Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Supplementary data

Stereoselective synthesis of highly functionalized (Z)-chloroalkene dipeptide isosteres containing an α,α-disubstituted amino acid

Yuki Kodama, ‡^a Saki Imai, ‡^b Junko Fujimoto, ^c Kohei Sato, ^{abc} Nobuyuki Mase ^{abcd} and Tetsuo Narumi *^{abce}

^a Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan

^b Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School

of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561,

Japan

^cDepartment of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University,

Shizuoka, 432-8561, Japan.

^d Green Energy Research Division, Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan

^e Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan ‡ These authors contributed equally to this work

E-mail: <u>narumi.tetsuo@shizuoka.ac.jp</u>

Table of contents

I.	General information	S2
II.	Experimental procedures of imines S2	S3
III.	Experimental procedures of 2-chloroaziridines 2, 4a-d and β -amino ester 3	S4
IV.	Experimental procedures of enoates 5, 7, 9, 11	S8
V.	Experimantal procedure of aaAA-containing CADIs 6a-6f, 8, 10, 12	S10
VI.	Experimantal procedure of aaAA-containing CADIs 13, 14 N/C terminal condensations	S16
VII.	Experimantal procedure of Ac5c-Leu-type CADI dicyclohexylammonium salt S7	S18
VIII	L Chiral HPLC analysis of compounds 4d, 5, 7, 9	S19
IX.	X-ray crystallographic data	S23
Х.	Natural bond orbital (NBO) analysis data	S29
XI.	Energy diagram of aza-Darzens condensation	S31
XII.	¹ H NMR and ¹³ C NMR charts	S41
XIII	l. References	S64

I. General information

General Methods. All reactions utilizing air- or moisture-sensitive reagents were performed in dried glassware under a nitrogen atmosphere, using commercially supplied solvents and reagents unless otherwise noted. Thin-layer chromatography (TLC) was performed on Merck 60F254 precoated silica gel plates which were visualized by fluorescence quenching under UV light and by staining with phosphomolybdic acid, p-anisaldehyde, or ninhydrin. Flash column chromatography was carried out using silica gel 60 N (Kanto Chemical Co., Inc.).

Characterization data. 1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were recorded using a Bruker Biospin AVANCE III HD. Chemical shifts are reported in δ (ppm) relative to Me4Si (in CDCl₃) as internal standard. Infrared (IR) spectra were recorded on a JASCO FT/IR 6300, and are reported as wavenumber (cm– 1). Low- and high-resolution mass spectra were recorded on a Bruker Daltonics compact (ESI-MS) spectrometers in the positive and negative detection mode. Optical rotations were measured on a JASCO DIP-370 polarimeter operating at the sodium D line with a 100 mm path length cell, and were reported as follows: [α]D (concentration (g/100 mL), solvent).

HPLC conditions

Analytical high performance liquid chromatography (HPLC) was performed on a JASCO PU-2089 Plus (JASCO corporation, Ltd., Tokyo, Japan) equipped with a JASCO UV-2075 Plus (JASCO corporation, Ltd., Tokyo, Japan) variable wavelength UV detector using a CHIRALPAK IC (0.46 cm X 25 cm) or YMC CHIRAL Amylose-SC (0.46 cm X 25 cm) chiral column.

II. Experimental procedures of imines S2

(S,*E*)-2-methyl-N-(1-(3-(trifluoromethyl)phenyl)propan-2-ylidene)propane-2-sulfinamide (S2): To a solution of *tert*-butylsulfinamide S1 (812.0 mg, 6.70 mmol) in CHCl₃ (27.0 mL) were added 3-(Trifluoromethyl)phenylacetone (1.66 mL, 10.0 mmol) and Ti(OEt)₄ (4.20 mL, 3.00 mmol) under nitrogen, and the mixture was stirred at room temperature for 51 h. After cooling to 0 °C, the reaction was quenched with crashed ice while rapidly stirring. Then resulting suspension was filtered through a plug of celite, and the filter cake was washed with EtOAc. The filtrate was transferred to separatory funnel where the organic layer was washed with brine and dried over MgSO₄. Concentration under reduced pressure followed by flash chromatography over silica gel with *n*-hexane-EtOAc (3:1) gave the title compound **S2** as a white solid (1.68 g, 82%).: IR (ATR) v 1628 (CN), 1075 (NSO) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.14 (s, 9H), 2.36 (s, 3H), 3.76 (d, *J* = 4.9 Hz, 2H), 7.39–7.53 (m 4H); ¹³C NMR (100 MHz, CDCl₃) δ 21.9 (3C), 22.4, 49.3, 56.7, 124.0 (q, *J* = 273 Hz, 1C), 123.7 (q, *J* = 4 Hz, 1C), 126.3 (q, *J* = 4 Hz, 1C), 128.9, 130.7 (q, *J* = 32 Hz, 1C), 132.8, 136.6, 182.0; HRMS (ESI), *m/z* calcd for C₁₄H₁₉F₃NOS [M+H]⁺ 306.1134, found 306.1133

III. Experimental procedures of 2-chloroaziridines 2, 4a-d and β-amino ester 3

Methyl (*Z*)-*N*-(*tert*-buthylsulfonyl)-2-chloro 3-(4-bromophenyl)aziridine 2-carboxylate (2) and Methyl N-(tert-buthylsulfonyl)-3-(4-bromophenyl)-2,2-dichloro 3-aminobutanoate (3): To a solution of methyl dichloroacetate (455.0 μ L, 4.50 mmol) in THF (30.0 mL) was added LiHMDS (3.45 mL, 4.50 mmol) at -78 °C under nitrogen, and the mixture was stirred for 30 min at -78 °C. To the solution was added *N*-sulfinyl imine 1^{S1} in THF (3.00 mL) at -78 °C, and the mixture was stirred for 30 min at -78 °C. The reaction was quenched with anhydrous MeOH and slowly warmed up to room temperature. Concentration under reduced pressure gave *N*-sulfinyl methyl ester as an oily product, which was used immediately in next step without purification. To a solution of *N*-sulfinyl methyl ester in CH₂Cl₂ (15.0 mL) was added *m*CPBA (887.7 mg, 3.60 mmol) and the mixture was stirred for 16 h at room temperature. The reaction mixture was extracted with EtOAc, washed with brine and dried over MgSO₄, filtered and concentrated. To this residue was added a solution of 1,3,5-dimethoxybenzene (200 µL of a stock solution of 100.8 mg in 1200 µL) as an internal standard; the title compounds **2** yield was 45% in 3 steps and **3** yield was 13% in 3 steps; the yields were calculated by ¹H NMR analysis.

2-chloroaziridine 2: Prepared by the above procedure and isolated as a white solid (28.3 mg, 5% in 2 steps). IR (ATR) v1753 (CO), 1335 (SO₂), 1130 (SO₂) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.51 (s, 9H), 3.93 (s, 3H), 4.88 (s, 1H), 7.29 (d, *J* = 8.3 Hz, 2H), 7.55 (d, *J* = 8.3 Hz, 2H).; ¹³C NMR (100 MHz, CDCl₃) δ 23.8 (3C), 50.7, 54.6, 61.4, 65.6, 123.7, 129.5, 129.9 (2C), 131.6 (2C), 163.3.; HRMS (ESI), *m/z* Calcd for C₁₄H₁₇BrClNO₄S [M+Na]⁺ 431.9642, found 431.9662.

β-amino ester 3: Prepared by the above procedure and isolated as a white solid (19.3 mg, 3% in 2 steps). IR (ATR) v 3290 (NH), 1763 (CO), 1318 (NSO), 1133 (NSO) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.24 (s, 9H), 3.90 (s, 3H), 5.19 (d, J = 5.2, 1H), 5.30 (d, J = 5.2, 1H), 7.30 (d, J = 8.5, 2H), 7.53 (d, J = 8.5, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 24.0 (3C), 55.0, 60.6, 65.3, 86.3, 123.7, 130.8 (2C), 131.6 (2C), 130.1, 164.9; HRMS (ESI), m/z calcd for C₁₄H₁₉BrCl₂NO₄S [M+H]⁺ 445.9590, found 445.9586.

Methyl (2*R***)-***N***-(***tert***-buthylsulfonyl)-2-chloro-3- azaspiro[2.4] heptane-2-carboxylate (4a): To a solution of methyl dichloracetate (5.50 mL) in THF (275 mL) was added NaHMDS (28.0 mL, 53.1 mmol) at -78 °C under nitrogen, and the mixture was stirred for 30 min at -78 °C. To the solution of enolate was added dropwise a solution of** *N***-sulfinyl imine S3^{S2} (5.53 g, 29.5 mmol) in THF (20.0 mL) at -78 °C, and the mixture was stirred for 30 min at -78 °C. The reaction was quenched with saturated aqueous of NH₄Cl solution. The reaction mixture was extracted with EtOAc, washed with brine and dried over MgSO₄. Concentration under reduced pressure gave** *N***-sulfinyl methyl ester as an oily product, which was used immediately in next step without purification. To a solution of** *N***-sulfinyl methyl ester in CH₂Cl₂ (150 mL) was added** *m***CPBA (11.1 g, 45.0 mmol), and the mixture was stirred for 30 min at room temperature. The reaction mixture was extracted with saturated aqueous solution of Na₂S₂O₃ and saturated aqueous solution of NaHCO₃. The reaction mixture was extracted with brine and dried over MgSO₄. Concentration mixture was extracted with CH₂Cl₂, washed with brine and dried over MgSO₄. Concentration mixture was extracted with CH₂Cl₂, washed with brine and dried over MgSO₄. Concentration under reduced pressure followed by flash chromatography over silica gel with** *n***-hexane-EtOAc (4:1) gave the title compound 4a** (6.48 g, 71% in 2 steps) as an yellow oil.: IR (ATR) v1752 (CO), 1326 (NSO), 1129 (NSO) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.48 (s, 9H), 1.64–2.28 (m, 8H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 2.3.7(3C), 24.7, 25.7, 53.7, 61.3, 65.1, 164.3; HRMS (ESI), *m*/z calcd for C₁₂H₂₀ClNNaO₄S [M+Na]⁺ 332.0694, found 332.0694.

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1) base CHCl ₂ CO ₂ Me THF, -78 °C 2) <i>m</i> -CPBA, CH ₂ Cl ₂	CI N Bus 4a	OMe
-	entry	base	yield (%) ^a	
	1	LiHMDS	27%	
	2	NaHMDS	71%	
	3	KHMDS	n. r. ^b	

Table S1. Reaction optimization of aza-Darzens condensation

a Determined by ¹H-NMR with *tert*-butylanisole as an internal standard b No reaction.

Methyl (2*R***)-***N***-(***tert***-buthylsulfonyl)-2-chloro-5-oxa-1-azaspiro[2.3]hexane-2-carboxylate (4b): To a solution of methyl dichloracetate (311.0 \muL) in THF (20.0 mL) was added NaHMDS (2.54 mL, 3.30 mmol) at -78 °C under nitrogen, and the mixture was stirred for 30 min at -78 °C. To the solution of enolate was added dropwise a solution of** *N***-sulfinyl imine S4**^{S3} (357.6 mg, 2.04 mmol) in THF (4.00 mL) at -78 °C, and the mixture was stirred for 30 min at -78 °C. The reaction was quenched with anhydrous MeOH and slowly warmed up to room temperature. Concentration under reduced pressure gave *N*-sulfinyl methyl ester as an oily product, which was used immediately in next step without purification. To a solution of *N*-sulfinyl methyl ester in CH₂Cl₂ (10.0 mL) was added *m*CPBA (591.8 mg, 2.40 mmol), and the mixture was stirred for 1 h at room temperature. The reaction mixture was extracted aqueous solution of Na₂S₂O₃ and saturated aqueous solution of NaHCO₃. The reaction mixture was extracted with CH₂Cl₂, washed with brine and dried over MgSO₄. Concentration under reduced pressure followed by flash chromatography over silica gel with *n*-hexane-EtOAc (4:1) gave the title compound **4b** (212.3 mg, 37% in 2 step) as an yellow oil.: IR (ATR) v 1759 (CO), 1336 (NSO), 1133 (NSO) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.52 (s, 9H), 3.88 (s, 3H), 4.92–4.94 (m, 2H), 5.04–5.06 (m, 1H), 5.39–5.41 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.5 (3C), 54.3, 58.5, 61.7, 73.5, 75.0, 77.4, 163.0; HRMS (ESI), *m*/z calcd for C₁₀H₁₆ClNNaO₅S [M+Na]⁺ 320.0330, found 320.0339.

Methyl *N*-(*tert*-butylsulfonyl)-2-chloro-3,3-diethylaziridine-2-carboxylate (4c): By use of a procedure similar to that described for the preparation of 4a, the corresponding imine S5⁸⁴ (977.1 mg, 5.16 mmol) was converted into the title compound 4c (1.28 g, 80% in 2 steps) as a yellow oil.: IR (ATR) v1734 (CO), 1318 (NSO), 1129 (NSO) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.08 (t, *J* = 7.5 Hz, 3H), 1.10 (t, *J* = 7.5 Hz, 3H), 1.48 – 1.54 (m, 1H), 1.52 (s, 9H), 1.90 (dq, *J* = 14.7, 7.5 Hz, 1H), 2.07 (dq, *J* = 14.7, 7.5 Hz, 1H), 2.13 – 2.22 (m, 1H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 9.6 (2C), 22.2, 23.8 (3C), 24.2, 53.4, 61.7, 67.1, 77.2, 164.4; HRMS (ESI), *m/z* calcd for C₁₂H₂₂ClNNaO₄S [M+Na]⁺ 334.0850, found 334.0850.

