Electronic Supplementary Information

Direct formation of 4,5-disubstituted carbazoles via regioselective dilithiation

Ian A. Pocock, Alya Alotaibi, Kesar Jagdev, Connor Prior, Gregory R. Burgess, Louise Male, Richard S. Grainger*

School of Chemistry, University of Birmingham

Edgbaston, Birmingham B15 2TT, UK

r.s.grainger@bham.ac.uk

Contents

General experimental	2
Experimental procedures and analytical data	3
Electrophile and substrate screen	20
X-ray crystallography	26
Copies of NMR spectra	35
References	109

General experimental

All reagents were bought commercially from either Sigma-Aldrich (Merck), Alfa Aesar, Acros Organics, Fisher Scientific, VWR, or Fluorochem, and were used as sold unless stated. nBuLi was bought as a 2.5 M solution in hexanes and titrated with menthol and 'blue'.¹ All reactions were performed under an atmosphere of argon in oven or flame dried flasks. All solvents were bought from one of the above suppliers, and used without further drying or purification unless stated. Any solvents that were dried were stored under argon. MeOH, Toluene, THF, CH₂Cl₂ and MeCN were dried over 3Å molecular sieves for at least 24 h before use. N,N,N,N-Tetramethylethylenediamine (TMEDA) was distilled from CaH₂ and stored over KOH. lodomethane, dichlorodimethylsilane and dimethylgermanium dichloride were distilled prior to use. Sulfur was recrystallized from hot toluene prior to use. Silica gel on aluminium-backed TLC plates were used for reaction monitoring, supplied from Merck. The plates were visualised in UV (254 nm) and standard laboratory visualizing agents: KMnO₄, anisaldehyde, vanillin, curcumin, iodine powder. Purification by flash column chromatography was performed on Sigma-Aldrich or Fluorochem silica gel, pore size 60 Å, 230–400 mesh particle size, 40–63 µm particle size. Automated flash column chromatography was performed using a Teledyne ISCO CombiFlash® NextGen 300+ utilising Interchim PuriFlash® dryload columns filled with Sigma-Aldrich or Fluorochem silica gel, pore size 60 Å, 230–400 mesh particle size, 40–63 µm particle size. Infra-red spectra were recorded neat (oil) or with the aid of an ATRattachment (solid) on a Perkin Elmer Spectrum 100 FT-IR spectrometer, only selected absorbances (vmax, cm⁻¹) are reported. The following abbreviations are used when describing the data: w (weak), m (medium), s (strong), br (broad). Melting points were recorded using open glass capillaries on a Gallenkamp melting point apparatus and are uncorrected. MS data are reported as m/z (%) (relative intensity except in cases where only the parent ion is observed). ¹H and ¹³C NMR spectra were recorded on a Bruker AVIII300, Bruker AVIII400, Bruker NEO400 and Bruker AV4-500 in the solvents indicated. The solvent signals were used as references: ¹H NMR: residual CHCl₃ (7.26 ppm), CH₂Cl₂ (5.32 ppm) and C₆H₆ (7.16 ppm); ¹³C NMR; CDCl₃ (77.16 ppm), CD₂Cl₂ (53.84 ppm) and C₆D₆ (128.06 ppm). ¹¹B MNR was referenced at 0 ppm using a solution of 15% BF₃·OEt₂ (0.00 ppm) in CDCl₃ in a sealed capillary. ¹⁹F NMR was indirectly referenced to 0 ppm (chemical shift of CCl₃F) using 0.05% trifluorotoluene in CDCI₃ at -64.72 ppm. Coupling constants (J) are reported in Hz, and are reported as observed, not averaged between the two environments that share them. The following abbreviations are used to describe multiplicity in 1H-NMR: m (multiplet), s (singlet), d (doublet), t (triplet), hept (heptet), ap. (apparent). The distinction between multiplet and stack is as follows: a multiplet is a single environment that is too convoluted to establish its multiplicity correctly, a stack is where multiple environments overlap and their fidelity is lost.

Experimental procedures and analytical data

General Procedure 1 – *N*-silylation of carbazoles

Lithium hexamethyldisilazide (1 M in THF, 1.1 eq.) was added to a solution of functionalized carbazole in THF (0.1 M), and allowed to stir at room temperature for 15 min. Chloro(trialkyl)silane (1.2 eq.) was added and the mixture allowed to stir for 16 h. Water was added and the mixture extracted with EtOAc (x 3) and the combined organic extracts washed with brine. The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure to give the crude product. The crude product was purified by flash column chromatography or recrystallization.

General Procedure 2 – 4,5-difunctionalisation of N-silylated carbazoles

A solution of *n*-butyllithium in hexane (4 eq.) was added to a solution of *N*-silylated carbazole derivative in TMEDA (4 eq.) and the mixture heated to 60 °C for 6 h. The reaction mixture was cooled to -78 °C, diluted with THF (0.22 M wrt. *N*-silylated carbazole derivative), and treated with the electrophile. After 10 min the cooling bath was removed and the resulting mixture allowed to stir for 17 h. The mixture was subjected to, electrophile-dependent, work-up and purification.

Deuteration study (Table 1, Entry 2)

n-Butyllithium solution in hexane (1.24 mmol) was added to a solution of **1a** (0.31 mmol) in TMEDA (1.24 mmol) and the mixture heated at 60 °C for 6 h. The reaction mixture was cooled to –78 °C, diluted with THF (1.34 mL), and treated with deuterium oxide (0.75 mL, 41.6 mmol). After 10 min the cooling bath was removed and the resulting mixture allowed to stir for 17 h. The reaction mixture was poured into $HCl_{(aq)}$ (1 M, 5 ml) and extracted with CH_2Cl_2 (3 × 15 mL). The combined organic extracts were washed sequentially with H_2O (10 mL) and brine (10 mL), dried over sodium sulfate, filtered and concentrated under reduced pressure. The extent of deuteration of **1a** was determined by relative integration of aromatic hydrogen signals in the ¹H NMR.

9-(Triisopropylsilyl)-9H-carbazole [1a]²

<u>Following General Procedure 1:</u> [From 11.93 mmol carbazole with chlorotriisopropylsilane.] Purified by recrystallization (EtOH), **1a** (3.20 g, 83%) was obtained as a colourless solid. $R_f = 0.27$ (hexane); mp 88 – 90 °C (EtOH); v_{max} (solid, cm⁻¹) 2945 br, 2866 br, 1592 w, 1465 m, 1442 s, 1255 m, 1195 m, 954 s, 881 m, 750 s, 720 s; ¹H NMR (CDCl₃, 400 MHz) δ_H 8.07 (dd, *J* 7.8 Hz, 0.8 Hz, 2 H), 7.69 (d, *J* 8.5 Hz, 2 H), 7.36 (ddd, *J* 8.5 Hz, 7.1 Hz, 1.4 Hz, 2 H), 7.23 (ddd, *J* 7.7 Hz, 7.1 Hz, 0.8 Hz, 2 H), 2.00 (hept, *J* 7.5 Hz, 3 H), 1.20 (d, *J* 7.5 Hz, 18 H); ¹³C NMR (101 MHz) δ_C 145.2, 126.6, 125.4, 119.8, 119.6, 114.2, 18.7, 14.0; m/z (TOF ASAP⁺) calculated for C₁₂₁H₃₀NSi [M+H]⁺; 324.2148, found 324.2142 (PPM error –1.9).

9-(Triethylsilyl)-9H-carbazole [1c]³

<u>Following General Procedure 1:</u> [From 6.04 mmol carbazole with chlorotriethylsilane.] Purified by flash column chromatography (hexane), **1c** (1.36 g, 80%) was obtained as a colourless oil that solidified on standing. $R_f = 0.30$ (hexane); mp 37 – 39 °C (hexane); v_{max} (solid, cm⁻¹) 2954 br, 2874 br, 1592 w, 1471 m, 1444 s, 1263 s, 1210 s, 961 s, 752 s, 722 s; ¹H NMR (CDCl₃, 400 MHz) δ_H 8.07 (d, *J* 7.7 Hz, 2 H), 7.50 (d, *J* 8.3 Hz, 2 H), 7.37 (ddd, *J* 8.4 Hz, 7.2 Hz, 1.4 Hz, 2 H), 7.23 (ddd, *J* 7.9 Hz, 7.1 Hz, 0.8 Hz, 2 H), 1.25 (dd, *J* 15.7 Hz, 7.8 Hz, 6 H), 1.00 (t, *J* 7.8 Hz, 9 H); ¹³C NMR (101 MHz) δ_C 144.8, 126.3, 125.5, 120.1, 119.6, 113.2, 7.1, 5.4; m/z (TOF EI+) calculated for C₁₈H₂₃NSi [M]⁺; 281.1600, found 281.1602 (PPM error 0.7).

9-(tert-Butyldimethylsilyl)-9H-carbazole [1d]⁴

<u>Following General Procedure 1:</u> [From 6.01 mmol carbazole with *tert*butyldimethylchlorosilane.] Purified by flash column chromatography (hexane), **1d** (1.64 g, 97%) was obtained as a colourless solid. $R_f = 0.31$ (hexane); mp 116 – 118 °C (EtOH); v_{max} (solid, cm⁻¹) 2928 br, 2856 br, 1594 w, 1471 m, 1443 s, 1256 s, 1208 s, 965 s, 806 s, 751 s, 722 s; ¹H NMR (CDCl₃, 400 MHz) δ_H 8.07 (d, *J* 7.8 Hz, 2 H), 7.60 (d, *J* 8.4 Hz, 2 H), 7.36 (ddd, *J* 8.4 Hz, 7.2 Hz, 1.3 Hz, 2 H), 7.23 (ddd, *J* 7.8 Hz, 6.9 Hz, 0.8 Hz, 2 H), 1.05 (s, 9 H), 0.75 (s, 6 H); ¹³C NMR (101 MHz) δ_C 145.2, 126.4, 125.3, 119.9, 119.6, 114.2, 26.7, 20.7, –1.1; m/z (TOF EI+) calculated for C₁₈H₂₃NSi [M]⁺; 281.1600, found 281.1606 (PPM error 2.1).

4,5-Dimethyl-9-(triisopropylsilyl)-9H-carbazole [2a]

<u>Following General Procedure 2:</u> [From 0.78 mmol **1a**, using iodomethane as the electrophile (8 eq.).] The reaction mixture was poured into sat. NH₄Cl_(aq) (15 mL) and extracted with CH₂Cl₂ (2 × 15 mL). The combined organic extracts were washed sequentially with H₂O (15 mL) and brine (15 mL), dried over sodium sulfate, filtered, and concentrated under reduced pressure to give an orange oil. The orange oil was purified by flash column chromatography (hexane) to give **2a** (103.8 mg, 38%) as a colourless solid. R_f = 0.19 (hexane); mp 58 – 60 °C (hexane); v_{max} (solid, cm⁻¹) 2946 br, 2866 br, 1576 w, 1446 m, 1412 s, 1278 s, 1058 m, 983 m, 884 s, 771 s; ¹H NMR (CDCl₃, 400 MHz) $\delta_{\rm H}$ 7.58 (d, *J* 8.4 Hz, 2 H), 7.24 (dd, *J* 8.4 Hz, 7.3 Hz, 2 H), 7.02 (d, *J* 7.2 Hz, 2 H), 2.98 (s, 6 H), 2.00 (hept, *J* 7.5 Hz, 3 H), 1.17 (d, *J* 7.5 Hz, 18 H); ¹³C NMR (101 MHz) $\delta_{\rm C}$ 146.3, 131.7, 126.0, 124.6, 123.2, 111.8, 26.6, 18.8, 14.0; m/z (TOF ASAP+) calculated for C₂₃H₃₄NSi [M+H]⁺; 352.2461, found 352.2465 (PPM error 1.2).

