7.19 (m, 2H), 7.13 (m, 2H), 7.04 (d, *J* = 7.8 Hz, 2H), 6.77 (t, *J* = 8.4 Hz, 2H), 6.48 – 6.37 (m, 2H), 5.81 (d, *J* = 4.8 Hz, 1H), 5.68 (d, *J* = 4.8Hz, 1H), 4.42 (d, *J* = 10.0 Hz, 1H), 4.38 (d, *J* = 10.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 173.5, 167.7, 156.1 (d, *J* = 235.3 Hz), 143.4, 143.2 (d, *J* = 1.8 Hz), 136.6, 136.1, 133.7, 133.3, 133.1, 131.7, 131.2, 130.1, 129.9, 129.3, 129.1, 128.9, 128.7, 128.5, 128.4, 128.0, 126.2, 126.0, 121.6, 115.7 (d, *J* = 22.3 Hz), 114.6 (d, *J* = 7.4 Hz), 83.6, 68.4, 61.3; ¹⁹F NMR (376 MHz, CDCl₃) (δ, ppm) -127.6; HRMS (TOF MS ESI⁺) calculated for C₃₇H₂₉BrFN₂O₃ [M + H]⁺: 647.1340, found: 647.1330; HPLC conditions for determination of enantiomeric excess: Daicel Chiralcel IB-3, λ = 300 nm, hexane : 2-propanol = 97:3, flow rate = 1.0 mL/min, *t*_{major} = 13.6 min, *t*_{minor} = 18.9 min.

(S)-4-((E)-Benzylidene)-3-(benzyloxy)-3-((S)-(2-bromophenyl)((3-fluorophenyl)a mino)methyl)-1-phenylpyrrolidine-2,5-dione (4i). Yellow oil. 53.9 mg, 84% yield. >20:1 dr, 86% ee, $[\alpha]_D^{20} = -201.2$ (c = 0.033, DCM); ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 8.10 (d, J = 7.5 Hz, 2H), 8.00 (s, 1H), 7.52 – 7.42 (comp, 8H), 7.40 (d, J = 7.3 Hz, 1H), 7.29 – 7.29 (m, 1H), 7.25 (s, 1H), 7.22 (s, 2H), 7.14 (t, J = 7.1 Hz, 2H), 7.04 (d, J = 7.5 Hz, 2H), 6.99 (t, J = 7.3 Hz, 1H), 6.32 (m, 2H), 6.19 (d, J = 11.6 Hz, 1H), 5.96 (d, J = 4.8 Hz, 1H), 5.83 (d, J = 4.8 Hz, 1H), 4.43 (d, J = 10.0 Hz, 1H), 4.39 (d, J = 10.0 Hz, 1H); ¹³C NMR(125 MHz, CDCl₃) (δ , ppm) 173.6, 167.7, 164.0 (d, J = 242.9 Hz), 148.5 (d, J = 10.8 Hz), 143.6, 136.2, 136.0, 133.8, 133.3, 133.1, 131.8, 131.1, 130.3 (d, J = 10.1 Hz), 130.2, 129.7, 129.4, 129.1, 129.0, 128.7, 128.54, 128.47, 128.0, 126.2, 126.0, 121.4, 109.4 (d, J = 2.2 Hz), 104.3 (d, J = 21.6 Hz), 100.4 (d, J = 25.6 Hz), 83.3, 68.4, 60.5; ¹⁹F NMR (471 MHz, CDCl₃) (δ , ppm) -112.63. HRMS (TOF MS ESI⁺) calculated for C₃₇H₂₉BrFN₂O₃ [M + H]⁺: 647.1340, found: 647.1343; HPLC conditions for determination of enantiomeric excess: Chiralpak IB-3, $\lambda = 300$ nm, hexane : 2-propanol = 97:3, flow rate = 1.0 mL/min, $t_{\text{major}} = 13.1 \text{ min}, t_{\text{minor}} = 15.9 \text{ min}.$

(S)-4-((E)-Benzylidene)-3-(benzyloxy)-3-((S)-(2-bromophenyl)((2-fluorophenyl)a mino)methyl)-1-phenylpyrrolidine-2,5-dione (4j). Yellow oil. 52.8 mg, 82% yield. >20:1 *dr*, 95% *ee*, $[\alpha]_D^{20} = -264.3$ (c = 0.033, DCM); ¹H NMR (400 MHz,

CDCl₃) (δ , ppm) 8.08 (d, J = 6.6 Hz, 2H), 8.00 (s, 1H), 7.51 – 7.37 (comp, 9H), 7.29 – 7.28 (comp, 3H), 7.25 – 7.23 (m, 1H), 7.14 - 7.12 (m, 2H), 7.06 (d, J = 7.3 Hz, 2H), 6.95 – 6.91 (m, 1H), 6.79 (t, J = 7.7 Hz, 1H), 6.58 – 6.53 (m, 1H), 6.32 (t, J = 8.4 Hz, 1H), 6.17 (t, J = 1.8 Hz, 1H), 5.87 (d, J = 5.1 Hz, 1H), 4.47 (d, J = 10.0 Hz, 1H), 4.37 (d, J = 10.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 173.4, 167.7, 151.9 (d, J = 239.7 Hz), 143.5, 136.4, 136.1, 135.5 (d, J = 11.0 Hz), 133.7, 133.3, 133.1, 131.7, 131.2, 130.2, 129.9, 129.3, 129.1, 128.9, 128.7, 128.5, 128.4, 128.1, 126.2, 125.9, 124.5 (d, J = 3.5 Hz), 121.6, 117.3 (d, J = 6.8 Hz), 114.6 (d, J = 18.4 Hz), 112.7 (d, J = 2.7 Hz), 83.4, 68.4, 60.5; ¹⁹F NMR (471 MHz, CDCl₃) (δ , ppm) -135.40. HRMS (TOF MS ESI⁺) calculated for C₃₇H₂₉BrFN₂O₃ [M + H]⁺: 647.1340, found: 647.1340; HPLC conditions for determination of enantiomeric excess: Daicel Chiralcel AD-H, $\lambda = 300$ nm, hexane : 2-propanol = 97:3, flow rate = 1.0 mL/min, $t_{major} = 41.1$ min, $t_{minor} = 46.3$ min.