Methyl (*E*)-N-(tert-buthylsulfonyl)-2-chloro-3-methyl-3-(3-(trifluoromethyl)benzyl) aziridin-2carboxylate (4d): By use of a procedure similar to that described for the preparation of 4b, the corresponding imine S2 (292.6 mg, 0.96 mmol) was converted into the title compound 4d (193.3 mg, 63% in 2 steps) as a white solid.: IR (ATR) v1751 (CO), 1330 (NSO), 1133 (NSO) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.54 (s, 9H), 1.67 (s, 3H), 2.98 (d, *J* = 14.7 Hz, 1H), 3.10 (d, J = 14.7 Hz, 1H), 3.88 (s, 3H), 7.42–7.48 (m, 3H), 7.51– 7.57 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 16.7, 23.7 (3C), 41.1, 53.8, 55.3, 61.8, 65.9, 124.1 (q, *J* = 270 Hz, 1C), 124.2 (q, *J* = 4 Hz, 1C), 124.2 (q, *J* = 3 Hz, 1C), 129.0, 130.8 (q, *J* = 33 Hz, 1C), 133.1, 136.2, 164.6; HRMS (ESI), m/z calcd for C₁₇H₂₁ClF₃NNaO₄S [M+Na]+ 450.0724, found 450.0724.

IV. Experimental procedures of enoates 5, 7, 9 and 11.

Ethyl (S,E)-3-(1-(tert-butylsulfonyl)-2-chloro-1-azaspiro[2.4]heptan-2-yl)acrylate (5): To a solution of the ester 4a (2.63 g, 8.50 mmol) in CH₂Cl₂ (85.0 mL) was added dropwise a solution of DIBAH in toluene (1.00 M, 17.0 mL, 17.0 mmol) at -78 °C under nitrogen, and the mixture was stirred for 1 h at -78 °C. The reaction was quenched with saturated aqueous of Rochelle salt solution and extracted with Et_2O . The extract was washed with brine and dried over MgSO₄. Concentration under reduced pressure gave an oily aldehyde, which was used immediately in next step without purification. To a stirred solution of LiCl (900.8 mg, 21.3 mmol) in MeCN (38.0 mL) were added Ethyl diethylphosphonoacetate (2.50 mL, 12.8 mmol) and DIPEA (3.80 mL, 21.3 mmol) at 0°C under nitrogen. After being stirred for 30 min at 0°C, a solution of the above aldehyde in MeCN (5.00 mL) was added to the mixture, and the mixture was stirred for 30 min at room temperature. The reaction mixture was quenched by saturated aqueous of NH₄Cl solution and extracted with EtOAc. The extract was washed with brine and dried over MgSO₄. Concentration under reduced pressure followed by flash chromatography over silica gel with *n*-hexane-EtOAc (4:1) gave the compound 11 (2.09 g. 70% in 2 steps) as an yellow oil.: IR (ATR) v 1723 (CO), 1321 (NSO), 1128 (NSO) cm⁻¹; ¹H NMR (400 MHz, $CDCl_3$ δ 1.31 (t, J = 7.1 Hz, 3H), 1.44 (s, 9H), 1.64–2.08 (m, 6H), 2.22–2.32 (m, 1H), 2.38–2.50 (m, 1H), 4.23 (q, J = 7.1 Hz, 2H), 6.48 (d, J = 15.0 Hz, 1H), 7.22 (d, J = 15.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.2, 23.6 (3C), 24.5, 26.1, 28.3, 33.5, 60.6, 67.2, 69.4, 77.2, 127.2, 140.5, 165.0; HRMS (ESI), m/z calcd for C₁₅H₂₄ClNNaO₄S [M+Na]⁺ 372.1007, found 372.1003.

Ethyl (4*R*, *E*)-*N*-(*tert*-butylsulfonyl)-4-chloro-5-oxa-7-azaspiro[2.3]hexan-2-yl)acrylate (7): By use of a procedure similar to that described for the preparation of **5**, the ester 4b (147.6 mg, 0.52 mmol) was converted into the title compound 7 (117.9 mg, 67% in 2 steps) as an colorless oil.: IR (ATR) v 1721 (CO), 1328, 1134 (SO₂) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.31 (t, *J* = 7.1 Hz, 3H), 1.53 (s, 9H), 4.24 (q, *J* = 7.1 Hz, 2H), 4.84 (dd, *J* = 8.4, 1.3 Hz, 1H), 4.92 (dd, *J* = 8.4, 1.3 Hz, 1H), 5.04 (d, *J* = 8.3 Hz, 1H), 5.31 (d, *J* = 8.3 Hz, 1H), 6.53 (d, *J* = 15.0 Hz, 1H), 6.88 (d, *J* = 15.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.2, 23.7 (3C), 57.6, 58.4, 61.0, 61.2, 64.3, 72.9, 73.7, 75.5, 75.8, 77.3, 128.5, 137.6, 164.0, 164.5; HRMS (ESI), *m/z* calcd for C₁₃H₂₀CINNaO₅S [M+Na]⁺ 360.0643, found 360.0633.

Ethyl (4*R*, *E*)-*N*-(*tert*-butylsulfonyl)-4-chloro-5,5-diethylaziridine-2-yl)acrylate (9): By use of a procedure similar to that described for the preparation of **5**, the ester **4c** (1.12 g, 3.60 mmol) was converted into the title compound **9** (869.9 mg, 70% in 2 steps) as an colorless oil.: IR (ATR) v1722 (CO), 1318 (NSO), 1129 (NSO) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.04 (t, *J* = 7.5 Hz, 3H), 1.10 (t, *J* = 7.5 Hz, 3H), 1.31 (t, *J* = 7.1 Hz, 3H), 1.44 (s, 9H), 1.94–2.01 (m, 3H), 2.19–2.28 (m, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 6.53 (d, *J* = 15.0 Hz, 1H), 7.42 (d, *J* = 15.0 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 9.5, 10.4, 14.2, 22.1, 23.7 (3C), 25.3, 60.9, 64.0, 72.0, 77.2, 127.7, 140.2, 165.2; HRMS (ESI), *m/z* calcd for C₁₅H₂₆CINNaO₄S [M+Na]⁺ 374.1163, found 374.1163.

Ethyl (4*R*, *E*)-*N*-(*tert*-butylsulfonyl)-4-chloro-5-methyl-5-(3-(trifluoromethyl)benzyl)aziridin-2yl)acrylate (11): By use of a procedure similar to that described for the preparation of **5**, the ester **4d** (452.3 mg, 1.06 mmol) was converted into the title compound **9** (211.2 mg, 43% in 2 steps) as an colorless oil.: IR (ATR) v1721 (CO), 1325 (NSO), 1127 (NSO) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.31 (t, *J* = 7.1 Hz, 3H), 1.48 (s, 9H), 1.59 (s, 3H), 3.40 (s, 2H), 4.25 (q, *J* = 7.1 Hz, 2H), 6.59 (d, *J* = 15.0 Hz, 1H), 7.32–7.37 (m, 1H), 7.39–7.47 (m, 2H), 7.43 (d, *J* = 15.0 Hz, 1H), 7.50–7.55 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.4, 20.7, 24.0 (3C), 38.7, 59.5, 61.4, 70.6, 77.6, 124.3 (q, *J* = 270 Hz, 1C), 124.4, 126.7, 128.4, 129.6, 132.4 (q, *J* = 33 Hz, 1C), 132.8, 137.0, 140.7, 165.2; HRMS (ESI), *m/z* calcd for C₂₀H₂₅ClF₃NNaO₄S [M+Na]⁺ 490.1037, found 490.1018.

V. Experimantal procedure of aaAA-containing CADIs 6a-6f, 8, 10, 12

Ac₅c-Ala-type CADI (6a): To a suspension of ZnCl₂ (237.8 mg, 1.72 mmol) and LiCl (182.3 mg, 4.30 mmol) in THF (1.70 mL) was added a solution of methyl lithium (1.20 M, 1.40 mL, 1.72 mmol) at -78 °C under nitrogen, and the mixture was stirred for 30 min at 0 °C to provide ca. 0.82 M solution of methylzinc chloride in THF. In another flask, to a suspension of CuCN (77.0 mg, 0.86 mmol) in THF (8.60 mL) was added a solution of methylzinc chloride in THF at -78 °C under nitrogen, and the mixture was stirred for 10 min at 0 °C. To the solution of organocuprate was added dropwise a solution of ester 5 (114.6 mg, 0.33 mmol) in THF (4.00 mL) at -78 °C. After stirred for 30 min at 0 °C, the reaction mixture was quenched by addition of a 3:2 saturated NH₄Cl-28% NH₃ aqueous solution with additional stirring for 30 min at room temperature. The mixture was extracted with Et₂O and the extract was washed with brine and dried over MgSO₄. Concentration under reduced pressure followed by flash chromatography over silica gel with *n*-hexane-EtOAc (3:1) gave the title compound 6a (47.4 mg, 40 %, >20:1 dr) as a colorless oil.: IR (ATR) v1730 (CO), 1307 (NSO), 1126 (NSO) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.26 (t, J = 7.1 Hz, 3H), 1.30 (d, J = 7.2 Hz, 3H), 1.39 (s, 9H), 1.64 - 1.95 (m, 4H), 1.97 - 2.31 (m, 4H), 3.61 (dq, J = 8.9, 7.2 Hz, 1H), 4.03 (s, 1H), 4.14 (q, J = 7.1 Hz, 2H),5.99 (d, J = 8.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.2, 16.9, 21.9, 22.7, 24.2 (3C), 36.8, 39.0, 40.1, 60.1, 60.8, 71.4, 126.1, 138.2, 173.9; HRMS (ESI), *m/z* calcd for C₁₆H₂₉ClNO₄S [M+H]⁺ 366.1500, found 366.1491.

Acsc-Ethylgly-type CADI (6b): To a suspension of CuCN (215.0 mg, 2.40 mmol) and LiCl (203.5 mg, 4.80 mmol) in THF (2.70 mL) was added a solution of diethylzinc (1.09 M, 2.20 mL, 2.40 mmol) at -78 °C under nitrogen, and the mixture was stirred for 10 min at 0 °C. To the solution of the above organocuprate was added dropwise a solution of the enoate **5** (130.2 mg, 0.37 mmol) in THF (5.00 mL) at -78 °C. After being stirred for 1 h at -78 °C, the reaction mixture was quenched by addition of a 3:2 saturated NH₄Cl-28% NH₃ aqueous solution with additional stirring for 30 min at room temperature. The mixture was extracted with Et₂O and the extract was washed with brine and dried over MgSO₄. Concentration under reduced pressure followed by flash chromatography over silica gel with *n*-hexane-EtOAc (3:1) gave the title compound **6b** (113.1 mg, 0.30 mmol, 80 %, >20:1 dr) as a colorless oil.: IR (ATR) v1724 (CO), 1306 (NSO), 1126 (NSO) cm⁻¹; ¹H NMR (400

MHz, CDCl₃) δ 0.89 – 1.03 (m, 3H), 1.17 – 1.32 (m, 3H), 1.39 (s, 9H), 1.62 – 1.78 (m, 3H), 1.78 – 1.95 (m, 3H), 1.96 – 2.12 (m, 2H), 2.12 – 2.35 (m, 2H), 3.31 – 3.62 (m, 1H), 4.05 (s, 1H), 4.09 – 4.20 (m, 2H), 5.86 – 6.08 (m, 1H).; ¹³C NMR (100 MHz, CDCl₃) δ 11.4, 14.2, 22.0, 22.6, 24.2 (3C), 25.7, 36.8, 39.0, 47.2, 60.1, 60.7, 71.4, 125.0, 138.9, 173.3; HRMS (ESI), *m/z* calcd for C₁₇H₃₀CINO₄S [M+H]⁺ 380.1657, found 380.1641.