(9-(Triisopropylsilyl)-9H-carbazole-4,5-diyl)dimethanol [3a] and (9-(Triisopropylsilyl)-9H-carbazol-4-yl)methanol [22a]

Following General Procedure 2: [From 6.46 mmol **1a**, using paraformaldehyde as the electrophile (10 eq.).] The reaction mixture was poured into sat. NH₄Cl_(aq) (100 mL) and

extracted with EtOAc (3×80 mL). The combined organic extracts were washed with brine (3×80 mL), dried over magnesium sulfate, filtered, and concentrated under reduced pressure to give an orange oil. The orange oil was purified by flash column chromatography (hexane/EtOAc; 3:1 to 1:1) to give **22a** (524 mg, 23%) as a yellow oil followed by **3a** (1.05 g, 43%) as an off-white crystalline solid.

Analytical data for [3a] $R_f = 0.30$ (hexane:EtOAc, 1:1); mp 95 – 96 °C (hexane); v_{max} (solid, cm⁻¹) 3304 br, 2948 m, 2869 m, 1604 w, 1585 m, 1464 m, 1420 s, 1272 s 1236 m, 1037 w, 1010 s, 982 m, 883 m, 846 m, 778 s, 728 s, 719 s, 682 s; ¹H NMR (CDCl₃, 400 MHz) δ_{H} ¹H NMR (CDCl₃, 400 MHz) δ_{H} 7.74 (dd, *J* 8.4 Hz, 0.9 Hz, 2 H), 7.34 (dd, *J* 8.4 Hz, 7.3 Hz, 2 H), 7.24 (dd, *J* 7.2 Hz, 0.8 Hz, 2 H), 5.22 (s, 4 H), 3.47 (br s, 2 H) 1.99 (hept, *J* 7.5 Hz, 3 H), 1.17 (d, *J* 7.5 Hz, 18 H); ¹³C NMR (101 MHz) δ_{C} 146.7, 134.7, 124.8, 123.8, 122.9, 114.1, 67.0, 18.6, 13.9; m/z (TOF ES+) calculated for C₂₃H₃₃NO₂SiNa [M+Na]⁺; 406.2178, found 406.2190 (PPM error –3.0).

Analytical data for [22a] $R_f = 0.31$ (hexane:EtOAc, 3:1); v_{max} (oil, cm⁻¹) 3357 br, 2949 m, 2868 m, 1725 w, 1588 w, 1450 s, 1427 s, 1265 s, 1209 s, 1002 s, 881 s, 726 s, 682 m; ¹H NMR (CDCl₃, 400 MHz) δ_H 8.24 (dd, *J* 7.9 Hz, 0.7 Hz, 1 H), 7.76 (d, *J* 8.5 Hz, 1 H), 7.71 (d, *J* 8.3 Hz, 1 H), 7.42 – 7.34 (stack, 2 H), 7.30–7.25 (stack, 2 H), 5.29 (s, 2 H), 2.02 (hept, *J* 7.5 Hz, 3 H), 1.21 (d, *J* 7.6 Hz, 18 H); ¹³C NMR (101 MHz) δ_C 145.7, 145.4, 134.9, 125.8, 125.2, 125.0, 124.0, 123.0, 120.0, 119.3, 114.1, 114.0, 64.7, 18.8, 14.0; m/z (TOF MS Cl+) calculated for C₂₂H₃₅N₂OSi [M+NH₄]⁺; 371.2519, found 371.2533 (PPM error 3.8)

4-(Triisopropylsilyl)-4H-oxepino[3,4,5,6-def]carbazole-8,10-dione [4a]

<u>Following General Procedure 2:</u> [From, 4.75 mmol **1a**, using carbon dioxide (dry ice) as the electrophile (>100 eq.).] The reaction mixture was poured into concentrated HCI (37 w/w%, 8 mL) at 0 °C and allowed to stir at this temperature for 1 h prior to diluting with H₂O (80 mL) and extracting with CH₂Cl₂ (3 × 80 mL). The combined organic extracts were washed with brine (3 × 80 mL), dried over sodium sulfate, filtered, and concentrated under reduced pressure to give a brown solid. The brown solid was purified by trituration with hexane, to give **4a** (1.17 g, 63%) as a beige solid. R_f = 0.29 (CH₂Cl₂:MeOH, 9:1); mp 207 – 209 °C

(hexane); v_{max} (solid, cm⁻¹) 2951 br, 2869 br, 1692 s, 1421 m,1302 s, 1263 s, 1028 w, 880 w, 754 w, 735 w; ¹H NMR (CDCl₃, 400 MHz) δ_{H} 7.96 (d, *J* 8.5 Hz, 2H), 7.77 (d, *J* 7.3 Hz, 2 H), 7.45 (dd, J 8.4 Hz, 7.6 Hz, 2 H), 2.02 (hept, J 7.5 Hz, 3 H), 1.22 (d, *J* 7.5 Hz, 18 H); ¹³C NMR (101 MHz) δ_{C} 176.6, 146.5, 127.5, 125.2, 122.2, 122.0, 118.4, 18.7, 14.1; m/z (TOF ES+) calculated for C₂₃H₂₈NO₃Si [M+H]⁺; 394.1838, found 394.1839 (PPM error 0.3).

8,9,10,11-Tetrafluoro-4-(triisopropylsilyl)-4H-naphtho[1,2,3,4-def]carbazole [5a]

Following General Procedure 2: [From, 0.65 mmol **1a**, using hexafluorobenzene as the electrophile (8 eq).] The mixture was poured into ice/water (8 mL) and extracted with EtOAc (3 × 10 mL). The combined organic extracts were washed with brine (20 mL), dried over sodium sulfate, filtered, and concentrated under reduced pressure to give an orange solid. The crude material was purified by automated flash column chromatography (hexane) to give **5a** (103.6 mg, 34%) as a white solid. R_f = 0.31 (hexane); mp 207 – 208 °C (hexane); v_{max} (solid, cm⁻¹) 2950 m, 2870 m, 1570 m, 1489 s, 1451 s, 1369 m, 1256 m, 1112 m, 952 s, 864 s, 778 s, 767 s, 718 s; ¹H NMR (CDCl₃, 500 MHz) δ_H 8.45 (d, *J* 7.7 Hz, 2 H), 7.88 (d, *J* 8.0 Hz, 2 H), 7.81 (t, *J* 7.9 Hz, 2 H), 2.12 (hept, *J* 7.5 Hz, 3 H), 1.27 (d, *J* 7.5 Hz, 18 H). ¹³C NMR (CDCl₃, 126 MHz) δ_c 147.4 (dm, *J* 250.5 Hz), 144.0, 139.2 (dm, *J* 253.1 Hz), 127.5, 124.0, 122.2, 117.9 (m) 117.5 (m), 112.6, 18.6, 13.8; ¹⁹F NMR (CDCl₃, 471 MHz) δ_c -139.3 (d, *J* 16.5 Hz), -158.1 (d, *J* 16.4 Hz); m/z (TOF ASAP+) calculated for C₂₇H₂₈NSiF₄ [M+H]⁺;470.1927, found 470.1937 (PPM error 2.1).

4,5-Dichloro-9H-carbazole [6b]

Following General Procedure 2: [From 0.64 mmol 1a, using hexachloroethane as the electrophile (10 eq.).] The reaction mixture was poured into H_2O (20 mL) and extracted with EtOAc (3 \times 20 mL). The combined organic extracts were washed with 10 w/w% NaHCO_{3(aq)} (40 mL), dried over magnesium sulfate, filtered, and concentrated under reduced pressure to give a brown oil. The brown oil was dissolved in THF (6.4 mL), treated with tetrabutylammonium fluoride solution (1.0 M in THF, 0.96 mL, 0.96 mmol), and allowed to stir for 15 min at rt. The solvent was removed under reduced pressure and the residue dissolved in EtOAc (10 mL). The mixture was sequentially washed with H₂O (2 × 10 mL) and brine (2 × 10 mL), and the organic extracts dried over sodium sulfate, filtered, and concentrated under reduced pressure to give a brown oil. The brown oil was purified by automated flash column chromatography (hexane/EtOAc 95:5) to give 4-chloro-9H-carbazole⁵ (16.4 mg, 13%) as yellow solid followed by **6b** (52.6 mg, 35%) as a beige crystalline solid. $R_f = 0.30$ (hexane:EtOAc, 85:15); mp 173 - 175 °C (hexane); v_{max} (solid, cm⁻¹) 3417 s, 2957 w, 2925 w, 2855 m, 1603 m, 1561 m, 1493 w, 1476 m, 1427 s, 1380 w, 1305 s, 1148 m, 1133 m, 934 m, 845 w, 765 s, 712 s; ¹H NMR (CDCl₃, 400 MHz) δ_H 8.33 (br s, 1 H), 7.35 – 7.33 (m, 4 H), 7.33 – 7.29 (m, 2 H); ¹³C NMR (101 MHz) δ_{C} 141.3, 128.1, 127.0, 123.0, 119.9, 109.2; m/z (TOF ES+) calculated for $C_{12}H_7^{35}Cl_2N$ [M+]⁺; 234.9956, found 234.9955 (PPM error -0.4).

4-(Triisopropylsilyl)-4H-[1,2,7]oxadiborepino[3,4,5,6-def]carbazole-8,10-diol [7a]

<u>Following General Procedure 2:</u> [From 4.67 mmol **1a**, using trimethyl borate as the electrophile (10 eq.).] The reaction mixture was poured into HCl_(aq) (3 M, 80 mL) and allowed to stir for 3 h at rt. The mixture was diluted with H₂O (100 mL) and extracted with EtOAc (3 × 100 mL). The combined organic extracts were washed with brine (100 mL), dried over sodium sulfate, filtered, and concentrated under reduced pressure. The crude material was purified by trituration using hexane to give **7a** (1.21 g, 66%) as a beige solid. R_f = 0.30 (hexane:EtOAc, 7:3; visualized using curcumin dip,⁶ appears as orange spot with heating); mp 175 – 177 °C (hexane); v_{max} (solid, cm⁻¹) 2947 br, 2867 br, 1595 w, 1294 w, 1331 w, 1258 s, 1016 w, 957 w, 919 w, 879 s, 732 s, 638 m; ¹H NMR (CDCl₃, 400 MHz) δ_H 7.93 (app d, *J* 7.8 Hz, 4 H), 7.49 (app t, *J* 7.8 Hz, 2 H), 4.74 (s, 2 H), 2.03 (hept, *J* 7.5. Hz, 3 H), 1.20 (d, *J* 7.5 Hz, 18 H); ¹³C NMR (101 MHz) δ_C 145.0, 132.2, 127.8, 125.2, 117.4, 18.7, 14.0, missing one quaternary

carbon signal; ¹¹B NMR (128.37 MHz) δ_B 28.5; m/z (TOF ES+) calculated for $C_{21}H_{30}^{10}B^{11}BNO_3Si [M+H]^+$; 393.2217, found 393.2228 (PPM error 2.8).

8,8-Dimethyl-4-(triisopropylsilyl)-4,8-dihydrosilolo[2,3,4,5-def]carbazole [8a]

<u>Following General Procedure 2:</u> [From 0.31 mmol **1a**, using dichlorodimethylsilane as the electrophile (4 eq.).] The reaction mixture was poured into sat. NaHCO_{3(aq)} (20 mL) and extracted with CH₂Cl₂ (2 × 10 mL). The combined organic extracts were washed with brine (20 mL), dried over sodium sulfate, filtered and concentrated under reduced pressure to give an orange oil. The orange oil was purified by flash column chromatography (hexane) to give **8a** (86.8 mg, 74%) as a colourless solid. R_f = 0.29 (hexane); mp 115 – 117 °C (EtOH); v_{max} (solid, cm⁻¹) 2948 br, 2867 br, 1603 w, 1499 w, 1439 w, 1388 w, 1204 m, 1145 m, 1014 w, 870 m, 840 s, 759 s, 645 s; ¹H NMR (CDCl₃, 400 MHz) $\delta_{\rm H}$ 7.46 (dd, *J* 7.6 Hz, 0.6 Hz, 2 H), 7.36–7.30 (stack, 4 H), 1.94 (hept, *J* 7.6 Hz, 3 H), 1.20 (d, *J* 7.6 Hz, 18 H), 0.63 (s, 6 H); ¹³C NMR (101 MHz) $\delta_{\rm C}$ 141.6, 140.5, 132.9, 127.2, 123.5, 115.5, 18.5, 13.5, -1.5; m/z (TOF ASAP+) calculated for C₂₃H₃₃NSiNa [M]⁺; 402.2044, found 402.2037 (PPM error 1.8).