(*S*)-3-(Benzyloxy)-3-((*S*)-(2-bromophenyl)(phenylamino)methyl)-4-((*E*)-4-fluorob enzylidene)-1-phenylpyrrolidine-2,5-dione (4k). Yellow oil. 62.6 mg, 97% yield. >20:1 *dr*, 95% *ee*, $[\alpha]_D^{20} = -210.2$ (c = 0.033, DCM); ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.09 (d, *J* = 8.7, 2H), 7.94 (s, 1H), 7.49 (t, *J* = 6.7 Hz, 2H), 7.44 – 7.38 (comp, 3H), 7.33 – 7.27 (comp, 3H), 7.22 – 7.18 (m, 1H), 7.15 – 7.09 (comp, 3H), 7.09 – 7.03 (comp, 6H), 6.65 (t, *J* = 7.3 Hz, 1H), 6.52 (d, *J* = 8.0 Hz, 2H), 5.80 (t, *J* = 3.7 Hz, 2H), 4.46 (d, *J* = 10.0 Hz, 1H), 4.35 (d, *J* = 10.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 173.4, 167.7, 164.6 (d, *J* = 255.3 Hz), 146.7, 141.9, 136.6, 136.0, 135.7 (d, *J* = 8.8 Hz), 133.6, 131.1, 130.1, 130.0, 129.5 (d, *J* = 3.2 Hz), 129.3, 129.1, 128.9, 128.6, 128.54, 128.47, 128.0, 126.2, 125.9, 117.9, 116.6 (d, J = 21.7 Hz) , 113.6, 83.5, 68.4, 60.7; ¹⁹F NMR (376 MHz, CDCl₃) (δ , ppm) -106.38; HRMS (TOF MS ESI⁺) calculated for C₃₇H₂₉BrFN₂O₃ [M + H]⁺: 647.1340, found: 647.1333; HPLC conditions for determination of enantiomeric excess: Daicel Chiralcel IB-3, $\lambda = 300$ nm, hexane : 2-propanol = 97:3, flow rate = 1.0 mL/min, $t_{major} = 14.5$ min, $t_{minor} = 19.5$ min.

(*S*)-3-(Benzyloxy)-3-((*S*)-(2-bromophenyl)(phenylamino)methyl)-4-((*E*)-4-chlorob enzylidene)-1-phenylpyrrolidine-2,5-dione (4l). Yellow solid. mp = 82 – 83 °C. 50.2 mg, 76% yield. >20:1 *dr*, 92% *ee*, $[\alpha]_D^{20} = -285.3$ (c = 0.033, DCM); ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.01 (d, J = 8.6 Hz, 2H), 7.92 (s, 1H), 7.51 – 7.46 (m, 2H), 7.43 (t, J = 7.3 Hz, 2H), 7.40 – 7.37 (m, 2H), 7.36 – 7.25 (m, 1H), 7.30 – 7.29 (m, 3H) 7.21 – 7.19 (m, 2H), 7.15 – 7.04 (comp, 6H), 6.66 (t, J = 7.4 Hz, 1H), 6.52 (d, J = 7.5 Hz, 2H), 5.80 (d, J = 2.9 Hz, 1H), 5.77 (d, J = 4.3 Hz, 1H), 4.45 (d, *J* = 10.0 Hz, 1H), 4.34 (d, *J* = 10.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 173.3, 167.6, 146.7, 141.7, 138.0 136.6, 135.9, 134.5, 134.4, 133.6, 131.6, 131.1, 130.1, 130.0, 129.6, 129.3, 129.1, 129.0, 128.6, 128.5, 128.1, 126.2, 126.0, 122.3, 118.0, 113.6, 83.6, 68.4, 60.8; HRMS (TOF MS ESI⁺) calculated for C₃₇H₂₉BrClN₂O₃ [M + H]⁺: 663.1045, found: 663.1035; HPLC conditions for determination of enantiomeric excess: Daicel Chiralcel IB-3, λ = 300 nm, hexane : 2-propanol = 97:3, flow rate = 1.0 mL/min, *t*_{major} = 13.8 min, *t*_{minor} = 17.7 min.

(*S*)-3-(Benzyloxy)-4-((*E*)-4-bromobenzylidene)-3-((*S*)-(2-bromophenyl)(phenylam ino)methyl)-1-phenylpyrrolidine-2,5-dione (4m). Yellow solid. mp = 88 – 89 °C. 50.5 mg, 72% yield. >20:1 *dr*, 91% *ee*, $[\alpha]_D^{20}$ = -168.6 (c = 0.033, DCM); ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.93 (d, *J* = 8.5 Hz, 2H), 7.90 (s, 1H), 7.53 (d, *J* = 8.5 Hz, 2H), 7.50 – 7.46 (m, 2H), 7.43 (d, *J* = 7.7 Hz, 2H), 7.38 (m, 1H), 7.32 – 7.26 (comp, 3H), 7.23 – 7.16 (m, 2H), 7.15 – 7.10 (comp, 3H), 7.08 (s, 1H), 7.06 (d, *J* = 3.7 Hz, 1H), 7.04 (s, 1H), 6.66 (t, *J* = 7.3 Hz, 1H), 6.51 (d, *J* = 7.7 Hz, 2H), 5.80 (s, 1H), 5.78 (s, 1H), 4.45 (d, *J* = 10.0 Hz, 1H), 4.33 (d, *J* = 10.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 173.3, 167.6, 146.7, 141.8, 136.6, 135.9, 134.6, 133.7, 132.6, 132.0, 131.1, 130.1, 130.0, 129.3, 129.1, 129.0, 128.6, 128.5, 128.1, 126.7, 126.1, 125.9, 122.5, 118.0, 113.6, 83.6, 68.4, 60.7; HRMS (TOF MS ESI⁺) calculated for C₃₇H₂₉Br₂N₂O₃ [M + H]⁺: 707.0539, found: 707.0529; HPLC conditions for determination of enantiomeric excess: Daicel Chiralcel IB-3, λ = 300 nm, hexane : 2-propanol = 97:3, flow rate = 1.0 mL/min, *t*_{major} = 15.3 min, *t*_{minor} = 19.8 min.

(S)-3-(Benzyloxy)-3-((S)-(2-bromophenyl)(phenylamino)methyl)-4-((E)-4-methyl benzylidene)-1-phenylpyrrolidine-2,5-dione (4n). Yellow solid. mp = 86 - 88 °C.

46.4 mg, 72% yield. >20:1 *dr*, 93% *ee*, $[\alpha]_D^{20} = -210.2$ (c = 0.033, DCM); ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.00 (s, 1H), 7.97 (d, *J* = 3.2 Hz, 2H), 7.51 – 7.30 (comp, 7H), 7.25 – 7.22 (comp, 5H), 7.14 – 6.99 (comp, 6H), 6.65 (t, *J* = 6.7 Hz, 1H), 6.52 (d, *J* = 5.4 Hz, 2H), 5.89 – 5.75 (m, 2H), 4.45 – 4.33 (m, 2H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 173.7, 167.9, 146.8, 143.5, 142.6, 136.8, 136.2, 133.6, 133.4, 131.2, 130.5, 130.1, 130.0, 129.3, 129.1, 128.8, 128.6, 128.5, 128.3, 128.0, 126.2, 126.1, 120.3, 117.7, 113.5, 83.5, 68.3, 60.6, 21.9; HRMS (TOF MS ESI⁺) calculated for C₃₈H₃₂BrN₂O₃ [M + H]⁺: 643.1591, found: 643.1598; HPLC conditions for determination of enantiomeric excess: Chiralpak IB-3, λ = 300 nm, hexane : ethanol= 97:3, flow rate = 0.5 mL/min, *t*_{major} = 20.7 min, *t*_{minor} = 21.7 min.

