Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Tropylium-Promoted Ritter Reactions

Son H. Doan,^[a] Mohanad A. Hussein,^[a] and Thanh Vinh Nguyen*^[a]

[a]School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.

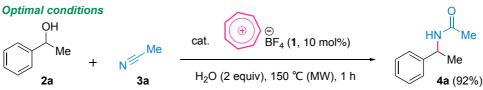
Correspondence: T.V.N. t.v.nguyen@unsw.edu.au

Supporting Information

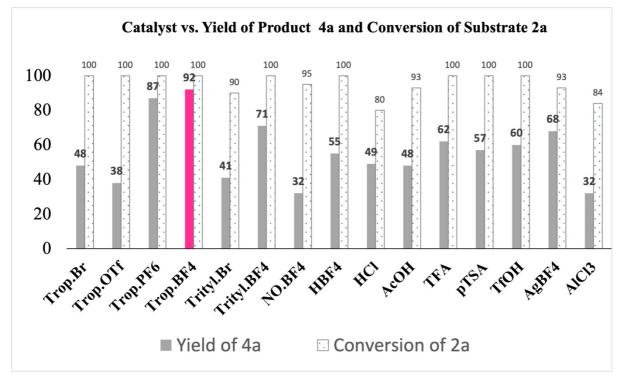
Table of Contents

General Methods	S3
Table S1. Optimization Studies	S4
General Procedure - Substrate Scope	S5
Optimization of catalyst loading for flow chemistry	S7
Characterization Data of Products in Scheme 1	S8
Characterization Data of Products in Scheme 2	S27
NMR Spectra	S32
References	S83

General Methods


Commercially available solvents and reagents were used as purchased unless otherwise noted. Tropylium bromide was prepared according to a literature procedure.¹ Analytical thin layer chromatography was performed using aluminium plates precoated with silica gel 60 F₂₅₄ (0.2 mm). Flash chromatography employed 230-400 mesh silica gel. Solvents used for chromatography are quoted as volume/volume ratios.

Microwave reactions were carried out on a CEM microwave reactor. Flow reactions were conducted on a Vapourtec R-Series flow reactor.


NMR spectroscopy was performed at 298 K using an Avance III HD 400 (400.1 MHz, 1 H; 100.6 MHz, 13 C, 376.5 MHz, 19 F) or an Avance III 300 (300 MHz, 1 H; 75 MHz, 13 C; 282.5 MHz, 19 F). Data is expressed in parts per million (ppm) downfield shift from tetramethylsilane with residual solvent as an internal reference (δ 7.26 ppm for chloroform, 5.27 ppm for dichloromethane) and is reported as position (δ in ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant (J in Hz) and integration (number of protons). 13 C NMR spectra were recorded at 298 K with complete proton decoupling. Data is expressed in parts per million (ppm) downfield shift relative to the internal reference (δ 77.2 ppm for the central peak of deuterated chloroform).

Infrared spectra were obtained on a ThermoNicolet Avatar 370 FT-IR spectrometer and are reported in wavenumbers (cm⁻¹). HRMS were performed at the Bioanalytical Mass Spectrometry Facility within the Mark Wainwright Analytical Centre at the University of New South Wales on an Orbitrap LTQ XL (Thermo Fisher Scientific, San Jose, CA, USA) ion trap mass spectrometer.

Table S1. Optimization Studies

Entry	Variations from optimal conditions	Conversion of 2a	Yield of 4a
		(%)	$(\%)^{[b]}$
1	no catalyst (also see entry 8)	< 10	traces
2	30 min	92	68
3	1 mol% catalyst 1	95	78
4	5 mol% catalyst 1a	100	86
5	100 °C (conventional heating)	68	40
6	120 °C (conventional heating)	84	63
7	150 °C (conventional heating)	100	89
8	100 °C (MW)	75	49
9	120 °C (MW)	92	71
10	no water	100	82
11	1 equiv of water	100	89
12 ^[c]	variation of catalyst (10 mol%)		see below

[a] Reaction conditions: 2 mmol 2a in MeCN 3a (5 mL) and catalyst 1 in a pressurized reaction vial at the indicated temperature for the indicated time. [b] Yield of the isolated 4a. [c] All catalysts are anhydrous.

General Procedure - Substrate Scope

Procedure A for substrates in Scheme 1

To a 10 mL microwave reaction tube loaded with a stirring bar containing the nitrile 3 (5 mL) was added alcohol 2 (2.0 mmol), tropylium tetrafluoroborate 1 (0.2 mmol, 10 mol%), and deionized water (2 mmol, 36 mg). If the nitrile substrate was a solid state, a solution of the nitrile (4 mmol) in 1,2-dichloroethane (5 mL) was added instead. The resulting mixture was then heated to 150 °C in the pressurized microwave reactor for 1 hour. After that, the reaction was cooled to room temperature and quenched with distilled water (5 mL). The organic components were extracted with ethyl acetate (3 x 10 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The target product was isolated from the crude mixture by column chromatography (silica-gel, hexane/ethyl acetate).

Procedure B for fluorine-containing nitrile (Scheme 1) and lactamization (Scheme 2)

To a 10 mL microwave reaction tube loaded with a stirring bar containing 1,2-dichloroethane (2.5 mL) was added either a mixture of fluoroacetonitrile $\mathbf{5}$ (2 mmol) and alcohol $\mathbf{2}$ (1 mmol) or γ -hydroxy nitrile $\mathbf{7}$ (1.0 mmol). Tropylium tetrafluoroborate (0.1 mol, 10 mol%) and deionized water (1 mmol, 18 mg) were subsequently added. The resulting mixture was then heated to 150 °C in the pressurized microwave reactor for 1 hour. After that, the mixture was cooled to room temperature and quenched with distilled water (5 mL). The organic components were extracted with ethyl acetate (3 x 10 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The target product was isolated from the crude mixture by column chromatography (silica-gel, hexane/ethyl acetate).

Procedure C for the synthesis of quinazoline derivatives (Scheme 2)

To a 10 mL microwave reaction tube loaded with a stirring bar containing nitrile 3 (2.5 mL) was added (2-aminophenyl)(phenyl)methanol (1.0 mmol), DMSO (1.0 mmol), tropylium tetrafluoroborate (0.1 mmol, 10 mol%) and deionized water (1 mmol, 18 mg). The resulting mixture was then heated to 150 °C in the pressurized microwave reactor for 1 hour. After that, the mixture was cooled to room temperature and quenched distilled water (5 mL). The organic components were extracted with ethyl acetate (3 x 10 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The target product was isolated from the crude mixture by column chromatography (silica-gel, hexane/ethyl acetate).

Procedure D for the Piancatelli-Ritter sequence (Scheme 2)

To a 10 mL microwave reaction tube loaded with a stirring bar containing deionized water (0.1 mL) was added 1-phenyl furfuryl alcohol 11 (1 mmol). The resulting mixture was heated to 200 °C in the pressurized microwave reactor for 2 minutes. Subsequently, nitrile 3 (2.5 mL if liquid, or 4 mmol in 2.5 mL DCE if solid), tropylium tetrafluoroborate (0.1 mmol, 10 mol%) were added. The resulting mixture was then heated to 150 °C in the pressurized microwave reactor for 1 hour. After that, the mixture was cooled to room temperature and quenched distilled water (5 mL). The organic components were extracted with ethyl acetate (3 x 10 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The target product was isolated from the crude mixture by column chromatography (silica-gel, hexane/ethyl acetate).

Optimization of catalyst loading for flow chemistry

Flow reactions were conducted on a Vapourtec R-Series flow reactor with a 10 mL tubular (coil) reactor. The Ritter reaction of substrates **2a** and **3a** to form **4a** with 10, 5, 2.5 and 1 mol% tropylium tetrafluoroborate **1** in continuous flow indicated that 1 mol% catalyst loading is optimal for the reaction.

Catalyst loading	Yield of 4c
10 mol%	93%
5 mol%	92%
2.5 mol%	91%
1 mol%	90% at 2 mmol scale
	91% at 100 mmol scale

Procedure E for the Ritter reaction in continuous flow (Scheme 3)

A solution of alcohol 2 (0.2 M) and tropylium tetrafluoroborate 1 (2 mM, 1 mol%) in nitrile 3 were prepared as stock solutions. The flow system was fitted with a high temperature 10 mL tubular (coil) reactor and a (8 + 8 = 16) bar back-pressure regulator. The stock solution of reagents and catalyst was injected at flow rates corresponding to the residence time of 50 minutes (0.2 mL/min). The resulting reaction mixture was collected and concentrated under reduced pressure before being worked up in similar fashion to batch reactions.

Characterization Data of Products in Scheme 1

N-(1-phenylethyl)acetamide (compound **4a)** Prepared by procedure **A** from 1-phenylethanol, tropylium tetrafluoroborate and acetonitrile as nitrile group source to give compound **4a** as a colorless oil (149 mg, 92% yield).

4a

¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.17 (m, 5H), 7.05 (d, J = 7.2 Hz, 1H), 5.00 (p, J = 7.4 Hz, 1H), 1.87 (s, 3H), 1.39 (d, J = 6.9 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 169.5, 143.5, 128.3, 126.9, 126.0, 48.6, 22.9, 21.8 ppm.

Characterization data matches the literature report¹.

N-(1-phenylethyl)acetamide-2,2,2- d_3 (compound 4aD) Prepared by procedure A from 1-phenylethanol, tropylium tetrafluoroborate and acetonitrile- d_3 as nitrile group source to give compound 4aD as a white solid (160 mg, 96% yield).

4aD

¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.22 (m, 5H), 6.53 (d, J = 6.0 Hz, 1H), 5.08 (p, J = 7.0 Hz, 1H), 1.45 (d, J = 6.9 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 169.4, 143.4, 128.5, 127.2, 126.2, 48.7, 22.9 – 22.1 (m), 21.8 ppm.

S8

Characterization data matches the literature report².

N-(1-phenylethyl)propionamide (compound **4b)** Prepared by procedure **A** from 1-phenylethanol, tropylium tetrafluoroborate and propionitrile as nitrile group source to give compound **4b** as a white powder (150 mg, 85% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.19 (m, 5H), 6.58 (d, J = 7.2 Hz, 1H), 5.05 (p, J = 6.6 Hz, 1H), 2.19 – 2.12 (m, 2H), 1.42 (d, J = 7.0 Hz, 3H), 1.08 (t, J = 7.5 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 173.1, 143.7, 128.5, 127.1, 126.1, 48.5, 29.6, 21.9, 9.9 ppm.

Characterization data matches the literature report¹.

N-(1-phenylethyl)isobutyramide (compound **4c**) Prepared by procedure **A** from 1-phenylethanol, tropylium tetrafluoroborate and isobutyronitrile as nitrile group source to give compound **4c** as a white solid (149 mg, 78% yield).

4c

¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.23 (m, 5H), 6.13 (d, J = 7.2 Hz, 1H), 5.09 (sext, J = 7.2 Hz, 1H), 2.34 (p, J = 6.8 Hz, 1H), 1.47 (d, J = 6.8 Hz, 3H), 1.12 (t, J = 6.8 Hz, 6H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 176.1, 143.5, 128.5, 127.1, 126.1, 48.3, 35.5, 21.8, 19.6, 19.5 ppm.

Characterization data matches the literature report³.

N-(1-phenylethyl)cyclohexanecarboxamide (compound 4d) Prepared by procedure A from 1-phenylethanol, tropylium tetrafluoroborate and cyclohexanecarbonitrile as nitrile group source to give compound 4d as a yellow solid (194 mg, 84% yield).

4d

¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 5H), 5.74 (d, J = 7.6 Hz, 1H), 5.18 – 5.13 (m, 1H), 2.12 – 2.06 (m, 1H), 1.90 – 1.80 (m, 4H), 1.67 (d, J = 8.8 Hz, 1H), 1.50 – 1.40 (m, 5H), 1.32 – 1.21 (m, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 175.1, 143.4, 128.6, 127.2, 126.1, 48.2, 45.5, 29.7, 29.6, 25.7, 21.7 ppm.

Characterization data matches the literature report⁴.

2-cyano-*N***-(1-phenylethyl)acetamide** (compound **4e**) Prepared by procedure **A** from 1-phenylethanol, tropylium tetrafluoroborate and malononitrile as nitrile group source to give compound **4e** as a white solid (132 mg, 70% yield).

4e

¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.26 (m, 5H), 6.73 (d, J = 7.0 Hz, 1H), 5.00 (p, J = 7.0 Hz, 1H), 3.27 (s, 2H), 1.49 (d, J = 7.0 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 160.5, 142.1, 128.9, 127.8, 126.2, 114.9, 50.1, 25.9, 21.6 ppm.

Characterization data matches the literature report⁵.

N-(1-phenylethyl)benzamide (compound **4f)** Prepared by procedure **A** from 1-phenylethanol, tropylium tetrafluoroborate and benzonitrile as nitrile group source to give compound **4f** as a white solid (154 mg, 68% yield).

4f

¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.0 Hz, 2H), 7.51 – 7.30 (m, 8H), 6.50 (d, J = 8.0 Hz, 1H), 5.33 (p, J = 8.0 Hz, 1H), 1.62 (d, J = 4.0 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 166.6, 143.2, 134.6, 131.4, 128.7, 128.5, 127.4, 126.9, 126.2, 49.2, 21.7 ppm.

Characterization data matches the literature report⁶.

Product 4g from the following reaction was not detected, as we isolated unidentifiable products from the reaction mixture:

4-bromo-*N***-(1-phenylethyl)benzamide** (compound **4h**) Prepared by procedure **A** from 1-phenylethanol, tropylium tetrafluoroborate and 4-bromobenzonitrile as nitrile group source to give compound **4h** as a white solid (245 mg, 81% yield).

4h

¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.64 (m, 2H), 7.59 – 7.57 (m, 2H), 7.42 – 7.30 (m, 5H), 6.31 (d, J = 7.6 Hz, 1H), 5.30 (p, J = 7.6 Hz, 1H), 1.62 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 165.6, 142.8, 133.4, 131.8, 128.8, 128.5, 127.6, 126.2, 126.1, 49.4, 21.6 ppm.

Characterization data matches the literature report⁷.

4-acetyl-*N***-(1-phenylethyl)benzamide** (compound **4i)** Prepared by procedure **A** from 1-phenylethanol, tropylium tetrafluoroborate and 4-acetylbenzonitrile as nitrile group source to give compound **4i** as a white solid (189 mg, 71% yield).

4i

¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.4 Hz, 2H), 7.85 (d, J = 8.4 Hz, 2H), 7.42 – 7.35 (m, 4H), 7.32 – 7.30 (m, 1H), 6.56 (d, J = 7.6 Hz, 1H), 5.32 (p, J = 7.2 Hz, 1H), 2.63 (s, 3H), 1.63 (d, J = 6.8 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 197.4, 165.6, 142.8, 139.1, 138.5, 128.8, 128.4, 127.6, 127.3, 126.2, 49.5, 26.8, 21.6 ppm.

Characterization data matches the literature report⁹.

4-ethynyl-*N***-(1-phenylethyl)benzamide** (compound **4j**) Prepared by procedure **A** from 1-phenylethanol, tropylium tetrafluoroborate and 4-ethynylbenzonitrile as nitrile group source to give compound **4j** as a white solid (194 mg, 78% yield).