8,8-Dimethyl-4-(triisopropylsilyl)-4,8-dihydrogermolo[2,3,4,5-def]carbazole [9a]

<u>Following General Procedure 2:</u> [From 0.77 mmol **1a**, using dimethylgermanium dichloride as the electrophile (4 eq.).] The reaction mixture was poured into sat. NaHCO_{3(aq)} (30 mL) and extracted with CH₂Cl₂ (3 × 10 mL). The combined organic extracts were washed with brine (30 mL), dried over sodium sulfate, filtered, and concentrated under reduced pressure to give a red oil. The red oil was purified by flash column chromatography (hexane) to give **9a** (125.8 mg, 39%) as a colourless solid. R_f = 0.22 (hexane); mp 114 – 116 °C (hexane); v_{max} (solid, cm⁻¹) 2941 br, 2865 br, 1393 w, 1220 w, 990 w, 867 w, 721 m, 648 m; ¹H NMR (CDCl₃, 400

MHz) δ_{H} 7.45 (dd, *J* 7.3 Hz, 1.2 Hz, 2 H), 7.36–7.30 (stack, 4 H), 1.94 (hept, *J* 7.6 Hz, 3 H), 1.20 (d, *J* 7.6 Hz, 18 H), 0.80 (s, 6 H); ¹³C NMR (101 MHz) δ_{C} 140.8, 140.7, 135.3, 127.1, 123.5, 114.7, 18.6, 13.5, –0.4; m/z (TOF ASAP⁺) calculated for C₂₃H₃₂NSi⁷²Ge [M]⁺; 422.1703, found 422.1713 (PPM error 2.4).

9-(Triisopropylsilyl)-9H-[1,2]dithiino[3,4,5,6-def]carbazole [10a]

<u>Following General Procedure 2:</u> [From 3.1 mmol **1a**, using sulfur as the electrophile (8 eq).] The reaction mixture was poured into NaOH_(aq) (2 M, 100 mL) and extracted with CH₂Cl₂ (3 × 50 mL). The combined organic extracts were washed sequentially with H₂O (50 mL) and brine (50 mL), dried over sodium sulfate, filtered, and concentrated under reduced pressure to give an orange oil. The orange oil was purified by flash column chromatography (hexane) to give **10a** (638.1 mg, 54%) as a yellow solid.

Following General Procedure 2 followed by sodium borohydride reduction of di:trisulfide mixture: [From 6.2 mmol **1a**, using sulfur as the electrophile (8 eq).] The reaction mixture was poured into HCl_(aq) (1 M, 50 mL) and stirred rapidly, open to the air, for 20 min. The mixture was partitioned and the aqueous layer extracted with CH_2Cl_2 (4 × 50 mL). The combined organic extracts were washed with brine (50 mL), dried over sodium sulfate, filtered, and concentrated under reduced pressure to give an orange oil. The orange oil was partially purified by flash column chromatography (hexane) to give a mixture of **10a:11a** (1.42 g, 1:~2.2 ratio by integration of ¹H NMR*) as a yellow oil that solidified on standing. The yellow solid was dissolved in THF:EtOH (1:1, 0.1 M, 35 mL), treated with sodium borohydride (661.1 mg, 17.5 mmol) and the resulting mixture heated at 50 °C for 3.5 h. The mixture was cooled to rt and treated with NaOH_(aq) (1 M, 50 mL). The combined organic extracts were concentrated under reduced pressure to grave a partitioned and the aqueous layer extracted with CH₂Cl₂ (3 × 75 mL). The combined organic extracts were concentrated under reduced pressure to give a first organic extracts were concentrated under the residue dissolved in CH₂Cl₂ (100 mL). The solution was washed sequentially with H₂O (100 mL) and brine (100 mL), dried over sodium sulfate, filtered, and concentrated under reduced pressure to give **10a** (1.05 g, 44% over 2 steps) as a yellow solid.

*Trisulfide **11a** additionally identified by low resolution mass spectroscopy.

Analytical data for [10a] R_f = 0.25 (hexane); mp 141 – 143 °C (hexane); v_{max} (solid, cm⁻¹) 2946 br, 2866 br, 1610 w, 1556 w, 1464 m, 1425 s, 1253 s, 1183 m, 1151 m, 997 s, 880 s, 764 s, 719 s; ¹H NMR (CDCl₃, 400 MHz) δ_{H} 7.47 (d, *J* 8.5 Hz, 2 H), 7.28 (dd, *J* 8.5 Hz, 7.5 Hz, 2 H), 7.00 (d, *J* 7.4 Hz, 2 H), 1.94 (hept, *J* 7.5 Hz, 3 H), 1.19 (d, *J* 7.5 Hz, 18 H); ¹³C NMR (101 MHz) δ_{C} 144.2, 127.5, 124.2, 123.5, 116.9, 113.8, 18.6, 13.8; m/z (TOF ASAP+) calculated for C₂₁H₂₈NSiS₂ [M+H]⁺; 386.1432, found 386.1436 (PPM error 1.0).

Peaks assignable to trisulfide [11a] in ¹H NMR prior to sodium borohydride reduction

¹H NMR (CDCl₃, 400 MHz) δ_H 7.77 (dd, *J* 8.2 Hz, 1.3 Hz, 2 H), 7.35 (dd, *J* 7.5 Hz, 1.2 Hz, 2 H), 7.30 (dd, *J* 8.2 Hz, 7.5 Hz, 2 H), 1.99 (hept, J 7.4 Hz, 3 H), 2.01 (d, J 7.4 Hz, 18 H).

9-(Triisopropylsilyl)-9H-[1,2]dithiino[3,4,5,6-def]carbazole [10b]

Tetrabutylammonium fluoride solution (1 M in THF, 6.48 mL, 6.48 mmol) was added to a solution of **10a** (1.00 g, 2.59 mmol) in THF (26 mL). The mixture was allowed to stir for 15 min prior to concentrating under reduced pressure. The residue was dissolved in CH₂Cl₂ (50 mL) and washed sequentially with water (2 × 10 mL) and brine (20 mL). The combined organic extracts were dried over magnesium sulfate, filtered, and concentrated under reduced pressure to give a red solid. The red solid was purified by flash column chromatography (hexane:EtOAc, 9:1) to give **10b** (389 mg, 66%) as a yellow solid; R_f = 0.08 (hexane:EtOAc, 9:1); mp 98 – 100 °C (EtOH); v_{max} (solid, cm⁻¹) 3388 br, 1709 m, 1594 m, 1420 m, 1317 m, 1152 m, 761 s, 709 s; ¹H NMR (CDCl₃, 300 MHz) $\delta_{\rm H}$ 8.01 (br s, 1 H), 7.33 (dd, *J* 8.1 Hz, 7.5 Hz, 2 H), 7.22 (d, *J* 7.8 Hz, 2 H), 6.99 (dd, *J* 7.4 Hz, 0.4 Hz, 2 H); ¹³C NMR (101 MHz) $\delta_{\rm C}$ 138.0, 128.1, 124.4, 120.9, 116.5, 110.2; m/z (TOF AP+) calculated for C₁₂H₈NS₂ [M]⁺; 230.0098, found 230.0097 (PPM error –0.4).

9-(Triisopropylsilyl)-9H-[1,2]diselenino[3,4,5,6-def]carbazole [12a]

<u>Following General Procedure 2:</u> [From 2.5 mmol **1a**, using selenium as the electrophile (8 eq.).] The reaction mixture was poured into H₂O (50 mL) and extracted with Et₂O (3 × 40 mL). The combined organic extracts were dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The crude material was purified by flash column chromatography (hexane) to give **12a** (512 mg, 43%) as a dark burgundy crystalline solid. R_f = 0.43 (hexane); mp 140 – 141 °C (hexane); v_{max} (solid, cm⁻¹) 2946 br , 2864 br, 1578 w, 1460 m, 1420 s, 1256 s, 1185 m, 989 s, 881 m, 765 s, 713 s, 648 s, 586s; ¹H NMR (CDCl₃, 400 MHz) δ_{H} 7.53 (dd, *J* 8.5 Hz, 0.5 Hz, 2 H), 7.29 (dd, *J* 8.5 Hz, 7.4 Hz, 2 H), 7.16 (dd, *J* 7.4 Hz, 0.6 Hz, 2 H), 1.99 (hept, *J* 7.6 Hz, 3 H), 1.22 (d, *J* 7.5 Hz, 18 H); ¹³C NMR (101 MHz) δ_{C} 144.8, 127.2, 125.5, 119.4, 116.6, 113.9, 18.7, 13.9; ⁷⁷Se NMR (76 MHz, CDCl₃) 244.6; m/z (TOF ASAP+) calculated for C₂₁H₂₈NSi⁸⁰Se₂ [M+H]⁺; 482.0321, found 482.0328 (PPM error 1.5).

9H-[1,2]diselenino[3,4,5,6-def]carbazole [12b]

Tetrabutylammonium fluoride solution (1 M in THF, 7.51 mL, 7.51 mmol) was added to a solution of **12a** (361.0 mg, 7.50 mmol) in THF (15 mL). The mixture was allowed to stir for 2.5 h then treated with H₂O (10 mL) and extracted with Et₂O (2 × 20 mL). The combined organic extracts were dried over magnesium sulfate, filtered, and concentrated under reduced pressure to give **12b** (210 mg, 86%) as a red crystalline solid. R_f = 0.43 (hexane:Et₂O, 4:1); mp 143 – 144 °C (hexane); v_{max} (solid, cm⁻¹) 3392 br s, 1586 s, 1427 s, 1421 s, 1378 w, 1306 s, 1275 m, 1189 w, 1169 s, 1134 w, 888 m, 865 m, 757 s, 710 s; ¹H NMR (CDCl₃, 400 MHz) $\delta_{\rm H}$ 8.04 (br s, 1 H), 7.32 (dd, *J* 8.1 Hz, 7.4 Hz, 2 H), 7.23 (dd, *J* 8.1 Hz, 0.7 Hz, 2 H), 7.13 (dd, *J* 7.4 Hz, 0.7 Hz, 2 H); ¹³C NMR (101 MHz) $\delta_{\rm C}$ 138.6, 128.0, 122.9, 118.7, 116.8, 110.3; ⁷⁷Se NMR (76 MHz, CDCl₃) 265.6; m/z (TOF EI⁺) calculated for C₁₂H₈N⁷⁶Se⁷⁸Se [M+H]⁺; 319.9022, found 319.9031 (PPM error 2.8).

1,7-Diiodo-8,8-dimethyl-4-(triisopropylsilyl)-4,8-dihydrosilolo[2,3,4,5-def]carbazole [13a]

N-lodosuccinimide (130.1 mg, 0.58 mmol) was added to a solution of **8a** (100.4 mg, 0.26 mmol) in acetic acid (2.6 mL) and the resultant mixture allowed to stir for 22 h. Water (10 mL) was added to the mixture and extracted with CH₂Cl₂ (3 × 10 mL). The combined organic extracts were washed with brine (10 mL), dried over sodium sulfate, filtered, and concentrated under reduced pressure to give a beige solid. The beige solid was purified by automated flash column chromatography (hexane) to give **13a** (117.7 mg, 70%) as a colourless solid. R_f = 0.61 (hexane); mp 162 – 164 °C (hexane); v_{max} (solid, cm⁻¹) 2946 br, 2865 br, 1597 w, 1482 w, 1459 w, 1436 m, 1421 m, 1391 m, 1286 w, 1241 m, 1214 m, 1189 s, 1151 m, 1070 w, 1013 s, 991 m, 882 m, 841 s, 800 s, 841 s, 783 s, 748 s, 701 s, 674 s; ¹H NMR (CDCl₃, 400 MHz) $\delta_{\rm H}$ 7.53 (d, *J* 8.3 Hz, 2 H), 7.19 (d, *J* 8.3 Hz, 2 H), 1.85 (hept, *J* 7.5 Hz, 3 H), 1.17 (d, *J* 7.5 Hz, 18 H), 0.68 (s, 6H); ¹³C NMR (101 MHz) $\delta_{\rm C}$ 142.7, 141.4, 140.1, 135.7, 118.1, 87.5, 18.4, 13.3, –4.3; m/z (TOF ASAP+) calculated for C₂₃H₃₂NSi₂I₂ [M+H]⁺; 632.0163, found 632.0168 (PPM error 0.8).