(*S*)-3-(Benzyloxy)-4-((*E*)-3-bromobenzylidene)-3-((*S*)-(2-bromophenyl)(phenylam ino)methyl)-1-phenylpyrrolidine-2,5-dione (4o). Yellow solid. mp = 71 – 72 °C. 48.0 mg, 68% yield. >20:1 *dr*, 92% *ee*, $[\alpha]_D^{20}$ = -201.2 (c = 0.033, DCM); ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 8.09 (d, *J* = 2.6 Hz, 2H), 7.88 (s, 1H), 7.54 (d, *J* = 7.9 Hz, 1H), 7.51 – 7.36 (comp, 7H), 7.28 (d, *J* = 3.2 Hz, 2H), 7.21 (m, 2H), 7.10- 7.06 (comp, 6H), 6.66 (t, *J* = 7.3 Hz, 1H), 6.54 (d, *J* = 8.0 Hz, 2H), 5.84 (d, *J* = 4.5 Hz, 1H), 5.68 (d, *J* = 5.0 Hz, 1H), 4.46 (d, *J* = 10.0 10.0 Hz, 1H), 4.34 (d, *J* = 10.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 173.2, 167.4, 146.7, 141.5, 136.6, 136.1, 135.9, 135.0, 134.3, 133.7, 131.13, 131.07, 130.7, 130.1, 129.9, 129.4, 129.1, 129.0, 128.5, 128.42, 128.35, 128.0, 126.2, 125.9, 123.5, 123.2, 118.1, 113.8, 83.7, 68.3, 60.9; HRMS (TOF MS ESI⁺) calculated for C₃₇H₂₉Br₂N₂O₃ [M + H]⁺: 707.0539, found: 707.0543; HPLC conditions for determination of enantiomeric excess: Daicel

Chiralcel IB-3, $\lambda = 300$ nm, hexane : 2-propanol = 97:3, flow rate = 1.0 mL/min, t_{major} = 14.2 min, $t_{minor} = 21.8$ min.

(*S*)-3-(Benzyloxy)-4-((*E*)-2-bromobenzylidene)-3-((*S*)-(2-bromophenyl)(phenylam ino)methyl)-1-phenylpyrrolidine-2,5-dione (4p). Yellow solid. mp = 153 – 154 °C. 53.7 mg, 76% yield. >20:1 *dr*, 95% *ee*, $[\alpha]_D^{20}$ = -183.2 (c = 0.033, DCM); ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.56 (d, *J* = 9.6 Hz, 1H), 8.52 (s, 1H), 7.73 – 7.66 (m, 1H), 7.52 – 7.48 (m, 2H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.38 (d, *J* = 7.0 Hz, 1H), 7.27 (m, 2H), 7.25 – 7.21 (comp, 3H), 7.15 (m, 2H), 7.11 (m, 2H), 7.09 – 7.05 (comp, 4H), 6.65 (t, *J* = 7.4 Hz, 1H), 6.50 (d, *J* = 8.0 Hz, 2H), 5.80 (d, *J* = 3.9 Hz, 1H), 5.72 (d, *J* = 4.7 Hz, 1H), 4.47 (d, *J* = 10.0 Hz, 1H), 4.31 (d, *J* = 10.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 173.1, 167.3, 146.6, 141.2, 136.5, 135.9, 133.9, 133.8, 132.9, 132.5, 132.3, 131.1, 130.1, 123.0, 129.3, 129.10, 129.05, 128.9, 128.48, 128.45, 128.37, 128.2, 128.1, 126.1, 125.7, 124.0, 117.9, 113.6, 83.7, 68.3, 61.1; HRMS (TOF MS ESI⁺) calculated for C₃₇H₂₉Br₂N₂O₃ [M + H]⁺: 707.0539, found: 707.0549; HPLC conditions for determination of enantiomeric excess: Daicel Chiralcel IB-3, λ = 300 nm, hexane : 2-propanol = 97:3, flow rate = 1.0 mL/min, *t*_{major} = 11.4 min, *t*_{minor} = 15.4 min.

(*S*)-4-((*E*)-Benzylidene)-3-((4-bromobenzyl)oxy)-3-((*S*)-(2-bromophenyl)(phenyla mino)methyl)-1-phenylpyrrolidine-2,5-dione (4q). Yellow oil. 50.8 mg, 72% yield. >20:1 *dr*, 96% *ee*, [α] $_{D}^{20}$ = -237.2 (c = 0.033, DCM); ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 8.05 (d, *J* = 2.8 Hz, 2H), 7.98 (s, 1H), 7.54 – 7.35 (comp, 10H), 7.18 – 6.96 (comp, 8H), 6.73 – 6.59 (m, 1H), 6.53 (s, 2H), 5.88 (d, *J* = 5.2 Hz, 1H), 5.75 (d, *J* = 5.2 Hz, 1H), 4.37 (d, *J* = 10.2 Hz, 1H), 4.31 (d, *J* = 10.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 173.5, 167.7, 146.7, 143.4, 136.6, 135.1, 133.7, 133.3, 133.0, 131.8, 131.6, 131.1, 130.2, 130.1, 129.9, 129.3, 129.1, 129.0, 128.0, 126.1, 126.0, 122.4, 121.5, 117.9, 113.6, 83.7, 67.5, 60.8; HRMS (TOF MS ESI⁺) calculated for C₃₇H₂₉Br₂N₂O₃ [M + H]⁺: 707.0539, found: 707.0538; HPLC conditions for determination of enantiomeric excess: Daicel Chiralcel IB-3, λ =300 nm, hexane : 2-propanol = 97:3, flow rate = 1.0 mL/min, *t*_{major} = 16.5 min, *t*_{minor} = 22.1 min.

(*S*)-4-((*E*)-Benzylidene)-3-((4-bromobenzyl)oxy)-1-phenyl-3-((*S*)-phenyl(phenyla mino)methyl)pyrrolidine-2,5-dione (4r). Yellow solid. mp = 86 – 89 °C. 51.5 mg, 82% yield. >20:1 *dr*, 92% *ee*, $[\alpha]_D^{20}$ = -195.2 (c = 0.033, DCM); ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 8.08 (s, 1H), 8.06 (d, *J* = 3.8 Hz, 2H), 7.52 – 7.45 (comp, 3H), 7.44 – 7.33 (comp, 5H), 7.24 (d, *J* = 5.8 Hz, 2H), 7.21 (d, *J* = 4.1 Hz, 3H), 7.11 (d, *J* = 8.1 Hz, 2H), 7.06 (t, *J* = 7.7 Hz, 2H), 6.85 (t, *J* = 4.6 Hz, 2H), 6.65 (t, *J* = 7.3 Hz, 1H), 6.49 (d, *J* = 8.0 Hz, 2H), 5.69 (d, *J* = 5.0 Hz, 1H), 5.32 (d, *J* = 5.0 Hz, 1H), 4.46 (d, *J* = 9.6 Hz, 1H), 4.31 (d, *J* = 9.6 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) (δ , ppm) 173.3,

167.6, 147.3, 141.6, 137.1, 135.2, 133.1, 132.3, 131.9, 131.7, 131.0, 130.2, 129.7, 129.2, 129.1, 129.0, 128.8, 128.7, 128.3, 126.3, 123.9, 122.5, 117.0, 113.8, 83.6, 67.9, 61.2; HRMS (TOF MS ESI⁺) calculated for $C_{37}H_{30}BrN_2O_3$ [M + H]⁺: 629.1434, found: 629.1430; HPLC conditions for determination of enantiomeric excess: Chiralpak IB-3, $\lambda = 300$ nm, hexane : 2-propanol = 98:2, flow rate = 1.0 mL/min, $t_{major} = 19.4$ min, $t_{minor} = 21.8$ min.