4j

¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.73 (m, 2H), 7.57 – 7.54 (m, 2H), 7.42 – 7.36 (m, 4H), 7.33 – 7.29 (m, 1H), 6.36 (d, J = 8.0 Hz, 1H), 5.31 (p, J = 7.2 Hz, 1H), 3.21 (s, 1H), 1.62 (d, J = 6.8 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 165.7, 142.9, 134.5, 132.2, 128.8, 127.5, 126.9, 126.2, 125.3, 82.7, 79.4, 49.3, 21.6 ppm.

Characterization data matches the literature report¹⁰.

N-(1-phenylethyl)picolinamide (compound 4k) Prepared by procedure A from 1-phenylethanol, tropylium tetrafluoroborate and picolinonitrile as nitrile group source to give compound 4k as a white solid (127 mg, 56% yield).

4k

¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, J = 8.0 Hz, 1H), 8.36 (d, J = 8.0 Hz, 1H), 8.21 (d, J = 8.0 Hz, 1H), 7.84 (td, J_I = 8.0 Hz, J_Z = 2.0 Hz, 1H), 7.46 – 7.26 (m, 6H), 5.38 – 5.30 (m, 1H), 1.64 (d, J = 6.8 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 163.3, 149.8, 147.9, 143.3, 137.0, 128.6, 127.3, 126.9, 126.2, 122.3, 48.8, 22.1 ppm.

Characterization data matches the literature report¹¹.

1-methyl-*N***-(1-phenylethyl)-1***H***-indole-6-carboxamide** (compound **4l)** Prepared by procedure **A** from 1-phenylethanol, tropylium tetrafluoroborate and 1-methyl-1*H*-indole-6-carbonitrile as nitrile group source to give compound **4l** as a yellow oil (120 mg, 43% yield).

41

¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 1.2 Hz, 1H), 7.39 – 7.17 (m, 9H), 7.07 (d, J = 1.2 Hz, 1H), 4.31 (q, J = 9.5 Hz, 1H), 3.81 (s, 3H), 1.68 (d, J = 9.5 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 167.4, 146.6, 143.4, 137.0, 128.7, 128.6, 128.3, 127.3, 126.2, 119.4, 116.2, 109.7, 101.1, 49.1, 32.9, 22.4 ppm;

ESI-HRMS: calcd for $C_{18}H_{18}N_2ONa^+$: m/z = 301.1311, found: m/z = 301.1312;

FTIR (neat): 3379, 3258, 3065, 2968, 2929, 1673, 1515, 1434, 1239 cm⁻¹.

N-benzhydrylacetamide (compound 4m) Prepared by procedure A from diphenylmethanol, tropylium tetrafluoroborate and acetonitrile as nitrile group source to give compound 4m as a white solid (205 mg, 91% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.22 (m, 10H), 6.21 (d, J = 8.3 Hz, 1H), 1.89 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 169.5, 141.6, 128.4, 127.4, 127.2, 56.8, 22.8 ppm.

Characterization data matches the literature report¹.

N-benzhydrylpropionamide (compound **4n**) Prepared by procedure **A** from diphenylmethanol, tropylium tetrafluoroborate and propiononitrile as nitrile group source to give compound **4n** as a white solid (205 mg, 86% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.22 (m, 10H), 6.86 (d, J = 8.1 Hz, 1H), 6.25 (d, J = 8.2 Hz, 1H), 2.17 (q, J = 7.7 Hz, 2H), 1.10 (t, J = 7.5 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 173.1, 141.7, 128.5, 127.4, 127.2, 56.6, 29.4, 9.8 ppm.

Characterization data matches the literature report¹.

4-acetyl-*N***-benzhydrylbenzamide** (compound **40**) Prepared by procedure **A** from diphenylmethanol, tropylium tetrafluoroborate and 4-ethynylbenzonitrile as nitrile group source to give compound **40** as a white solid (233 mg, 71% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 7.6 Hz, 2H), 7.91 (d, J = 8.4 Hz, 2H), 7.41 – 7.31 (m, 10H), 6.79 (d, J = 7.6 Hz, 1H), 6.47 (d, J = 7.6 Hz, 1H), 2.65 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 197.3, 165.5, 141.1, 139.3, 138.0, 128.8, 128.5, 127.7, 127.5, 127.4, 57.6, 26.8 ppm.

Characterization data matches the literature report¹².

N-(9H-fluoren-9-yl)acetamide (compound **4p)** Prepared by procedure **A** from 9H-fluoren-9-ol, tropylium tetrafluoroborate and acetonitrile as nitrile group source to give compound **4p** as a white solid (202 mg, 90% yield).

4p

¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 7.4 Hz, 2H), 7.59 (d, J = 7.4 Hz, 2H), 7.40 (t, J = 7.4 Hz, 2H), 7.31 (t, J = 7.4 Hz, 2H), 6.24 (d, J = 8.9 Hz, 1H), 5.72 (d, J = 7.1 Hz, 1H), 2.13 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 170.8, 144.4, 140.7, 128.8, 127.9, 125.2, 120.1, 54.9, 23.6 ppm.

Characterization data matches the literature report¹³.

N-(9H-fluoren-9-yl)propionamide (compound **4q)** Prepared by procedure **A** from 9H-fluoren-9-ol, tropylium tetrafluoroborate and propiononitrile as nitrile group source to give compound **4q** as a white solid (207 mg, 87% yield).

4q

¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 7.4 Hz, 2H), 7.58 (d, J = 7.4 Hz, 2H), 7.40 (t, J = 7.4 Hz, 2H), 7.31 (t, J = 7.4 Hz, 2H), 6.26 (d, J = 9.0 Hz, 1H), 5.69 (d, J = 8.4 Hz, 1H), 2.32 (q, J = 7.6 Hz, 2H), 1.25 (t, J = 7.6 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 174.4, 144.4, 140.6, 128.6, 127.7, 125.1, 120.0, 54.6, 29.9, 10.0 ppm.

Characterization data matches the literature report¹³.

N-(9*H*-fluoren-9-yl)isobutyramide (compound 4r) Prepared by procedure A from 9*H*-fluoren-9-ol, tropylium tetrafluoroborate and isobutyronitrile as nitrile group source to give compound 4r as a white solid (214 mg, 85% yield).

41

¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 7.6 Hz, 2H), 7.55 (d, J = 7.6 Hz, 2H), 7.40 (t, J = 7.6 Hz, 2H), 7.31 (td, J_I = 7.4 Hz, J_Z = 1.2 Hz, 2H), 6.26 (d, J = 8.8 Hz, 1H), 5.69 (d, J = 9.2 Hz, 1H), 2.43 (p, J = 6.8 Hz, 1H), 1.26 (d, J = 6.8 Hz, 6H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 177.7, 144.5, 140.6, 128.6, 127.8, 125.0, 120.0, 54.5, 35.8, 19.7 ppm;

ESI-HRMS: calcd for $C_{17}H_{17}NONa^+$: m/z = 274.1202, found: m/z = 274.1202;

FTIR (neat): 3347, 2972, 2872, 1637, 1535, 1449, 1384, 1235 cm⁻¹.

N-(9*H*-fluoren-9-yl)cyclohexanecarboxamide (compound 4s) Prepared by procedure A from 9*H*-fluoren-9-ol, tropylium tetrafluoroborate and cyclohexanecarbonitrile as nitrile group source to give compound 4s as a white solid (250 mg, 86% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 7.6 Hz, 2H), 7.55 (d, J = 7.6 Hz, 2H), 7.40 (t, J = 7.6 Hz, 2H), 7.31 (td, J_I = 7.6 Hz, J_Z = 1.2 Hz, 2H), 6.27 (d, J = 9.2 Hz, 1H), 5.67 (d, J = 9.2 Hz, 1H), 2.24 – 1.27 (m, 11H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 174.9, 144.6, 140.6, 128.6, 127.7, 125.0, 119.9, 54.4, 45.7, 29.8, 25.7, 25.7 ppm;

ESI-HRMS: calcd for $C_{20}H_{21}NONa^+$: m/z = 314.1515, found: m/z = 314.1515;

FTIR (neat): 3349, 3270, 2980, 2882, 1637, 1542, 1450, 1233 cm⁻¹.

N-((2R,5S)-2-isopropyl-5-methylcyclohexyl)acetamide (compound 4t) Prepared by procedure **A** from (2R,5S)-2-isopropyl-5-methylcyclohexanol, tropylium tetrafluoroborate and acetonitrile as nitrile group source to give compound 4t as a white solid (145 mg, 73% yield).

¹H NMR (400 MHz, CDCl₃) δ 5.38 (s, 1H), 3.81 – 3.72 (m, 1H), 2.03 – 1.86 (m, 2H), 1.97 (s, 3H), 1.73 – 1.64 (m, 2H), 1.53 – 1.41 (m, 1H), 1.11 – 1.00 (m, 2H), 0.90 – 0.84 (m, 1H), 0.84 (d, J = 7.2 Hz, 6H), 0.81 – 0.73 (m, 1H), 0.76 (d, J = 6.8 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 169.2, 49.9, 48.0, 43.1, 34.5, 31.8, 26.7, 23.7, 23.5, 22.1, 21.1, 16.1 ppm.

Characterization data matches the literature report¹⁴.

N-((2R,5S)-2-isopropyl-5-methylcyclohexyl)isobutyramide (compound 4u) Prepared by procedure **A** from (2R,5S)-2-isopropyl-5-methylcyclohexanol, tropylium tetrafluoroborate and isobutyronitrile as nitrile group source to give compound 4u as a white solid (162 mg, 72% yield).

4u

¹H NMR (400 MHz, CDCl₃) δ 5.13 (d, J = 9.2 Hz, 1H), 3.81 – 3.72 (m, 1H), 2.29 (p, J = 6.8 Hz, 1H), 1.99 – 1.84 (m, 2H), 1.74 – 1.65 (m, 2H), 1.53 – 1.45 (m, 1H), 1.18 – 1.15 (m, 6H), 1.13 – 1.05 (m, 2H), 0.88 (d, J = 6.4 Hz, 6H), 0.88 – 0.85 (m, 1H), 0.83 – 0.81 (m, 1H), 0.79 (d, J = 6.8 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 176.0, 49.5, 48.2, 43.2, 35.9, 34.5, 31.8, 26.8, 23.8, 22.1, 21.1, 19.8, 19.6, 16.1 ppm;

ESI-HRMS: calcd for $C_{14}H_{27}NONa^+$: m/z = 248.1985, found: m/z = 248.1985;

FTIR (neat): 3285, 2980, 1634, 1376, 1215 cm⁻¹.

N-((2R,5S)-2-isopropyl-5-methylcyclohexyl)cyclohexanecarboxamide (compound 4v) Prepared by procedure **A** from (2R,5S)-2-isopropyl-5-methylcyclohexanol, tropylium tetrafluoroborate and cyclohexanecarbonitrile as nitrile group source to give compound 4v as a white solid (204 mg, 77% yield).

¹H NMR (400 MHz, CDCl₃) δ 5.07 (d, J = 9.2 Hz, 1H), 3.83 – 3.74 (m, 1H), 2.09 – 2.02 (m, 1H), 1.99 – 1.94 (m, 1H), 1.91 – 1.79 (m, 5H), 1.72 – 1.66 (m, 5H), 1.52 – 1.40 (m, 3H), 1.31 – 1.23 (m, 3H), 1.13 – 1.03 (m, 2H), 0.88 (d, J = 7.2 Hz, 6H), 0.79 (d, J = 7.2 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 176.2, 49.4, 48.3, 45.9, 43.3, 34.6, 31.8, 30.0, 29.6, 26.8, 25.7, 23.8, 22.1, 21.2, 16.1 ppm;

ESI-HRMS: calcd for $C_{17}H_{31}NONa^+$: m/z = 288.2298, found: m/z = 288.2297;

FTIR (neat): 3286, 2933, 2867, 1633, 1277 cm⁻¹.

N-((2*R*,5*S*)-2-isopropyl-5-methylcyclohexyl)benzamide (compound 4w) Prepared by procedure **A** from (2*R*,5*S*)-2-isopropyl-5-methylcyclohexanol, tropylium tetrafluoroborate and benzonitrile as nitrile group source to give compound 4w as a white solid (189 mg, 73% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.76 (m, 2H), 7.52 – 7.42 (m, 3H), 5.84 (d, J = 9.2 Hz, 1H), 4.04 – 4.00 (m, 1H), 2.13 – 1.91 (m, 2H), 1.80 – 1.71 (m, 3H), 1.61 – 1.51 (m, 1H), 1.24 – 1.12 (m, 2H), 1.02 – 0.97 (m, 1H), 0.92 (d, J = 6.8 Hz, 6H), 0.86 (d, J = 6.8 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 166.7, 135.1, 131.2, 128.5, 126.8, 50.4, 48.4, 43.1, 34.5, 31.9, 27.0, 23.9, 22.1, 21.2, 16.2 ppm.

Characterization data matches the literature report¹⁴.

4-bromo-*N***-(**(*2R*,*5S*)**-2-isopropyl-5-methylcyclohexyl)benzamide** (compound **4x**) Prepared by procedure **A** from (*2R*,*5S*)-2-isopropyl-5-methylcyclohexanol, tropylium tetrafluoroborate and 4-bromobenzonitrile as nitrile group source to give compound **4x** as a white solid (266 mg, 79% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.62 (m, 2H), 7.61 – 7.56 (m, 2H), 5.72 (d, J = 9.2 Hz, 1H), 4.05 – 3.96 (m, 1H), 2.12 – 2.07 (m, 1H), 1.99 – 1.91 (m, 1H), 1.80 – 1.70 (m, 2H), 1.59 – 1.51 (m, 2H), 1.30 – 1.16 (m, 3H), 0.91 (d, J = 6.8 Hz, 6H), 0.85 (d, J = 6.8 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 165.7, 133.9, 131.7, 128.4, 125.8, 50.5, 48.3, 43.1, 31.9, 27.0, 25.6, 23.9, 22.1, 21.1, 16.2 ppm;

ESI-HRMS: calcd for $C_{17}H_{24}BrNONa^+$: m/z = 360.0933, found: m/z = 360.0933;

FTIR (neat): 3275, 2931, 2975, 1630, 1542, 1209 cm⁻¹.

4-acetyl-*N***-((**2*R*,5*S*)**-2-isopropyl-5-methylcyclohexyl)benzamide** (compound **4y**) Prepared by procedure **A** from (2*R*,5*S*)-2-isopropyl-5-methylcyclohexanol, tropylium tetrafluoroborate and 4-acetylbenzonitrile as nitrile group source to give compound **4y** as a white solid (213 mg, 71% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.03 – 8.00 (m, 2H), 7.86 – 7.83 (m, 2H), 5.85 (d, J = 9.6 Hz, 1H), 4.07 – 3.98 (m, 1H), 2.65 (s, 3H), 2.14 – 2.08 (m, 1H), 1.99 – 1.94 (m, 1H), 1.80 – 1.73 (m, 2H), 1.59 – 1.54 (m, 2H), 1.31 – 1.13 (m, 3H), 0.92 (d, J = 6.8 Hz, 6H), 0.86 (d, J = 6.8 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 184.3, 165.7, 139.0, 134.2, 128.5, 127.1, 50.6, 48.3, 43.1, 34.5, 31.9, 27.1, 26.8, 23.9, 22.1, 21.1, 16.2 ppm;

ESI-HRMS: calcd for $C_{19}H_{27}NO_2Na^+$: m/z = 324.1934, found: m/z = 324.1934;

FTIR (neat): 3369, 3261, 3004, 2854, 1710, 1659, 1450, 1245 cm⁻¹.

N-(2,3-dihydro-1*H*-inden-1-yl)isobutyramide (compound 4z) Prepared by procedure A from 2,3-dihydro-1*H*-inden-1-ol, tropylium tetrafluoroborate and isobutyronitrile as nitrile group source to give compound 4z as a white solid (146 mg, 72% yield).