1,7-Dibromo-8,8-dimethyl-4-(triisopropylsilyl)-4,8-dihydrosilolo[2,3,4,5-def]carbazole [14a]

N-Bromosuccinimide (104.7 mg, 0.59 mmol) was added to a solution of **8a** (100.8 mg, 0.27 mmol) in acetic acid (2.7 mL) and the resultant mixture allowed to stir for 22 h. Water (15 mL) was added to the mixture and extracted with CH_2Cl_2 (3 × 10 mL). The combined organic extracts were washed with brine (20 mL), dried over sodium sulfate, filtered, and concentrated under reduced pressure to give a colourless solid. The solid was purified by automated flash column chromatography (hexane) to give **14a** (129.9 mg, 91%) as a colourless solid. $R_f = 0.57$ (hexane); mp 174 – 176 °C (hexane); v_{max} (solid, cm⁻¹) 2948 br, 2866 br, 1600 w, 1488 w,

1459 w, 1440 m, 1425 m, 1391 m, 1366 w, 1288 w, 1247 m, 1214 m, 1190 s, 1152 m, 1071 w, 1032 m, 1014 m, 992 m, 924 w, 881 s, 842 s, 801 m, 784 s, 752 s, 704 m, 677 m, 654 s; ¹H NMR (CDCl₃, 400 MHz) δ_{H} 7.34 (d, *J* 8.5 Hz, 2 H), 7.29 (d, *J* 8.4 Hz, 2 H), 1.86 (hept, *J* 7.5 Hz, 3 H), 1.17 (d, *J* 7.5 Hz, 18 H), 0.72 (s, 6H); ¹³C NMR (101 MHz) δ_{C} 142.2, 139.8, 134.6, 130.3, 118.0, 117.3, 18.4, 13.3, -4.3; m/z (TOF ASAP+) calculated for C₂₃H₃₂NSi₂Br₂ [M+H]⁺; 536.0440, found 536.0446 (PPM error 1.1).

1,7-Dichloro-8,8-dimethyl-4-(triisopropylsilyl)-4,8-dihydrosilolo[2,3,4,5-def]carbazole [15a]

N-Chlorosuccinimide (82.0 mg, 0.61 mmol) was added to a solution of **8a** (99.4 mg, 0.26 mmol) in acetic acid (2.6 mL) and the resultant mixture heated at 50 °C for 24 h. Water (15 mL) was added to the mixture and extracted with CH_2Cl_2 (3 × 10 mL). The combined organic extracts were washed with brine (10 mL), dried over sodium sulfate, filtered, and concentrated under reduced pressure. The crude material was purified by automated flash column chromatography (hexane) to give **15a** (103.5 mg, 88%) as a colourless solid. R_f = 0.45 (hexane); mp 149 – 151 °C (hexane); v_{max} (solid, cm⁻¹) 2951 br, 2868 br, 1605 w, 1494 w, 1391 m, 1447 m, 1430 m, 1391 w, 1369 w, 1244 m, 1214 m, 1191 s, 1151 w, 1071 w, 1050 s, 1012 m, 878 s, 837 s, 787 s, 758 s, 708 s; ¹H NMR (CDCl₃, 400 MHz) δ_H 7.43 (d, *J* 8.4 Hz, 2 H), 7.20 (d, *J* 8.4 Hz, 2 H), 1.86 (hept, *J* 7.5 Hz, 3 H), 1.17 (d, *J* 7.5 Hz, 18 H), 0.74 (s, 6 H); ¹³C NMR (101 MHz) δ_C 141.9, 139.6, 131.0, 129.7, 127.7, 117.6, 18.4, 13.4, –2.9; m/z (TOF ASAP+) calculated for $C_{23}H_{32}NSi_2Cl_2$ [M+H]⁺; 448.1457, found 448.1450 (PPM error 1.6).

1,1'-(8,8-Dimethyl-4-(triisopropylsilyl)-4,8-dihydrosilolo[2,3,4,5-def]carbazole-1,7diyl)bis(ethan-1-one) [16a]

8,8-Dimethyl-4-(triisopropylsilyl)-4,8-dihydrosilolo[2,3,4,5-def]carbazole **8a** (101.0 mg, 0.27 mmol) was added to a suspension of aluminium chloride (108.8 mg, 0.82 mmol) in acetyl chloride (0.04 mL, 0.56 mmol) and CH₂Cl₂ (1.3 mL), and the resultant mixture allowed to stir for 30 min. The reaction mixture was treated with HCl_(aq) (1 M, 10 mL) and extracted with CH₂Cl₂ (3 × 10 mL). The combined organic extracts were washed with brine (10 mL), dried over sodium sulfate, filtered, and concentrated under reduced pressure to give a beige solid. The beige solid was purified by automated flash column chromatography (hexane:EtOAc, 9:1) to give **16a** (61.2 mg, 50%) as a colourless solid. R_f = 0.26 (hexane:EtOAc, 9:1); mp 205 – 207 °C (hexane); v_{max} (solid, cm⁻¹) 2948 br, 2867 br, 1665 m, 1603 m, 1530 w, 1489 m, 1461 m, 1423 m, 1384 m, 1353 m, 1253 m, 1199 s, 1152 m, 1071 w, 1015 m, 961 w, 880 s, 842 s, 802 s, 787 s, 748 s, 704 s, 674 s, 652 s; ¹H NMR (CDCl₃, 400 MHz) δ_H 7.98 (d, *J* 8.4 Hz, 2 H), 7.50 (d, *J* 8.4 Hz, 2 H), 2.69 (s, 6 H), 1.95 (hept, *J* 7.6 Hz, 3 H), 1.22 (d, *J* 7.5 Hz, 18 H), 0.77 (s, 6 H); ¹³C NMR (101 MHz) δ_C 198.0, 144.0, 142.0, 136.1, 135.2, 129.6, 115.0, 27.0, 18.4, 13.4, -4.2; m/z (TOF ASAP+) calculated for C₂₇H₃₈NO₂Si₂ [M+H]⁺; 464.2441, found 464.2450 (PPM error 1.9).

9-(Triisopropylsilyl)-9H-carbazol-4-ol [17a]

Potassium fluoride dihydrate (173.6 mg, 1.84 mmol) and potassium hydrogen carbonate (183.3 mg, 1.83 mmol) were added to a solution of **8a** (169.4 mg, 0.45 mmol) in THF:MeOH (1:1, 2 mL) at 0 °C. To this mixture was added hydrogen peroxide solution (30%, 1.37 mL, 13.4 mmol), after 10 min the cooling bath was removed, and the mixture allowed to stir for 21 h. Sat. Na₂S₂O_{3(aq)} (25 mL) was added dropwise and the resultant mixture extracted with EtOAc (3 × 25 mL). The combined organic extracts were washed sequentially with H₂O (25 mL) and brine (25 mL), dried over sodium sulfate, filtered, and concentrated under reduced pressure to give an orange oil. The orange oil was purified by automated flash column chromatography (hexane to hexane:EtOAc, 9:1) to give**17a** (87.6 mg, 58%) as a colourless oil. R_f = 0.29 (hexane:EtOAc, 9:1); v_{max} (oil, cm⁻¹) 3516 br, 2948 br, 2867 br, 1630 w, 1580 w, 1437 s, 1242 m, 1047 s, 880 m, 785 m, 754 s, 717 s, 645 m; ¹H NMR (CDCl₃, 400 MHz) $\delta_{\rm H}$ 8.36 (ddd, *J* 7.7 Hz, 1.5 Hz, 0.9 Hz, 1 H), 7.68 (d, *J* 8.4 Hz, 1 H), 7.34 (ddd, *J* 8.4 Hz, 7.2 Hz, 1.5 Hz, 1 H), 7.29 (d, *J* 8.4 Hz, 1 H), 7.24 (ddd, *J* 7.9 Hz, 7.0 Hz, 0.9 Hz, 1 H), 7.18 (dd, *J* 8.4 Hz, 7.8 Hz, 1 H), 6.58 (d, *J* 7.5 Hz, 1 H), 5.24 (s, 1 H), 1.99 (hept, *J* 7.6 Hz, 3 H), 1.20 (d, *J*

7.6 Hz, 18 H); ¹³C NMR (101 MHz) δ_{C} 151.8, 147.2, 144.6, 133.7, 125.7, 124.6, 122.8, 119.8, 114.9, 113.6, 107.2, 105.4, 18.7, 14.0; m/z (TOF ASAP+) calculated for C₂₁H₃₀NOSi [M+H]⁺; 340.2097, found 340.2101 (PPM error 1.2).

9H-Carbazol-4-ol [17b]⁷

Tetrabutylammonium fluoride solution (1 M in THF, 0.27 mL, 0.27 mmol) was added to a solution of **17a** (61.4 mg, 0.18 mmol) in THF (0.9 mL). The mixture was allowed to stir for 2.5 h then treated with saturated NH₄Cl_(aq) (10 mL) and extracted with EtOAc (3 × 10 mL). The combined organic extracts were washed sequentially with H₂O (10 mL) and brine (10 mL), dried over sodium sulfate, filtered, and concentrated under reduced pressure to give a yellow oil. The yellow oil was purified by automated flash column chromatography (CH₂Cl₂ to CH₂Cl₂:MeOH, 9:1) to give **17b** (30.4 mg, 92%) as a colourless solid. R_f = 0.52 (CH₂Cl₂); mp 171 – 172 °C (CH₂Cl₂); v_{max} (solid, cm⁻¹) 3395 br, 3211 br, 1637 w, 1608 m, 1586 m, 1505 m, 1446 s, 1330 m, 1306 m, 1268 m, 1205 m, 1043 s, 999 m, 930 m, 783 m, 751 s, 718 s; ¹H NMR (CDCl₃, 400 MHz) δ_{H} 8.28 (dd, *J* 7.8 Hz, 0.7 Hz, 1 H), 8.06 (br s, 1 H), 7.42 – 7.40 (stack, 2 H), 7.28 – 7.22 (stack, 2 H), 7.02 (dd, *J* 8.1 Hz, 0.6 Hz, 1 H), 6.59 (dd, *J* 7.8 Hz, 0.5 Hz, 1 H), 5.39 (s, 1 H); ¹³C NMR (101 MHz) δ_{C} 152.0, 141.5, 139.0, 126.7, 125.3, 122.9, 122.5, 119.9, 111.9, 110.2, 106.3, 103.5; m/z (TOF ASAP⁺) calculated for C₁₂H₁₀NO [M+H]⁺; 184.0762, found 184.0757 (PPM error –2.7).

9-(triisopropylsilyl)-9H-carbazole-4,5-diol [18a]

N-Methylmorpholine *N*-oxide (207 mg, 1.768 mmol) was added to a suspension of **7a** (139.1 mg, 0.353 mmol) in anhydrous acetonitrile (2.7 mL) and the mixture heated to reflux for 3 h. The reaction was monitored by TLC, using curcumin dip⁶ with heating to visualize disappearance of the boronic anhydride **7a**. The mixture was then concentrated under reduced

pressure and the resulting residue purified by automated flash column chromatography (hexane to hexane:EtOAc, 9:1) to give **18a** (15.8 mg, 13%) as a colourless oil followed by **17a** 39.1 mg (31%) as a beige solid.