Ac₅c-Val-type CADI (6c): To a suspension of ZnCl₂ (340.7 mg, 2.50 mmol) and LiCl (212.0 mg, 5.00 mmol) in THF (2.50 mL) was added a solution of isopropylmagnesium chloride (1.10 M, 2.40 mL, 2.50 mmol) at -78 °C under nitrogen, and the mixture was stirred for 30 min at 0 °C to provide isopropylzinc chloride solution in THF. In another flask, to a suspension of CuCN (112.0 mg, 1.25 mmol) in THF (12.5 mL) was added a solution of isopropylzinc chloride in THF at -78 °C under nitrogen, and the mixture was stirred for 10 min at 0 °C. To the solution of organocuprate was added dropwise a solution of enoate 5 (184.9 mg, 0.53 mmol) in THF (5.00 mL) at -78 °C. After stirred at 0 °C for 30 min, the reaction mixture was quenched by addition of a 3:2 saturated NH₄Cl-28% NH₃ aqueous solution with additional stirring at room temperature for 30 min. The mixture was extracted with Et₂O and the extract was washed with brine and dried over MgSO₄. Concentration under reduced pressure followed by flash chromatography over silica gel with *n*-hexane-EtOAc (3:1) gave the title compound 6c (195.6 mg, 0.50 mmol, 94 %, >20:1 dr) as a colorless oil.: IR (ATR) v3282 (NH), 1726 (CO), 1308 (NSO), 1126 (NSO) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.96 (d, J = 6.8 Hz, 3H), 0.98 (d, J = 6.8 Hz, 3H), 1.21 – 1.32 (m, 3H), 1.39 (s, 9H), 1.61 – 1.96 (m, 5H), 2.00 – 2.17 (m, 2H), 2.17 – 2.28 (m, 2H), 3.31 -3.43 (m, 1H), 4.09 (s, 1H), 4.10 -4.22 (m, 2H), 5.89 -6.04 (m, 1H).; ¹³C NMR (100 MHz, CDCl₃) δ 14.3, 19.6, 20.5, 22.1, 22.6, 24.2 (3C), 31.7, 37.0, 39.0, 52.7, 60.2, 60.6, 71.5, 124.1, 139.4, 172.8; HRMS (ESI), m/z calcd for C₁₈H₃₃ClNO₄S [M+H]⁺ 394.1813, found 394.1812.

Ac₅c-Leu-type CADI (6d): To a suspension of $ZnCl_2$ (204.4 mg, 1.50 mmol) and LiCl (127.2 mg, 3.00 mmol) in THF (1.50 mL) was added a solution of isobuthylmagnesium bromide (0.90 M, 1.70 mL, 1.50 mmol) at - 78 °C under nitrogen, and the mixture was stirred for 30 min at 0 °C to provide methylzinc chloride solution in THF. In another flask, to a suspension of CuCN (67.2 mg, 0.75 mmol) in THF (7.50 mL) was added a solution of methylzinc chloride in THF at -78 °C under nitrogen, and the mixture was stirred for 10

min. To the solution of organocuprate was added dropwise a solution of enoate **5** (107.8 mg, 0.30 mmol) in THF (3.00 mL) at -78 °C. After stirred at 0 °C for 30 min, the reaction mixture was quenched by addition of a 3:2 saturated NH₄Cl-28% NH₃ aqueous solution with additional stirring at room temperature for 30 min. The mixture was extracted with Et₂O and the extract was washed with brine and dried over MgSO4. Concentration under reduced pressure followed by flash chromatography over silica gel with *n*-hexane-EtOAc (3:1) gave the title compound **12d** (121.0 mg, 96 %, >20:1 dr) as a colorless oil.: IR (ATR) v3282 (NH), 1726 (CO), 1308 (NSO), 1126 (NSO) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.90 – 0.91 (m, 3H), 0.93 – 0.95 (m, 3H), 1.24 – 1.27 (m, 3H), 1.38 (s, 9H), 1.45 – 1.51 (m, 1H), 1.57 – 1.88 (m, 6H), 2.05 – 2.10 (m, 2H), 2.16 – 2.21 (m, 2H), 3.60 – 3.66 (m, 1H), 4.06 (s, 1H), 4.11 – 4.17 (m, 2H), 5.87 – 5.89 (d, *J* = 9.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.3, 19.6, 20.5, 22.1, 22.6, 24.2 (3C), 31.7, 37.0, 39.0, 52.7, 60.2, 60.6, 71.5, 124.1, 139.4, 172.8; HRMS (ESI), *m/z* calcd for C₁₈H₃₃CINO₄S [M+H]⁺ 394.1813, found 394.1812.

Ac₅c-Ile-type CADI (6e): To a suspension of ZnCl₂ (204.4 mg, 1.50 mmol) and LiCl (127.2 mg, 3.00 mmol) in THF (1.50 mL) was added a solution of sec-buthylmagnesium bromide (0.90 M, 1.70 mL, 1.50 mmol) at -78 °C under nitrogen, and the mixture was stirred for 30 min at 0 °C to provide sec-buthylzinc chloride solution in THF. In another flask, to a suspension of CuCN (112.0 mg, 1.25 mmol) in THF (12.5 mL) was added a solution of sec-buthylzinc chloride in THF at -78 °C under nitrogen, and the mixture was stirred at 0 °C for 10 min. To the solution of organocuprate was added dropwise a solution of enoate 5 (104.8 mg, 0.30 mmol) in THF (1.50 mL) at -78 °C. After stirred for 30 min at 0 °C, the reaction mixture was quenched by addition of a 3:2 saturated NH₄Cl-28% NH₃ aqueous solution with additional stirring for 30 min at room temperature. The mixture was extracted with Et₂O and the extract was washed with brine and dried over MgSO₄. Concentration under reduced pressure followed by flash chromatography over silica gel with *n*-hexane-EtOAc (3:1) gave the title compound **6e** (78.6 mg, 0.19 mmol, 74 %, 3.8:1 dr) as a colorless oil.: IR (ATR) ν 1724 (CO), 1307 (NSO), 1126 (NSO) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.82 – 1.00 (m, 6H), 1.16 – 1.31 (m, 5H), 1.38 (s, 9H), 1.64 – 1.99 (m, 5H), 2.00 – 2.15 (m, 2H), 2.21 (s, 2H), 3.37 – 3.66 (m, 1H), 4.07 (s, 1H), 4.09 – 4.27 (m, 2H), 5.84 – 6.06 (m, 1H).; ¹³C NMR (100 MHz, CDCl₃) δ 11.3, 11.6, 14.2, 14.3, 16.0, 16.6, 22.0, 22.0, 22.6, 24.2, 26.3, 27.3, 37.0, 37.1, 37.9, 38.0, 38.8, 38.9, 50.9, 51.2, 60.1, 60.6, 71.5, 123.7, 124.5, 139.1, 139.4, 172.7, 173.0; HRMS (ESI), *m/z* calcd for C₁₉H₃₄ClNaO₄S [M+Na]⁺ 430.1790, found 430.7189.

Ac₅c-Phe-type CADI (6f): To a suspension of ZnCl₂ (204.4 mg, 1.50 mmol) and LiCl (127.2 mg, 3.00 mmol) in THF (1.50 mL) was added a solution of phenylmagnesium chloride (0.30 M, 5.00 mL, 1.50 mmol) at -78 °C under nitrogen, and the mixture was stirred for 30 min at 0 °C to provide phenylzinc chloride solution in THF. In another flask, to a suspension of CuCN (67.2 mg, 0.75 mmol) in THF (5.00 mL) was added a solution of phenylzinc chloride in THF at -78 °C under nitrogen, and the mixture was stirred for 10 min at 0 °C. To the solution of organocuprate was added dropwise a solution of enoate 5 (97.8 mg, 0.28 mmol) in THF (1.50 mL) at -78 °C. After stirred for 30 min at 0 °C, the reaction mixture was quenched by addition of a 3:2 saturated NH₄Cl-28% NH₃ aqueous solution with additional stirring for 30 min at room temperature. The mixture was extracted with Et₂O and the extract was washed with brine and dried over MgSO₄. Concentration under reduced pressure followed by flash chromatography over silica gel with *n*-hexane-EtOAc (3:1) gave the title compound **6f** (111.0 mg, 90%, >20:1 dr) as a colorless oil.: IR (ATR) ν 1727 (CO), 1303 (NSO), 1126 (NSO) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ1.13 (t, *J* = 7.1 Hz, 3H), 1.37 (s, 9H), 1.53–1.69 (m, 2H), 1.77–1.82 (m, 2H), 2.01– 2.17 (m, 4H), 2.95 (dd, J = 13.6, 6.7 Hz, 1H), 3.06 (dd, J = 13.6, 8.1 Hz, 1H), 3.86 (ddd, J = 9.2, 8.1, 6.7 Hz, 1H), 4.01 (s, 1H), 4.06 (q, J = 7.1 Hz, 2H), 5.97 (d, J = 9.2 Hz, 1H), 7.18–7.28 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 11.5, 19.6, 19.7, 21.7 (3C), 35.0, 35.5, 35.6, 45.2, 57.6, 58.3, 68.9, 122.0, 124.0, 125.7 (2C), 126.6 (2C), 135.5, 135.8, 169.9; HRMS (ESI), *m/z* calcd for C₂₂H₃₃ClNO₄S [M+H]⁺ 442.1814, found 442.1805.

Oxetane-Val-type CADI (8): To a suspension of ZnCl₂ (443.5 mg, 3.30 mmol) and LiCl (275.5 mg, 6.50 mmol) in THF (3.30 mL) was added a solution of isopropylmagnesium chloride (0.42 M, 7.90 mL, 3.30 mmol) at -78 °C under nitrogen, and the mixture was stirred for 30 min at 0 °C to provide isopropylzinc chloride solution in THF. In another flask, to a suspension of CuCN (145.5 mg, 1.60 mmol) in THF (25.0 mL) was added a solution of isopropylzinc chloride in THF at -78 °C under nitrogen, and the mixture was stirred for 10 min at 0 °C. To the solution of organocuprate was added dropwise a solution of ester 7 (197.2 mg, 0.65 mmol) in THF (6.50 mL) at -78 °C. After stirred at 0 °C for 30 min, the reaction mixture was quenched by addition of a 3:2 saturated NH₄Cl-28% NH₃ aqueous solution with additional stirring at room temperature for 30 min. The mixture was extracted with Et₂O and the extract was washed with brine and dried over MgSO₄. Concentration under reduced pressure followed by flash chromatography over silica gel with *n*-hexane-EtOAc (3:1) gave the title compound 8 (136.0 mg, 61%, >20:1 dr) as a colorless oil.: IR (ATR) v 3267 (NH), 1732 (CO), 1308 (NSO), 1124 (NSO) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.97 (d, J = 6.9 Hz, 3H), 0.99 (d, J = 6.9 Hz, 3H), 1.28 (t, J = 7.2 Hz, 3H), 1.44 (s, 9H), 2.16 (tq, J = 6.9 Hz, 1H), 3.38 (dd, J = 9.8, 6.9 Hz, 1H), 4.18 (q, J = 7.2Hz 2H), 4.71 (d, J = 7.0 Hz, 1H), 4.78 (d, J = 7.3, 1H), 4.82 (d, J = 7.0, 1H), 4.91 (d, J = 7.3Hz, 1H), 4.94 (br, 1H), 6.20 (d, J = 9.8Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 14.4, 19.7, 20.6, 24.2, 32.0, 52.8, 60.4, 61.0, 63.4, 78.5, 79.4, 126.7, 135.8, 172.5; HRMS (ESI), *m/z* calcd for C₁₆H₂₈ClNNaO₅S [M+Na]⁺ 404.1269, found 404.1269.

Deg-Gly-type CADI (10): To a stirred solution of CuI (761.8 mg, 4.00 mmol) in THF (15.0 mL) was added dropwise MeLi in Et₂O (1.20 M, 8.00 mL, 9.60 mmol) at -78 °C under nitrogen, and the mixture was stirred for 10 min at 0 °C. To the solution of the above organocuprate was added dropwise a solution of the enoate **9** (324.4 mg, 0.92 mmol) in THF (5.00 mL) at -78 °C. After being stirred for 30 min at -78 °C, the reaction was quenched by addition of a 3:2 saturated NH₄Cl-28% NH₃ aqueous solution with additional stirring for 30 min at room temperature. The mixture was extracted with Et₂O and the extract was washed with brine and dried over MgSO₄. Concentration under reduced pressure followed by flash chromatography over silica gel with *n*-hexane-EtOAc (2:1) gave the title compound **10** (265.5 mg, 73%) as colorless oil.: IR (ATR) v3291 (NH), 1737 (CO), 1308 (NSO), 1122 (NSO) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.92 (t, *J* = 7.3 Hz, 6H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.41 (s, 9H), 1.92 (dq, *J* = 14.5, 7.3 Hz, 2H), 2.04 (dq, *J* = 14.5, 7.3 Hz, 2H), 3.32 (d, *J* = 6.4

Hz, 2H), 3.63 (s, 1H), 4.16 (q, J = 7.1 Hz, 2H), 6.06 (t, J = 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 8.0 (2C), 14.2, 24.3 (3C), 27.6 (2C), 34.7, 60.7, 60.9, 68.0, 121.2, 139.6, 170.6; HRMS (ESI), m/z calcd for C₁₅H₂₉ClNO₄S [M+H]⁺ 354.1500, found 354.1493.