47

¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.23 (m, 4H), 5.66 (d, J = 6.4 Hz, 1H), 5.49 (q, J = 8.0 Hz, 1H), 3.04 – 2.85 (m, 2H), 2.67 – 2.59 (m, 1H), 2.44 – 2.37 (m, 1H), 1.84 – 1.75 (m, 1H), 1.21 (d, J = 6.8 Hz, 6H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 176.7, 143.4, 127.9, 126.7, 124.8, 123.9, 54.3, 35.7, 34.1, 30.2, 19.8, 19.6 ppm;

ESI-HRMS: calcd for $C_{13}H_{17}NONa^+$: m/z = 226.1202, found: m/z = 226.1203;

FTIR (neat): 3273, 3024, 1636, 1541, 1368, 1275 cm⁻¹.

N-cyclopentylacetamide (compound **4aa**) Prepared by procedure **A** from cyclopentanol, tropylium tetrafluoroborate and acetonitrile as nitrile group source to give compound **4aa** as a white solid (105 mg, 83% yield).

4aa

¹H NMR (400 MHz, CDCl₃) δ 5.68 (s, 1H), 4.15 (p, J = 7.0 Hz, 1H), 2.02 – 1.96 (m, 2H), 1.95 (s, 3H), 1.72 – 1.54 (m, 4H), 1.41 – 1.33 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 51.2, 33.0, 23.6, 23.4 ppm.

Characterization data matches the literature report¹⁵.

N-cyclopentylpropionamide (compound 4bb) Prepared by procedure **A** from cyclopentanol, tropylium tetrafluoroborate and propiononitrile as nitrile group source to give compound 4bb as a white solid (102 mg, 73% yield).

4_bh

¹H NMR (400 MHz, CDCl₃) δ 5.51 (s, 1H), 4.23 – 4.14 (m, 1H), 2.12 (q, J = 7.6 Hz, 2H), 2.01 – 1.92 (m, 2H), 1.67 – 1.54 (m, 4H), 1.38 – 1.29 (m, 2H), 1.10 (t, J = 7.6 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 173.4, 51.1, 33.2, 29.9, 23.8, 10.0 ppm.

Characterization data matches the literature report²⁰.

N-cyclohexylacetamide (compound 4cc) Prepared by procedure **A** from cyclohexanol, tropylium tetrafluoroborate and acetonitrile as nitrile group source to give compound 4cc as a white solid (112 mg, 79% yield).

4cc

¹H NMR (400 MHz, CDCl₃) δ 5.43 (s, 1H), 3.82 – 3.73 (m, 1H), 1.98 (s, 3H), 1.96 – 1.91 (m, 2H), 1.75 – 1.69 (m, 2H), 1.67 – 1.60 (m, 1H), 1.44 – 1.33 (m, 2H), 1.22 – 1.08 (m, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 169.1, 48.3, 33.2, 25.5, 24.8, 23.5 ppm.

Characterization data matches the literature report¹⁵.

N-(benzo[d][1,3]dioxol-5-yl(phenyl)methyl)acetamide (compound **4dd**) Prepared by procedure **A** from benzo[d][1,3]dioxol-5-yl(phenyl)methanol, tropylium tetrafluoroborate and acetonitrile as nitrile group source to give compound **4dd** as a white solid (193 mg, 72% yield).

4dd

¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.22 (m, 5H), 6.77 – 6.70 (m, 3H), 6.31 (d, J = 8.0 Hz, 1H), 6.14 (d, J = 8.0 Hz, 1H), 5.94 (s, 2H), 2.03 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 169.1, 147.9, 146.8, 141.5, 135.6, 128.6, 127.4, 127.3, 120.7, 108.2, 108.0, 101.1, 56.7, 23.2 ppm;

FTIR (neat): 3266, 3031, 2912, 1653, 1552, 1487, 1247 cm⁻¹;

ESI-HRMS: calcd for $C_{16}H_{15}NO_3Na^+$: m/z = 292.0944, found: m/z = 292.0943.

N-(benzo[d][1,3]dioxol-5-yl(phenyl)methyl)benzamide (compound 4ee) Prepared by procedure **A** from benzo[d][1,3]dioxol-5-yl(phenyl)methanol, tropylium tetrafluoroborate and benzonitrile as nitrile group source to give compound 4ee as a white solid (225 mg, 68% yield).

4ee

¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.0 Hz, 2H), 7.55 – 7.51 (m, 1H), 7.47 – 7.43 (m, 2H), 7.39 – 7.31 (m, 5H), 6.79 (d, J = 4.0 Hz, 3H), 6.71 (d, J = 8.0 Hz, 1H), 6.36 (d, J = 8.0 Hz, 1H), 5.96 (s, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 166.4, 148.0, 147.0, 141.4, 135.5, 134.2, 131.7, 128.7, 128.6, 127.6, 127.3, 127.0, 120.9, 108.3, 108.0, 101.1, 57.2 ppm;

FTIR (neat): 3309, 3059, 1635, 1530, 1502, 1487, 1248 cm⁻¹;

ESI-HRMS: calcd for $C_{21}H_{17}NO_3Na^+$: m/z = 354.1101, found: m/z = 354.1102.

2-fluoro-*N***-(1-phenylethyl)acetamide** (compound **6a**) Prepared by procedure **A** from 1-phenylethanol, tropylium tetrafluoroborate and 2-fluoroacetonitrile as nitrile group source to give compound **6a** as a white solid (128 mg, 71% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.31 (m, 5H), 6.53 (s, 1H), 5.20 (p, J = 7.2 Hz, 1H), 4.72 (dd, J_I = 47.2 Hz, J_Z = 5.6 Hz, 2H), 1.57 (d, J = 6.8 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 166.5 (d, J = 16.7 Hz, 1C), 142.3, 128.8, 127.6, 126.1, 79.3 (d, J = 185.0 Hz, 1C), 48.3, 21.7 ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ-224.4 ppm;

ESI-HRMS: calcd for $C_{10}H_{12}FNONa^+$: m/z = 204.0795, found: m/z = 204.0795;

FTIR (neat): 3314, 3040, 2947, 2869, 1687, 1536, 1446 cm⁻¹.

N-benzhydryl-2-fluoroacetamide (compound 6b) Prepared by procedure **A** from diphenylmethanol, tropylium tetrafluoroborate and 2-fluoroacetonitrile as nitrile group source to give compound 6b as a white solid (189 mg, 78% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.27 (m, 10H), 6.97 (d, J = 7.6 Hz, 1H), 6.36 (d, J = 8.4 Hz, 1H), 4.83 (d, J = 47.2 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 166.6 (d, J = 17.3 Hz, 1C), 140.8, 128.8, 127.7, 127.4, 79.4 (d, J = 184.8 Hz, 1C), 56.3 ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ-224.6 ppm;

ESI-HRMS: calcd for $C_{15}H_{14}FNONa^{+}$: m/z = 266.0952, found: m/z = 266.0950;

FTIR (neat): 3324, 3169, 3020, 2946, 2894, 1669, 1604 cm⁻¹.

N-(9H-fluoren-9-yl)-2-fluoroacetamide (compound **6c)** Prepared by procedure **A** from 9H-fluoren-9-ol, tropylium tetrafluoroborate and 2-fluoroacetonitrile as nitrile group source to give compound **6c** as a white solid (164 mg, 68% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.6 Hz, 2H), 7.60 (d, J = 7.6 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 6.55 (s, 1H), 6.28 (d, J = 9.2 Hz, 1H), 4.94 (d, J = 47.2 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 164.6 (d, J = 17.3 Hz, 1C), 142.9, 140.7, 129.0, 127.9, 125.1, 120.1, 79.4 (d, J = 184.8 Hz, 1C), 54.0 ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ-224.9 ppm;

ESI-HRMS: calcd for $C_{15}H_{12}FNONa^+$: m/z = 264.0795, found: m/z = 264.0795;

FTIR (neat): 3342, 3240, 3150, 3068, 2840, 1660, 1543 cm⁻¹.

2-fluoro-*N***-((2***R***,5***S***)-2-isopropyl-5-methylcyclohexyl)acetamide (compound 6d)** Prepared by procedure **A** from (2*R*,5*S*)-2-isopropyl-5-methylcyclohexanol, tropylium tetrafluoroborate and 2-fluoroacetonitrile as nitrile group source to give compound 6d as a white solid (129 mg, 60% yield).

¹H NMR (400 MHz, CDCl₃) δ 5.98 (br, 1H), 4.71 (dd, J_1 = 47.2 Hz, J_2 = 2.0 Hz, 2H), 3.83 (q, J = 9.8 Hz, 1H), 2.01 – 1.97 (m, 1H), 1.92 – 1.83 (m, 1H), 1.77 – 1.69 (m, 2H), 1.54 – 1.48 (m, 2H), 1.16 – 1.08 (m, 3H), 0.94 – 0.91 (m, 6H), 0.81 (d, J = 6.8 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 173.0 (d, J = 31.6 Hz, 1C), 79.3 (d, J = 183.4 Hz, 1C), 49.5, 47.9, 42.9, 34.4, 31.8, 26.8, 23.7, 22.1, 21.1, 16.0 ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ-223.8 ppm;

ESI-HRMS: calcd for $C_{12}H_{22}FNONa^+$: m/z = 238.1578, found: m/z = 238.1578;

FTIR (neat): 3411, 3218, 2920, 2852, 1669, 1545, 1459, 1262 cm⁻¹.

2-fluoro-*N***-tritylacetamide** (compound **6e**) Prepared by procedure **A** from triphenylmethanol, tropylium tetrafluoroborate and 2-fluoroacetonitrile as nitrile group source to give compound **6e** as a white solid (261 mg, 82% yield).

6e

¹H NMR (400 MHz, CDCl₃) δ 7.50 (br, 1H), 7.37 – 7.22 (m, 15H), 4.77 (d, J = 47.6 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 166.3 (d, J = 15.8 Hz, 1C), 144.2, 128.6, 128.1, 127.3, 79.7 (d, J = 187.5 Hz, 1C), 70.4 ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ-220.4 ppm;

ESI-HRMS: calcd for $C_{21}H_{18}FNONa^{+}$: m/z = 342.1265, found: m/z = 342.1265;

FTIR (neat): 3276, 3263, 3087, 3025, 2912, 2817, 1671, 1533, 1492, 1260 cm⁻¹.

Characterization Data of Products in Scheme 2

5-methylpyrrolidin-2-one (compound **8a**) Prepared by procedure **B** from 4-hydroxypentanenitrile and tropylium tetrafluoroborate to give compound **8a** as colorless oil (70 mg, 71% yield).

8a

¹H NMR (400 MHz, CDCl₃) δ 6.78 (br, 1H), 3.82 – 3.74 (m, 1H), 2.40 – 2.22 (m, 3H), 1.70 – 1.61 (m, 1H), 1.22 (d, J = 6.4 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 178.4, 50.1, 30.6, 29.1, 22.1 ppm.

Characterization data matches the literature report¹⁶.

5-phenylpyrrolidin-2-one (compound **8b**) Prepared by procedure **B** from 4-hydroxy-4-phenylbutanenitrile and tropylium tetrafluoroborate to give compound **8b** as a white solid (127 mg, 79% yield).

8b

¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.19 (m, 5H), 6.54 (s, 1H), 4.76 (t, J = 7.2 Hz, 1H), 2.63 – 2.38 (m, 3H), 2.03 – 1.94 (m, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 178.6, 142.4, 128.9, 127.9, 125.6, 58.1, 31.3, 30.3 ppm.

Characterization data matches the literature report¹⁶.

5-p-tolylpyrrolidin-2-one (compound **8c**) Prepared by procedure **B** from 4-hydroxy-4-p-tolylbutanenitrile and tropylium tetrafluoroborate to give compound **8c** as a white solid (140 mg, 80% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.16 (m, 4H), 6.95 (s, 1H), 4.70 (t, J = 7.2 Hz, 1H), 2.58 – 2.49 (m, 1H), 2.48 – 2.38 (m, 2H), 2.35 (s, 3H), 1.98 – 1.89 (m, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 178.8, 139.6, 137.5, 129.5, 125.6, 57.9, 31.3, 30.4, 21.0 ppm.

Characterization data matches the literature report¹⁶.

5-(4-methoxyphenyl)pyrrolidin-2-one (compound **8d**) Prepared by procedure **B** from 4-hydroxy-4-(4-methoxyphenyl)butanenitrile and tropylium tetrafluoroborate to give compound **8d** as a white solid (158 mg, 83% yield).

8d

¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, J = 8.4 Hz, 2H), 6.89 (d, J = 8.8 Hz, 2H), 6.39 (br, 1H), 4.70 (t, J = 7.2 Hz, 1H), 3.82 (s, 3H), 2.59 – 2.37 (m, 3H), 2.01 – 1.93 (m, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 178.5, 159.3, 134.4, 126.9, 114.2, 57.7, 55.3, 31.5, 30.4 ppm.

Characterization data matches the literature report¹⁶.

Isoindolin-1-one (compound **8e**) Prepared by procedure **B** from 2-(hydroxymethyl)benzonitrile and tropylium tetrafluoroborate to give compound **8e** as a white solid (90 mg, 68% yield).

8e

¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.0 Hz, 1H), 7.62 – 7.57 (m, 1H), 7.52 – 7.49 (m, 2H), 7.44 (d, J = 8.0 Hz, 1H), 4.50 (s, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 171.9, 143.6, 131.9, 131.7, 128.0, 123.8, 123.2, 45.7 ppm.

Characterization data matches the literature report¹⁷.

3-phenylisoindolin-1-one (compound **8f**) Prepared by procedure **B** from 2-(hydroxy(phenyl)methyl)benzonitrile and tropylium tetrafluoroborate to give compound **8f** as a white solid (150 mg, 72% yield).

8f

¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.89 (m, 1H), 7.54 – 7.46 (m, 2H), 7.40 – 7.33 (m, 3H), 7.32 – 7.25 (m, 3H), 7.09 (s, 1H), 5.65 (s, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 171.2, 147.9, 138.3, 132.3, 130.7, 129.0, 128.5, 128.3, 126.8, 123.8, 123.3, 60.9 ppm.

Characterization data matches the literature report¹⁸.

2-methyl-4-phenylquinazoline (compound **10a**) Prepared by procedure **C** from (2-aminophenyl)(phenyl)methanol, tropylium tetrafluoroborate and acetonitrile as nitrile group source to give compound **10a** as a yellow oil (43 mg, 39% yield).

10a

¹H NMR (400 MHz, CDCl₃) δ 8.08 – 8.03 (m, 2H), 7.90 – 7.86 (m, 1H), 7.78 – 7.76 (m, 2H), 7.60 – 7.52 (m, 4H), 2.97 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 168.6, 163.8, 151.3, 137.2, 133.7, 129.9, 129.8, 128.6, 128.0, 127.0, 126.7, 121.0, 26.6 ppm.

Characterization data matches the literature report¹⁹.

2,4-diphenylquinazoline (compound **10b**) Prepared by procedure **C** from (2-aminophenyl)(phenyl)methanol, tropylium tetrafluoroborate and benzonitrile as nitrile group source to give compound **10b** as a white solid (46 mg, 33% yield).

10b

¹H NMR (400 MHz, CDCl₃) δ 8.76 – 8.73 (m, 2H), 8.24 (d, J = 8.4 Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H), 7.95 – 7.90 (m, 3H), 7.65 – 7.53 (m, 7H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 168.5, 160.1, 151.6, 137.9, 137.6, 133.7, 130.6, 130.2, 130.0, 128.9, 128.8, 128.5, 127.1, 127.0, 121.7 ppm.