Analytical data for [18a] $R_f = 0.30$ (hexane:EtOAc, 85:15); mp 156 – 158 °C (hexane); v_{max} (solid, cm⁻¹) 3212 br, 2950 m, 2869 m, 1610 m, 1585 m, 1446 s, 1393 w, 1271 w, 1237 m, 1092 m, 1062 m, 1036 w, 900 w, 770 m, 718 s; ¹H NMR (CDCl₃, 400 MHz) δ_H 8.26 (s, 2 H), 7.28 (dd, *J* 8.4 Hz, 0.5 Hz, 2 H), 7.21 (dd, *J* 8.4 Hz, 7.7 Hz, 2 H), 6.70 (dd, *J* 7.6 Hz, 0.5 Hz, 2 H), 1.98 (hept, *J* 7.5 Hz, 3 H), 1.19 (d, *J* 7.5 Hz, 18 H); ¹³C NMR (101 MHz) δ_C 149.2, 146.8, 126.1, 113.5, 107.0, 105.9, 18.8, 14.0; m/z (TOF ES–) calculated for C₂₁H₂₈NO₂Si [M–H]⁻; 354.1889, found 354.1891 (PPM error 0.6).

9-Amino-4-(triisopropylsilyl)azepino[3,4,5,6-def]carbazole-8,10(4H,9H)-dione [19a]

Hydrazine monohydrate (0.02 mL, 0.411 mmol) was added to a solution of **4a** (115.2 mg, 0.292 mmol) in methanol (9 mL) and the mixture heated at reflux for 24 h. The mixture was allowed to cool and the resulting precipitate was filtered, washed with methanol and dried under reduced pressure to give **19a** (35.7 mg, 30%) as a white powder which required no further purification. $R_f = 0.31$ (CH₂Cl₂/EtOAc, 2:8); mp 169 – 170 °C (MeOH); v_{max} (solid, cm⁻¹) 3624 w br, 3356 w, 3269 w, 2949 m, 2866 m, 1695 m, 1574 m, 1464 w, 1421 w, 1381 w, 1263 s, 1031 s, 990 m, 878 m, 842 m, 807 s, 756 s; ¹H NMR (DMSO-d₆, 500 MHz) δ_H 7.80 (d, *J* 8.0 Hz, 2 H), 7.48 (d, *J* 6.8 Hz, 2 H), 7.37 (app t, *J* 7.3 Hz, 2 H), 9 – 6.5 (br, 2 H), 2.05 (hept, *J* 6.9 Hz, 3 H), 1.16 (d, *J* 6.7 Hz, 18 H); ¹³C NMR (126 MHz) δ_C 172.4, 145.4, 134.13, 124.4, 122.7, 120.1, 115.0, 18.4, 13.2; m/z (TOF ASAP+) calculated for C₂₃H₃₀N₃O₂Si [M+H]⁺;408.2107, found 408.2097 (PPM error –2.4).

4-(Triisopropylsilyl)-8,10-dihydro-4H-oxepino[3,4,5,6-def]carbazole [20a]

Diol **3a** (131.0 g, 0.34 mol) was suspended in 50% H₃PO_{4(aq)} (2 mL) and heated at 90 °C for 11 h. The mixture was cooled to rt, diluted with H₂O (20 mL) and extracted by EtOAc (3 × 20 ml). The combined organic extracts were washed with sat. NaHCO_{3(aq)} (20 mL), and dried over sodium sulfate, filtered and the solvent removed under reduced pressure to afford an off-white solid, which was purified by automated flash column chromatography (hexane:EtOAc, 95:5) to give **20a** (69.2 mg, 56%) as an off-white crystalline solid. R_f = 0.31 (hexane:EtOAc, 95:5); mp 133 – 134 °C (hexane), v_{max} (solid, cm⁻¹) 2946 m, 2866 m, 1610 w, 1583 w, 1464 m, 1433 s, 1375 m, 1308 m, 1287 m, 1262 s, 1244 s, 1112 m, 1069 m, 1016 m, 879 s, 768 s, 729 s, 676 s, 668 s; ¹H NMR (CDCl₃, 400 MHz) $\delta_{\rm H}$ 7.59 (dd, *J* 8.5 Hz, 2 H), 7.27 (dd, *J* 8.4 Hz, 7.3 Hz, 2H), 6.94 (dd, *J* 7.2 Hz, 0.5 Hz, 2 H), 5.31 (s, 4H), 2.01 (hept, *J* 7.5 Hz, 3 H), 1.20 (d, *J* 7.5 Hz, 18 H); ¹³C NMR (101 MHz) $\delta_{\rm C}$ 145.2, 136.2, 125.1, 124.2, 116.1, 112.9, 77.6, 18.7, 14.0; m/z (TOF MS) calculated for C₂₃H₃₂NOSi [M+H]⁺; 366.2253, found 366.2264 (PPM error 3.0).

Iron hexacarbonyl complex [21a]

Triiron dodecacarbonyl (132.0 mg, 0.26 mmol) was added to a solution of **10a** (100.0 mg, 0.26 mmol) in toluene (10 mL), and the mixture heated to reflux for 1 h. The reaction mixture was then concentrated under reduced pressure to give a red solid. The red solid was purified by flash column chromatography (hexane) to give **21a** (113 mg, 66%) as a red solid. R_f = 0.25 (hexane); mp 164 °C dec. (hexane); v_{max} (solid, cm⁻¹) 2952 w, 2871 w, 2071 s, 2028 s, 2008 s, 1978 s, 1972 s, 1597 m, 1571 m, 1461 m, 1412 m, 1348 m, 1270 m, 1246 m, 994 m, 880 m, 773 s; ¹H NMR (CDCl₃, 400 MHz) δ_{H} 8.03 (d, *J* 7.6 Hz, 2 H), 7.85 (d, *J* 8.2 Hz, 2 H), 7.31 (dd, *J* 8.2 Hz, 7.8 Hz, 2 H), 2.00 (hept, *J* 7.5 Hz, 3 H), 1.14 (d, *J* 7.5 Hz, 18 H); ¹³C NMR (101

MHz) δ_{C} 207.5, 146.9, 136.4, 130.3, 124.4, 123.4, 115.1, 18.6, 14.1; m/z (TOF ASAP+) calculated for $C_{27}H_{28}NO_6SiS_2^{54}Fe^{56}Fe$ [M+H]⁺; 663.9873, found 663.9868 (PPM error –0.8).

Electrophile and substrate screen

Electrophile screen

In an initial screen, the following electrophiles reacted poorly (<10% 4,5-disubstitution): DMF;⁸ 9% lactone (from trapping and concomitant Cannizzaro reaction⁹), 22% mono aldehyde Cl(CO)CO₂Et;¹⁰ 4% diketone Br₂CHCHBr₂;¹¹ 2% dibromide with concomitant desilylation I₂;¹² 2% diiodide with concomitant desilylation Tellurium;¹³ provides trace ditelluride. Carbon disulfide;¹⁴ provides <5% mixture of **10a**:**11a**. Formaldehyde (0.5 M) in THF;¹⁵ 5% **3a**, 10% **29a** and 29% **1a**.

In an initial screen, the following electrophiles underwent no appreciable reaction and starting material was evident in the ¹H NMR of the crude reaction mixture:

SiCl₄,¹⁶ MeSiHCl₂,¹⁷ (C₃H₆)SiCl₂,¹⁸ PhPCl₂,¹⁹ MgCl₂•LiCl with PhP(O)Cl₂,²⁰ Me₂SnCl₂,²¹ *N*fluorobenzenesulfonimide (NSFI),²²⁻²³ allyl bromide, ZnCl₂ and Br₂,²³ ZnCl₂ and CuCN•2LiCl with allyl bromide,²³ CuCN•2LiCl with allyl bromide, *p*-toluenesulfonyl azide,²⁴ benzyl bromide, PhS(O)₂SPh,²⁵ benzophenone,²⁶ oxalyl chloride,¹⁰ diethyl oxalate,¹⁰ *N*,*N*-dimethylcarbamyl chloride.²⁷

Substrate screen

The *n*BuLi-TMEDA-directed metalation conditions were also investigated on methoxysubstituted *N*-TIPS carbazoles (Scheme S1). 3-Methoxycarbazole **23a** and 3,6dimethoxycarbazole **24a** were converted into the corresponding silafluorenes **25a** and **26a** respectively, albeit in lower yield than for unsubstituted silafluorene **8a**. The 2methoxycarbazole **27a** did not give any silafluorene. Subsequent investigation into the feasibility of the 4,5-dilithiation of **27a** using D₂O as a trap gave two compounds, with no evidence of deuterium incorporation. The aromatic silane **28** presumably arises from a retro [1,3]-aza-Brook rearrangement of a 1-lithiocarbazole, where the inherent preference of carbazoles for C1-lithiation coupled with the directing effect of the 2-OMe group is presumably sufficient to overcome the bulk of the TIPS group.²⁸ Demethylation of **27a** to phenol **29** was also a significant pathway.

Scheme S1 Reactions of methoxy-substituted *N*-TIPS carbazoles.

Experimental procedures and analytical data for 23-29 are reported below.

3-Methoxy-9-(triisopropylsilyl)-9H-carbazole [23a]

Following General Procedure 1: [From 17.3 mmol 3-methoxycarbazole with chlorotriisopropylsilane.] Purified by automated column flash chromatography (hexane:CH₂Cl₂, 9:1), 23a (4.03 g, 66%) was obtained as a colourless oil that solidified on standing. $R_f = 0.09$ (hexane:CH₂Cl₂, 9:1); mp 73 – 75 °C (hex); v_{max} (solid, cm⁻¹) 2947 br, 2866 br, 1627 w, 1595 w, 1481 s, 1449 s, 1439 s, 1391 w, 1301 w, 1263 m, 1239 s, 1198 s, 1176 s, 1119 w, 1070 w, 1039 s, 957 s, 921 w, 880 s, 851 s, 800 s, 747 s, 724 m, 686 s; ¹H NMR (CDCl₃, 400 MHz) δ_{H} 8.02 (dd, J 7.8 Hz, 0.9 Hz, 1 H), 7.67 (d, J 8.5 Hz, 1 H), 7.59 (d, J 9.0 Hz, 1 H), 7.53 (d, J 2.7 Hz, 1 H), 7.34 (ddd, J 8.5 Hz, 7.1 Hz, 1.4 Hz, 1 H), 7.20 (ddd, J 7.8 Hz, 6.9 Hz, 0.7 Hz, 1 H), 6.99 (dd, J 9.1 Hz, 2.7 Hz, 1 H), 3.93 (s, 3 H), 1.97 (hept, J 7.5 Hz, 3 H), 1.19 (d, J 7.5 Hz, 18 H); 13 C NMR (101 MHz) δ_{C} 153.8, 145.9, 139.8, 127.2, 126.6, 125.4, 119.8, 119.2, 114.9, 114.3, 114.2, 102.4, 56.0, 18.7, 14.0; m/z (TOF ASAP+) calculated for C₂₂H₃₂NOSi [M+H]⁺; 354.2253, found 354.2260 (PPM error 2.0).

3,6-Dimethoxy-9-(triisopropylsilyl)-9H-carbazole [24a]

Following General Procedure 1: [From 9.01 mmol 3,6-dimethoxycarbazole with chlorotriisopropylsilane.] Purified automated flash chromatography by column (hexane:CH₂Cl₂, 9:1), 24a (3.03 g, 88%) was obtained as a colourless solid. $R_f = 0.44$ (Hex:EtOAc, 9:1); mp 97 – 99 °C (hex); v_{max} (solid, cm⁻¹) 2947 br, 2867 br, 1607 w, 1576 w, 1485 s, 1458 s, 1431 s, 1392 w, 1341 w, 1296 m, 1254 m, 1228 s, 1194 s, 1162 s, 1034 s, 1019 s, 960 s, 908 s, 885 s, 842 s, 800 s, 785 s; ¹H NMR (CDCl₃, 400 MHz) δ_H 7.56 (d, J 9.1 Hz, 2 H), 7.47 (d, J 2.7 Hz, 2 H), 6.96 (dd, J 9.1Hz, 2.7 Hz, 2 H), 3.93 (s, 6 H), 1.94 (hept, J 7.5 Hz, 3 H), 1.18 (d, J 7.6 Hz, 18 H); ¹³C NMR (101 MHz) $\delta_{\rm C}$ 153.6, 140.6, 127.1, 115.1, 114.5, 102.2, 56.0, 18.7, 14.0; m/z (TOF ASAP+) calculated for C₂₃H₃₄NO₂Si [M+H]⁺; 384.2359, found 384.2362 (PPM error 0.8).