(aMe)₃-CF₃-Phe-Leu-type CADI (12): To a suspension of ZnCl₂ (102.2 mg, 0.75 mmol) and LiCl (63.6 mg, 0.75 mmol) in THF (750.0 µL) was added a solution of isobuthylmagnesium bromide (0.90 M, 675.0 µL, 0.75 mmol) at -78 °C under nitrogen, and the mixture was stirred for 30 min at 0 °C to provide methylzinc chloride solution in THF. In another flask, to a suspension of CuCN (34.0 mg, 0.38 mmol) in THF (1.50 mL) was added a solution of methylzinc chloride in THF at -78 °C under nitrogen, and the mixture was stirred at 0 °C for 10 min. To the solution of organocuprate was added dropwise a solution of ester 11 (56.8 mg, 0.12 mmol) in THF (3.80 mL) at -78 °C. After stirred at 0 °C for 30 min, the reaction mixture was quenched by addition of a 3:2 saturated NH₄Cl-28% NH₃ aqueous solution with additional stirring at room temperature for 30 min. The mixture was extracted with Et2O and the extract was washed with brine and dried over MgSO4. Concentration under reduced pressure followed by flash chromatography over silica gel with *n*-hexane-EtOAc (3:1) gave the title compound **12** (38.9 mg, 56%, >20:1 dr) as a colorless oil.: IR (ATR) v3286 (NH), 1732 (CO), 1329 (NSO), 1128 (NSO) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.89–0.94 (m, 3H), 0.92–0.94 (m, 3H), 1.91–1.22 (m, 3H), 1.37–1.40 (m, 1H), 1.39 (s, 9H), 1.50–1.63 (m, 2H), 1.63 (s, 3H), 3.11 (d, J = 13.3 Hz, 1H), 3.16 (d, J = 13.3 Hz, 1H), 3.61–3.67 (m, 1H), 4.05–4.11 (m, 2H), 4.08 (s, 1H), 5.67–5.70 (d, J = 9.2 Hz, 1H), 7.33–7.41 (m, 2H), 7.43 (m, 1H), 7.48–7.55 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 22.3, 22.5, 22.6, 24.3 (3C), 25.8, 41.4, 44.5, 46.4, 60.5, 60.7, 64.2, 124.0 (q, J = 252 Hz, 1C), 124.1 (q, J = 16 Hz, 1C), 126.9, 127.2, (q, J = 12Hz, 1C), 128.6, 130.5 (q, J = 32 Hz, 1C), 134.0, 136.0, 138.4, 173.1; HRMS (ESI), m/z calcd for C₂₄H₃₅ClF₃NNaO₄S [M+Na]⁺ 548.1820, found 548.1814.

VI. Experimantal procedure of $\alpha\alpha AA$ -containing CADIs (13,14) N/C terminal condensations

Bus-Ac₅c-Ψ^{Cl}-Leu-Gly-OMe (13): To a solution of CADI 6d (204.0 mg, 0.50 mmol) in THF (5.00 mL) was added 1.0 M aqueous solution of LiOH (2.00 mL), and the mixture was stirred at room temperature for 50 h. The reaction mixture was diluted with EtOAc, washed with 0.1 M aqueous solution of HCl and dried over MgSO₄. The reaction mixture was concentrated under reduced pressure to give the carboxylic acid as colorless oil, which was used immediately in the next step without purification. To a solution of crude carboxylic acid in DMF (5.00 mL) was added H-Gly-OMe hydrochloride (81.6 mg, 0.65 mmol), HOBt•H₂O (99.5 mg, 0.65 mmol) and EDCI•H₂O (124.6 mg, 0.65 mmol) and cooled to 0 °C. DIEPA (223.0 µL, 1.25 mmol) were added, and the reaction was stirred for 5.5 h. The reaction mixture was diluted with EtOAc, and washed with NH₄Cl, NaHCO₃, and brine and dried over MgSO₄. Concentration under reduced pressure followed by flash chromatography over silica gel with Hexane-EtOAc (2:1) gave the title compound 13 as a colorless solid (72.2 mg, 32%): IR (ATR) v 3448 (NH), 3371 (NH), 1700 (CO), 1655 (CO); ¹H NMR (400 MHz, CDCl₃) δ 0.86 -0.91 (m, 3H), 0.91 – 0.96 (m, 3H), 1.39 (s, 9H), 1.44 – 1.59 (m, 2H), 1.59 – 1.76 (m, 1H), 1.76 – 1.84 (m, 2H), 1.84 – 1.97 (m, 3H), 1.97 – 2.14 (m, 1H), 2.14 – 2.40 (m, 2H), 3.47 – 3.61 (m, 1H), 3.72 (s, 3H), 3.89 (dd, J = 17.6, 5.8 Hz, 1H), 4.01 (dd, J = 17.6, 5.8 Hz, 1H), 4.10 (s, 1H), 5.72 - 5.93 (m, 1H), 6.85 (m, 1H).; 13 C NMR (101 MHz, CDCl₃) δ 21.4, 21.6, 23.0, 23.4, 24.1 (3C), 26.1, 36.0, 39.9, 40.2, 41.3, 44.7, 52.1, 60.3, 71.5, 125.9, 141.0, 170.2, 172.7.; HRMS (ESI), *m*/*z* calcd for C₂₀H₃₆ClN₂O₅S [M+H]⁺ 451.2028, found 451.2022.

Boc-Ala-Deg- Ψ^{Cl} -**Gly-OEt (14):** To a solution of the CADI **10** (78.8 mg, 0.20 mmol) in CH₂Cl₂ (2.00 mL) were added Anisole (43.5 µL, 0.40 mmol) and AlCl₃ (120.0 mg, 0.90 mmol), and the mixture was stirred at room temperature for 3.5 h under nitrogen. The reaction mixture was quenched by saturated aqueous of NH₄Cl solution and extracted with CH₂Cl₂. The extract was washed with brine and dried over MgSO₄. The reaction mixture was concentrated under reduced pressure to give the deprotected amine as colorless oil, which was used immediately in the next step without purification. To a solution of Boc-L-Ala-OH (75.7 mg, 0.40 mmol), HATU (152.1 mg, 0.40 mmol) and DIPEA (71.4 µL, 0.40 mmol) in DMF (1.50 mL) was added crude amine in DMF (500.0 µL), and the reaction was stirred for 24 h. The reaction mixture was diluted with EtOAc, and washed with NH₄Cl, NaHCO₃, and brine and dried over MgSO₄. Concentration under reduced pressure followed by flash chromatography over silica gel with Hexane-EtOAc (1:2) gave the title compound 14 as a colorless solid (25.3 mg, 31%): $[a]_D^{23.2} = -18.2$ (c 1.00, CHCl₃); IR (ATR) v 3323 (NH), 1728 (CO), 1673 (CO); ¹H NMR (400 MHz, CDCl₃) δ 0.79 (t, J = 7.4 Hz, 3H), 0.81 (t, J = 7.4 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H), 1.31 -1.36 (m, 3H), 1.45 (s, 9H), 1.79 (dq, J = 14.1, 7.4 Hz, 2H), 2.01 (dq, J = 14.1, 7.4 Hz, 2H), 3.31 (d, J = 6.5Hz, 2H), 3.98 - 4.10 (m, 1H), 4.15 (q, J = 7.1 Hz, 2H), 4.95 (s, 1H), 5.95 (t, J = 6.5 Hz, 1H), 6.18 (s, 1H).; ${}^{13}C$ NMR (100 MHz, CDCl₃) & 7.5, 7.6, 14.2, 25.8, 26.0, 28.3 (3C), 34.6, 60.8, 63.5, 77.2, 119.4, 128.2, 129.2, 139.3, 170.9, 171.1, 172.8.; HRMS (ESI), *m/z* calcd for C₁₉H₃₄ClN₂O₅ [M+H]⁺ 405.2151, found 405.2155.

VII. Experimantal procedure of Ac5c-Leu-type CADI dicyclohexylammonium salt S6

Ac5c-Leu-type CADI dicyclohexylammonium salt (S6): To a solution of chloroalkene 6d (125.6 mg, 0.31 mmol) in THF (3.00 mL) was added 1 M LiOH aqueous (1.50 mL, 1.50 mmol) and the mixture was stirred for 22 h at room tempetature. The mixture was dilluted with EtOAc and washed with 0.1 N HCl aqueous and the organic later was washed with brine and dried over MgSO₄. Concentration under reduced pressure gave N-sulfonyl carboxylic acid as a solid compound, which was used in next step without purification. After to a solution of N-sulfonyl carboxylic acid in Et₂O (1.20 mL) was added dicyclohexylamine (80 µL), the precipitate was appeared immidiately. The precipitate was filtered and the solvent was removed under reduced pressure gave the title compound S6 dicyclohexylammonium salt (43.4 mg, 25%) as a solid.: IR (ATR) V1623 (CO), 1304 (NSO), 1126 (NSO) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.90–0.95 (m, 6H), 1.14–1.46 (m, 10H), 1.38 (s, 9H), 1.61–1.79 (m, 11H) , 1.97–1.99 (m, 4H), 2.06–2.09 (m, 2H), 2.13–2.28 (m, 2H), 2.84–2.91 (m, 2H), 3.42–3.48 (m, 1H), 4.11 (s, 1H), 5.95–5.98 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.9, 22.5, 22.6, 23.0, 24.3 (3C), 24.9 (4C), 25.4 (2C), 26.0 (2C), 30.3, 36.7, 38.8, 42.3, 47.3, 52.7 (2C), 71.6 (2C), 77.2, 128.9, 136.0, 178.4.; HRMS (ESI), *m/z* calcd for C₂₉H₅₄ClN₂O₄S [M+H]⁺ 561.3487, found 561.3489.

VIII. Chiral HPLC analysis of compounds 4d, 5, 7, 9

	[min]	Alea	rieigint	Alea /0
1	15.117	16857577	385069	49.821
2	18.842	16978802	341893	50.179

• Chiral aziridine 4d (LiHMDS)

Enantiomeric ratio was measured by HPLC

(YMC CHIRAL Amylose-SC, 20% IPA/hexanes, 1.0 mL/min, 220 nm).

Racemic enoate 5

• Chiral enoate 5 (NaHMDS)

• Chiral enoate 5 (LiHMDS)

• Chiral enoate 7 (NaHMDS)

Chiral enoate 7 (LiHMDS)

	[min]		0	
1	29.000	2643996	67132	16.151
2	41.808	13726748	244061	83.849

Enantiomeric ratio was measured by HPLC

(YMC CHIRAL Amylose-SC, 15% IPA/hexanes, 0.5 mL/min, 220 nm).

• Chiral enoate 9 (NaHMDS)

• Chiral enoate 9 (LiHMDS)

IX. X-ray crystallographic data

Crystals of aziridine **2** [$C_{14}H_{17}BrCINO_4S$, code: 2064227], β -aminoester **3** [$C_{14}H_{18}BrCl_2NO_4S$, code: 2064228], aziridine **4d** [$C_{17}H_{21}CIF_3NO_4S$, code: 2064229] and enoate **11** [$C_{15}H_{24}CINO_4S$, code: 2065548] were obtained by recrystallization from EtOAc/*n*-hexanae and CADI ammonium salt **15** [$2(C_{17}H_{29}CINO_4S^-)$, $2(C1_2H_{24}N^+)$, C_6H_{14} , code: 2064230] were obtained by recrystallization from EtOH/*n*-hexanae. A suitable single crystals of **2**, **3**, **4d**, **11**, **15** were selected and measured on a Rigaku XtaLAB mini (Mo) CCD diffractometer. Using Olex2,^{S5} the structure was solved with the SHELXT ^{S6} structure solution program using Direct Methods and refined with the SHELXL^{S7} refinement package using Least Squares minimization.

Figure S1. ORTEP representation of 2.

Table S2. Crystal data	and structure refinement for	2 , C	CDC Number: 2064227
------------------------	------------------------------	--------------	---------------------

Identification code		SIM1	7-011	
Emipircal formula	C ₁₄ H ₁₇ BrClNO ₄ S			
Formula wight	410.71			
Temperature		293	8(2)	
Crystal system		mono	clinic	
Sapce group		P2	1/c	
Unit cell Dimensions	a/Å	6.5794(9)	alpha/º	90
	b/Å	8.0509(19)	beta/º	90.055(14)
	c/Å	33.122(6)	gamma/º	90
Volume/Å ³		1754	.5(6)	
Z		2	1	
$\rho_{calc}g/cm^3$	1.555			
μ/mm ⁻¹	2.629			
F(000)	832.0			
Crystal size/mm ³		0.8 imes 0.2	72×0.5	
Radiation		ΜοΚα (λ =	= 0.71073)	
20 range for data collection/°		5.208 1	to 50.7	
Index ranges		$7 \le h \le 7, -9 \le k$	$\le 9, -39 \le 1 \le$	37
Reflections collected		96	34	
Independent refletions	319.	3 [Rint = 0.1007]	, Rsigma = 0.	0840]
Data/restraints/parameters		3193/	0/204	
Goodness-of-fit on F ²		1.0	052	
Final R indexes [I> 2σ (I)]		$R_1 = 0.0857,$	$wR_2 = 0.2062$	
Final R indexes [all data]		$R_1 = 0.1033,$	$wR_2 = 0.2216$	
Largest diff. peak/hole/e Å ⁻³	0.50/-0.64			

Figure S2. ORTEP representation of 3.