Characterization data matches the literature report¹⁹.

N-(4-oxo-5-phenylcyclopent-2-enyl)acetamide (compound 13a) Prepared by procedure A from 4-hydroxy-5-phenylcyclopent-2-enone, tropylium tetrafluoroborate and acetonitrile as nitrile group source to give compound 13a as a brown oil (170 mg, 79% yield).

138

¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.67 (m, 2H), 7.59 (d, J = 2.8 Hz, 1H), 7.40 – 7.36 (m, 3H), 6.19 (d, J = 8.0 Hz, 1H), 5.27 – 5.22 (m, 1H), 3.02 (dd, J_I = 18.8 Hz, J_2 = 7.2 Hz, 1H), 2.33 (dd, J_I = 18.8 Hz, J_2 = 2.8 Hz, 1H), 2.03 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 204.4, 170.1, 155.4, 144.2, 130.3, 129.2, 128.5, 127.3, 47.1, 43.5, 23.1 ppm;

ESI-HRMS: calcd for $C_{13}H_{13}NO_2Na^+$: m/z = 238.0838, found: m/z = 238.0838;

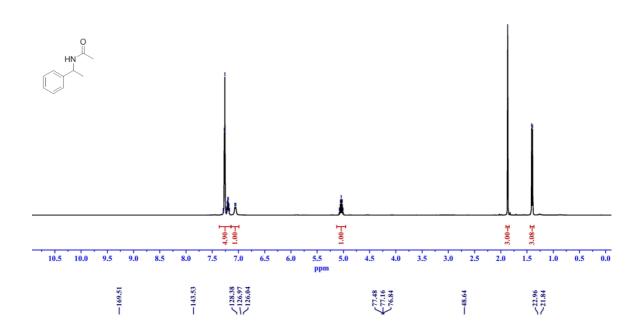
FTIR (neat): 3350, 3284, 3042, 2926, 2852, 1655, 1530, 1494, 1262 cm⁻¹.

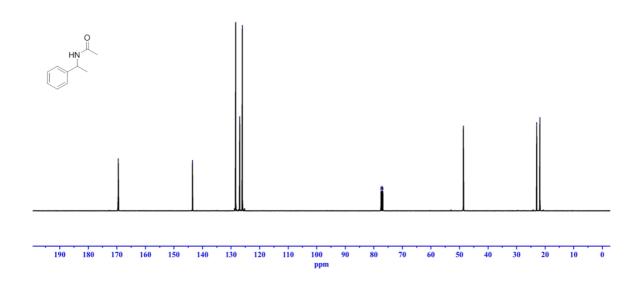
N-(4-oxo-5-phenylcyclopent-2-enyl)benzamide (compound 13b) Prepared by procedure A from 4-hydroxy-5-phenylcyclopent-2-enone, tropylium tetrafluoroborate and benzonitrile as nitrile group source to give compound 13b as a brown oil (224 mg, 81% yield).

13h

¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.80 (m, 2H), 7.74 – 7.70 (m, 3H), 7.57 – 7.52 (m, 1H), 7.48 – 7.42 (m, 2H), 7.41 – 7.36 (m, 3H), 6.57 (d, J = 8.0 Hz, 1H), 5.51 – 5.47 (m, 1H), 3.14 (dd, J_I = 18.8 Hz, J_Z = 6.8 Hz, 1H), 2.47 (dd, J_I = 18.8 Hz, J_Z = 2.4 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 204.2, 167.4, 155.1, 144.5, 133.6, 131.9, 130.3, 129.2, 128.7, 128.6, 127.4, 127.0, 47.5, 43.7 ppm;

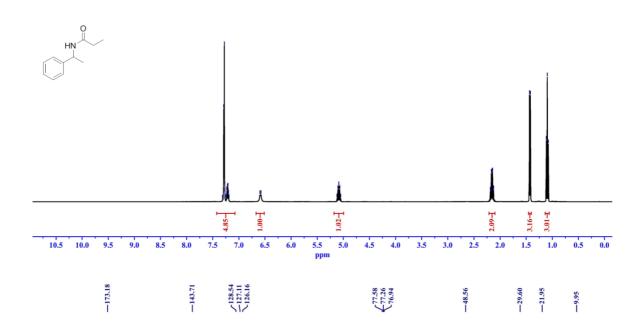

ESI-HRMS: calcd for $C_{18}H_{15}NO_2Na^+$: m/z = 300.0995, found: m/z = 300.0993;

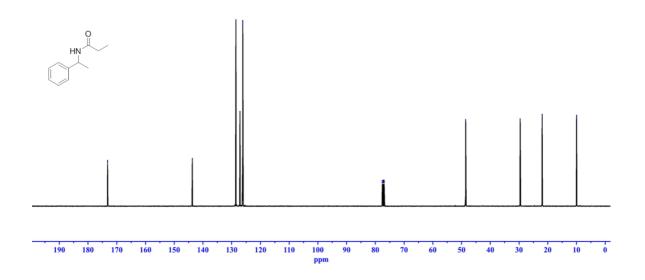

FTIR (neat): 3311, 3257, 3062, 2928, 2858, 1638, 1524, 1302, 1270 cm⁻¹.

NMR Spectra

N-(1-phenylethyl)acetamide (4a); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃).

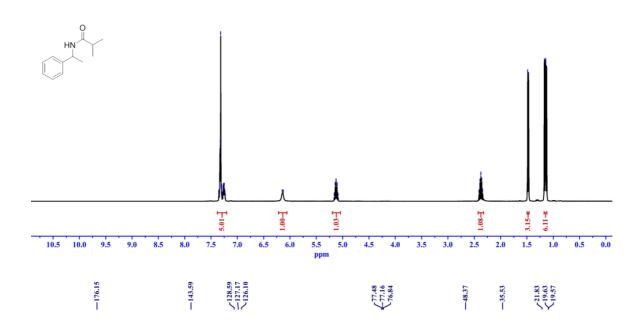
N-(1-phenylethyl)acetamide-2,2,2- d_3 (4aD); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃).

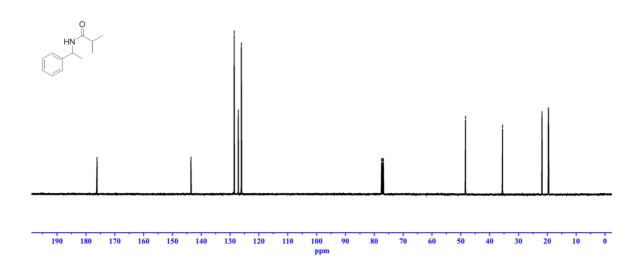



100 ppm

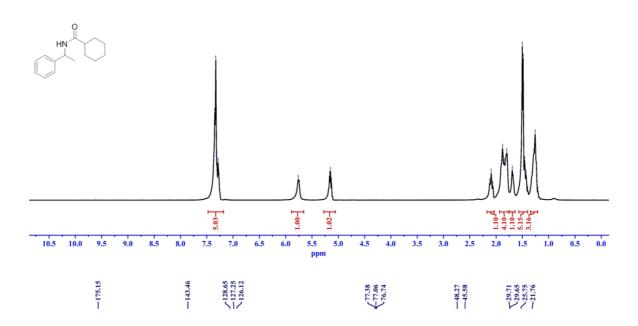
140

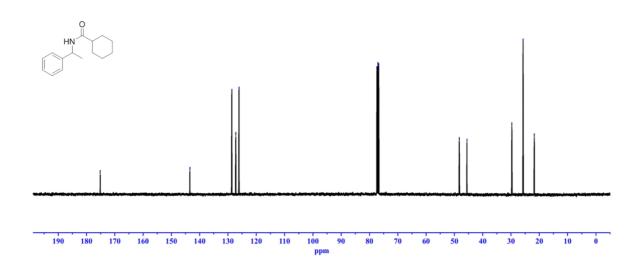
N-(1-phenylethyl)propionamide (4b); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃).

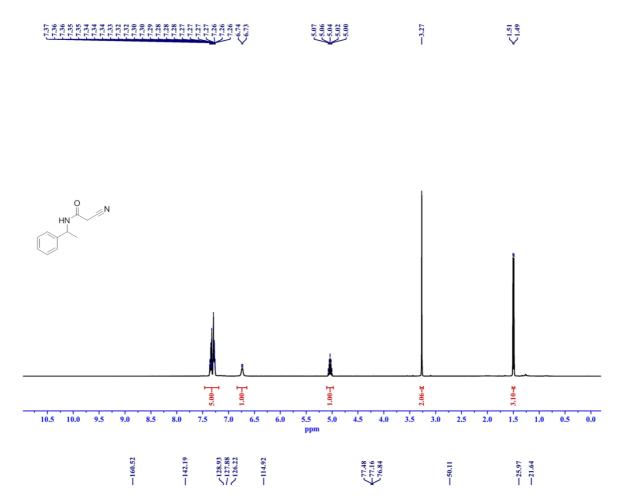


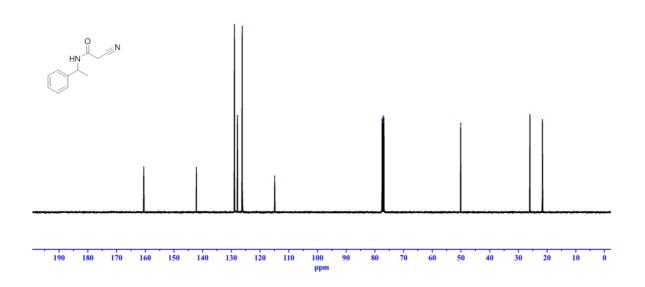


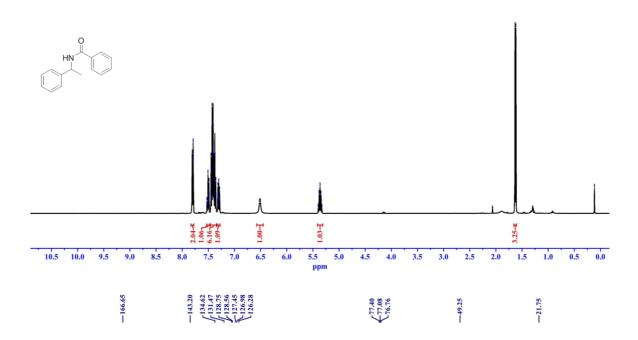
N-(1-phenylethyl)isobutyramide (4c); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃).

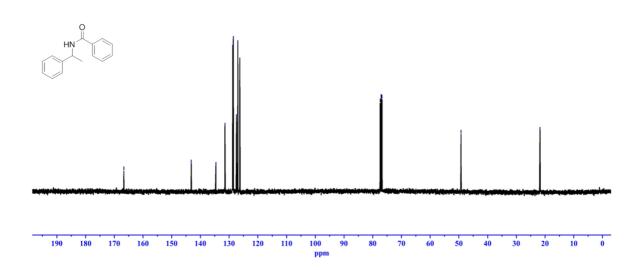




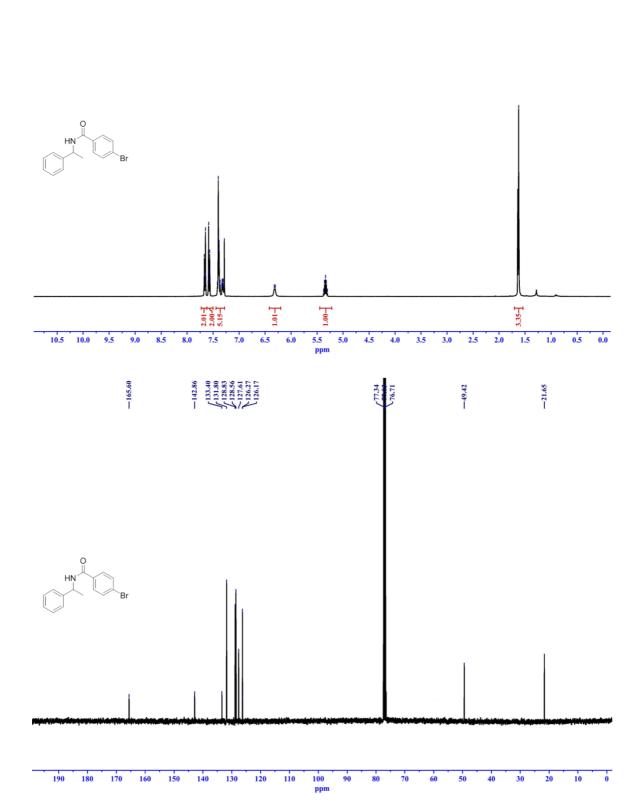

N-(1-phenylethyl)cyclohexanecarboxamide (4d); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃).

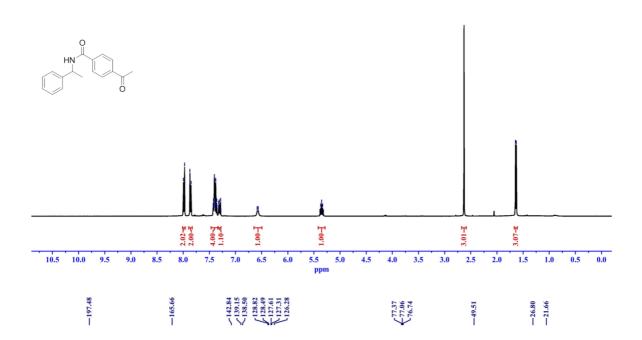


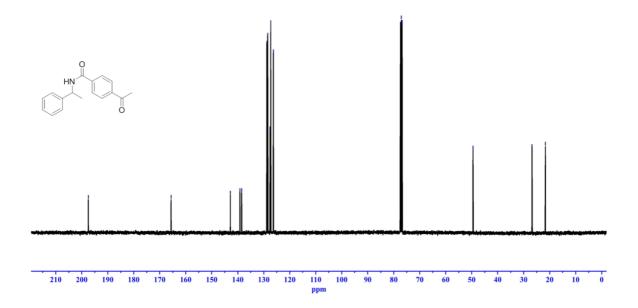

2-cyano-N-(1-phenylethyl)acetamide (4e); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃).



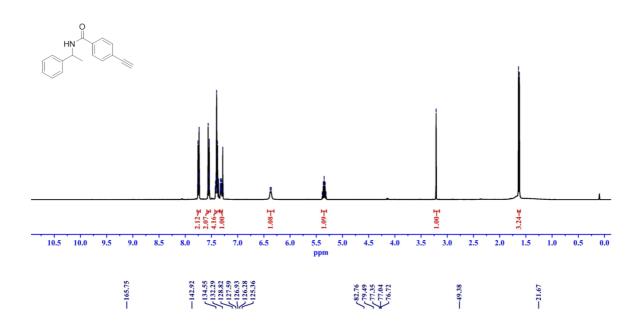
N-(1-phenylethyl)benzamide (4f); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃).

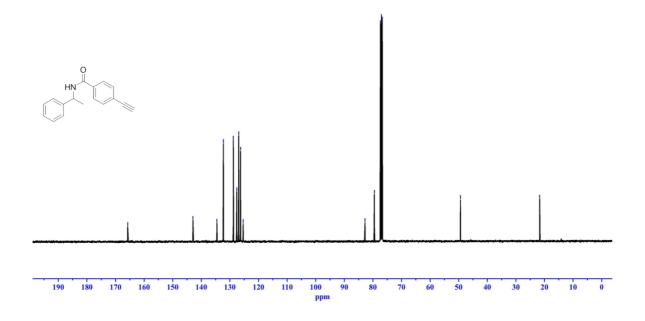



4-bromo-N-(1-phenylethyl)benzamide (4h); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃).

