NIR emissive light-harvesting systems through passivation perovskite and sequential energy transfer for third-level fingerprint imaging

Kaipeng Zhonga, Siyu Lu*b, Wenting Guo ${ }^{\text {a }}$, Junxia Su ${ }^{\text {a }}$, Shihao Sun ${ }^{\text {a }}$, Jun Hai*a, Baodui Wang*,a

${ }^{\text {a }}$ State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, Lanzhou, 730000, China.
${ }^{\mathrm{b}}$ Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450000, People's Republic of China.

1. Experimental section

1.1 Materials and physical methods

All the commercial materials and reagents were purchased from Energy Chemical or Aladdin Reagents and used directly as received. All other reagents and solvents were commercially available at analytical grade and were used without further purification. Field-emission scanning electron microscope (FE-SEM, FEI, Sirion 200), transmission electron microscope (TEM, Tecna i-G2-F30 (FEI)), X-ray powder diffraction (XRD, AXS D8-Advanced diffractometer), UV-vis absorbance measurements were recorded on Shimadzu UV-1750. Photoluminescence (PL) spectra were acquired on an Edinburgh Instruments FLS920 fluorescence spectrometer. For the measurement of PL lifetime, the used excitation wavelength (λ ex) was 360 nm and the maximum emission wavelength ($\lambda \mathrm{em}$) was 550 nm . The average lifetime (Ave. τ) is calculated according to $\tau=\tau_{1} \cdot I_{1}+\tau_{2} \cdot I_{2}+\tau_{3} \cdot I_{3}$ (τ_{i} is the lifetime; I_{i} is the relative intensity). ${ }^{1}$ Single-crystal X-ray diffraction (SC-XRD) data was collected at 291.4 K , using a Supernova (Agilent Technologies Co., Ltd. Poland). ${ }^{1} \mathrm{H}$-NMR spectrums were gathered on a JEOL ESC 400 M instrument. Chemical shifts are reported in ppm downfield from tetramethylsilane (TMS, δ scale with solvent resonances as internal standards). Mass spectra were performed on a Bruker Esquire 3000 plus mass spectrometer (Bruker-Franzen Analytik GmbH Bremen, Germany) equipped with ESI interface and ion trap analyzer. FT-IR spectra were performed on a Nicolet FT-170SX spectrometer. Melting points were measured on an X-4 digital melting-point apparatus (uncorrected). Fluorescence microscopic images were obtained with a microscope (Zeiss).
1.2 Synthesis and assembly performance

In this system, the -COOH passivated the surface defects of MAPbBr_{3} QDs, thereby enhancing the PLQY of QDs. ${ }^{2 a, 2 b} \mathrm{NiB}$ as a NIR emissive dye was inserted into the metal supramolecular organic framework $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}$, and NIR emission was achieved through sequential fluorescence resonance energy transfer (FRET). In the formed assembly unit, the compounds TCP and EYB were
synthesized according to the literature (Schemes S1 and S2). A one-dimensional (1D) Zn (II)TCP coordination polymer was formed by Zn^{2+} ion coordination with carboxyl of TCP. EYB as a guest molecular was self-assembled with $\mathrm{Zn}(\mathrm{II}) \mathrm{TCP}$ coordination polymer through host-guest interaction to form $\mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}$. Interestingly, the resulting $\mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset E Y B$ contains uncoordinated carboxyl groups, which could further coordinate with Pb^{2+} ions to form $\mathrm{Pb}(\mathrm{II}) / \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset E Y B$. To achieve targeted imaging of LFPs, the resulting $\mathrm{Pb}(\mathrm{II}) / \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}$ further modified with lysozyme-binding aptamer (denoted as LBA) to form LBA-Pb(II)/Zn(II)TCPכEYB. ${ }^{2}$ In the presence of $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Br}$, the MAPbBr 3 QDs was in-situ growth into the metal supramolecular organic framework $\mathrm{LBA}-\mathrm{Pb}(\mathrm{II}) / \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}$. Since a large number of MAPbBr_{3} QDs donors were in situ growth in the hydrophobic $\mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset E Y B$ assembly, the first step FRET process from $\mathrm{MAPbBr}_{3} \mathrm{QDs}$ to nearby receptor EYB was efficiently achieved. Then, as the NiB entered the pores of LBA-MAPbBr $@ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset E Y B$, an effective second-step FRET process from EYB to the nearby receptor NiB was realized.
2. Synthesis and characterizations of compounds $\mathbf{1 , 2 , 3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{T C P}$, EYB