Table 55. Crystal data and structure refinement for 5 , CCDC Number	nber: 2064228
---	---------------

)			
Identification code		SIM1	7-011	
Emipircal formula	$C_{14}H_{18}BrCl_2NO_4S$			
Formula wight	447.16			
Temperature		293	6(2)	
Crystal system		mono	clinic	
Sapce group		P2	1/c	
Unit cell Dimensions	a/Å	12.396(4)	alpha/º	90
	b/Å	14.044(4)	beta/º	118.17(4)
	c/Å	11.920(3)	gamma/º	90
Volume/Å ³		1829.	3(11)	
Z		2	1	
$\rho_{calc}g/cm^3$		1.6	524	
μ/mm^{-1}		2.6	570	
F(000)	904.0			
Crystal size/mm ³		0.12×0.0	09 × 0.06	
Radiation		ΜοΚα (λ=	= 0.71073)	
20 range for data collection/°		4.724 to	50.696	
Index ranges	-14	\le h \le 14, -16 \le	$k \le 16, -14 \le 16$	$l \le 14$
Reflections collected		157	794	
Independent refletions	3349	[Rint = 0.1016	3, Rsigma =	0.0773]
Data/restraints/parameters		3349/1	18/234	
Goodness-of-fit on F ²		1.0	26	
Final R indexes [I>2σ (I)]		$R_1 = 0.0527,$	$wR_2 = 0.096$	0
Final R indexes [all data]		$R_1 = 0.1256, \gamma$	$wR_2 = 0.1208$	5
Largest diff. peak/hole/e Å ^{.3}	0.44/-0.51			

Figure S3. ORTEP representation of 4d.

Table S4. Cry	stal data and	structure refineme	ent for 4d, C	CCDC Number:	2064229.
---------------	---------------	--------------------	---------------	--------------	----------

Identification code		SIM1	7-009	
Emipircal formula	$C_{17}H_{21}ClF_3NO_4S$			
Formula wight	427.86			
Temperature		293	3(2)	
Crystal system		tric	linic	
Sapce group		P	-1	
Unit cell Dimensions	a/Å	7.3770(8)	alpha/º	90.570(10)
	b/Å	11.8839(13)	beta/º	106.868(11)
	c/Å	12.4930(17)	gamma/º	100.186(9)
Volume/Å ³		1029	9.4(2)	
Z			2	
$\rho_{calc}g/cm^3$		1.3	380	
μ/mm^{-1}		0.3	335	
F(000)		44	4.0	
Crystal size/mm ³		0.561 × 0.2	235 × 0.206	
Radiation		ΜοΚα (λ	= 0.71073)	
20 range for data collection/°		4.72 to	65.892	
Index ranges	-10	\leq h \leq 10, -17 \leq	$k \le 18, -16 \le$	1≤19
Reflections collected		12:	539	
Independent refletions	663	2 [Rint = 0.1067]	7, Rsigma = 0.	.0889]
Data/restraints/parameters		6632/1	20/277	
Goodness-of-fit on F ²		1.0)20	
Final R indexes [I>2σ (I)]		$R_1 = 0.0992$,	$wR_2 = 0.2428$	
Final R indexes [all data]		$R_1 = 0.1380,$	$wR_2 = 0.2750$	
Largest diff. peak/hole/e Å ⁻³		0.39/	-0.48	

Figure S4. ORTEP representation of 5.

Table S5. Crystal data and st	tructure refinement for 5.	CCDC Number: 2065548.
-------------------------------	----------------------------	-----------------------

5	,			
Identification code		SIM1	7-032	
Emipircal formula	C ₁₅ H ₂₄ ClNO ₄ S			
Formula wight		349	9.86	
Temperature		29	93	
Crystal system		tricl	inic	
Sapce group		P.	-1	
Unit cell Dimensions	a/Å	7.0093(11)	alpha/º	93.204(8)
	b/Å	8.932(9)	beta/º	99.536(10)
	c/Å	14.7723(15)	gamma/º	96.869(10)
Volume/Å ³		909.	0(2)	
Z		4	2	
$\rho_{calc}g/cm^3$	1.278			
μ/mm^{-1}	0.340			
F(000)	372.0			
Crystal size/mm ³		0.261×0.2	233×0.085	
Radiation		ΜοΚα (λ=	= 0.71073)	
2Θ range for data collection/°		4.576 to	50.246	
Index ranges	-8	\leq h \leq 8, -10 \leq k	$\le 10, -17 \le 1$	≤17
Reflections collected		76	08	
Independent refletions	760	8 [Rint = 0.0350), Rsigma = 0.	0456]
Data/restraints/parameters		3211/7	12/222	
Goodness-of-fit on F ²		1.1	.32	
Final R indexes [I> 2σ (I)]		$R_1 = 0.0568,$	$wR_2 = 0.1324$	
Final R indexes [all data]		$R_1 = 0.0764$,	$wR_2 = 0.1423$	
Largest diff. peak/hole/e Å ⁻³	0.25/-0.24			

Figure S5. ORTEP representation of S6.

TADIC SU , CLYSIAI data and Structure refinement for SU, CCDC Number. $200+23$	Table	S6. C1	vstal	data ai	nd structi	re refineme	ent for S6.	CCDC Number:	2064230
---	-------	--------	-------	---------	------------	-------------	-------------	--------------	---------

Identification code	SIM21-032			
Emipircal formula		$C_{32}H_{60}C$	CIN ₂ O ₄ S	
Formula wight		604	.33	
Temperature		29	93	
Crystal system		mono	clinic	
Sapce group		I2	/a	
Unit cell Dimensions	a/Å	14.1676(19)	alpha/º	90
	b/Å	21.601(3)	beta/º	90.248(13)
	c/Å	23.423(4)	gamma/º	90
Volume/Å ³		7148.	8(17)	
Z		8	3	
$\rho_{calc}g/cm^3$		1.1	23	
μ/mm^{-1}		0.2	200	
F(000)		264	8.0	
Crystal size/mm ³		0.354 × 0.2	25 × 0.145	
Radiation		MoKα (λ =	= 0.71073)	
2Θ range for data collection/°		4.748 to	50.698	
Index ranges	-17	\leq h \leq 17, -26 \leq	$k \le 26, -28 \le 10^{-2}$	$l \leq 28$
Reflections collected		315	587	
Independent refletions	655	1 [Rint = 0.0845	5, Rsigma = 0.	0646]
Data/restraints/parameters	6551/67/382			
Goodness-of-fit on F ²		1.017		
Final R indexes [I>2 σ (I)]	$R_1 = 0.0619, wR_2 = 0.1515$			
Final R indexes [all data]		$R_1 = 0.1362, wR_2 = 0.1905$		
Largest diff. peak/hole/e Å ⁻³		0.31/	-0.23	

Figure S6. (A) Packing model of enoate (5). (B) Enlarged view of the packing model of 5 focusing the distance between C-Cl···O=C. (C) Schematic view of the packing model of 5.

Th The distance between the carbonyl oxygen atom and the chlorine atom is 3.23 Å, which is less than the sum of the van der Waals radii of oxygen (1.52 Å) and that of chlorine (1.75 Å), indicating that there is an attractive interaction between carbonyl oxygen and the chlorine. Those intermolecular interactions such as halogen bonding between C-Cl...O=C contribute to the s-trans conformation over s-cis conformation.

X. Natural bond orbital (NBO) analysis data

The positions of hydrogen atoms of the X-ray crystal structure of **5** were optimized at the wB97XD/6-311G(d) level of theory as implemented by Gaussian 16.^{S8} The DFT-optimized geometry were subjected to analysis with NBO 7.0^{S9} at the wB97XD/6-311++G(d,p) level of theory in the gas phase implemented in Gaussian 16.

Figure S7. NBO analysis characterized by overlap of the C=C π orbital and C-N σ^* orbital (A), C-H σ orbital and C-Cl σ^* orbital (B) from three-position angles.

16	1.504850000	2.066900000	2.306754000
17	3.166277000	-1.101932000	0.180700000
8	-0.693966000	1.371841000	-2.400915000
7	1.906351000	0.501556000	1.917142000
8	0.876152000	2.741792000	1.233582000
8	0.809649000	1.986465000	3.541686000
8	0.735956000	0.776184000	-3.988067000
6	0.953720000	0.370843000	-0.473002000
6	1.723270000	-0.210565000	0.655103000
6	0.981696000	-0.654508000	1.894239000
6	1.218612000	0.201733000	-1.748228000
6	-0.525228000	-0.512440000	2.018904000
6	0.419843000	0.799559000	-2.832407000
6	-1.522567000	2.016917000	-3.380293000
6	-2.795572000	2.420517000	-2.712119000
6	3.140734000	2.759247000	2.582730000
6	1.409240000	-1.837271000	2.724760000
6	3.819328000	2.018283000	3.720548000
6	3.950722000	2.642136000	1.289820000
6	2.895944000	4.231896000	2.965384000
6	-0.882676000	-1.297092000	3.226253000
6	0.212669000	-2.217399000	3.466936000
1	0.101944000	0.973392000	-0.182151000
1	2.075773000	-0.361277000	-2.097159000
1	-0.969511000	-0.951599000	1.116627000
1	-0.858734000	0.524365000	2.052841000
1	-1.692030000	1.322129000	-4.206005000
1	-0.976722000	2.874928000	-3.781952000
1	-2.606863000	3.105647000	-1.882626000
1	-3.327660000	1.549711000	-2.322213000
1	-3.448682000	2.924890000	-3.428715000
1	2.248084000	-1.537952000	3.355137000
1	1.782890000	-2.636213000	2.079155000
1	3.976237000	0.967147000	3.473075000
1	3.237013000	2.077107000	4.641594000
1	4.795621000	2.474968000	3.904873000
1	3.448917000	3.132086000	0.453254000
1	4.135836000	1.598591000	1.027069000
1	4.919515000	3.126779000	1.435513000
1	2.288410000	4.310079000	3.868850000
1	2.401725000	4.778336000	2.160470000
1	3.861242000	4.705517000	3.160085000
1	0.421171000	-2.312225000	4.537503000
1	-0.085624000	-3.232775000	3.174959000
1	-1.849343000	-1.794741000	3.121249000
1	-0.996781000	-0.603837000	4.067132000

XI. Energy diagram of aza-Darzens condensation

All calculations were performed with the Gaussian 16^{S8} software package. Geometry optimizations were performed with the B3LYP^{S10} density functional and the 6-31+G(d) basis set using the PCM^{S11} solvent model for THF. Frequency calculations (195 K) were used to confirm the presence of local minimum (no imaginary frequencies) and transition states (one imaginary frequency). To obtain more accurate energetics, single-point energy calculations were performed on the optimized structures at the M06^{S12} /6-311++G(d,p) level of theory using the PCM solvent model for THF. For all transition states, the intrinsic reaction coordinate (IRC) was followed to ensure it connects the reactants and products. Visualizations of the structures of the transition states were created using the CYLview^{S13} software package.

Figure S8. DFT calculations for aza-Darzens condensation with aldimine reactant. Each relative ΔG value and ΔH value given in kcal/mol are shown.

Figure S9. DFT calculations for aza-Darzens condensation with ketimine reactant. Each relative ΔG value and ΔH value given in kcal/mol are shown.

Optimized geometry of all compounds, intermediate and transition states

1. Common Reactant

1.1 Lithium enolate

•

Ĵ	$\boldsymbol{\gamma}$		
			.
6	0.609222000	-0.146528000	-0.000007000
17	1.910852000	1.040861000	0.000014000
17	1.123324000	-1.821642000	-0.000011000
6	-0.700111000	0.268736000	-0.000001000
8	-1.099747000	1.484176000	-0.000012000
8	-1.637935000	-0.743493000	0.000017000
6	-3.010453000	-0.338085000	0.000006000
1	-3.253230000	0.247557000	-0.892352000
1	-3.253215000	0.247653000	0.892304000
1	-3.582668000	-1.267937000	0.000059000
3	-0.327456000	3.138595000	-0.000035000

2. Uncommon Reactant

2.1 Aldimine

6	0.190512000	-0.969892000	-0.133157000
6	-1.216676000	-1.189208000	0.374822000
7	-0.039454000	0.414955000	0.237483000
6	1.271950000	-1.647137000	0.735982000
1	1.069324000	-1.425840000	1.789477000
1	1.182159000	-2.736091000	0.604341000
17	-1.816194000	-3.349214000	-0.225403000
17	-1.436555000	-1.302611000	2.103051000
6	-2.407069000	-0.640676000	-0.369503000
8	-2.429486000	-0.418261000	-1.568094000
8	-3.453092000	-0.459390000	0.413897000
6	-4.652584000	-0.003369000	-0.220812000
1	-4.951695000	-0.703891000	-1.006308000
1	-4.498890000	0.994530000	-0.645482000
1	-5.403245000	0.032908000	0.568953000
16	0.326561000	1.664846000	-0.777563000
6	-0.188600000	3.038614000	0.384285000
6	0.719813000	2.985574000	1.602109000
1	0.557831000	2.068395000	2.181033000
1	0.503580000	3.848864000	2.248305000
1	1.781455000	3.040823000	1.317494000
6	0.034832000	4.329249000	-0.391918000
1	-0.607142000	4.385127000	-1.278910000
1	1.081592000	4.432418000	-0.712864000
1	-0.201161000	5.184092000	0.257356000
6	-1.646773000	2.865017000	0.765514000
1	-1.798058000	1.948150000	1.349451000
1	-1.961554000	3.721558000	1.379479000
1	-2.292002000	2.833139000	-0.123298000
8	-0.626589000	1.866503000	-1.976025000
6	0.439038000	-1.321718000	-1.594836000