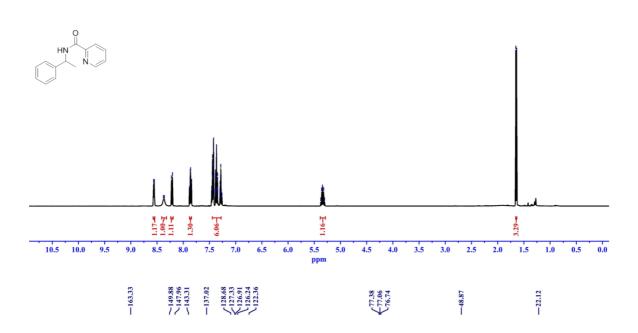


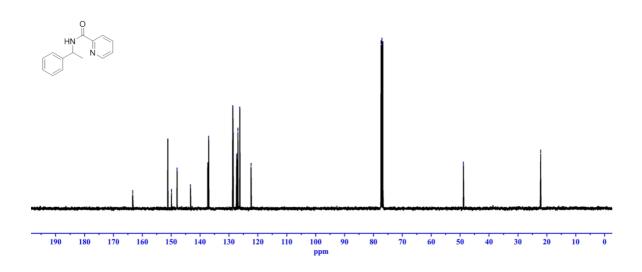
4-acetyl-N-(1-phenylethyl)benzamide (4i); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃).

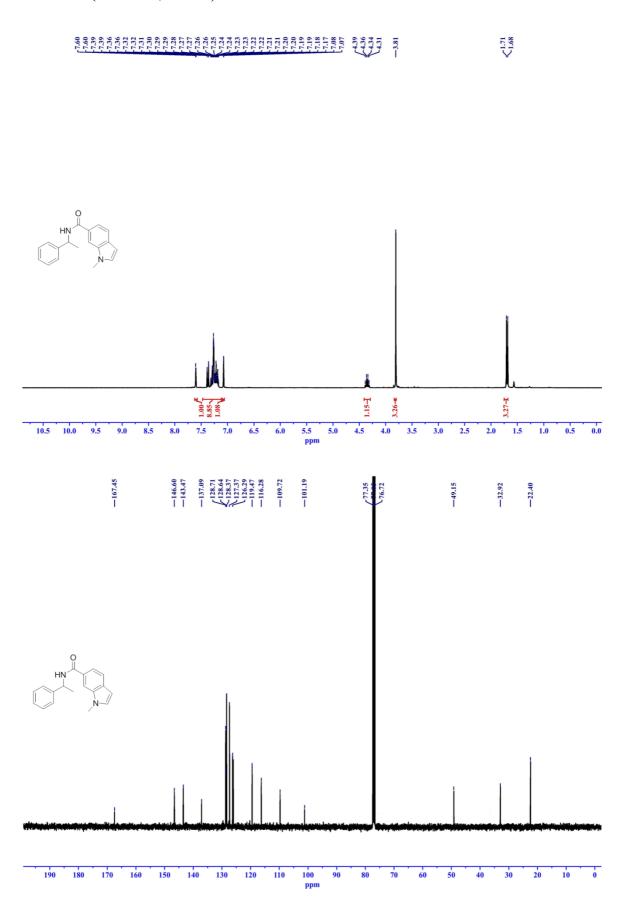




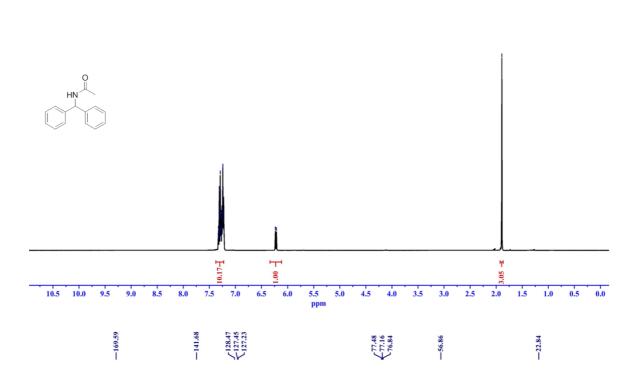
4-ethynyl-N-(1-phenylethyl)benzamide (4j); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃).

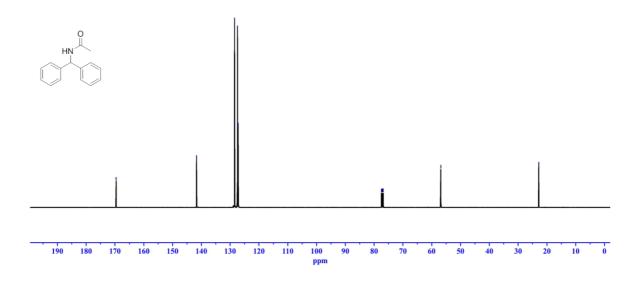




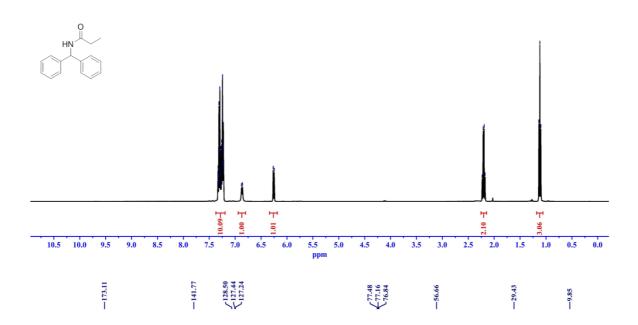

N-(1-phenylethyl)picolinamide (4k); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃).

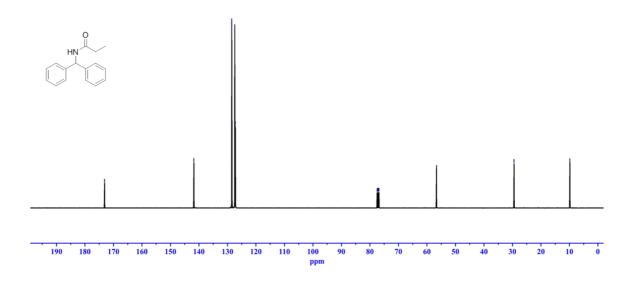
8.8.5 8.8.3 8.8.3 8.8.3 8.8.3 8.8.3 1.3.8 1.4.4 1.

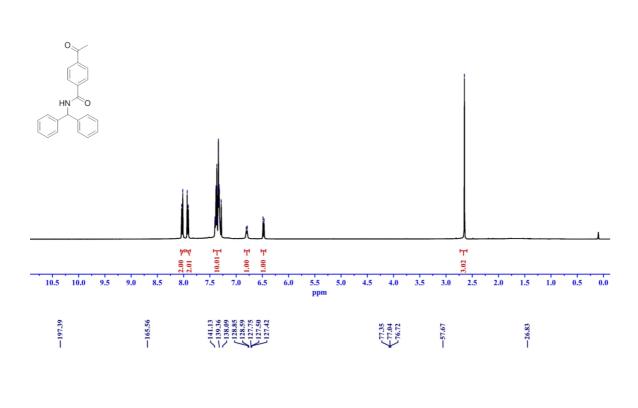


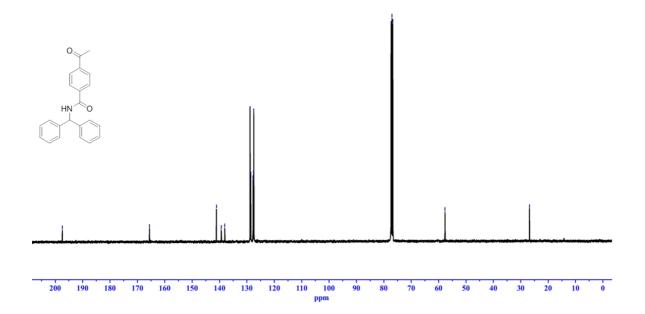

1-methyl-*N*-(1-phenylethyl)-1*H*-indole-6-carboxamide (4l); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃).

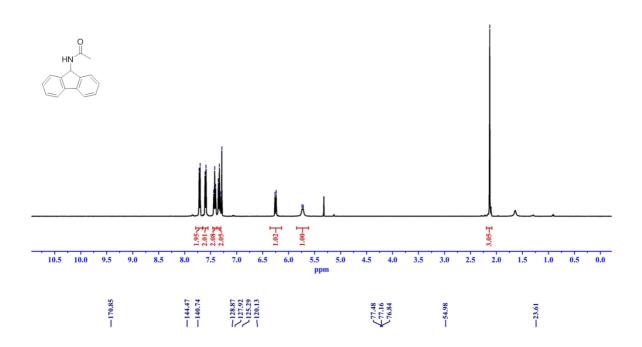
-1.89

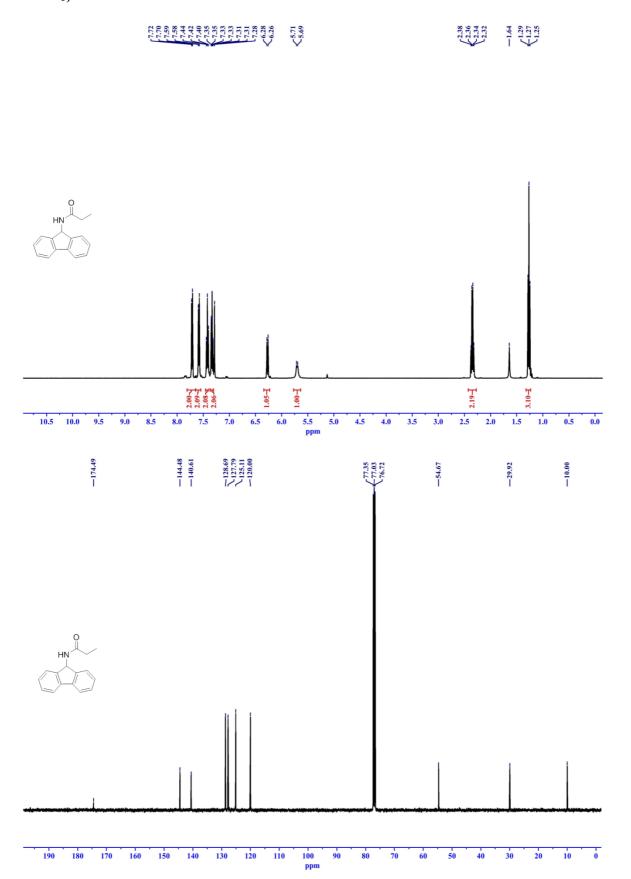


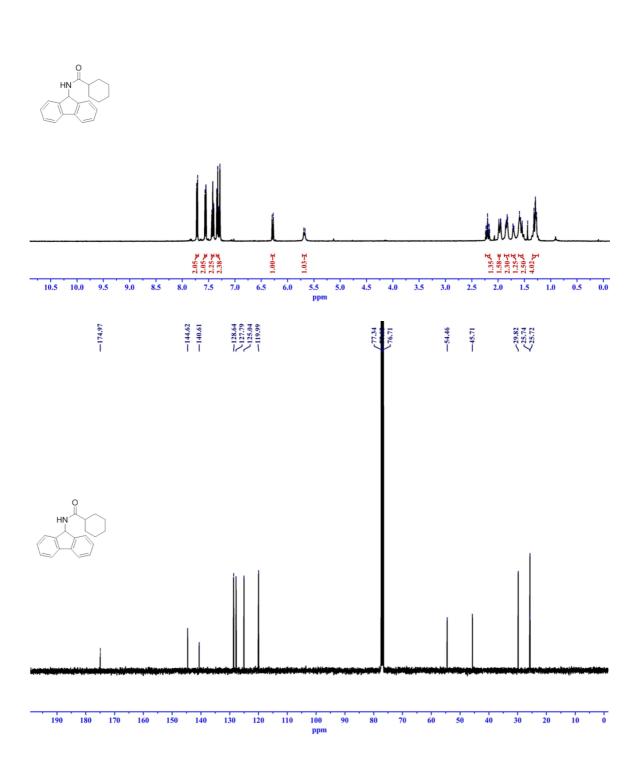



N-benzhydrylpropionamide (4n); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃).

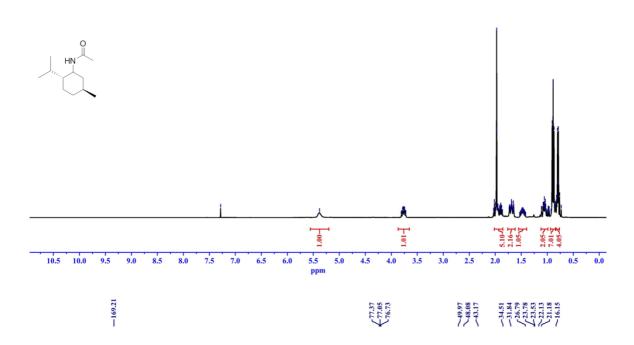


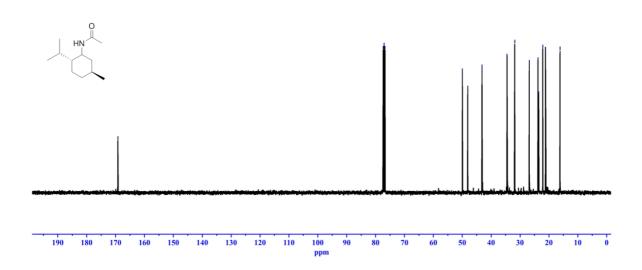


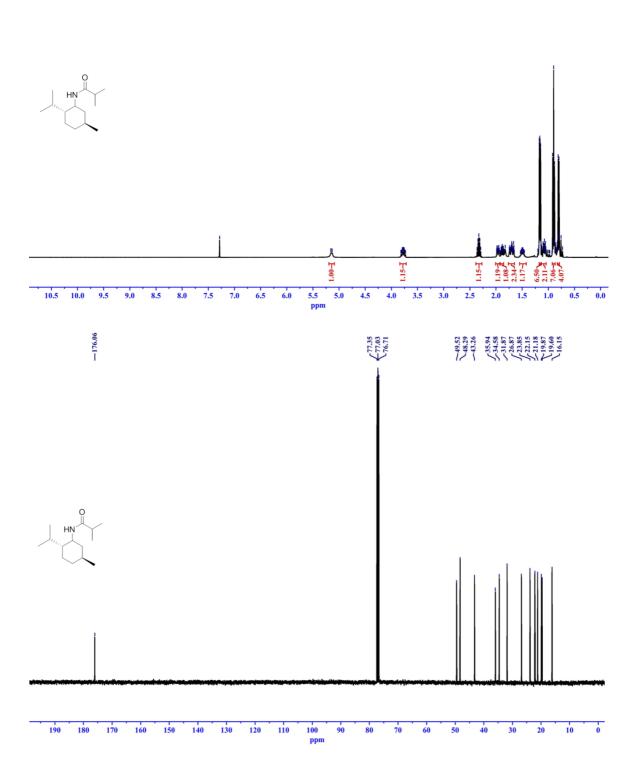

N-(9H-fluoren-9-yl)acetamide (4p); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃).


N-(9*H*-fluoren-9-yl)propionamide (4q); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃).