(*S*)-4-((*E*)-Benzylidene)-3-((*S*)-(2-bromophenyl)(phenylamino)methyl)-3-((4-meth oxybenzyl)oxy)-1-phenylpyrrolidine-2,5-dione (4s). Yellow oil. 53.7 mg, 82% yield. >20:1 *dr*, 95% *ee*, $[\alpha]_D^{20} = -207.2$ (c = 0.033, DCM); ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 8.10 (d, *J* = 7.4 Hz, 2H), 7.99 (s, 1H), 7.50 – 7.41 (comp, 8H), 7.16 – 6.98 (comp, 8H), 6.80 (d, *J* = 8.0 Hz, 2H), 6.63 (t, *J* = 7.3 Hz, 1H), 6.49 (d, *J* = 8.0 Hz, 2H), 5.83 (s, 1H), 5.80 (s, 1H), 4.58 (d, *J* = 10.0 Hz, 1H), 4.54 (d, *J* = 10.0 Hz, 1H), 3.78 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 173.6, 167.8, 159.8, 146.7, 143.3, 136.7, 133.6, 133.4, 133.1, 131.6, 131.2, 130.5, 123.0, 129.3, 129.2, 129.0, 128.9, 128.3, 128.0, 126.2, 126.0, 121.8, 117.7, 113.9, 113.5, 83.3, 68.1, 60.7, 55.4; HRMS (TOF MS ESI⁺) calculated for C₃₈H₃₂BrN₂O₄ [M + H]⁺: 659.1540, found: 659.1530; HPLC conditions for determination of enantiomeric excess: Daicel Chiralcel IB-3, λ = 300 nm, hexane : 2-propanol = 97:3, flow rate = 1.0 mL/min, *t*_{major} = 17.7 min, *t*_{minor} = 21.6 min.

(*S*)-4-((*E*)-Benzylidene)-3-((*S*)-(2-bromophenyl)(phenylamino)methyl)-1-phenyl-3 -(thiophen-2-ylmethoxy)pyrrolidine-2,5-dione (4t). Brown oil. 32.3 mg, 51% yield. >20:1 *dr*, 92% *ee*, [α] $_{D}^{20}$ = -170.6 (c = 0.033, DCM); ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 8.10 (d, *J* = 9.1 Hz, 2H), 7.98 (s, 1H), 7.49 – 7.45 (comp, 5H), 7.44 – 7.37 (comp, 3H), 7.29 (d, *J* = 4.5 Hz, 1H), 7.14 – 7.08 (comp, 3H), 7.07 (d, *J* = 1.3 Hz, 1H), 7.05 (s, 1H), 7.02 (d, *J* = 1.1 Hz, 1H), 6.90 (m, 1H), 6.81 (d, *J* = 3.5 Hz, 1H), 6.64 (t, *J* = 7.2 Hz, 1H), 6.53 – 6.47 (m, 2H), 5.83 (s, 1H), 5.82 (s, 1H), 4.59 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 173.1, 167.7, 146.7, 143.5, 138.1, 136.6, 133.7, 133.4, 133.0, 131.7, 131.2, 130.1, 129.4, 129.3, 129.1, 128.9, 128.03, 127.96, 127.0, 126.7, 126.2, 126.0, 121.4, 117.8, 113.6, 83.3, 62.8, 60.7; HRMS (TOF MS ESI⁺) calculated for C₃₅H₂₈BrN₂O₃S [M + H]⁺: 635.0999, found: 635.0998; HPLC conditions for determination of enantiomeric excess: Daicel Chiralcel IB-3, λ = 300 nm, hexane : 2-propanol = 97:3, flow rate = 1.0 mL/min, *t*_{major} = 15.2 min, *t*_{minor} = 19.5 min.

(*S*)-4-((*E*)-Benzylidene)-3-((*S*)-(2-bromophenyl)(phenylamino)methyl)-3-(naphth alen-2-ylmethoxy)-1-phenylpyrrolidine-2,5-dione (4u). Yellow solid. mp = 109 - 110 °C. 50.6 mg, 75% yield. >20:1 *dr*, 93% *ee*, $[\alpha]_D^{20} = -192.2$ (c = 0.033, DCM); ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.12 (d, *J* = 7.3 Hz, 2H), 8.03 (s, 1H), 7.84 – 7.75 (comp, 3H), 7.70 (m, 1H), 7.56 (s, 1H), 7.52 – 7.38 (comp, 10H), 7.14 – 7.05 (comp,

4H), 7.04 – 6.96 (m, 2H), 6.65 (t, J = 7.3 Hz, 1H), 6.54 (d, J = 7.6 Hz, 2H), 5.91 (s, 1H), 5.84 (s, 1H), 4.56 (q, J = 10.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 173.6, 167.8, 146.8, 143.4, 136.7, 133.62, 133.56, 133.4, 133.3, 133.2, 133.1, 131.7, 131.1, 130.02, 129.97, 129.3, 129.1, 128.9, 128.2, 128.1, 128.0, 127.8, 127.6, 126.4, 126.32, 126.25, 126.2, 126.0, 121.7, 117.9, 113.6, 83.6, 68.5, 60.8; HRMS (TOF MS ESI⁺) calculated for C₄₁H₃₂BrN₂O₃ [M + H]⁺: 679.1591, found: 679.1580; HPLC conditions for determination of enantiomeric excess: Daicel Chiralcel IB-3, $\lambda = 300$ nm, hexane : 2-propanol = 97:3, flow rate = 1.0 mL/min, $t_{minor} = 17.5$ min, $t_{major} = 30.2$ min.

(*S*)-4-((*E*)-Benzylidene)-3-((*S*)-(2-bromophenyl)(phenylamino)methyl)-3-(cinnam yloxy)-1-phenylpyrrolidine-2,5-dione (4v). Yellow oil. 23.4 mg, 36% yield. >20:1 *dr*, 94% *ee*, [α]p²⁰ = -195.2 (c = 0.033, DCM); ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 8.12 (d, *J* = 3.7 Hz, 2H), 7.98 (s, 1H), 7.54 – 7.43 (comp, 5H), 7.40 – 7.31 (m, 3H), 7.29 – 7.28 (comp, 4H), 7.17 – 7.04 (comp, 5H), 7.01 – 6.89 (m, 2H), 6.67 (t, *J* = 7.3 Hz, 1H), 6.56 (d, *J* = 8.0 Hz, 2H), 6.40 (d, *J* = 15.9 Hz, 1H), 6.24 (t, *J* = 11.1 Hz, 1H), 5.87 (d, *J* = 4.4 Hz, 1H), 5.83 (d, *J* = 3.7 Hz, 1H), 4.12 (dd, *J* = 6.6, 2.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 173.8, 167.8, 146.8, 143.4, 136.7, 136.3, 134.2, 133.6, 133.4, 133.1, 131.7, 131.1, 130.0, 129.34, 129.32, 129.0, 128.8, 128.7, 128.2, 128.0, 126.8, 126.2, 126.1, 124.5, 121.7, 117.8, 113.6, 83.2, 67.2, 60.7; HRMS (TOF MS ESI⁺) calculated for C₃₉H₃₂BrN₂O₃ [M + H]⁺: 655.1591, found: 655.1578; HPLC conditions for determination of enantiomeric excess: Daicel Chiralcel IB-3, λ = 300 nm, hexane : 2-propanol = 97:3, flow rate = 1.0 mL/min, *t*_{major} = 15.2 min, *t*_{minor} = 27.2 min.