1	1.375416000	-0.848945000	-1.918727000
1	0.550433000	-2.407105000	-1.702634000
1	-0.365764000	-0.997072000	-2.253440000
6	2.662664000	-1.183598000	0.407216000
6	3.504511000	-1.916209000	-0.434774000
6	3.144100000	0.011301000	0.951790000
6	4.785953000	-1.460663000	-0.738046000
6	4.421011000	0.475473000	0.647246000
6	5.246507000	-0.259305000	-0.202199000
1	3.150161000	-2.858647000	-0.855808000
1	2.502145000	0.577906000	1.626523000
1	5.427993000	-2.048259000	-1.393124000
1	4.775533000	1.409805000	1.081795000
1	6.248275000	0.097322000	-0.437538000
3	-2.027238000	1.006669000	-2.852391000

2.2 Ketimine

6	0.268142000	-0.742752000	0.345913000
7	-0.708791000	0.080075000	0.204831000
6	1.363567000	-0.306902000	1.316862000
1	0.991135000	0.549089000	1.887612000
1	1.549339000	-1.127351000	2.021155000
16	-2.007370000	-0.080627000	-0.921459000
6	-3.364699000	0.539363000	0.257267000
6	-3.044875000	1.993486000	0.619909000
1	-2.132924000	2.069245000	1.217016000
1	-3.878257000	2.402393000	1.205171000
1	-2.929397000	2.617490000	-0.274624000
6	-4.652922000	0.453320000	-0.574754000
1	-4.876736000	-0.577588000	-0.864641000
1	-4.592162000	1.066311000	-1.482339000
1	-5.488818000	0.829431000	0.027168000
6	-3.435458000	-0.367839000	1.486295000
1	-2.528114000	-0.292243000	2.093469000
1	-4.287686000	-0.063674000	2.107192000
1	-3.583667000	-1.414050000	1.198660000
8	-2.384128000	-1.517740000	-1.271192000
6	0.482358000	-2.081746000	-0.318595000
1	1.489734000	-2.112097000	-0.749746000
1	0.442048000	-2.870070000	0.445074000
1	-0.259103000	-2.300643000	-1.084195000
6	2.663016000	0.056196000	0.612515000
6	3.800482000	-0.755863000	0.722955000
6	2.741895000	1.222044000	-0.166159000
6	4.990869000	-0.413940000	0.071644000
6	3.928479000	1.566159000	-0.818621000
6	5.057924000	0.747794000	-0.702541000
1	3.758195000	-1.659980000	1.326646000
1	1.868883000	1.864157000	-0.258945000
1	5.863341000	-1.054736000	0.171954000
1	3.972172000	2.473912000	-1.415276000
1	5.981833000	1.015926000	-1.208435000

3. Intermediates, transition states, products

3.1 For anti-product from aldimine

3.1.1 Intermediate 1

6	-0.518927000	-0.538865000	1.129830000	6	-0.47397
6	-1.748675000	-0.570093000	0.134001000	6	-1.34312
7	0.557382000	0.180485000	0.467961000	7	0.4859
6	-0.844569000	0.139428000	2.470014000	6	-0.88797
1	-1.115357000	1.189943000	2.328996000	1	-1.15653
1	-1.648385000	-0.366031000	3.012599000	1	-1.74234
17	-1.509106000	-1.911370000	-1.068344000	17	-1.23798
17	-3.358707000	-0.879964000	0.940466000	17	-3.71031
6	-1.817936000	0.765151000	-0.652205000	6	-1.63404
8	-1.430666000	0.907748000	-1.804068000	8	-1.52990
8	-2.336168000	1.732884000	0.076396000	8	-2.00773
6	-2.379232000	3.057810000	-0.516473000	6	-2.22756
1	-2.992667000	3.036961000	-1.418974000	1	-3.02202
1	-1.365367000	3.387030000	-0.750836000	1	-1.30345
1	-2.829156000	3.690183000	0.246668000	1	-2.52439
16	1.747469000	-0.742544000	-0.155431000	16	1.68304
6	3.295744000	0.252899000	0.295394000	6	3.23480
6	3.433484000	0.178637000	1.820066000	6	3.2705.
1	2.591098000	0.667726000	2.318265000	1	2.44134
1	4.357699000	0.684066000	2.128591000	1	4.2076
1	3.488683000	-0.860016000	2.170557000	1	3.23728
6	4.475341000	-0.448272000	-0.391979000	6	4.4081.
1	4.374827000	-0.417993000	-1.480780000	1	4.3654
1	4.557955000	-1.497556000	-0.081357000	1	4.4323
1	5.410630000	0.056305000	-0.116580000	1	5.34763
6	3.151858000	1.698158000	-0.183373000	6	3.1755
1	2.288593000	2.180846000	0.284723000	1	2.32589
1	4.054350000	2.262601000	0.086525000	1	4.09802
1	3.036305000	1.744274000	-1.271477000	1	3.1006
8	1.750947000	-0.620467000	-1.731390000	8	1.63134
3	0.252392000	0.145943000	-2.480903000	3	0.1071
1	0.063486000	0.101527000	3.079788000	1	-0.04520
1	-0.293665000	-1.598140000	1.331955000	1	-0.17712

3.1.2 Transition state

-0.473978000	-0.857484000	1.115368000
-1.343125000	-0.540599000	-0.052186000
0.485973000	0.088027000	0.507071000
-0.887971000	-0.491279000	2.531517000
-1.156531000	0.562738000	2.611759000
-1.742343000	-1.100698000	2.838497000
-1.237980000	-1.628409000	-1.419817000
-3.710318000	-1.059529000	0.523162000
-1.634047000	0.892282000	-0.435067000
-1.529901000	1.302930000	-1.590479000
-2.007731000	1.643138000	0.580628000
-2.227562000	3.049302000	0.310158000
-3.022028000	3.164827000	-0.429383000
-1.303454000	3.507408000	-0.049304000
-2.524398000	3.474502000	1.267409000
1.683046000	-0.563678000	-0.504641000
3.234806000	0.067500000	0.388934000
3.270532000	-0.637786000	1.749185000
2.441344000	-0.320074000	2.388574000
4.207671000	-0.381787000	2.258292000
3.237289000	-1.729296000	1.645177000
4.408138000	-0.374980000	-0.496936000
4.365471000	0.095417000	-1.484008000
4.432355000	-1.463469000	-0.627621000
5.347633000	-0.074699000	-0.016711000
3.175555000	1.588391000	0.528014000
2.325896000	1.899374000	1.142406000
4.098026000	1.935337000	1.010510000
3.100678000	2.072782000	-0.450653000
1.631348000	0.282640000	-1.804729000
0.107150000	1.020251000	-2.642047000
-0.045204000	-0.696439000	3.201055000
-0.177125000	-1.910795000	1.070755000

3.1.4 anti-product

6	0.461657000	0.806390000	-1.316639000
6	1.175294000	-0.141465000	-0.396693000
7	-0.158845000	0.303713000	-0.072482000
6	0.763994000	2.281670000	-1.427121000
1	1.052056000	2.704769000	-0.461768000
1	1.578500000	2.438301000	-2.143858000
17	1.452193000	-1.805406000	-1.045389000
6	2.273166000	0.329732000	0.547952000
8	2.071253000	1.096058000	1.467303000
8	3.469988000	-0.144280000	0.199072000
6	4.592768000	0.287933000	1.005003000
1	4.448845000	-0.024955000	2.041254000
1	4.694297000	1.374124000	0.952179000
1	5.460247000	-0.204768000	0.568457000
16	-1.496619000	-0.886962000	-0.139290000
6	-2.895561000	0.324219000	0.262833000
6	-2.964601000	1.366800000	-0.857936000
1	-2.120751000	2.060375000	-0.820195000
1	-3.882596000	1.954376000	-0.736487000
1	-3.000170000	0.902866000	-1.851486000
6	-4.147847000	-0.569644000	0.255554000
1	-4.093291000	-1.346763000	1.024337000
1	-4.303549000	-1.049657000	-0.718207000
1	-5.025356000	0.053436000	0.464732000
6	-2.663559000	0.950267000	1.637771000
1	-1.771463000	1.582473000	1.645799000
1	-3.532125000	1.569226000	1.895117000
1	-2.553651000	0.180302000	2.407702000
8	-1.314100000	-1.751437000	1.085692000
1	-0.114710000	2.821173000	-1.797000000
1	0.145245000	0.323878000	-2.243838000

6	0.634195000	-0.852079000	0.023271000
6	0.622079000	0.590566000	0.397148000
7	-0.563159000	0.015865000	-0.188046000
6	1.307664000	-1.413456000	-1.202250000
1	1.309174000	-0.693923000	-2.026256000
1	2.340170000	-1.686511000	-0.953219000
17	0.705995000	0.984351000	2.155822000
17	4.694748000	-2.833704000	0.172081000
6	1.186411000	1.758631000	-0.390492000
8	0.461290000	2.638891000	-0.842758000
8	2.493855000	1.722368000	-0.496265000
6	3.147249000	2.829722000	-1.179499000
1	2.940756000	3.758053000	-0.644146000
1	2.784479000	2.889868000	-2.206808000
1	4.207028000	2.586392000	-1.150735000
16	-2.065544000	0.042274000	0.720724000
6	-3.087382000	-1.108841000	-0.374847000
6	-2.489074000	-2.514130000	-0.233553000
1	-1.514894000	-2.598739000	-0.722373000
1	-3.164676000	-3.227877000	-0.718935000
1	-2.388068000	-2.817622000	0.815045000
6	-4.489155000	-1.041530000	0.255907000
1	-4.910632000	-0.033043000	0.201257000
1	-4.484340000	-1.366000000	1.302939000
1	-5.150616000	-1.716356000	-0.299119000
6	-3.096055000	-0.612967000	-1.820183000
1	-2.101755000	-0.660014000	-2.272175000
1	-3.768427000	-1.254397000	-2.402350000
1	-3.469965000	0.413655000	-1.887482000
8	-2.541365000	1.469443000	0.427860000
3	-1.523693000	2.809001000	-0.582807000
1	0.788883000	-2.320121000	-1.532432000
1	0.606312000	-1.509927000	0.891896000

3.2 For syn-product from aldimine

3.2.1 Intermediate 1

6	-0.536453000	-1.171845000	-0.560366000
6	-1.797234000	-0.482825000	0.018127000
7	0.573161000	-0.483383000	0.103126000
6	-0.529792000	-2.697673000	-0.396934000
1	-0.455762000	-2.974289000	0.658652000
1	-1.420309000	-3.168093000	-0.830319000
17	-3.304867000	-0.948322000	-0.934102000
17	-2.075099000	-0.932099000	1.742115000
6	-1.673337000	1.048029000	-0.160815000
8	-1.334026000	1.541458000	-1.230972000
8	-2.059514000	1.754317000	0.880706000
6	-2.028299000	3.198945000	0.748556000
1	-2.664943000	3.507408000	-0.082723000
1	-1.001080000	3.531263000	0.586373000
1	-2.411953000	3.574116000	1.695520000
16	1.901545000	-0.395626000	-0.836979000
6	3.199463000	0.009484000	0.471961000
6	3.319265000	-1.218821000	1.382126000
1	2.389268000	-1.395264000	1.928642000
1	4.127537000	-1.055285000	2.106805000
1	3.562672000	-2.122829000	0.809630000
6	4.509929000	0.249269000	-0.290967000
1	4.425879000	1.104330000	-0.968205000
1	4.801849000	-0.630273000	-0.878307000
1	5.313873000	0.454919000	0.427092000
6	2.781540000	1.252922000	1.258564000
1	1.835933000	1.084660000	1.781053000
1	3.555596000	1.488417000	2.000846000
1	2.670669000	2.118701000	0.596814000
8	1.896140000	0.908429000	-1.744529000
3	0.351306000	1.816993000	-2.135920000
1	-0.601816000	-0.952130000	-1.638835000
1	0.349960000	-3.094308000	-0.914866000

3.2.2 Transition state

6	-0.619132000	-1.431642000	-0.541899000
6	-1.408092000	-0.413283000	0.226519000
7	0.586110000	-0.977963000	0.134269000
6	-0.968461000	-2.905075000	-0.363978000
1	-0.918830000	-3.197305000	0.688464000
1	-1.970321000	-3.116376000	-0.750471000
17	-3.601503000	-0.538477000	-0.772803000
17	-1.790723000	-0.763983000	1.885627000
6	-1.331084000	1.035231000	-0.169365000
8	-0.977425000	1.412133000	-1.282183000
8	-1.718603000	1.861588000	0.788586000
6	-1.766140000	3.270704000	0.459616000
1	-2.454995000	3.432135000	-0.372026000
1	-0.767284000	3.627336000	0.199660000
1	-2.127674000	3.757454000	1.363775000
16	1.939369000	-0.723449000	-0.807454000
6	3.030702000	0.147272000	0.469801000
6	3.259142000	-0.840742000	1.620269000
1	2.327895000	-1.060699000	2.147401000
1	3.968217000	-0.398587000	2.331542000
1	3.689518000	-1.784439000	1.263689000
6	4.345629000	0.444792000	-0.265518000
1	4.191682000	1.128958000	-1.105338000
1	4.814820000	-0.471386000	-0.644046000
1	5.046188000	0.914427000	0.435330000
6	2.352686000	1.432640000	0.945235000
1	1.414073000	1.216566000	1.463465000
1	3.020570000	1.951215000	1.644612000
1	2.150554000	2.109278000	0.108057000
8	1.770288000	0.317538000	-1.955725000
3	0.367296000	1.318036000	-2.625529000
1	-0.674625000	-1.163206000	-1.603977000
1	-0.242100000	-3.506191000	-0.921666000