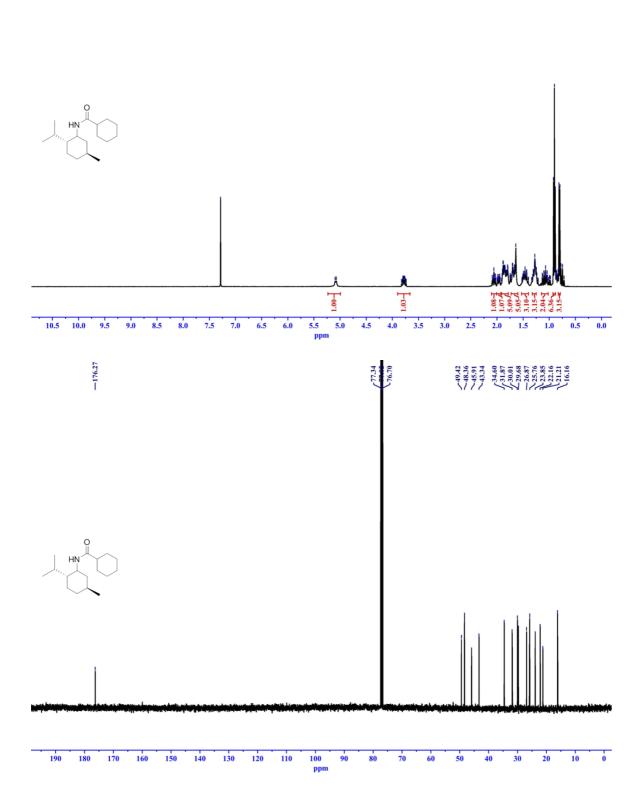
N-(9*H*-fluoren-9-yl)isobutyramide (4**r**); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃).

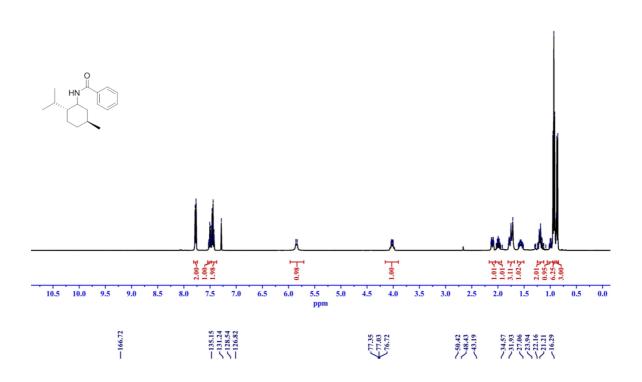


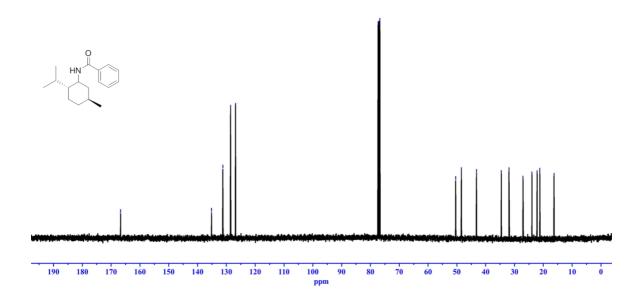

\$2.50 \$2.50


N-((2*R*,5*S*)-2-isopropyl-5-methylcyclohexyl)acetamide (4t); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃).