(*S*)-4-((*E*)-Benzylidene)-3-((*S*)-(2-bromophenyl)(phenylamino)methyl)-3-(((1*S*,2*R*, 5*S*)-2-isopropyl-5-methylcyclohexyl)oxy)-1-phenylpyrrolidine-2,5-dione (4w). Yellow solid. mp = 70 – 73 °C. 31.1 mg, 46% yield. >20:1 *dr*. $[\alpha]_D^{20}$ = -166.6 (c = 0.033, DCM); ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.02 (d, J = 8.7 Hz, 2H), 7.94 (s, 1H), 7.49 (d, J = 7.7 Hz, 1H), 7.46 – 7.37 (comp, 7H), 7.16 – 7.12 (comp, 3H), 7.09 (d, J = 8.2 Hz, 1H), 6.89 (d, J = 7.6 Hz, 2H), 6.70 (t, J = 7.3 Hz, 1H), 6.60 (d, J = 8.0 Hz, 2H), 5.88 (d, J = 5.2 Hz, 1H), 5.79 (d, J = 5.5 Hz, 1H), 3.42 (m, 1H), 2.15 (m, 1H), 1.81 (d, J = 11.0 Hz, 1H), 1.64 – 1.50 (m, 1H), 1.45 (t, J = 9.4 Hz, 1H), 1.38 – 1.20 (m, 3H), 0.86 (d, J = 6.2 Hz, 3H), 0.84 – 0.79 (m, 2H), 0.78 (d, J = 6.9 Hz, 3H), 0.40 (d, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 176.2, 168.2, 147.9, 143.0, 137.4, 133.49, 133.46, 133.2, 131.4, 130.9, 129.8, 129.5, 129.3, 129.2, 129.0, 127.8, 126.2, 125.5, 122.6, 117.9, 113.7, 80.7, 77.4, 60.9, 49.4, 42.2, 33.9, 31.9, 24.3, 23.0, 22.5, 22.1, 17.4; HRMS (TOF MS ESI⁺) calculated for C₄₀H₄₂BrN₂O₃ [M + H]⁺: 677.2373, found: 677.2365.

(*S*)-4-((*E*)-Benzylidene)-3-((*S*)-(2-bromophenyl)(phenylamino)methyl)-3-(((3*S*,8*R*, 9*S*,10*R*,13*S*,14*S*)-10,13-dimethyl-17-oxo-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetrad ecahydro-1*H*-cyclopenta[a]phenanthren-3-yl)oxy)-1-phenylpyrrolidine-2,5-dione (4x). Yellow solid. mp = 101 – 105 °C. 42.0 mg, 52% yield. >20:1 dr, $[\alpha]_D^{20} = -149.2$ (c = 0.33, DCM); ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 8.09 (s, 2H), 7.92 (s, 1H),

7.52 – 7.34 (comp, 9H), 7.17 – 7.05 (comp, 3H), 6.98 (d, J = 7.8 Hz, 2H), 6.66 (t, J = 7.2 Hz, 1H), 6.55 (d, J = 7.8 Hz, 2H), 5.81 (s, 1H), 4.99 (s, 1H), 3.38 (dd, J = 10.1, 5.5 Hz, 1H), 2.42 (dd, J = 19.2, 8.6 Hz, 1H), 2.30 (t, J = 11.8 Hz, 1H), 2.16 – 1.92 (comp, 3H), 1.88 – 1.68 (comp, 4H), 1.70 – 1.40 (comp, 7H), 1.33 – 1.15 (comp, 4H), 0.96 (s, 3H), 0.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 221.2, 179.4, 174.5, 170.2, 168.0, 147.0, 145.2, 143.5, 142.7, 140.5, 137.6, 136.9, 136.1, 133.9, 133.6, 133.4, 131.6, 131.2, 130.2, 129.9, 129.3, 129.1, 129.0, 128.9, 127.9, 126.8, 126.2, 126.0, 123.1, 121.6, 117.7, 113.6, 82.4, 78.2, 60.4, 51.8, 50.1, 47.6, 40.1, 37.4, 36.7, 35.9, 31.5, 30.8, 29.6, 22.0, 20.4, 19.4, 13.6; HRMS (TOF MS ESI⁺) calculated for C₄₉H₅₀BrN₂O₄ [M + H]⁺: 809.2948, found: 809.2930.

General Procedure for the Scale Up

To a 50-mL oven-dried vial containing a magnetic stirring bar, $Rh_2(OAc)_4$ (8.8 mg, 1.0 mol%), BnOH **2a** (216 mg, 2.0 mmol, 1.0 equiv.), imine **3d** (518 mg, 2.0 mmol, 1.0 equiv.), CPA **5e** (100 mg, 0.14mmol, 7.0 mol%), and 5 Å MS (1.0 g) in DCM (10 mL), was added as a solution of diazo compound **1a** (635.8 mg, 2.4 mmol, 1.2 equiv.) in DCM (20 mL) *via* a syringe pump over 2 h under argon atmosphere at 0 °C. After addition, the reaction mixture was stirred at 0 °C for additional 1 h. Then the solvent was evaporated in vacuo, the residue was purified by column chromatography on silica gel (Hexanes : EtOAc = 10:1) to give 0.97 g of pure product **4d** in 77% yield with 92% *ee*.