3.2.4 syn-product

3.2.3 Intermediate 2

-0.729422000

-0.198389000

0.495104000

-0.629225000

0.288866000

-1.491887000

-3.686698000

0.666373000

-1.037675000

-1.845737000

-0.827205000

-1.619441000

-2.680361000

-1.400911000

-1.308344000

0.842087000

2.542002000

3.464859000

3.167568000

4.483655000

3.489094000

2.976194000

2.313888000

3.007822000

3.987283000

2.428945000

2.194228000

3.395627000

1.677293000

-0.040056000

-1.977122000

-1.625967000

-0.643186000

-0.016800000

3.815574000

6

6

7

6

1

1

17

17

6

8

8

6

1

1

1

16

6 6

1

1

1

6

1

1

1

6

1

1

1

8

3

1

0.449685000	1.733843000	6	1 058838000	1 611233000	-1 015956000
1.265434000	0.573126000	6	1 246668000	0.587790000	0.053869000
0.081388000	1.028912000	7	-0.083083000	1.045319000	-0 270466000
0.873469000	3.177322000	6	1 341007000	3 084336000	-0.860631000
1.431882000	3.372501000	1	1 151204000	3 423442000	0.160552000
1.494731000	3.442260000	1	2 286568000	3 202150000	1 115402000
-2.439075000	0.317535000	1	2.380308000	1 064800000	-1.113492000
2.803713000	0.885273000	6	1.849913000	0.701002000	0.240011000
1.267795000	-0.701442000	0	1.781384000	-0.791092000	-0.349011000
0.385833000	-0.947982000	8	2.36/32/000	-0.98181/000	-1.395491000
2.315121000	-1.474947000	8	1.568899000	-1./06340000	0.591/9/000
2.400550000	-2.690877000	6	2.02861/000	-3.046543000	0.298139000
2.423293000	-2.436292000	l	3.108422000	-3.044046000	0.133907000
1.544952000	-3.332381000	1	1.513637000	-3.425638000	-0.587133000
3.331756000	-3.160244000	1	1.772432000	-3.634149000	1.178517000
-1.464811000	0.313824000	16	-1.332582000	0.096104000	-1.076761000
-1.061922000	-0.418195000	6	-2.485723000	-0.111961000	0.411589000
-0.695574000	0.749711000	6	-2.991594000	1.286170000	0.785143000
0.242628000	1.224565000	1	-2.183625000	1.921977000	1.157028000
-0.577985000	0.361482000	1	-3.743866000	1.187454000	1.577311000
-1.483010000	1.512024000	1	-3.469593000	1.786920000	-0.065460000
-2 383991000	-1 073062000	6	-3.628359000	-0.986249000	-0.130647000
-2 663709000	-1 897270000	1	-3.272086000	-1.978986000	-0.421789000
-3 208058000	-0.350788000	1	-4.123107000	-0.524437000	-0.993729000
-2 254073000	-1 475532000	1	-4.380410000	-1.110085000	0.657435000
0.057744000	1.473332000	6	-1.760034000	-0.800659000	1.567551000
1 021796000	0.003064000	1	-0.976757000	-0.165554000	1.991106000
0.161709000	-0.993904000	1	-2.486710000	-1.016087000	2.360957000
0.175621000	2 21/001000	1	-1.313786000	-1.748146000	1.250680000
1 785060000	-2.214991000	8	-0.812383000	-1.284461000	-1.430232000
1 616525000	-0.093/90000	1	1.232568000	1.205314000	-2.014023000
-1.010323000	-0.904483000	1	0.703886000	3.656152000	-1.544389000
-0.114521000	1.4/31/1000				

3.3 For *anti*-product from ketimine

3.3.1 Intermediate 1

6	-0.361796000	-0.634228000	-0.629233000				
6	-1.959518000	-0.764833000	-0.478558000	6	-0.214913000	-0.713695000	-0.678964000
7	0.020449000	0.556002000	0.124256000	6	-1.701218000	-0.640413000	-0.433177000
6	0.287504000	-1.869860000	0.099141000	7	-0.125925000	0.535024000	0.123801000
1	-0.075425000	-1.886811000	1.127388000	6	0.495606000	-1.894829000	0.048371000
1	-0.072088000	-2.782190000	-0.384868000	1	0.104202000	-1.968288000	1.060578000
17	-2.821590000	0.366109000	-1.613436000	1	0.190242000	-2.804667000	-0.477570000
17	-2.630822000	-2.440614000	-0.855635000	17	-2.687872000	0.172256000	-1.646321000
6	-2.420023000	-0.382363000	0.958577000	17	-2.697048000	-2.854964000	-0.732076000
8	-2.980911000	0.664802000	1.247563000	6	-2.271854000	-0.442005000	0.963058000
8	-2.175661000	-1.337158000	1.835063000	8	-3.139075000	0.395855000	1.204938000
6	-2.528580000	-1.070303000	3.217669000	8	-1.784066000	-1.256049000	1.876935000
1	-3.604294000	-0.902737000	3.296695000	6	-2.263068000	-1.080485000	3.233382000
1	-1.979560000	-0.197422000	3.575383000	1	-3.341028000	-1.248548000	3.269288000
1	-2.232968000	-1.967310000	3.758884000	1	-2.022848000	-0.075121000	3.585353000
16	0.061073000	1.993328000	-0.655770000	1	-1.733668000	-1.833614000	3.814629000
6	1.601774000	2.807901000	0.087492000	16	-0.235745000	2.040428000	-0.660491000
6	2.809463000	2.051736000	-0.476841000	6	1.299357000	2.906131000	0.041015000
1	2.808722000	1.006343000	-0.159248000	6	2.516617000	2.224551000	-0.592244000
1	3.734194000	2.521690000	-0.116968000	1	2.606635000	1.181785000	-0.277066000
1	2.825306000	2.084143000	-1.573812000	1	3.424348000	2.753274000	-0.275873000
6	1.601545000	4.261307000	-0.406470000	1	2.476449000	2.261479000	-1.687723000
1	0.740468000	4.813964000	-0.020970000	6	1.177675000	4.361854000	-0.433172000
1	1.583265000	4.314335000	-1.502574000	1	0.297428000	4.850886000	-0.006455000
1	2.517424000	4.760492000	-0.063649000	1	1.122121000	4.431257000	-1.526334000
6	1.555329000	2.739617000	1.614157000	1	2.068767000	4.913362000	-0.108508000
1	1.517915000	1.701741000	1.956259000	6	1.306709000	2.814406000	1.566643000
1	2.456259000	3.212828000	2.027462000	1	1.386105000	1.777588000	1.902647000
1	0.681790000	3.271167000	2.006540000	1	2.170159000	3.372455000	1.950643000
8	-1.068207000	2.953516000	-0.102729000	1	0.399920000	3.255419000	1.992857000
6	0.023205000	-0.690330000	-2.120633000	8	-1.406477000	2.796546000	0.029915000
1	1.112029000	-0.641432000	-2.202762000	6	0.202173000	-0.686189000	-2.152837000
1	-0.315596000	-1.627049000	-2.577273000	1	1.288339000	-0.581727000	-2.214384000
1	-0.392048000	0.139091000	-2.694062000	1	-0.083554000	-1.628597000	-2.631171000
6	1.801989000	-1.911566000	0.130016000	1	-0.249173000	0.132394000	-2.713088000
6	2.533569000	-2.558624000	-0.879642000	6	2.007093000	-1.812056000	0.113324000
6	2.512966000	-1.375940000	1.215802000	6	2.817101000	-2.395170000	-0.875313000
6	3.928110000	-2.649324000	-0.820337000	6	2.638998000	-1.200097000	1.208184000
6	3.906011000	-1.468734000	1.285708000	6	4.211739000	-2.351712000	-0.785022000
6	4.621249000	-2.102045000	0.263911000	6	4.033032000	-1.154676000	1.305291000
1	2.006194000	-3.008058000	-1.718253000	6	4.825734000	-1.727240000	0.305588000
1	1.964161000	-0.881521000	2.012356000	1	2.352392000	-2.900911000	-1.718742000
1	4.470002000	-3.156048000	-1.615447000	1	2.029841000	-0.762269000	1.994721000
1	4.432653000	-1.047344000	2.138922000	1	4.816948000	-2.813582000	-1.561317000
1	5.704623000	-2.176881000	0.316783000	1	4.498975000	-0.677551000	2.164204000
3	-2.663628000	2.462190000	0.602071000	1	5.909817000	-1.697455000	0.380891000

3.3.2 Transition state

3

-3.121040000

0.439117000

2.178467000

3.3.4 anti-product

5.5.5 micrimourate 2	3.	3.3	Intermediate	2
----------------------	----	-----	--------------	---

-3.330089000

3

-1.375765000

6	0.391054000	-0.451469000	-0.455087000	6	-0.099230000	-0.820151000	-0.878812000
6	-0.592485000	-1.543446000	-0.162001000	6	-1.555162000	-0.854261000	-0.513667000
7	-1.007748000	-0.175122000	0.053827000	7	-0.741645000	0.218059000	-0.003551000
6	1.497408000	-0.204135000	0.583217000	6	0.816965000	-1.808675000	-0.131962000
1	1.133352000	-0.510633000	1.568762000	1	0.397167000	-1.990056000	0.861895000
1	2.314767000	-0.883595000	0.306440000	1	0.751109000	-2.757363000	-0.680938000
17	-1.240355000	-2.539167000	-1.525523000	17	-2.785458000	-0.583088000	-1.819657000
17	4.313304000	-2.017881000	-1.467494000	6	-2.146403000	-1.861798000	0.464880000
6	-0.659502000	-2.415466000	1.081489000	8	-2.381218000	-3.012895000	0.150412000
8	-1.616678000	-2.376731000	1.848558000	8	-2.363664000	-1.335268000	1.667465000
8	0.378008000	-3.210485000	1.206148000	6	-2.945036000	-2.216278000	2.659747000
6	0.386470000	-4.141136000	2.325054000	1	-2.280387000	-3.063607000	2.841824000
1	-0.470746000	-4.812100000	2.246322000	1	-3.918860000	-2.571621000	2.316023000
1	0.353541000	-3.584921000	3.263354000	1	-3.048638000	-1.604658000	3.554643000
1	1.322506000	-4.686202000	2.224924000	16	-1.153608000	1.891524000	-0.521429000
16	-2.426144000	0.381530000	-0.836568000	6	0.237282000	2.807999000	0.376215000
6	-2.430713000	2.204964000	-0.348237000	6	1.555802000	2.456234000	-0.320037000
6	-1.215714000	2.857447000	-1.017728000	1	1.843202000	1.414493000	-0.159390000
1	-0.273616000	2.536567000	-0.566591000	1	2.352322000	3.085508000	0.095517000
1	-1.291138000	3.943413000	-0.888402000	1	1.511191000	2.652056000	-1.398222000
1	-1.185255000	2.657047000	-2.095112000	6	-0.116697000	4.288043000	0.148147000
6	-3.741411000	2.724431000	-0.965852000	1	-1.070236000	4.550791000	0.615583000
1	-4.618203000	2.238634000	-0.527051000	1	-0.167761000	4.538380000	-0.918563000
1	-3.767216000	2.584752000	-2.052725000	1	0.667970000	4.907585000	0.598317000
1	-3.812956000	3.799671000	-0.766294000	6	0.233631000	2.461867000	1.864682000
6	-2.430308000	2.358038000	1.171685000	1	0.494758000	1.414948000	2.035778000
1	-1.511168000	1.971804000	1.617600000	1	0.971299000	3.092903000	2.376077000
1	-2.506506000	3.424944000	1.413440000	1	-0.747142000	2.655073000	2.310895000
1	-3.288076000	1.849750000	1.623506000	8	-2.424934000	2.197000000	0.237407000
8	-3.541279000	-0.280421000	-0.017703000	6	0.313198000	-0.507180000	-2.305839000
6	0.770826000	-0.161003000	-1.893461000	1	1.312630000	-0.062946000	-2.317778000
1	1.063187000	0.887645000	-1.993914000	1	0.349488000	-1.436087000	-2.886087000
1	1.635776000	-0.779156000	-2.158373000	1	-0.373726000	0.177472000	-2.804060000
1	-0.038482000	-0.364873000	-2.595935000	6	2.273855000	-1.414926000	0.024037000
6	2.025624000	1.215018000	0.674623000	6	3.208681000	-1.654319000	-0.996191000
6	3.039620000	1.664863000	-0.187012000	6	2.727973000	-0.838800000	1.220659000
6	1.543606000	2.093981000	1.656703000	6	4.552716000	-1.305919000	-0.835170000
6	3.535700000	2.967829000	-0.086134000	6	4.071902000	-0.491378000	1.388058000
6	2.039229000	3.397273000	1.762293000	6	4.988628000	-0.718996000	0.357406000
6	3.033489000	3.840749000	0.885037000	1	2.886985000	-2.129272000	-1.920157000
1	3.457773000	0.979857000	-0.920689000	1	2.024297000	-0.668109000	2.032164000
1	0.783859000	1.750738000	2.355421000	1	5.259865000	-1.501913000	-1.637242000
1	4.324208000	3.296094000	-0.758684000	1	4.401788000	-0.048503000	2.324492000
1	1.654963000	4.060728000	2.533262000	1	6.034595000	-0.452848000	0.485908000
1	3.424347000	4.851793000	0.966970000				