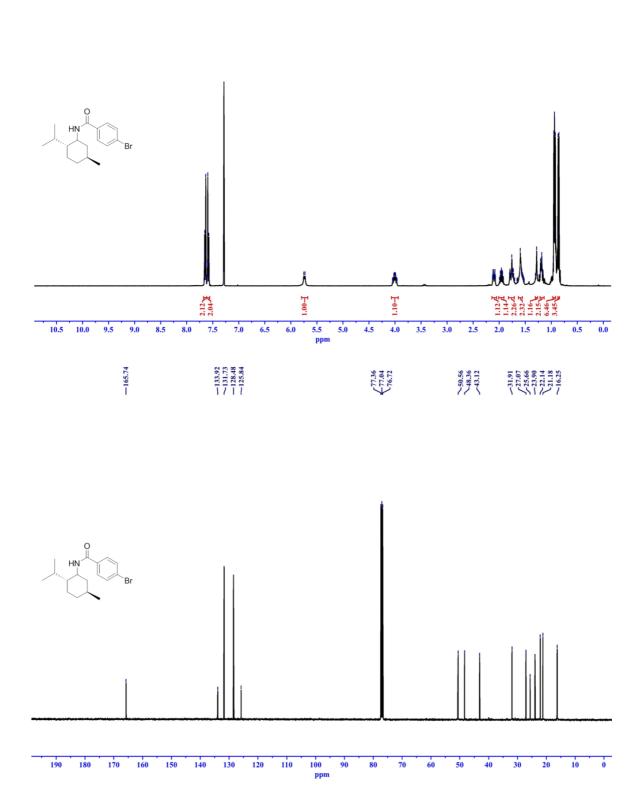
7.7.28 5.5.38



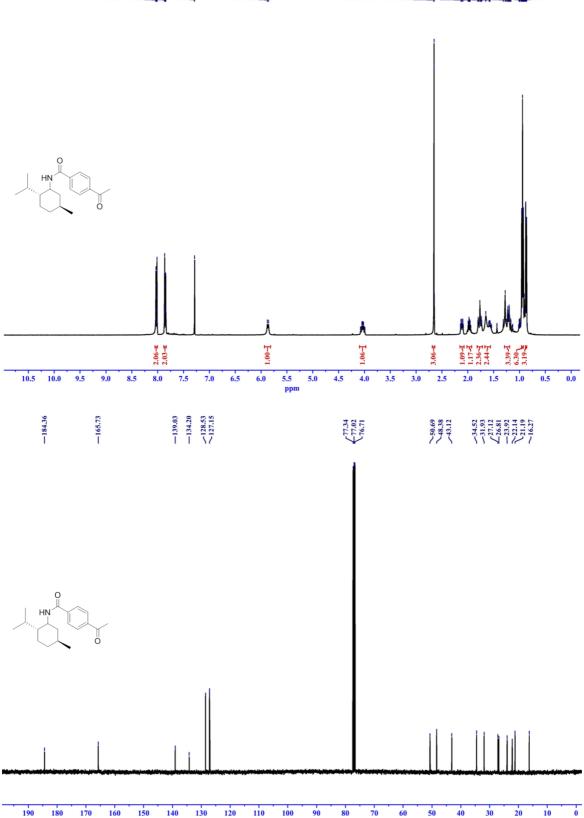


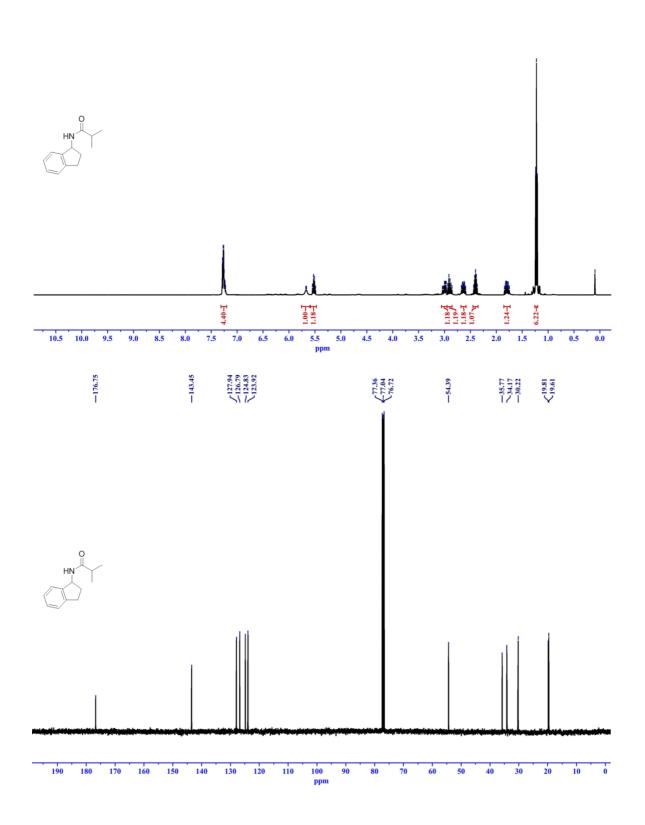


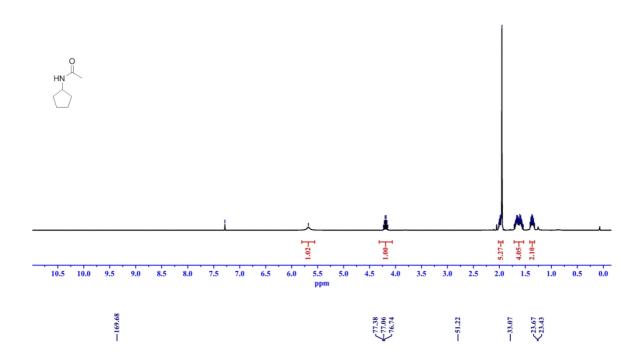
7.28 2.06

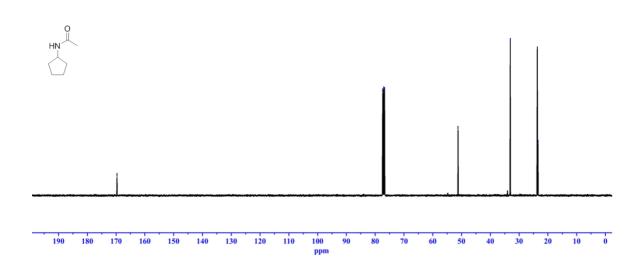


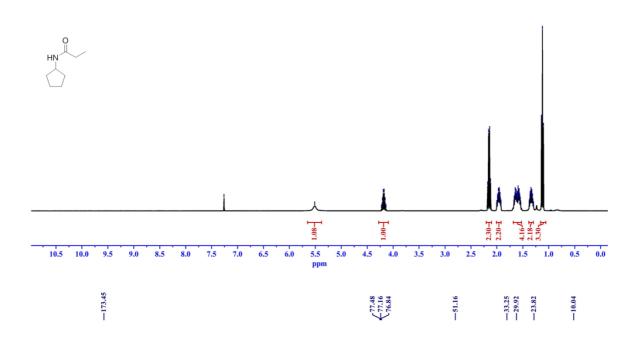
7.73 7.73 7.73 7.74 7.75

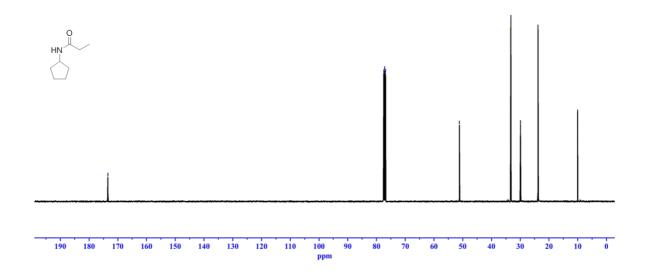


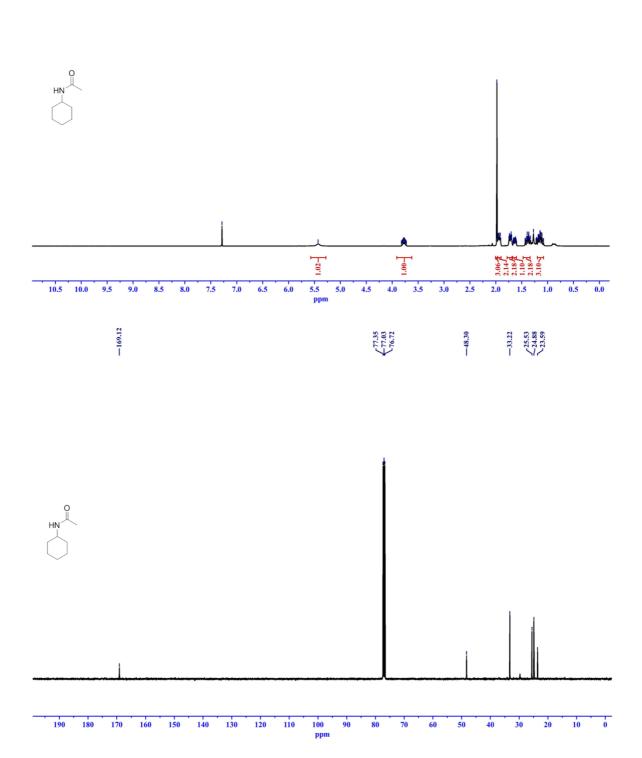




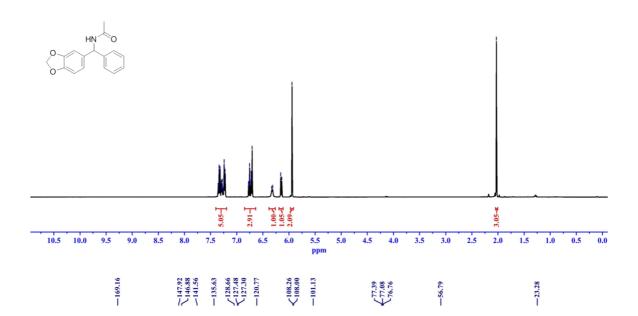


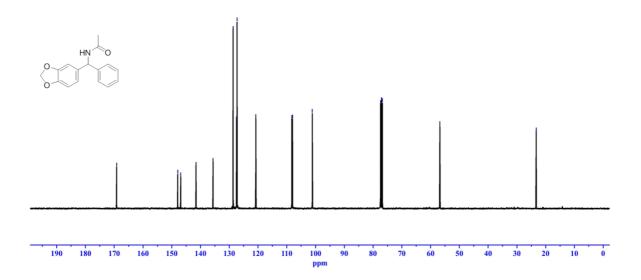



7.7.28

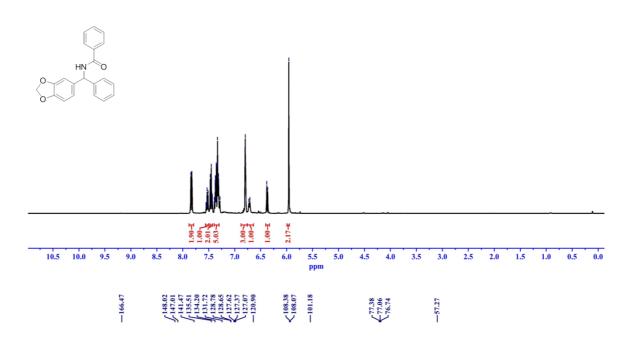


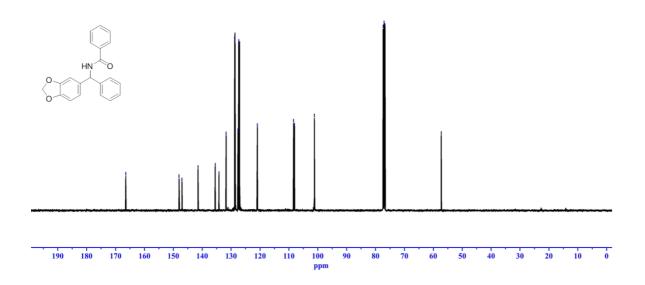
4.5.12 4.5.13

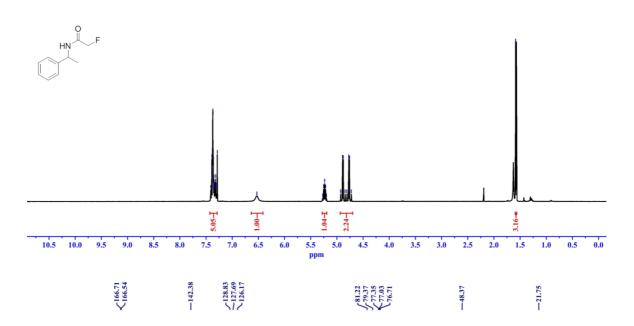


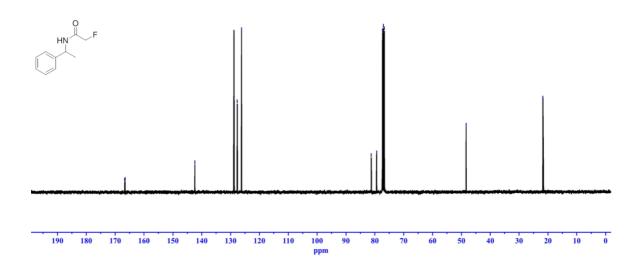


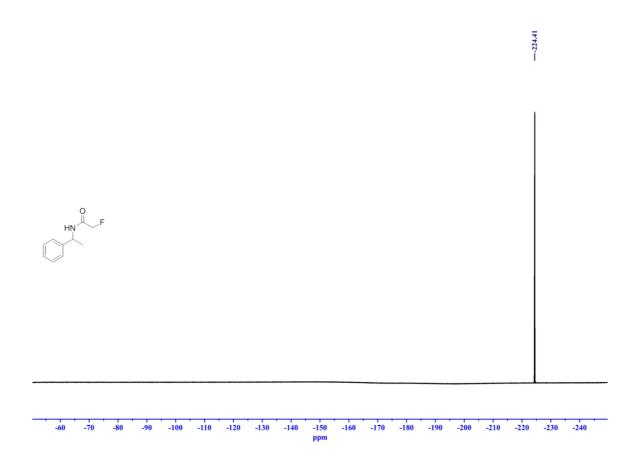
2.7.2.8 2.7



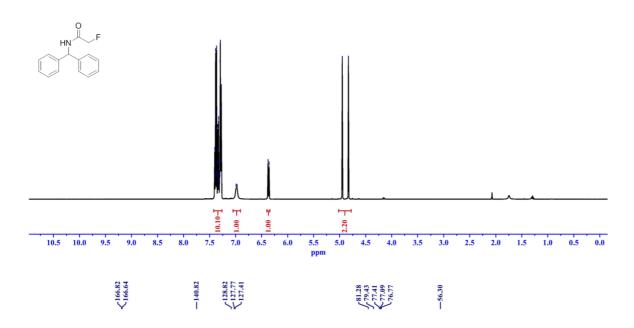


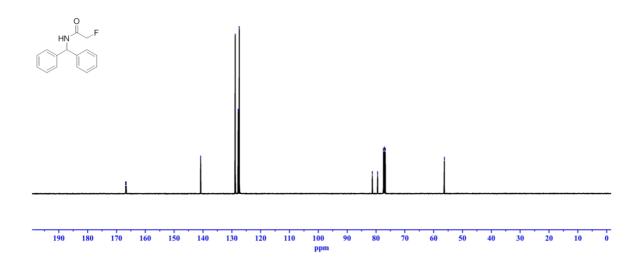


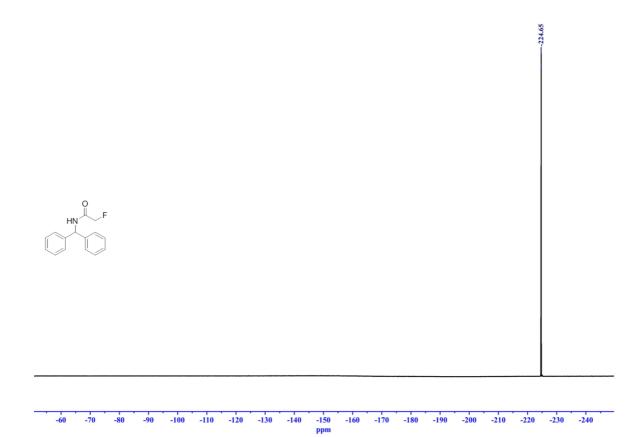




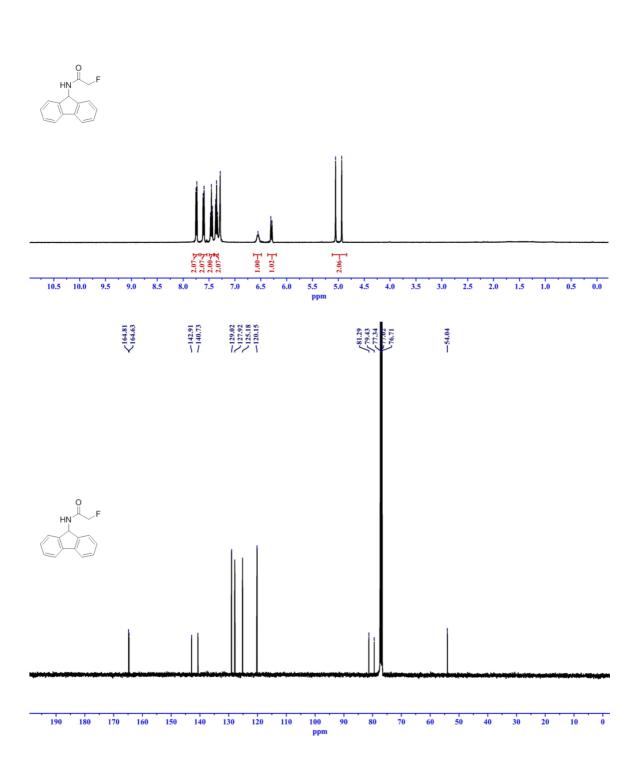
2-fluoro-*N*-(1-phenylethyl)acetamide (6a); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃).

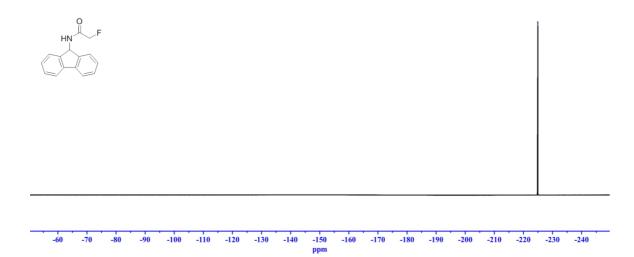




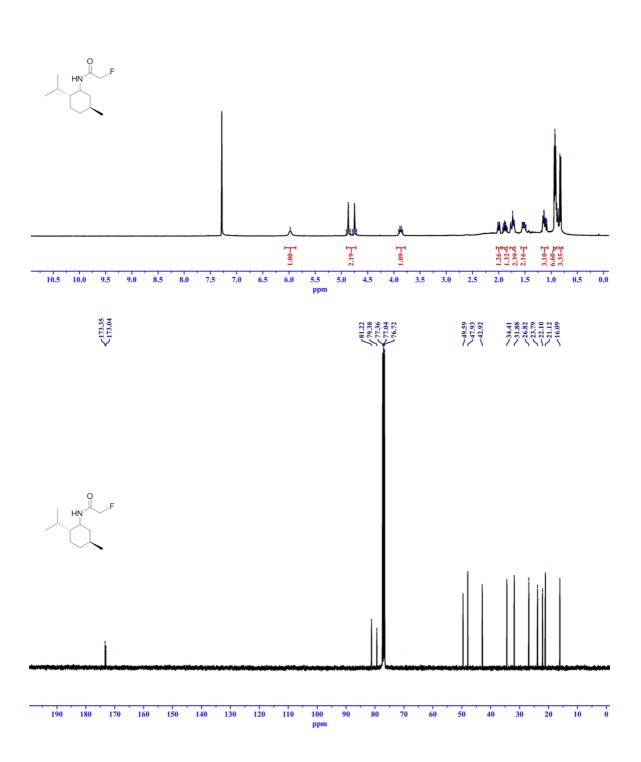


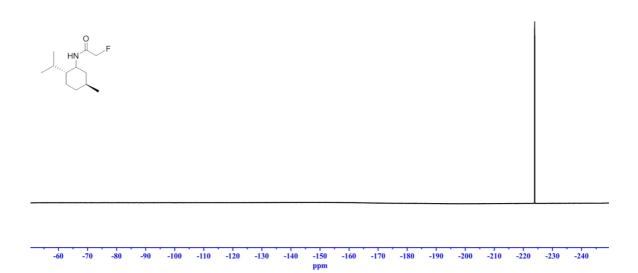
N-benzhydryl-2-fluoroacetamide (6b); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃).

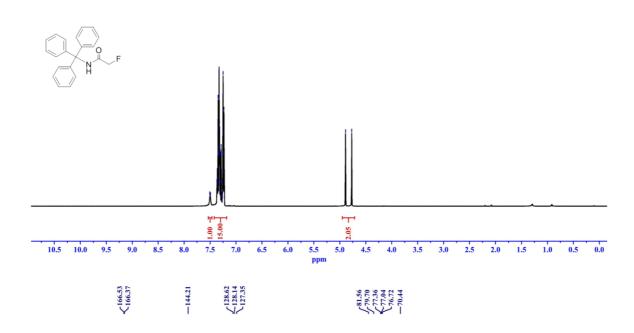


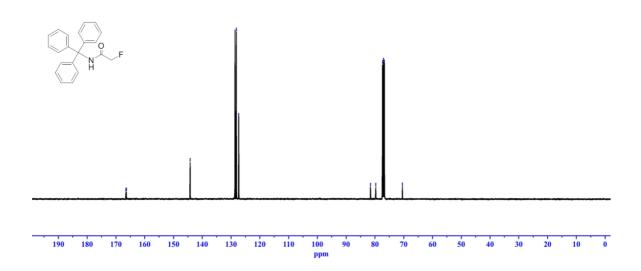


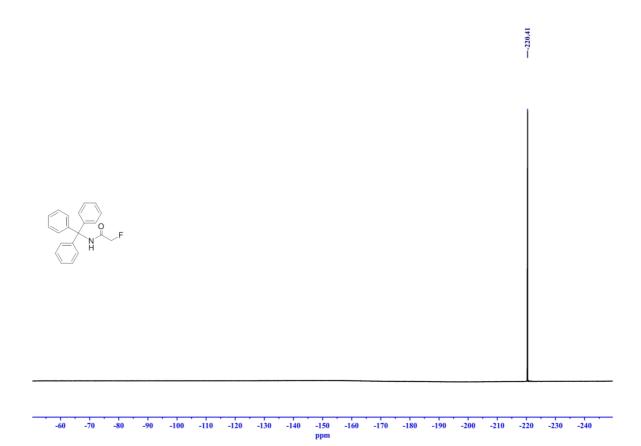
N-(9H-fluoren-9-yl)-2-fluoroacetamide (6c); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃).

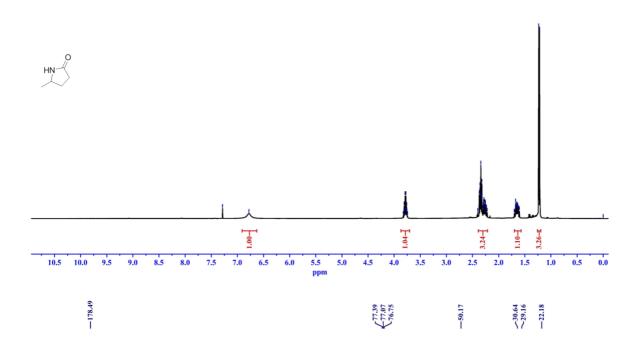


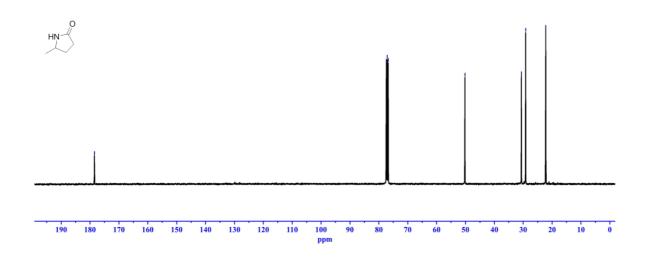


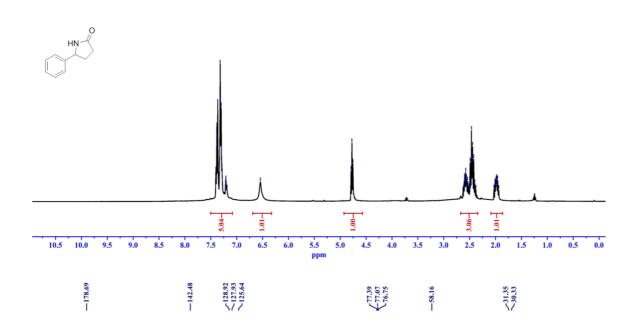


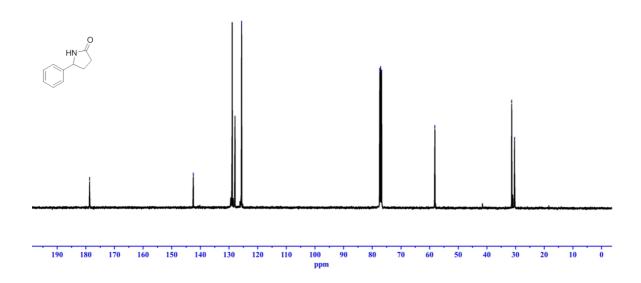


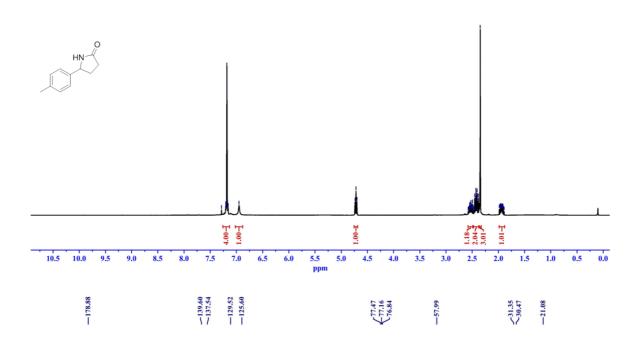


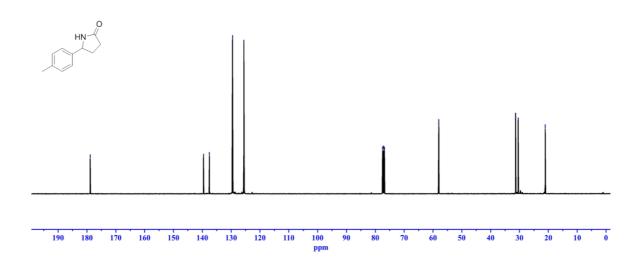


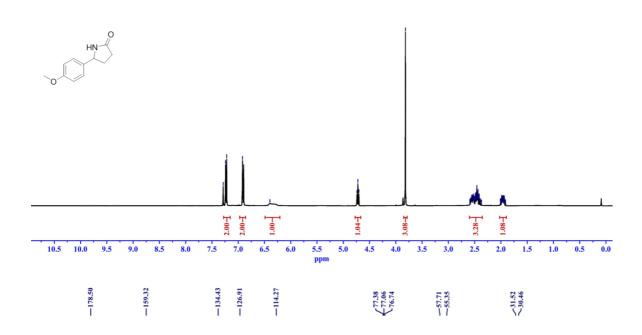

2-fluoro-*N*-tritylacetamide (6e); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃), ¹⁹F NMR (376 MHz, CDCl₃).