General Procedure for the Synthesis of 6

To a 10-mL oven-dried vial containing a magnetic stirring bar, **4d** (92% *ee*, 50 mg, 0.08 mmol, 1.0 equiv.) in anhydrous DCM (1.0 mL), was added Br₂ (8.5 μ L, 0.16 mmol, 2.0 equiv.) at 0 °C, and the reaction mixture was stirred for additional 15 min under these conditions, followed by the addition of Et₃N (22.3 μ L, 0.16 mmol, 2.0

equiv.). Then, the reaction mixture was quenched with saturated aqueous Na₂S₂O₃ (5.0 mL), and extracted with ethyl acetate (2 X 5.0 mL). The combined organic phase was washed with brine, dried with anhydrous Na₂SO₄. The solvent was evaporated in vacuo after filtration. The crude product was purified by flash chromatography on silica gel (Hexanes : EtOAc = 10:1) to give 57.0 mg pure product 6 in 91% yield. Yellow solid, mp = 153 - 154 °C. 92% *ee*, $[\alpha]_D^{20} = -240.2$ (c = 0.033, DCM). ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.09 (d, J = 6.8 Hz, 2H), 8.01 (s, 1H), 7.51 (d, J =2.2 Hz, 1H), 7.50 – 7.36 (comp, 9H), 7.30 (s, 4H), 7.18 – 7.10 (m, 2H), 7.08 – 6.99 (comp, 3H), 6.74 (d, J = 4.8 Hz, 1H), 6.07 (d, J = 8.8 Hz, 1H), 5.81 (d, J = 4.8 Hz, 1H), 4.49 (d, J = 9.9 Hz, 1H), 4.38 (d, J = 9.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 173.5, 167.6, 143.8, 142.9, 136.0, 135.5, 134.5, 133.7, 133.3, 133.0, 131.8, 131.2, 131.0, 130.4, 129.7, 129.4, 129.1, 129.0, 128.9, 128.5, 128.2, 126.2, 126.0, 121.2, 112.6, 110.7, 108.6, 83.1, 68.6, 60.5; HRMS (TOF MS ESI⁺) calculated for C₃₇H₂₇Br₃N₂O₃Na [M + Na]⁺: 806.9464, found: 806.9458; HPLC conditions for determination of enantiomeric excess: Daicel Chiralcel IC, $\lambda = 300$ nm, hexane : 2-propanol = 99:1, flow rate = 1.0 mL/min, $t_{\text{minor}} = 13.1 \text{ min}$, $t_{\text{major}} = 17.0 \text{ min}$.

General Procedure for the Synthesis of 7

To a 10-mL oven-dried vial containing a magnetic stirring bar, **4d** (92% *ee*, 62.8 mg, 0.10 mmol, 1.0 equiv.), $B_2(Pin)_2$ (38.0 mg, 0.15 mmol, 1.5 equiv.), $Pd(PPh_3)_4$ (12 mg, 10 mol%), Cs_2CO_3 (48.8 mg, 0.15 mmol, 1.5 equiv.), and a combined solvent (1,4-Dioxane/H₂O = 5:1, 1.0 mL) were added in sequence at room temperature, then

the reaction mixture was stirred at 80 °C overnight. When the reaction was completed (monitored by TLC), quenched with H₂O (15 mL) and extracted with ethyl acetate (3 X 10 mL). The combined organic phase was washed successively with water and brine, dried over anhydrous Na₂SO₄, and then concentrated under reduced pressure after filtration. The crude product was purified by flash chromatography on silica gel (Hexanes : EtOAc = 15:1 to 10:1) to give 28.1 mg pure product 7 in 51% yield. Colorless oil., 92% *ee*, $[\alpha]_D^{20} = 18.56$ (c = 0.033, DCM). ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.54 (d, J = 7.6 Hz, 1H), 7.45 – 7.34 (comp, 7H), 7.32 (m, 2H), 7.27 (m, 1H), 7.25 (m, 1H), 7.16 (m, 3H), 7.08 (m, 4H), 6.89 (d, J = 7.5 Hz, 2H), 6.72 (t, J = 7.3 Hz, 1H), 6.46 (d, J = 8.0 Hz, 2H), 5.46 (d, J = 9.2 Hz, 1H), 5.15 (d, J = 11.1 Hz, 1H), 4.82 (d, J = 11.1 Hz, 1H), 4.63 (d, J = 9.2 Hz, 1H), 3.58 (d, J = 13.6 Hz, 1H), 3.52 (d, J = 13.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 176.4, 174.5, 147.2, 142.3, 137.8, 137.5, 135.5, 131.4, 131.3, 130.0, 129.7, 129.3, 129.2, 129.0, 128.7, 128.3, 128.2, 127.7, 126.9, 126.4, 124.9, 124.1, 118.0, 112.6, 85.9, 69.7, 62.3, 62.0, 35.5; HRMS (TOF MS ESI⁺) calculated for $C_{37}H_{31}N_2O_3$ [M + H]⁺: 551.2329, found: 551.2333; HPLC conditions or determination of enantiomeric excess: Daicel Chiralcel IB-3, $\lambda = 254$ nm, hexane : 2-propanol = 99:1, flow rate = 1.0 mL/min, $t_{\text{minor}} = 8.5$ min, $t_{\text{major}} = 9.3 \text{ min.}$

Control Experiments

To a 10-mL oven-dried vial containing a magnetic stirring bar, **8** (36.9 mg, 0.10 mmol), **3a** (18.1 mg, 0.10 mmol), **5e** (7.0 mg, 10 mol%), **5** Å MS (100 mg), Rh₂(OAc)₄ (0.5 mg, 1.0 mol%), and DCM (2.0 mL) were added in sequence, and the reaction mixture was stirred at 0 °C under argon atmosphere for 3 h. Then the reaction crude mixture was subjected to proton NMR analysis in CDCl₃ after the solvent was evaporated (see Figure S1). No reaction was occurred under these conditions.

Figure S1. Proton NMR spectrum of crude reaction mixture of **8** with **3a** under standard conditions.

To a 10-mL oven-dried vial containing a magnetic stirring bar, $Rh_2(S-PTTL)_4$ (1.3 mg, 1.0 mol%), BnOH **2a** (10.8 mg, 0.1 mmol, 1.0 equiv.), imine **3a** (18.1 mg, 0.10 mmol, 1.0 equiv.), and 5 Å MS (100 mg) in DCM (1.0 mL), was added as a solution of diazo compound **1a** (34.4 mg, 0.12 mmol, 1.2 equiv.) in DCM (1.0 mL) *via* a syringe pump over 2 h under argon atmosphere at 0 °C. After addition, the reaction mixture was stirred at 0 °C for additional 1 h. Then the solvent was evaporated in vacuo, the residue was purified by column chromatography on silica gel (Hexanes : EtOAc = 10:1) to give pure **4a** in 91% yield with 2% *ee*.

References:

(1) (a) E. G. Chupakhin, G. P. Kantin, D. V. Dar'in and M. Krasavin, *Mendeleev Commun.*, 2021, **31**, 36-38; (b) E. Chupakhin, M. Gecht, A. Ivanov, G. Kantin, D. Dar'in and M. Krasavin, *Synthesis*, 2020, **52**, 36-38; (c) D. Laha and R. G. Bhat, *Asian J. Org. Chem.*, 2020, **9**, 918-921.