Scheme S1 Synthesis routes to the target compounds.
Synthesis of 1: 3, 5-Dicarboxybenzeneboronic acid (2.1 g , 10.0 mmol) was dissolved in dry ethanol (100 mL) in a 250 mL round-bottom flask, and added dropwise over $1 \mathrm{ml} \mathrm{H}_{2} \mathrm{SO}_{4}$. After the reaction mixture was stirring at $80^{\circ} \mathrm{C}$ for 12 h and cooled to room temperature. The solvent is concentrated to 20 ml and 100 ml of water was added for suction filtration to obtain a white solid and dried to obtain $1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 8.60(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.46$ (s, 1H), 4.32 (q, $J=$ $7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.

Synthesis of 2: 1,4-Dimethoxybenzene (7 g, 50 mmol$)$ and $\left(\mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n}}(4.5 \mathrm{~g}, 150$ $\mathrm{mmol})$ were dissolved in dry dichloroethane $(500 \mathrm{~mL})$ in a 1000 mL round-bottom flask. After the reaction mixture was stirring at $0{ }^{\circ} \mathrm{C}$ for 30 minutes, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(7 \mathrm{~mL}$, 66 mmol) was added into the flask carefully. When the starting material was fully
consumed (ca. 30 minutes) as monitored by TLC every 3 minutes, the reaction was quenched with NaHCO_{3} aqueous solution and extracted with DCM 3 times. The organic layers were combined and dried over magnesium sulfate, then concentrated under vacuum after filtration. The crude product was further purified by silica gel column chromatography (petroleum ether/dichloromethane, $1: 2 \mathrm{v} / \mathrm{v}$ as the eluent) to give 2 as a white solid ($3.75 \mathrm{~g}, 55 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 6.78$ (s, 10H), 3.77 (s, 10H), 3.66 (s, 30H).

Synthesis of 3: Compound 2 ($3 \mathrm{~g}, 4 \mathrm{mmol}$) was dissolved in DCM (200 mL) under stirring at room temperature in a 500 mL round-bottom flask. Then a solution of $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right](4.38 \mathrm{~g}, 8 \mathrm{mmol})$ was added into the reaction solution dropwise. After stirring for 40 minutes, the reaction was stopped and the mixture was extracted with DCM and washed with NaCl aqueous solution 3 times. The organic extracts were combined and dried over magnesium sulfate. Then, after filtering off the solid, the filtrate was concentrated under vacuum and further purified by silica gel column chromatography (petroleum ether/dichloromethane, 1: 1, v/v as the eluent) to give 3 as a red powder ($1.6 \mathrm{~g}, 55 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 6.87(\mathrm{~d}, 2 \mathrm{H})$, $6.82(\mathrm{~d}, 4 \mathrm{H}), 6.67(\mathrm{~d}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 3.73$ (m, 18H), 3.65 (s, 6H), 3.58 ($\mathrm{s}, 4 \mathrm{H})$. ESIMS m/z: $\left[\mathbf{3}+\mathrm{H}^{+}\right]$Calcd for $\mathrm{C}_{43} \mathrm{H}_{45} \mathrm{O}_{10}, 721.30$; Found 721.2923.