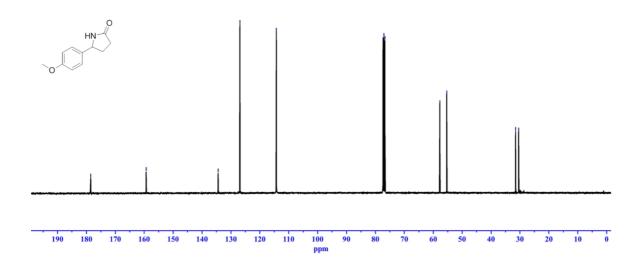




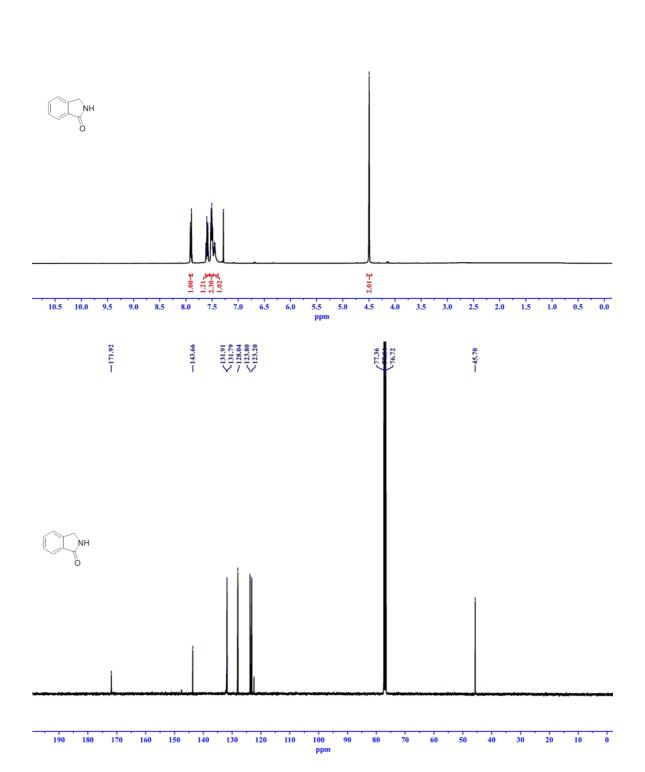


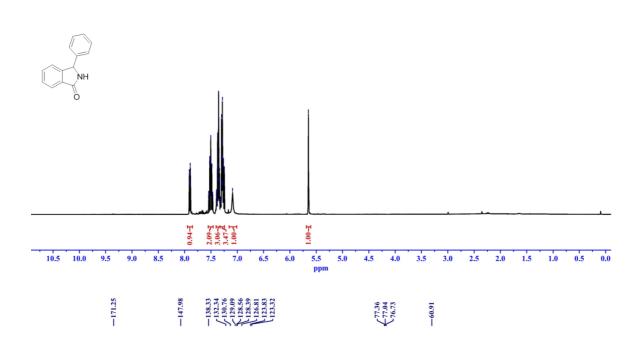


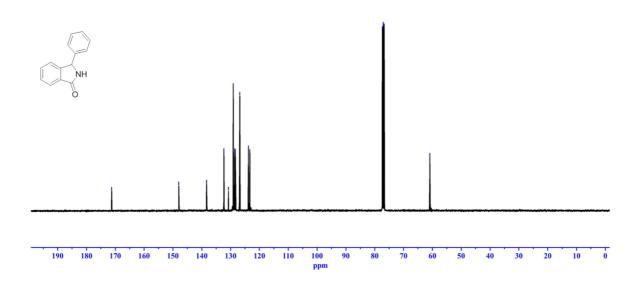


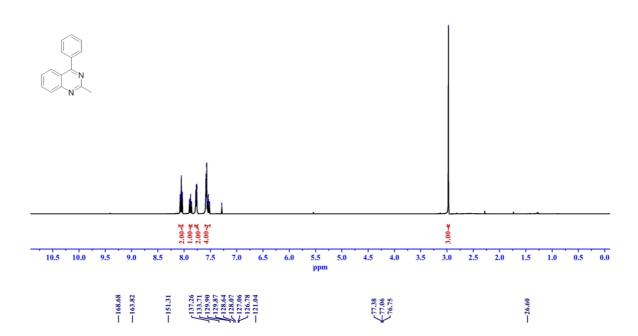


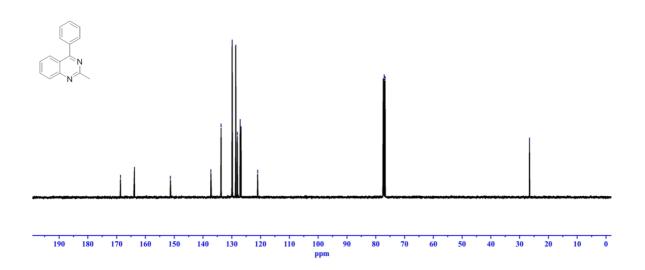
5-p-tolylpyrrolidin-2-one (8c); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃).

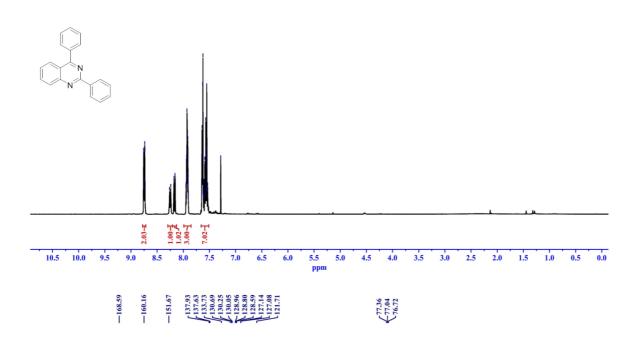


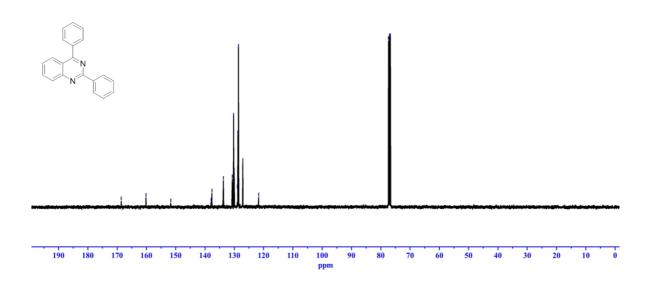


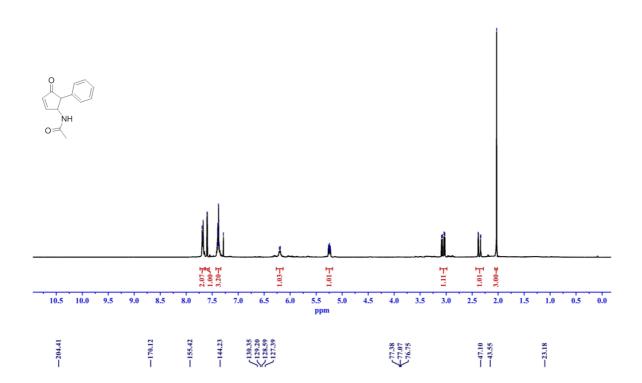


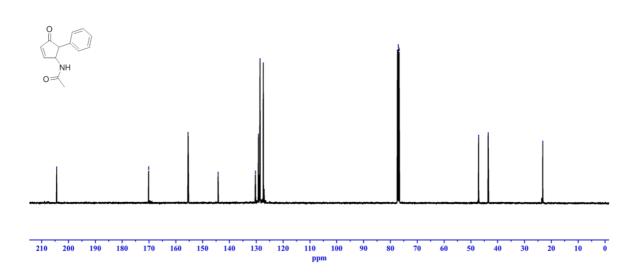

3-phenylisoindolin-1-one (8f); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃).

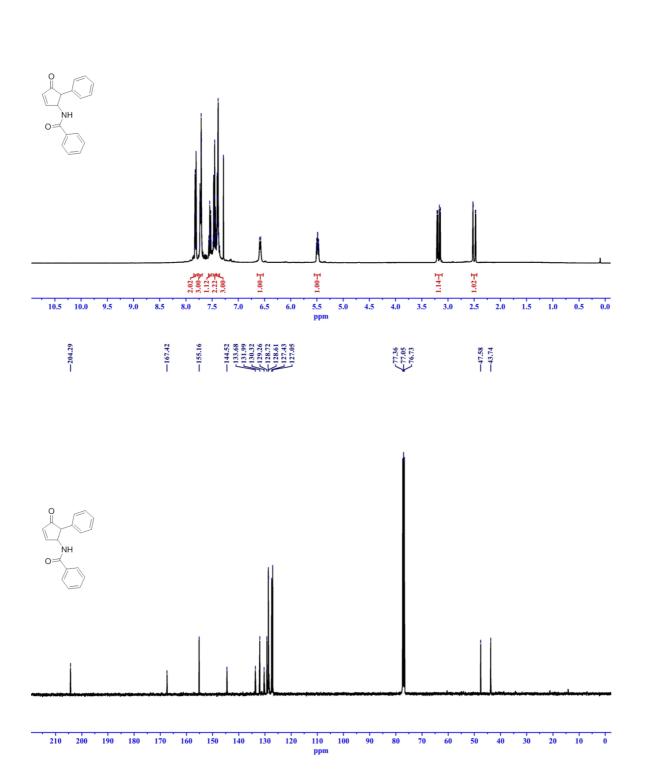



2-methyl-4-phenylquinazoline (10a); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃).




2,4-diphenylquinazoline (10b); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃).





N-(4-oxo-5-phenylcyclopent-2-enyl)acetamide (13a); ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃).

References

- 1. Ibrahim, N.; Hashmi, A. S. K.; Rominger, F., Gold Catalysis: Alkyl Migration in the Addition of Alcohols to Nitriles. *Advanced Synthesis & Catalysis* **2011**, *353* (2-3), 461-468.
- 2. Chalard, P.; Bertrand, M.; Canet, I.; Théry, V.; Remuson, R.; Jeminet, G., Determination of Absolute Configurations of Amines and Amino Acids Using Nonchiral Derivatizing Agents (NCDA) and Deuterium NMR. *Organic Letters* **2000**, *2* (16), 2431-2434.
- 3. Kainz, Q. M.; Linhardt, R.; Maity, P. K.; Hanson, P. R.; Reiser, O., Ring-Opening Metathesis Polymerization-based Recyclable Magnetic Acylation Reagents. *ChemSusChem* **2013**, *6* (4), 721-729.
- 4. Li, Y.; Zhu, F.; Wang, Z.; Wu, X.-F., Copper-Catalyzed Carbonylative Synthesis of Aliphatic Amides from Alkanes and Primary Amines via C(sp3)–H Bond Activation. *ACS Catalysis* **2016**, *6* (8), 5561-5564.
- 5. Shaik, J. B.; Palaka, B. K.; Penumala, M.; Kotapati, K. V.; Devineni, S. R.; Eadlapalli, S.; Darla, M. M.; Ampasala, D. R.; Vadde, R.; Amooru, G. D., Synthesis, pharmacological assessment, molecular modeling and in silico studies of fused tricyclic coumarin derivatives as a new family of multifunctional anti-Alzheimer agents. *European Journal of Medicinal Chemistry* **2016**, *107*, 219-232.
- 6. Katkar, K. V.; Chaudhari, P. S.; Akamanchi, K. G., Sulfated tungstate: an efficient catalyst for the Ritter reaction. *Green Chemistry* **2011**, *13* (4), 835-838.
- 7. Priego, J.; Flores, P.; Ortiz-Nava, C.; Escalante, J., Synthesis of enantiopure cis- and trans-2-aminocyclohexane-1-carboxylic acids from octahydroquinazolin-4-ones. *Tetrahedron: Asymmetry* **2004**, *15* (22), 3545-3549.
- 8. Green, R. A.; Pletcher, D.; Leach, S. G.; Brown, R. C. D., N-Heterocyclic Carbene-Mediated Microfluidic Oxidative Electrosynthesis of Amides from Aldehydes. *Organic Letters* **2016**, *18* (5), 1198-1201.
- 9. Bal Reddy, C.; Ram, S.; Kumar, A.; Bharti, R.; Das, P., Supported Palladium Nanoparticles that Catalyze Aminocarbonylation of Aryl Halides with Amines using Oxalic Acid as a Sustainable CO Source. *Chemistry A European Journal* **2019**, *25* (16), 4067-4071.
- 10. Chen, J.; Cai, S.; Wang, R.; Wang, S.; Zhang, J.; Wan, X., Polymerization-Induced Self-Assembly of Conjugated Block Copoly(phenylacetylene)s. *Macromolecules* **2020**, *53* (5), 1638-1644.
- 11. Maguire, A. C.; Kumar, V.; Connon, S. J., Highly chemoselective, sterically sensitive NHC-catalysed amine acylation with pyridil. *Chemical Communications* **2019**, *55* (90), 13526-13529.
- 12. Barbero, M.; Bazzi, S.; Cadamuro, S.; Dughera, S., o-Benzenedisulfonimide as a Reusable Brønsted Acid Catalyst for Ritter-Type Reactions. *European Journal of Organic Chemistry* **2009**, *2009* (3), 430-436.
- 13. Ueno, M.; Kusaka, R.; Ohmura, S. D.; Miyoshi, N., Environmentally Benign Ritter Reaction Using Bismuth Salts as a Catalyst. *European Journal of Organic Chemistry* **2019**, 2019 (8), 1796-1800.
- 14. Al-huniti, M. H.; Lepore, S. D., Stereoretentive Copper(II)-Catalyzed Ritter Reactions of Secondary Cycloalkanols. *Advanced Synthesis & Catalysis* **2013**, *355* (14-15), 3071-3076.
- 15. Pelagalli, R.; Chiarotto, I.; Feroci, M.; Vecchio, S., Isopropenyl acetate, a remarkable, cheap and acylating agent of amines under solvent- and catalyst-free conditions: a systematic investigation. *Green Chemistry* **2012**, *14* (8), 2251-2255.
- 16. Mourelle-Insua, Á.; Zampieri, L. A.; Lavandera, I.; Gotor-Fernández, V., Conversion of γ and δ-Keto Esters into Optically Active Lactams. Transaminases in Cascade Processes. *Advanced Synthesis & Catalysis* **2018**, *360* (4), 686-695.

- 17. Liu, C.; Zhang, Q.; Li, H.; Guo, S.; Xiao, B.; Deng, W.; Liu, L.; He, W., Cu/Fe Catalyzed Intermolecular Oxidative Amination of Benzylic C–H Bonds. *Chemistry A European Journal* **2016**, *22* (18), 6208-6212.
- 18. Liu, J.; Ye, W.; Wang, S.; Zheng, J.; Tang, W.; Li, X., Synthesis of Lactams via Ir-Catalyzed C-H Amidation Involving Ir-Nitrene Intermediates. *The Journal of organic chemistry* **2020**, *85* (6), 4430-4440.
- 19. Saikia, U. P.; Borah, G.; Pahari, P., Lewis-Acid-Catalysed Activation of Nitriles: A Microwave-Assisted Solvent-Free Synthesis of 2,4-Disubstituted Quinazolines and 1,3-Diazaspiro[5.5]undec-1-enes. *European Journal of Organic Chemistry* **2018**, *2018* (10), 1211-1217.
- 20. An, J.; Wang, Y.; Zhang, Z.; Zhao, Z.; Zhang, J.; Wang, F., The Synthesis of Quinazolinones from Olefins, CO, and Amines over a Heterogeneous Ru-clusters/Ceria Catalyst. *Angewandte Chemie International Edition* **2018**, *57* (38), 12308-12312.