1.549936000

3.4 For syn-product from ketimine

3.4.1 Intermediate 1

6	0.086483000	-0.897157000	-0.129237000	6	0.217259000	-0.814438000	-0.096600000
6	-1.274439000	-1.633603000	0.235690000	6	-1.175214000	-1.211505000	0.395590000
7	-0.313521000	0.478029000	0.204924000	7	-0.118553000	0.557418000	0.281664000
6	1.236991000	-1.447024000	0.788774000	6	1.344527000	-1.419697000	0.800868000
1	1.038476000	-1.101039000	1.804755000	1	1.191004000	-1.065331000	1.821843000
1	1.171422000	-2.542601000	0.798346000	1	1.208590000	-2.507008000	0.804196000
17	-1.445244000	-3.317230000	-0.507385000	17	-1.501322000	-3.472969000	-0.228616000
17	-1.469700000	-1.861242000	2.026515000	17	-1.394910000	-1.362012000	2.129737000
6	-2.454997000	-0.794503000	-0.322816000	6	-2.431768000	-0.824758000	-0.359072000
8	-2.591072000	-0.585197000	-1.526377000	8	-2.473035000	-0.582620000	-1.561255000
8	-3.367920000	-0.466514000	0.573421000	8	-3.508198000	-0.818405000	0.412414000
6	-4.525367000	0.260868000	0.098618000	6	-4.778225000	-0.564640000	-0.231803000
1	-5.037664000	-0.314889000	-0.674759000	1	-4.958472000	-1.315569000	-1.003682000
1	-4.216836000	1.233384000	-0.291808000	1	-4.783633000	0.436863000	-0.667293000
1	-5.158287000	0.384158000	0.975978000	1	-5.516169000	-0.641408000	0.565046000
16	0.208122000	1.701140000	-0.737854000	16	0.105907000	1.820037000	-0.779313000
6	-0.171541000	3.157283000	0.414939000	6	-0 247915000	3 243175000	0 417044000
6	0.739567000	3.038444000	1.640888000	6	0.824413000	3 213515000	1 511521000
1	0.530325000	2.122557000	2.199866000	1	0.750761000	2 306091000	2 116041000
1	0.568748000	3.897880000	2.302239000	1	0.685626000	4 081404000	2 168527000
1	1.798713000	3.044308000	1.356866000	1	1 834608000	3 275239000	1 089065000
6	0.167138000	4.422333000	-0.386645000	6	-0 122232000	4 519083000	-0 429645000
1	-0.470176000	4.516465000	-1.270483000	1	-0.874195000	4 550014000	-1 223007000
1	1.214624000	4.425297000	-0.712914000	1	0.870925000	4 605916000	-0.887260000
1	0.011147000	5.304224000	0.247680000	1	-0.268921000	5 391624000	0.218431000
6	-1.647652000	3.137226000	0.814791000	6	-1 655484000	3 094762000	0.996919000
1	-1.893454000	2.223755000	1.363039000	1	-1 743488000	2 180285000	1 590377000
1	-1.858417000	4.001057000	1.459015000	1	-1.866493000	3 952887000	1.647793000
1	-2.294373000	3.206787000	-0.066362000	1	-2 410004000	3.078309000	0.203657000
8	-0.773329000	1.997133000	-1.950019000	8	-2.410004000	2.008181000	1 852344000
6	0.465119000	-1.173373000	-1.603040000	6	-1.010330000	1 139/13000	-1.568786000
1	1 303219000	-0 529108000	-1 882007000	1	1 410034000	-1.139413000	1 872424000
1	0 788102000	-2.208806000	-1 738930000	1	0.687477000	-0.010001000	-1.8/3434000
1	-0.363088000	-0.983915000	-2 284436000	1	0.08/4//000	-2.212000000	-1.081023000
6	2 649649000	-1.054086000	0 405980000	6	-0.301834000	-0.838830000	-2.231790000
6	3 449822000	-1 894805000	-0 386090000	6	2.739230000	-1.08//38000	0.373270000
6	3 217134000	0 141214000	0.875400000	6	2 245846000	-2.012300000	-0.340890000
6	4 761744000	-1 544625000	-0 718400000	6	5.545840000	0.141803000	0.714387000
6	4 528292000	0.498748000	0.546152000	6	4.844731000	-1./1300/000	-0./28086000
6	5 305814000	-0 341377000	-0 256895000	6	4.030283000	0.4438/3000	0.333139000
1	3 044055000	-2 839597000	-0.741461000	0	3.410800000	-0.481461000	-0.392/86000
1	2 626244000	-2.839397000	1 512002000	1	3.104918000	-2.9/8320000	-0.60/295000
1	5 360080000	-2 214637000	-1 331302000	1	2.771865000	0.862121000	1.290384000
1 1	J. J00087000 A 04/150000	-2.214037000	0 022752000	1	5.424/08000	-2.450050000	-1.281/89000
1 1	6 3 2 7 0 0 7 0 0 0	0.067024000	0.525752000	1	5.090153000	1.403801000	0.610163000
2	0.52/00/000	-0.00/934000	-0.510550000	1	6.431806000	-0.249069000	-0.685213000
3	-2.119/33000	0.937723000	-2.39248/000	3	-2.20/110000	0.920001000	-2.710580000

3.4.2 Transition state

3.4.4 syn-product

3.4.3 Intermediate 2
• •
- H
4CT I
and and

			3	
0.047431000	6	0.539255000	-1.115514000	-0.134717000
0.962040000	6	-0.850385000	-1.196100000	0.434907000
0.491757000	7	-0.251807000	0.091795000	0.235728000
0.628194000	6	1.743892000	-1.394601000	0.775434000
1.672209000	1	1.483649000	-1.118830000	1.799837000
0.621230000	1	1.912093000	-2.478910000	0.766443000
-2.336404000	17	-1.107452000	-1.672306000	2.181863000
2.747646000	6	-2.039577000	-1.753228000	-0.355631000
0.491992000	8	-1.933493000	-2.635494000	-1.183311000
0.097857000	8	-3.187007000	-1.209705000	0.040109000
0.579266000	6	-4.383081000	-1.676905000	-0.625204000
0.208584000	1	-4.502785000	-2.751388000	-0.469159000
-0.838856000	1	-4.321758000	-1.455952000	-1.693013000
0.848922000	1	-5.199906000	-1.125328000	-0.161952000
0.369018000	16	-0.726449000	1.308780000	-0.949610000
-0.482909000	6	-1.455715000	2.579965000	0.253929000
0.902116000	6	-0.312754000	3.052841000	1.159012000
1.720963000	1	0.032508000	2.254347000	1.821116000
2.268443000	1	-0.676856000	3.880412000	1.780176000
2.448524000	1	0.540817000	3.423906000	0.579171000
1.090862000	6	-1.933780000	3.714406000	-0.668040000
0.140211000	1	-2.734893000	3.380932000	-1.334467000
-0.466583000	1	-1.116672000	4.119247000	-1.277486000
-0.509536000	1	-2.322552000	4.530570000	-0.047715000
0.872416000	6	-2.617177000	1.982218000	1.046714000
1.758876000	1	-2.280313000	1.197045000	1.729454000
2.313827000	1	-3.079319000	2.777256000	1.645529000
2,490596000	1	-3.380899000	1.566981000	0.383247000
1.161010000	8	-1.868170000	0.810521000	-1.816392000
-1.313606000	6	0.775100000	-1.442479000	-1.601706000
-1.378484000	1	1.615314000	-0.846091000	-1.971929000
-2.049635000	1	1.039012000	-2.499733000	-1.706026000
-1.437967000	1	-0.096091000	-1.246343000	-2.226426000
-1.745054000	6	3.015839000	-0.677309000	0.363513000
-0.134293000	6	4.042301000	-1.354267000	-0.311821000
-1.110249000	6	3.196598000	0.683108000	0.661457000
0.127030000	6	5.215310000	-0.691491000	-0.687718000
-1.815968000	6	4.365786000	1.350411000	0.285471000
-0.576906000	6	5.379694000	0.665102000	-0.392564000
-1.553670000	1	3.925614000	-2.411100000	-0.542595000
-1.316828000	1	2.418623000	1.220627000	1.197434000
0.893001000	1	5.999555000	-1.236202000	-1.207545000
-2.566430000	1	4.487674000	2.403260000	0.527927000
-0.357946000	1	6.291246000	1.181935000	-0.681498000
-2.099446000				

6	0.866998000	-1.111878000	0.047431000
6	-0.343575000	-1.049787000	0.962040000
7	0.251695000	0.153075000	0.491757000
6	2.250869000	-1.422199000	0.628194000
1	2.274861000	-1.100659000	1.672209000
1	2.368787000	-2.512866000	0.621230000
17	-5.165085000	0.300456000	-2.336404000
17	-0.214176000	-1.350701000	2.747646000
6	-1.684069000	-1.600443000	0.491992000
8	-2.616064000	-0.921002000	0.097857000
8	-1.701412000	-2.919992000	0.579266000
6	-2.938034000	-3.591361000	0.208584000
1	-3.166860000	-3.388459000	-0.838856000
1	-3.749910000	-3.242457000	0.848922000
1	-2.738758000	-4.649085000	0.369018000
16	-0.203249000	1.514059000	-0.482909000
6	-0.677743000	2.724855000	0.902116000
6	0.593899000	2.976466000	1.720963000
1	0.907623000	2.084000000	2.268443000
1	0.385138000	3.769858000	2.448524000
1	1.424299000	3.315512000	1.090862000
6	-1.103450000	3.990988000	0.140211000
1	-1.996758000	3.817798000	-0.466583000
1	-0.304610000	4.367276000	-0.509536000
1	-1.334423000	4.773183000	0.872416000
6	-1.821415000	2.182516000	1.758876000
1	-1.531448000	1.286255000	2.313827000
1	-2.097697000	2.951632000	2.490596000
1	-2.710554000	1.964134000	1.161010000
8	-1.463039000	1.290426000	-1.313606000
6	0.639464000	-1.589691000	-1.378484000
1	1.357314000	-1.107826000	-2.049635000
1	0.795593000	-2.671870000	-1.437967000
1	-0.364590000	-1.360379000	-1.745054000
6	3.393079000	-0.775696000	-0.134293000
6	4.107221000	-1.487267000	-1.110249000
6	3.760631000	0.553883000	0.127030000
6	5.153483000	-0.884816000	-1.815968000
6	4.804887000	1.160385000	-0.576906000
6	5.503460000	0.443204000	-1.553670000
1	3.847692000	-2.523407000	-1.316828000
1	3.231316000	1.115059000	0.893001000
1	5.695793000	-1.454392000	-2.566430000
1	5.076400000	2.190054000	-0.357946000
1	6.317812000	0.912540000	-2.099446000
3	-3.179858000	0.437133000	-1.261321000

XII. ¹H NMR and ¹³C NMR charts

90 80 f1 (ppm) . 140

-7.26 CDCl3

.5

XIII. References

- S1. G. Li, X. Xu, H. Tian, X. Liu, W. Chen, X. Yang and H. Zhang, RSC Adv., 2017, 7, 50822.
- S2. C. N. Rao, D. Lentz and H. U. Reissing, Angew. Chem. Int. Ed., 2015, 54, 2750.
- S3. C. N. Rao, D. Lentz and H. U. Reissing, Angew. Chem. Int. Ed., 2018, 57, 10368.
- S4. F. Xue and T. Hayashi, Angew. Chem. Int. Ed., 2018, 57, 10368.
- S5. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339.
- S6. G. M. Sheldrick, *Acta Cryst.*, 2015, A71, 3.
- S7. G. M. Sheldrick, Acta Cryst. 2008, A64, 112.
- S8. Gaussian 16, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.
- S9. NBO 7.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis, and F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI (2018)
- S10. A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- S11. S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 1981, 55, 117.
- S12. Y. Zhao, Theor. Chem. Acc. 2008, 120, 215.
- S13. CYLview, 1.0b, C. Y. Legault, Université de Sherbrooke, 2009 (http://www.cylview.org).