S-32

---0.00

-0.00

S-34

---0.00

S-35

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 f1 (ppm) -140 -160 -180

-0.00

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S-40

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

---0.00

---0.00

173.22 167.42 1167.42 1136.09 1136.09 1136.09 1135.86 1134.30 1134.37 1131.13 1131.13 1131.13 1131.13 1133.14 1132.15 1128.59 1128.59 1128.59 1128.59 1128.59 1128.55

-00.00

S-54

Condition: hexane: 2-propanol = 97:3 Flow rate = 1.0 mL/min, λ = 300 nm, Chiral IB-3

PDA Ch1 300nm				
Peak#	Ret. Time	Area	Height	Area%
1	11.416	5939108	275039	93.87
2	13.353	387552	17503	6.13
Total		6326660	292542	100.00

Condition: hexane: 2-propanol = 97:3 Flow rate = 1.0 mL/min, λ = 300 nm, Chiral IB-3

Condition: hexane: 2-propanol = 97:3 Flow rate = 1.0 mL/min, λ = 300 nm, Chiral IB-3

PDA Chi 300nm				
Peak#	Ret. Time	Area	Height	Area%
1	12.239	1402067	58185	88.42
2	16.144	183670	5661	11.58
Total		1585737	63846	100.00

Condition: hexane: 2-propanol = 97:3 Flow rate = 1.0 mL/min, λ = 300 nm, Chiral IB-3

PDA Ch1 300nm				
Peak#	Ret. Time	Area	Height	Area%
1	11.425	2857585	103902	96.77
2	14.511	95318	2644	3.23
Total		2952903	106546	100

Condition: hexane: 2-propanol = 97:3 Flow rate = 1.0 mL/min, λ = 300 nm, Chiral IB-3

PDA Ch1 300nm				
Peak#	Ret. Time	Area	Height	Area%
1	10.138	6916883	411099	96.00
2	11.708	288341	13906	4.00
Total		7205224	425005	100.00

Condition: hexane: 2-propanol = 97:3 Flow rate = 1.0 mL/min, λ = 300 nm, Chiral IB-3

Peak#	Ret. Time	Area	Height	Area%
1	11.898	12307951	496174	98.51
2	20.861	186767	5580	1.49
Total		12494718	501754	100.00

0.20 0.18 0.16 ,OMe 0.14 Br ΗN 0.12 Ph ₹ 0.10 . BnO 18.175 Ph-0.08-**4g** racemic 22.849 0.06 0.04-0.02 0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 0.00 PDA Ch1 300nm Peak# Ret. Time Area Height Area% 18.175 44225 50.20 2434632 1 29191 2 22.849 2414891 49.80 Total 4849523 73416 100.00 0.20-OMe 0.15-Br HN 18.105 ′BnO ₹ 0.10 Ph_/ **4g** 90% ee 0.05--23.270 0.00-2.00 20.00 8.00 4.00 6.00 12.00 14.00 16.00 22.00 24.00 28.00 0.00 10.00 18.00 26.00 PDA Ch1 300nm

Condition: hexane: 2-propanol = 97:3	
Flow rate = 1.0 mL/min, λ = 300 nm, Chiral IB-3	3

PDA CHI SUUIIII				
Peak#	Ret. Time	Area	Height	Area%
1	18.105	4633071	84469	95.00
2	23.270	243957	3423	5.00
Total		4877028	87892	100.00

Condition: hexane: 2-propanol = 97:3 Flow rate = 1.0 mL/min, λ = 300 nm, Chiral IB-3

Peak#	Ret. Time	Area	Height	Area%
1	13.614	8088368	86971	94.87
2	18.872	437236	59369	5.13
Total		8525604	146340	100.00

Condition: hexane: 2-propanol = 97:3 Flow rate = 1.0 mL/min, λ = 300 nm, Chiral IB-3

Peak#	Ret. Time	Area	Height	Area%
1	13.113	5829289	21852	92.92
2	15.878	444287	14772	7.08
Total		6273576	36624	100.00

Condition: hexane: 2-propanol = 97:3 Flow rate = 1.0 mL/min, λ = 300 nm, Chiral AD-H

PDA Ch1 300nm				
Peak#	Ret. Time	Area	Height	Area%
1	41.061	11833976	122235	97.53
2	46.279	300053	3817	2.47
Total		12134029	126052	100.00

Condition: hexane: 2-propanol = 97:3 Flow rate = 1.0 mL/min, λ = 300 nm, Chiral IB-3

2

Total

19.471

S-71	

106642

4137334

2225

106357

2.58

100.00

Condition: hexane: 2-propanol = 97:3 Flow rate = 1.0 mL/min, λ = 300 nm, Chiral IB-3

PDA CII.	L 2001111			
Peak#	Ret. Time	Area	Height	Area%
1	13.790	5239346	177600	95.36
2	17.744	254772	5802	4.64
Total		5494118	183402	100.00

PDA Ch1 300nm				
Peak#	Ret. Time	Area	Height	Area%
1	15.341	5678497	35574	95.65
2	19.776	258408	5365	4.35
Total		5936905	40939	100.00

PDA Ch1 300nm				
Peak#	Ret. Time	Area	Height	Area%
1	19.422	4720319	219846	49.86
2	20.446	4746817	215787	50.14
Total		9467136	435633	100.00

PDA Ch	n1 300nm			
Peak#	Ret. Time	Area	Height	Area%
1	20.674	3088891	134297	96.45
2	21.682	113691	5169	3.55
Total		3202582	139466	100.00

Condition: hexane: 2-propanol = 97:3 Flow rate = 1.0 mL/min, λ = 300 nm, Chiral IB-3

PDA Ch1 300nm				
Peak#	Ret. Time	Area	Height	Area%
1	14.151	2131283	57223	96.18
2	21.756	84622	1574	3.82
Total		2215905	58797	100.00

0.10-0.08-Br В BnQ 0.06-′NHPh AU 0 0.04 Ρh 11.489 15.332 4p racemic 0.02-0.00 5.00 20.00 25.00 30.00 35.00 0.00 10.00 15.00 PDA Ch1 300nm Peak# Ret. Time Area Height Area% 11.489 320109 12558 49.85 1 2 15.332 322057 8932 50.15 Total 642166 21490 100.00 0.30-0.25-0.20-11.386 В Br BnO ′NHPh ₹ 0.15 0 Ρh 0.10-**4p** 95% ee 15.377 0.05 15.00 0.00-20.00 25.00 5.00 10.00 30.00 35.00 40.00 0.00 PDA Ch1 300nm Height Peak# Ret. Time Area Area%

Condition: hexane: 2-propanol = 97:3
Flow rate = 1.0 mL/min, λ = 300 nm, Chiral IB-3

1	11.386	3227267	121377	97.59
2	15.377	79718	2493	2.41
Total		3306985	123870	100.00

PDA Ch1 300nm				
Peak#	Ret. Time	Area	Height	Area%
1	16.485	2855032	72689	97.85
2	22.110	62613	1205	2.15
Total		2917645	73894	100.00

Total

1797741

36134

100.00

Condition: hexane: 2-propanol = 97:3 Flow rate = 1.0 mL/min, λ = 300 nm, Chiral IB-3 0.20 Br 0.15 NHPh O 17.816 MeO Ph ₹ 0.10 -21.093 'n 4s racemic 0.05