1-Methoxy-8,8-dimethyl-4-(triisopropylsilyl)-4,8-dihydrosilolo[2,3,4,5-def]carbazole [25a]

Following General Procedure 2: [From 0.70 mmol **23a**, using dichlorodimethylsilane as the electrophile (4 eq.).] The reaction mixture was poured into sat. NaHCO_{3(aq)} (15 mL) and extracted with CH₂Cl₂ (3 x 15 mL). The combined organic extracts were washed with brine (15 mL), dried over sodium sulfate, filtered, and concentrated under reduced pressure. The crude material was purified by automated flash column chromatography (hexane:CH₂Cl₂, 9:1) to give **25a** 68.2 mg (24%) as a yellow oil. R_f = 0.08 (hexane:CH₂Cl₂, 9:1); v_{max} (oil, cm⁻¹) 2947 br, 2867 br, 1606 w, 1502 w, 1470 s, 1447 s, 1423 m, 1382 m, 1331 w, 1230 s, 1171 m, 1072 m, 1042 m, 1014 m, 957 w, 881 m, 861 m, 838 s, 799 s, 756 s, 685 s; ¹H NMR (CDCl₃, 400 MHz) δ_H 7.45 – 7.41 (m, 1 H), 7.38 (d, *J* 8.5 Hz, 1 H), 7.31 (brs, 1 H), 7.30 (d, *J* 1.6 Hz, 1 H), 6.85 (d, *J* 8.6 Hz, 1 H), 3.93 (s, 6 H), 1.90 (hept, *J* 7.6 Hz, 3 H), 1.18 (d, *J* 7.6 Hz, 18 H), 0.69 (S, 6 H); ¹³C NMR (101 MHz) δ_C 158.2, 141.9, 141.3, 141.0, 135.3, 132.1, 127.2, 122.8, 117.7, 116.1, 115.5, 112.5, 56.5, 18.5, 13.5, 0.2; m/z (TOF ASAP+) calculated for C₂₄H₃₆NOSi₂ [M+H]⁺; 410.2335, found 410.2343 (PPM error 2.0).

1,7-Dimethoxy-8,8-dimethyl-4-(triisopropylsilyl)-4,8-dihydrosilolo[2,3,4,5-def]carbazole [26a]

<u>Following General Procedure 2:</u> [From 0.31 mmol **24a** with 1.87 mmol TMEDA, using dichlorodimethylsilane as the electrophile (4 eq.).] The reaction mixture was poured into sat. NaHCO_{3(aq)} (15 mL) and extracted with CH₂Cl₂ (3 × 15 mL). The combined organic extracts were washed with brine (15 mL), dried over sodium sulfate, filtered, and concentrated under reduced pressure. The crude material was purified by automated flash column chromatography (hexane:CH₂Cl₂, 1:1) to give **26a** 32.1 mg (24%) as a colourless solid. R_f = 0.43 (hexane:CH₂Cl₂, 1:1); mp 103 – 105 °C (hexane); v_{max} (solid, cm⁻¹) 2948 br, 2865 br,

1592 w, 1542 w, 1474 m, 1451 s, 1426 m, 1371 w, 1331 w, 1300 w, 1224 s, 1207 s, 1178 m, 1140 w, 1059 m, 1013 m, 990 w, 948 w, 883 m, 836 m, 769 s, 705 m; ¹H NMR (CDCl₃, 400 MHz) δ_{H} 7.36 (d, *J* 8.6 Hz, 2 H), 6.85 (d, *J* 8.6 Hz, 2 H), 3.93 (s, 6 H), 1.87 (hept, *J* 7.5 Hz, 3 H), 1.18 (d, *J* 7.5 Hz, 18 H), 0.77 (s, 6 H); ¹³C NMR (101 MHz) δ_{C} 157.6, 141.6, 136.0, 117.5, 115.5, 112.7, 56.7, 18.5, 13.5, 1.5; m/z (TOF ASAP+) calculated for C₂₅H₃₈NO₂Si₂ [M+H]⁺; 440.2441, found 440.2448 (PPM error 1.6).

2-Methoxy-9-(triisopropylsilyl)-9H-carbazole [27a]

Following General Procedure 1: [From 2.53 mmol 2-methoxycarbazole with chlorotriisopropylsilane.] Purified by automated flash column chromatography (hexane:CH₂Cl₂, 9:1), **27a** (843.5 mg, 94%) was obtained as a colourless oil that solidified on standing. $R_f = 0.65$ (hexane:EtOAc, 9:1); mp 75 – 77 °C (hex); v_{max} (solid, cm⁻¹) 2951 br, 2865 br, 1627 w, 1597 w, 1573 w, 1494 w, 1457 s, 1422 w, 1350 w, 1329 w, 1268 m, 1187 s, 1150 s, 1128 s, 1044 m, 1011 m, 963 s, 914 m, 882 s, 839 m, 795 m, 759 s, 732 m, 648 s, 680 s; ¹H NMR (CDCl₃, 400 MHz) δ_H 7.96 (dd, J 7.6 Hz, 0.9 Hz, 1 H), 7.93 (d, J 8.5 Hz, 1 H), 7.64 (d, J 8.4 Hz, 1 H), 7.28 (ddd, J 8.5 Hz, 7.1 Hz, 1.4 Hz, 1 H), 7.22 (d, J 2.3 Hz, 1 H), 7.20 (ddd, J 8.5 Hz, 7.1 Hz, 0.7 Hz, 1 H), 6.87 (dd, J 8.5 Hz, 2.1 Hz, 1 H), 3.90 (s, 3 H), 1.99 (hept, J 7.5 Hz, 3 H), 1.21 (d, J 7.5 Hz, 18 H); ¹³C NMR (101 MHz) δ_C 158.5, 146.5, 145.2, 126.7, 124.2, 120.7, 120.1, 119.7, 119.0, 114.0, 107.4, 99.5, 55.8, 18.8, 13.9; m/z (TOF ES+) calculated for C₂₂H₃NOSi [M+H]⁺; 354.253, found 354.2263 (PPM error 2.8).

2-Methoxy-1-(triisopropylsilyl)-9H-carbazole [28] and 9-(Triisopropylsilyl)-9H-carbazol-2-ol [29]

<u>Following General Procedure 2:</u> [From 0.42 mmol **27a** with 2.26 mmol TMEDA, using D₂O as the electrophile (89 eq.).] The reaction mixture was poured into sat. $NH_4Cl_{(aq)}$ (20 mL) and extracted with CH_2Cl_2 (4 × 15 mL). The combined organic extracts were washed with brine

(20 mL), dried over sodium sulfate, filtered, and concentrated under reduced pressure. The crude material was purified by automated flash column chromatography (hexane: CH_2Cl_2 , 1:0 to 1:1) to give **28** (67.9 mg, 46%) as a colourless solid followed by **29** (41.3 mg, 29%) as a tan solid.

Analytical data for [28] $R_f = 0.71$ (hexane:CH₂Cl₂, 1:1); mp 87 – 89 °C (hexane); v_{max} (solid, cm⁻¹) 3488 m, 2945 br, 2867 br, 1601 m, 1563 m, 1459 m, 1395 s, 1313 m, 1267 m, 1214 s, 1171 s, 1143 m, 1070 m, 1014 m, 883 s, 802 m, 780 m, 771 m, 745 s, 733 s, 685 m; ¹H NMR (CDCl₃, 400 MHz) δ_H 8.25 (br s, 1 H), 8.05 (d, *J* 8.6 Hz, 1 H), 7.98 (d, *J* 7.7 Hz, 1 H), 7.35 – 7.40 (m, 1 H), 7.32 – 7.36 (m, 1 H), 7.20 (ddd, *J* 8.6 Hz, 7.7 Hz, 0.9 Hz, 1 H), 6.85 (d, *J* 8.6 Hz, 1 H), 3.87 (s, 3 H), 1.60 (hept, *J* 7.4 Hz, 3 H), 1.16 (d, *J* 7.4 Hz, 18 H); ¹³C NMR (101 MHz) δ_C 164.4, 146.4, 139.5, 124.6, 123.2, 122.3, 119.4, 119.3, 117.7, 110.2, 103.2, 103.1, 55.2, 19.3, 13.5; m/z (TOF ASAP+) calculated for C₂₂H₃₂NOSi [M+H]⁺; 354.2253, found 354.2259 (PPM error 1.7).

Analytical data for [29] R_f = 0.11 (hexane:CH₂Cl₂, 1:1); mp 148 – 150 °C (hexane); v_{max} (solid, cm⁻¹) 3273 br, 2949 br, 2867 m, 1631 m, 1599 m, 1579 m, 1470 m, 1456 s, 1435 s, 1365 m, 1274 s, 1145 s, 1125 s, 1071 m, 1017 m, 927 s, 882 s, 834 s, 803 m, 762 m, 747 s, 726 s, 680; ¹H NMR (CDCl₃, 400 MHz) δ_{H} 7.94 (dd, *J* 1.0 Hz, 7.6 Hz, 1 H), 7.88 (d, *J* 8.4 Hz, 1 H), 7.63 (d, *J* 8.5 Hz, 1 H), 7.28 (ddd, *J* 8.4 Hz, 7.2 Hz, 1.4 Hz, 1 H), 7.19 (dd, *J* 7.6 Hz, 7.4 Hz, 1 H), 7.16 (d, *J* 1.7 Hz, 1 H), 6.74 (dd, *J* 8.3 Hz, 2.1 Hz, 1 H), 4.75 (s, 1 H), 1.98 (hept, *J* 7.5 Hz, 3 H), 1.20 (d, *J* 7.5 Hz, 18 H); ¹³C NMR (101 MHz) δ_{C} 154.6, 147.0, 145.7, 127.1, 124.7, 121.3, 120.7, 120.2, 119.4, 114.5, 109.0, 101.2, 19.2, 14.4; m/z (TOF ASAP+) calculated for C₂₁H₂₉NOSi [M]⁺; 339.2018, found 339.2027 (PPM error 2.7).

X-ray crystallography

CCDC 2079909 – CCDC 2079912 (**1a**, **8a**, **10b** and **12b** respectively) and CCDC 2080733-2080736 (**3a**, **5a**, **6b** and **20a** respectively) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

The datasets for **1a**, **3a**, **5a**, **6b**, **8a**, **10b**, **12b** and **20a** were measured on an Agilent SuperNova diffractometer using an Atlas detector. The data collections were driven and processed and absorption corrections were applied using CrysAlisPro.²⁹ The structures were solved using SheIXT.³⁰ All structures were refined by a full-matrix least-squares procedure on F^2 in SheIXL.³¹ Figures and reports were produced using OLEX2.³² All non-hydrogen atoms were refined with anisotropic displacement parameters. In **10b** the hydrogen atoms bonded to N(1) and N(101), and in **6b** and **12b** the hydrogen atom bonded to N(1), were located in the electron density and freely refined. All remaining hydrogen atoms in all structures were fixed as riding models and the isotropic thermal parameters (U_{iso}) were based on the U_{eq} of the parent atoms.

Crystal data for **1a**: C₂₁H₂₉NSi (*M* =323.54 g/mol): monoclinic, space group P2₁/c (no. 14), *a* = 9.3498(4) Å, *b* = 7.3678(3) Å, *c* = 27.1186(10) Å, β = 98.469(4)°, *V* = 1847.76(12) Å³, *Z* = 4, *T* = 100.01(10) K, μ (CuK α) = 1.093 mm⁻¹, *Dcalc* = 1.163 g/cm³, 6721 reflections measured (9.564° ≤ 2 Θ ≤ 140.102°), 3490 unique (*R*_{int} = 0.0354, R_{sigma} = 0.0476) which were used in all calculations. The final *R*₁ was 0.0581 (I > 2 σ (I)) and *wR*₂ was 0.1522 (all data).