16.00

18.00

Height

75281

53377

14.00

Area

3461047

3453860

20.00

22.00

Area%

50.05

49.95

24.00

26.00

28.00

35.00

8.00

PDA Ch1 300nm

10.00

Ret. Time

17.816

21.093

12.00

0.00

0.00

2.00

4.00

6.00

Peak#

1

2

Total 6914907 128658 100.00 $\begin{array}{c c} \hline \\ \hline \\ 0.15 \\ 0.15 \\ 0.16 \\ 0.16 \\ 0.05 \\ \hline \hline \\ 0.05 \\ \hline \\ 0$							
$\begin{array}{c} 0.20\\ 0.15\\ 0.10\\ 0.10\\ 0.05\\ 0.05\\ \end{array}$		Tota		6914907	128658	100.00	
0.20 0.15 0.16 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.15 0.15 0.15 0.15 0.10 0.15 0.15 0.10 0.15 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.15 0.10 0.15							
$\begin{array}{c} 0.15 \\ 0.10 \\ 0.10 \\ 0.05 \end{array}$	0.20						
0.15- 0.10- 0.05- 0.	-						
0.10- 0.10- 0.05- 0.	0.15-		Br	367			
0.10 0.10 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.10 0.00]			- 17.			
4s 0 95% ee	0.10-	MeO	Ph N-Ph	٨			
	-		4s Ö 95% ee				
-21.582	0.05-						
-27	-				582		
	-				-21.		
	0.00	5.00	10.00	15.00	20.00	25.00	30.00

PDA Ch1 300nm				
Peak#	Ret. Time	Area	Height	Area%
1	17.667	5370683	115063	97.67
2	21.582	128267	2535	2.33
Total		5498950	117598	100.00

Total

1023241

23335

100.00

PDA Ch1 300nm				
Peak#	Ret. Time	Area	Height	Area%
1	15.150	1356691	33624	95.73
2	19.490	60493	1063	4.27
Total		1417184	34687	100.00

Condition: I	hexane: 2	-propanol	l = 9/:3		
Flow rate =	1.0 mL/n	nin. $\lambda = 3$	00 nm.	Chiral	IB-3

eak#	Ret. lime	Area	Height	Area%
	17.478	2968602	65065	96.33
	30.219	113038	1206	3.67
otal		3081640	66271	100.00

PDA Ch	1 300nm			
Peak#	Ret. Time	Area	Height	Area%
1	15.597	88197	74014	49.80
2	27.396	88898	1140	50.20
Total		177095	75154	100.00

PDA Ch1 300nm				
Peak#	Ret. Time	Area	Height	Area%
1	15.174	2891530	74014	96.99
2	27.225	89745	1140	3.01
Total		2981275	75154	100.00

PDA Ch1 300nm				
Peak#	Ret. Time	Area	Height	Area%
1	13.089	752731	8402	49.97
2	17.261	753643	5825	50.03
Total		1506374	14227	100.00

PDA Ch1 300nm				
Peak#	Ret. Time	Area	Height	Area%
1	13.119	218967	2648	4.17
2	16.957	5033265	37484	95.83
Total		5252232	40132	100.00

Peak#	Ret. Time	Area	Height	Area%
1	8.492	19734	1317	4.18
2	9.287	451851	18649	95.82
Total		471585	19966	100.00

Crystallographic Data for 4u.

Datablock: yuanhx_201231

C-C = 0.0103 A	1	Wavelength=	=1.54184
a=17.0243(1) alpha=90 100 K	b=11.2874 beta=90.5	4(1) 530(1)	c=19.8460(2) gamma=90
Calculated 3813.45(6) C 2 C 2y		Reported 3813.45(6) C 1 2 1 C 2y)
C41 H31 Br N2 O3 solvent]	[+	C41 H31 B	r N2 O3
C41 H31 Br N2 O3 solvent]	[+	C41 H31 B	r N2 O3
679.58 1.184 4 1.758 1400.0 1400.91 21,14,25 8025[4223] 0.689,0.839 0.614		679.59 1.184 4 1.758 1400.0 21,13,25 7732 0.797,1.00	00
od= # Reported T 1 -SCAN	Limits: Tn	nin=0.797 1	max=1.000
ss= 1.83/0.96	Theta(m	ax)= 76.79	6
0.0545(7535)	wR2(ref	lections)=	0.1502(7732)
Npar=	424		
	C-C = 0.0103 A a=17.0243(1) alpha=90 100 K Calculated 3813.45(6) C 2 C 2y C41 H31 Br N2 O3 solvent] C41 H31 Br N2 O3 solvent] 679.58 1.184 4 1.758 1400.0 1400.91 21,14,25 8025[4223] 0.689,0.839 0.614 Dd= # Reported T I SCAN as= 1.83/0.96 0.0545(7535)	C-C = 0.0103 A a=17.0243(1) b=11.2874 alpha=90 beta=90.5 100 K Calculated 3813.45(6) C 2 C 2y C41 H31 Br N2 O3 [+ solvent] C41 H31 Br N2 O3 [+ solvent] 679.58 1.184 4 1.758 1400.0 1400.91 21,14,25 8025[4223] 0.689,0.839 0.614 Dd= # Reported T Limits: Tr SCAN as= 1.83/0.96 Theta(m 0.0545(7535) wR2(ref	C-C = 0.0103 A Wavelengths a=17.0243(1) b=11.2874(1) alpha=90 beta=90.530(1) 100 K Calculated Reported 3813.45(6) 3813.45(6) C 2 C 1 2 1 C 2y C 2y C41 H31 Br N2 O3 [+ C41 H31 Br solvent] C41 H31 Br N2 O3 [+ C41 H31 Br solvent] 679.58 679.59 1.184 1.184 4 4 1.758 1.758 1400.0 1400.0 1400.0 1400.91 21,14,25 21,13,25 8025[4223] 7732 0.689,0.839 0.797,1.00 0.614 Dd= # Reported T Limits: Tmin=0.797 T SCAN as= 1.83/0.96 Theta(max)= 76.794 0.0545(7535) wR2(reflections)= Npar= 424

Crystallographic Data for 6.

Datablock: yuanhx_210225

Bond precision:	C-C = 0.0063 A	Wavelength=1.54184
Cell:	a=8.4292(1) alpha=90	b=17.2642(1) c=22.5485(2) beta=90 gamma=90
Temperature:	100 K	-
	Calculated	Reported
Volume	3281.34(5)	3281.33(5)
Space group	P 21 21 21	P 21 21 21
Hall group	P 2ac 2ab	P 2ac 2ab
Moiety formula	C37 H27 Br3 N2 O3	C37 H27 Br3 N2 O3
Sum formula	C37 H27 Br3 N2 O3	C37 H27 Br3 N2 O3
Mr	787.31	787.33
Dx,g cm-3	1.594	1.594
Z	4	4
Mu (mm-1)	4.876	4.876
F000	1568.0	1568.0
F000'	1563.24	
h,k,lmax	10,21,28	10,21,27
Nref	6949[3913]	6776
Tmin,Tmax	0.746,0.784	0.807,1.000
Tmin'	0.614	
Correction metho AbsCorr = MULTI-	od= # Reported T Li -SCAN	imits: Tmin=0.807 Tmax=1.000
Data completenes	ss= 1.73/0.98	Theta(max) = 76.960
R(reflections)=	0.0320(6367)	wR2(reflections) = 0.0741(6776)
S = 1.067	Npar= 4	.06