Crystals were obtained by slow evaporation from Et₂O.

The methyl group C(22) / C(22') is disordered over two positions at a refined percentage occupancy ratio of 84 (2) : 16 (2).

Figure S1 Crystal structure of **1a** with ellipsoids drawn at the 50 % probability level. The methyl group C(22) / C(22') is disordered over two positions at a refined percentage occupancy ratio of 84 (2) : 16 (2).

Crystal data for **3a**: $C_{23}H_{33}NO_2Si$ (*M* =383.59 g/mol): hexagonal, space group P6₁ (no. 169), *a* = 19.2612(6) Å, *c* = 9.9892(5) Å, *V* = 3209.4(3) Å³, *Z* = 6, *T* = 100.00(10) K, μ (Cu K α) = 1.092 mm⁻¹, *Dcalc* = 1.191 g/cm³, 18641 reflections measured (9.182° ≤ 2 Θ ≤ 140.086°), 3827 unique (R_{int} = 0.0319, R_{sigma} = 0.0270) which were used in all calculations. The final R_1 was 0.0611 (I > 2 σ (I)) and *w* R_2 was 0.1764 (all data).

Crystals were obtained by slow evaporation from ethanol

The CH₂-OH group C(13)-O(1) / C(13A)-O(1A) is disordered over two positions, at a refined percentage occupancy ratio of 59 (2) : 49 (2).

Figure S2 Crystal structure of **3a** with ellipsoids drawn at the 50 % probability level. The CH₂-OH group C(13)-O(1) / C(13A)-O(1A) is disordered over two positions, at a refined percentage occupancy ratio of 59 (2) : 49 (2).

Crystal data for **5a**: $C_{27}H_{27}F_4NSi$ (*M* =469.58 g/mol): monoclinic, space group P2₁/n (no. 14), *a* = 8.2725(4) Å, *b* = 19.9141(9) Å, *c* = 13.8083(7) Å, *β* = 101.265(5)°, *V* = 2230.95(19) Å³, *Z* = 4, *T* = 100.01(10) K, µ(Cu Kα) = 1.359 mm⁻¹, *Dcalc* = 1.398 g/cm³, 8851 reflections measured (7.896° ≤ 2Θ ≤ 146.254°), 4330 unique (*R*_{int} = 0.0280, R_{sigma} = 0.0344) which were used in all calculations. The final *R*₁ was 0.0377 (I > 2σ(I)) and *wR*₂ was 0.1036 (all data).

Crystals were obtained by slow evaporation from chloroform.

Figure S3 Crystal structure of 5a with ellipsoids drawn at the 50 % probability level.

Crystal data for **6b**: $C_{12}H_7Cl_2N$ (*M* =236.09 g/mol): orthorhombic, space group P2₁2₁2₁ (no. 19), *a* = 3.8267(2) Å, *b* = 14.2898(6) Å, *c* = 17.5522(7) Å, *V* = 959.80(7) Å³, *Z* = 4, *T* = 100.00(10) K, μ (Cu K α) = 5.725 mm⁻¹, *Dcalc* = 1.634 g/cm³, 9168 reflections measured (7.978° ≤ 2 Θ ≤ 145.682°), 1895 unique (*R*_{int} = 0.0352, R_{sigma} = 0.0257) which were used in all calculations. The final *R*₁ was 0.0270 (I > 2 σ (I)) and *wR*₂ was 0.0683 (all data).

Crystals were obtained by slow evaporation from CH₂Cl₂

Figure S4 Crystal structure of 6b with ellipsoids drawn at the 50 % probability level.

Crystal data for **8a**: $C_{23}H_{33}NSi_2$ (*M*=379.68 g/mol): monoclinic, space group P2₁/c (no. 14), *a* = 13.1260(5) Å, *b* = 15.4832(4) Å, *c* = 12.3174(5) Å, *β* = 117.891(5)°, *V* = 2212.51(16) Å³, *Z* = 4, *T* = 100.01(10) K, μ (CuK α) = 1.483 mm⁻¹, *Dcalc* = 1.140 g/cm³, 8569 reflections measured (9.526° ≤ 2Θ ≤ 138.262°), 4107 unique (*R*_{int} = 0.0250, R_{sigma} = 0.0323) which were used in all calculations. The final *R*₁ was 0.0361 (I > 2 σ (I)) and *wR*₂ was 0.1018 (all data).

Crystals obtained by recrystallisation of pure material from hot ethanol.

Figure S5 Crystal structure of 8a with ellipsoids drawn at the 50 % probability level.

Crystal data for **10b**: $C_{12}H_7NS_2$ (*M*=229.31 g/mol): triclinic, space group P-1 (no. 2), *a* = 9.3372(6) Å, *b* = 10.5025(6) Å, *c* = 10.6156(6) Å, *α* = 92.683(4)°, *β* = 108.926(5)°, *γ* = 91.966(5)°, *V* = 982.30(10) Å³, *Z* = 4, *T* = 100.00(10) K, μ (CuK α) = 4.559 mm⁻¹, *Dcalc* = 1.551 g/cm³, 6804 reflections measured (8.44° ≤ 2 Θ ≤ 149.248°), 3862 unique (R_{int} = 0.0234, R_{sigma} = 0.0301) which were used in all calculations. The final R_1 was 0.0292 (I > 2 σ (I)) and wR_2 was 0.0776 (all data).

Crystals were obtained by slow evaporation from Et₂O.

Figure S6 Crystal structure of 10b with ellipsoids drawn at the 50 % probability level. The structure contains two crystallographically-independent molecules.

Crystal data for **12b**: $C_{12}H_7NSe_2$ (*M* =323.11 g/mol): monoclinic, space group P2₁/n (no. 14), *a* = 9.9907(4) Å, *b* = 6.7480(3) Å, *c* = 14.9843(6) Å, *β* = 95.086(4)°, *V* = 1006.22(7) Å³, *Z* = 4, *T* = 100.00(10) K, μ (CuK α) = 8.847 mm⁻¹, *Dcalc* = 2.133 g/cm³, 3677 reflections measured (10.238° ≤ 2 Θ ≤ 148.818°), 1999 unique (*R*_{int} = 0.0172, R_{sigma} = 0.0207) which were used in all calculations. The final *R*₁ was 0.0215 (I > 2 σ (I)) and *wR*₂ was 0.0561 (all data).

Crystals were obtained by slow evaporation for CH₂Cl₂

Figure S7 Crystal structure of 12b with ellipsoids drawn at the 50 % probability level.

Crystal data for **20a**: C₂₃H₃₁NOSi (*M* =365.58 g/mol): orthorhombic, space group Pbca (no. 61), *a* = 9.0996(3) Å, *b* = 14.8381(5) Å, *c* = 29.5722(8) Å, *V* = 3992.9(2) Å³, *Z* = 8, *T* = 100.01(10) K, μ (Cu K α) = 1.109 mm⁻¹, *Dcalc* = 1.216 g/cm³, 9832 reflections measured (11.418° ≤ 2 Θ ≤ 146.074°), 3879 unique (*R*_{int} = 0.0278, R_{sigma} = 0.0285) which were used in all calculations. The final *R*₁ was 0.0409 (I > 2 σ (I)) and *wR*₂ was 0.1159 (all data).

Crystals were obtained by slow evaporation from EtOAc.

Figure S8 Crystal structure of 20a with ellipsoids drawn at the 50 % probability level.

Copies of NMR spectra

Deuteration study (Table 1, Entry 2)

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 ppm

9-(Triisopropylsilyl)-9H-carbazole [1a]

9-(Triisopropylsilyl)-9H-carbazole [1a]

9-(Triethylsilyl)-9H-carbazole [1c]

S39

9-(Triethylsilyl)-9H-carbazole [1c]

9-(tert-Butyldimethylsilyl)-9H-carbazole [1d]

S41

9-(tert-Butyldimethylsilyl)-9H-carbazole [1d]

4,5-Dimethyl-9-(triisopropylsilyl)-9H-carbazole [2a]

4,5-Dimethyl-9-(triisopropylsilyl)-9H-carbazole [2a]

(9-(Triisopropylsilyl)-9H-carbazole-4,5-diyl)dimethanol [3a]

(9-(Triisopropylsilyl)-9H-carbazole-4,5-diyl)dimethanol [3a]

4-(Triisopropylsilyl)-4H-oxepino[3,4,5,6-def]carbazole-8,10-dione [4a]

4-(Triisopropylsilyl)-4H-oxepino[3,4,5,6-def]carbazole-8,10-dione [4a]

8,9,10,11-Tetrafluoro-4-(triisopropylsilyl)-4H-naphtho[1,2,3,4-def]carbazole [5a]

8,9,10,11-Tetrafluoro-4-(triisopropylsilyl)-4H-naphtho[1,2,3,4-def]carbazole [5a]

8,9,10,11-Tetrafluoro-4-(triisopropylsilyl)-4H-naphtho[1,2,3,4-def]carbazole [5a]

4-(Triisopropylsilyl)-4H-[1,2,7]oxadiborepino[3,4,5,6-def]carbazole-8,10-diol [7a]

4-(Triisopropylsilyl)-4H-[1,2,7]oxadiborepino[3,4,5,6-def]carbazole-8,10-diol [7a]

4-(Triisopropylsilyl)-4H-[1,2,7]oxadiborepino[3,4,5,6-def]carbazole-8,10-diol [7a]

8,8-Dimethyl-4-(triisopropylsilyl)-4,8-dihydrosilolo[2,3,4,5-def]carbazole [8a]

8,8-Dimethyl-4-(triisopropylsilyl)-4,8-dihydrosilolo[2,3,4,5-def]carbazole [8a]

8,8-Dimethyl-4-(triisopropylsilyl)-4,8-dihydrogermolo[2,3,4,5-def]carbazole [9a]

8,8-Dimethyl-4-(triisopropylsilyl)-4,8-dihydrogermolo[2,3,4,5-def]carbazole [9a]

9-(Triisopropylsilyl)-9H-[1,2]dithiino[3,4,5,6-def]carbazole [10a]

9-(Triisopropylsilyl)-9H-[1,2]dithiino[3,4,5,6-def]carbazole [10a]

Mixture of 10a and 11a (1:~2.2 by integration of ¹H NMR)

Low resolution mass spectrum of mixture of 10a and 11a

9-(Triisopropylsilyl)-9H-[1,2]dithiino[3,4,5,6-def]carbazole [10b]

9-(Triisopropylsilyl)-9H-[1,2]dithiino[3,4,5,6-def]carbazole [10b]

9-(Triisopropylsilyl)-9H-[1,2]diselenino[3,4,5,6-def]carbazole [12a]

9-(Triisopropylsilyl)-9H-[1,2]diselenino[3,4,5,6-def]carbazole [12a]

9H-[1,2]diselenino[3,4,5,6-def]carbazole [12b]

9H-[1,2]diselenino[3,4,5,6-def]carbazole [12b]
9H-[1,2]diselenino[3,4,5,6-def]carbazole [12b]

1,7-Diiodo-8,8-dimethyl-4-(triisopropylsilyl)-4,8-dihydrosilolo[2,3,4,5-def]carbazole [13a]

1,7-Diiodo-8,8-dimethyl-4-(triisopropylsilyl)-4,8-dihydrosilolo[2,3,4,5-def]carbazole [13a]

1,7-Dibromo-8,8-dimethyl-4-(triisopropylsilyl)-4,8-dihydrosilolo[2,3,4,5-def]carbazole [14a]

1,7-Dibromo-8,8-dimethyl-4-(triisopropylsilyl)-4,8-dihydrosilolo[2,3,4,5-def]carbazole [14a]

1,7-Dichloro-8,8-dimethyl-4-(triisopropylsilyl)-4,8-dihydrosilolo[2,3,4,5-def]carbazole [15a]

1,7-Dichloro-8,8-dimethyl-4-(triisopropylsilyl)-4,8-dihydrosilolo[2,3,4,5-def]carbazole [15a]

1,1'-(8,8-Dimethyl-4-(triisopropylsilyl)-4,8-dihydrosilolo[2,3,4,5-def]carbazole-1,7-diyl)bis(ethan-1-one) [16a]

1,1'-(8,8-Dimethyl-4-(triisopropylsilyl)-4,8-dihydrosilolo[2,3,4,5-def]carbazole-1,7-diyl)bis(ethan-1-one) [16a]

9-(Triisopropylsilyl)-9H-carbazol-4-ol [17a]

9-(Triisopropylsilyl)-9H-carbazol-4-ol [17a]

9H-Carbazol-4-ol [17b]

9-(Triisopropylsilyl)-9H-carbazole-4,5-diol [18a]

9-(Triisopropylsilyl)-9H-carbazole-4,5-diol [18a]

9-Amino-4-(triisopropylsilyl)azepino[3,4,5,6-def]carbazole-8,10(4H,9H)-dione [19a]

9-Amino-4-(triisopropylsilyl)azepino[3,4,5,6-def]carbazole-8,10(4H,9H)-dione [19a]

4-(Triisopropylsilyl)-8,10-dihydro-4H-oxepino[3,4,5,6-def]carbazole [20a]

4-(Triisopropylsilyl)-8,10-dihydro-4H-oxepino[3,4,5,6-def]carbazole [20a]

Iron hexacarbonyl complex [21a]

Iron hexacarbonyl complex [21a]

(9-(Triisopropylsilyl)-9H-carbazol-4-yl)methanol [22a]

(9-(Triisopropylsilyl)-9H-carbazol-4-yl)methanol [22a]

3-Methoxy-9-(Triisopropylsilyl)-9H-carbazole [23a]

3-Methoxy-9-(triisopropylsilyl)-9H-carbazole [23a]

3,6-Dimethoxy-9-(triisopropylsilyl)-9H-carbazole [24a]

3,6-Dimethoxy-9-(triisopropylsilyl)-9H-carbazole [24a]

1-Methoxy-8,8-dimethyl-4-(triisopropylsilyl)-4,8-dihydrosilolo[2,3,4,5-def]carbazole [25a]

1-Methoxy-8,8-dimethyl-4-(triisopropylsilyl)-4,8-dihydrosilolo[2,3,4,5-def]carbazole [25a]

1,7-Dimethoxy-8,8-dimethyl-4-(triisopropylsilyl)-4,8-dihydrosilolo[2,3,4,5-def]carbazole [26a]

1,7-Dimethoxy-8,8-dimethyl-4-(triisopropylsilyl)-4,8-dihydrosilolo[2,3,4,5-def]carbazole [26a]

2-Methoxy-9-(triisopropylsilyl)-9H-carbazole [27a]

S103

2-Methoxy-9-(triisopropylsilyl)-9H-carbazole [27a]

2-Methoxy-1-(triisopropylsilyl)-9H-carbazole [28]

2-Methoxy-1-(triisopropylsilyl)-9H-carbazole [28]

9-(Triisopropylsilyl)-9H-carbazol-2-ol [29]

S107
9-(Triisopropylsilyl)-9H-carbazol-2-ol [29]

S108

References

¹ Burchat, A. F.; Chong, J. M.; Nielsen, N. Titration of alkyllithiums with a simple reagent to a blue endpoint. *J. Organomet. Chem.* **1997**, *542*, 281–283.

² Feng, Y.; Holte, D.; Zoller, J.; Umemiya, S.; Simke, L. R.; Baran, P. S. Total Synthesis of Verruculogen and Fumitremorgin A Enabled by Ligand-Controlled C–H Borylation. *J. Am. Chem. Soc.* **2015**, *137*, 10160–10163.

³ Greb, L.; Tamke, S.; Paradies, J. Catalytic metal-free Si–N cross-dehydrocoupling. *Chem. Commun.* **2014**, *50*, 2318–2320.

 ⁴ a. Zi, Y.; Lange, M.; Schultz, C.; Vilotijevic, I. Latent Nucleophiles in Lewis Base Catalyzed Enantioselective N-Allylations of N-Heterocycles. *Angew. Chem. Int. Ed.* 2019, *58*, 10727–10731; b. Lange, M.; Zi, Y.; Vilotijevic, I. Enantioselective Synthesis of Pyrrolizin-1-ones via Lewis Base Catalyzed N-Allylation of N-Silyl Pyrrole Latent Nucleophiles. *J. Org. Chem.* 2020, *85*, 1259–1269.
⁵ Wang, M.; Fan, Q.; Jiang, X. Nitrogen–Iodine Exchange of Diaryliodonium Salts: Access to Acridine and Carbazole. *Org. Lett.* 2018, *20*, 216–219.

⁶ Lawrence, K.; Flower, S. E.; Kociok-Kohn, G.; Frost, C. G.; James, T. D. A simple and effective colorimetric technique for the detection of boronic acids and their derivatives. *Anal. Methods* **2012**, *4*, 2215-2217.

⁷ Brütting, C.; Hesse, R.; Jäger, A.; Kataeva, O.; Schmidt, A. W.; Knölker, H.-J. Synthesis of Glycoborine, Glybomine A and B, the Phytoalexin Carbalexin A and the β-Adrenoreceptor Antagonists Carazolol and Carvedilol. *Chem. Eur. J.* **2016**, *22*, 16897–16911.

⁸ Kuhnert, N.; Rossignolo, G. M.; Lopez-Periagoa, A. The synthesis of trianglimines: on the scope and limitations of the [3 + 3] cyclocondensation reaction between (1*R*,2*R*)-diaminocyclohexane and aromatic dicarboxaldehydes. *Org. Biomol. Chem.* **2003**, *1*, 1157–1170.

⁹ Dakdouki, S. C.; Villemin, D.; Bar, N. An Original On-Column Oxidative Cleavage of Vicinal Diols Using Alumina/Potassium Periodate: Application to Sequential Oxidation/Horner–Emmons Reactions. *Eur. J. Org. Chem.* **2011**, 4448–4454.

¹⁰ Song, X.; Yu, H.; Zhang, Y.; Miao, Y.; Ye, K.; Wang, Y. Controllable morphology and self-assembly of one-dimensional luminescent crystals based on alkyl-fluoro-substituted dithienophenazines. *CrystEngComm* **2018**, *20*, 1669–1678.

¹¹ Cowie, B. E.; Emslie, D. J. H. Platinum Complexes of a Borane-Appended Analogue of 1,1'-Bis(diphenylphosphino)ferrocene: Flexible Borane Coordination Modes and in situ Vinylborane Formation. *Chem. Eur. J.* **2014**, *20*, 16899–16912.

¹² Thiede, S.; Winterscheid, P. E.; Hartmann, J.; Schnakenburg, G.; Essig, S.; Menche, D. Regiodivergent lodocyclizations for the Highly Diastereoselective Synthesis of *syn*- and *anti*-Hydroxyl-Isochromanones and -Isobenzofuranones: Concise Synthesis of the Isochromanone Core of the Ajudazols. *Synthesis* **2016**, *48*, 697–709.

¹³ Raja, K.; Mugesh, G. Remarkable Effect of Chalcogen Substitution on an Enzyme Mimetic for Deiodination of Thyroid Hormones. *Angew. Chem. Int. Ed.* **2015**, *54*,7674–7678.

¹⁴ Verkruijsse H. D.; Brandsma, L. Carbophilic versus thiophilic attack in the reaction of metallated aromates and heteroaromates with carbon disulfide. *J. Organomet. Chem.* **1987**, 332, 95–98. ¹⁵ Schlosser, M.; Jenny, T.; Guggisberg, Y. Monomeric Formaldehyde in Ethereal Solution. *Synlett* **1990**, 704.

¹⁶ Lenormand, H.; Goddard, J-.P.; Fensterbank, L. Spirosilane Derivatives as Fluoride Sensors. *Org. Lett.* **2013**, *15*, 4, 748–751.

¹⁷ Becker, B.; Corriu, R. J. P.; Henner, B. J. L.; Wojnowski W.; Peters, K.; von Schnering, H. G.; Contributions to the chemistry of silicon-sulphur compounds: XLII. Bis(1-methyldibenzosilole)sulphide: its synthesis, crystal structure, and reaction with chromium hexacarbonyl. *J. Organomet. Chem.* **1986**, *312*, 305–311.

¹⁸ Daiyo, T.; Makoto, N.; Eiji, M.; Hiroyuki, N. Silaethene in Pyrolysis of Spiro[silacyclobutane-1-9'-[9H-9]silafluorene]. *Bull. Chem. Soc. Jpn.* **1987**, *60*, 2263–2264.

¹⁹ Oukhrib, A.; Bonnafoux, L.; Panossian, A.; Waifang, S.; Nguyen, D. H.; Urrutigoity, M.; Colobert, F.; Gouygou, M.; Leroux, F. R. Novel C₁-symmetric dibenzophosphole ligands: application in hydroformylation reactions. *Tetrahedron* **2014**, *70*, 1431–1436.

²⁰ Kaga, A.; Iida, H.; Tsuchiya, S.; Saito, H.; Nakano, K.; Yorimitsu, H. Aromatic Metamorphosis of Thiophenes by Means of Desulfurative Dilithiation. *Chem. Eur. J.* **2021**, *27*, 4567–4572.

²¹ Romero, P.E.; Piers, W. E.; Decker, S. A.; Chau, D.; Woo, T. K.; Parvez, M. η1 versus η5 Bonding Modes in Cp*Al(I) Adducts of 9-Borafluorenes. *Organometallics* **2003**, *22*, 6, 1266–1274.

²² Davis, F. A.; Han, W.; Murphy, C. K. Selective, Electrophilic Fluorinations Using N-Fluoro-obenzenedisulfonimide. *J. Org. Chem.* **1995**, *60*, 4730–4737.

²³ Bellan, A. B.; Knochel, P. Steric-Hindrance Triggered Remote Lithiations of Bulky Silyl-Substituted Arenes. *Synthesis* **2019**, *51*, 3536–3544.

²⁴ Li, F.; Wei, G.; Sheng, Y.; Quan, Y.; Cheng, Y.; Zhu, C. (*S*)-Binaphthalene-basedfluorescence polymer sensors for directand visual F⁻detection. *Polymer* **2014**, *55*, 5689–5694.

²⁵ Palumbo, G.; Ferreri, C.; D'Ambrosio, C.; Caputo, R. Thiosulfonic S-Esters-III. A Convenient Preparation of Aromatic Sulfides. *Phosphorus and Sulfur and the Related Elements* **1984**, *19*, 235–238.

²⁶ Wang, H.; Gabbaï, F. P. Synthesis and Reactivity of a Chlorinated 1,8-

Bis(diarylmethylium)naphthalenediyl Dication. Org. Lett. 2005, 7, 283–285.

²⁷ Getmanenko, Y. A.; Risko, C.; Tongwa, P.; Kim, E-. G.; Li, H.; Sandhu, B.; Timofeeva, T.; Brédas, J-. L.; Marder, S. R. Mono- and Dicarbonyl-Bridged Tricyclic Heterocyclic Acceptors: Synthesis and Electronic Properties. *J. Org. Chem.* **2011**, *76*, 2660–2671.

²⁸ For discussion of the directing effects of OMe groups in BuLi-TMEDA-mediated deprotonations of aromatics, see: Chadwick, S. T.; Rennels, R. A.; Rutherford, J. L.; Collum, D. B. Are *n*-BuLi/TMEDA-Mediated Arene Ortholithiations Directed? Substituent-Dependent Rates, Substituent-Independent Mechanisms. *J. Am. Chem. Soc.* **2000**, *122*, 8640–8647.

²⁹ CrysAlisPro, Rigaku Oxford Diffraction, 2015.

³⁰ Sheldrick, G. M. SHELXT - Integrated space-group and crystal-structure determination. *Acta Cryst.* **2015**, *A71*, 3–8.

³¹ Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8.

³² Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a

complete structure solution, refinement and analysis program. *J. Appl. Crystallogr.* **2009**, *42*, 339–341.