Synthesis of 4: Compound $\mathbf{3}(1.4 \mathrm{~g}, 2 \mathrm{mmol})$ was dissolved in DCM $(20 \mathrm{~mL})$ in a 50 mL round-bottom flask. Then a solution of $\mathrm{Na}_{2} \mathrm{BH}_{4}$ aqueous solution ($106 \mathrm{~mL}, 2$ M) was added into the above solution dropwise under vigorous stirring. After 30 minutes, the reaction was stopped and the resulting mixture was extracted with DCM and washed with NaCl aqueous solution for 3 times. The organic layer was dried over magnesium sulfate and then concentrated under a vacuum to give a white powder (1.4 g, 97\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3,298 \mathrm{~K}$): $\delta 7.17$ (d, 2H), 6.91 (d, 2H), 6.83 (s, $2 \mathrm{H}), 6.82(\mathrm{~s}, 2 \mathrm{H}), 6.60(\mathrm{~d}, 4 \mathrm{H}), 3.85(\mathrm{~m}, 8 \mathrm{H}), 3.76(\mathrm{~d}, 10 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 3.67(\mathrm{~d}$, 10H).

Synthesis of 5: Trifluoromethanesulfonic anhydride (4 mL) was added dropwise to a mixture of $4(1.4 \mathrm{~g}, 2 \mathrm{mmol})$ and pyridine $(\mathrm{dry}, 2 \mathrm{~mL})$ in $\mathrm{DCM}(\mathrm{dry}, 20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$.

Then, the reaction mixture was allowed to stir at room temperature for 12 hours. The reaction was stopped and the resulting mixture was extracted with DCM and washed with NaCl aqueous solution for 3 times. The organic extracts were concentrated under vacuum and further purified by silica gel column chromatography (petroleum ether/ ethyl acetate, $50: 1 \mathrm{v} / \mathrm{v}$ as the eluent) to give a white powder ($1.38 \mathrm{~g}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 7.34(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~s}, 2 \mathrm{H}), 6.79(\mathrm{~s}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 2 \mathrm{H})$, $6.70(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 4 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}), 3.67(\mathrm{~s}, 6 \mathrm{H}), 3.63(\mathrm{~s}$, $6 \mathrm{H})$.

Synthesis of 6: A mixture of pillar[5]arene 5 ($1.10 \mathrm{~g}, 1.0 \mathrm{mmol}$), [3,5Bis(ethoxycarbonyl)phenyl]boronic Acid ($900.0 \mathrm{mg}, 5.0 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (650.0 $\mathrm{mg}, \quad 5.0 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(300.0 \mathrm{mg}, 0.26 \mathrm{mmol})$ in a mixed solvent of THF and $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{ml}, 5: 1, \mathrm{v} / \mathrm{v})$ was heated under N_{2} at $80^{\circ} \mathrm{C}$ for 36 h , then poured into water (100 mL), and extracted with $\mathrm{CHCl}_{3}(3 \times 100 \mathrm{~mL})$. The combined organic phases were concentrated to result in a residue which was subjected to column chromatography (petroleum ether/ethyl acetate, 20:1, v / v) to afford $\mathbf{6}$ as a white solid $(0.55 \mathrm{~g}, 51 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta 8.69(\mathrm{t}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.16$ (s, 4H), 7.39 (s, 2H), 6.85 (s, 2H), 6.63 (d, $J=65.5 \mathrm{~Hz}, 4 \mathrm{H}$), 5.59 (s, 2H), 4.41 (q, $J=7.1$ $\mathrm{Hz}, 8 \mathrm{H}), 3.93(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{t}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.72-3.59(\mathrm{~m}, 18 \mathrm{H})$, $3.46(\mathrm{~s}, 4 \mathrm{H}), 3.30(\mathrm{~s}, 6 \mathrm{H}), 1.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 12 \mathrm{H})$. ESI-MS m/z: $\left[6+\mathrm{H}^{+}\right]$Calcd for $\mathrm{C}_{67} \mathrm{H}_{71} \mathrm{O}_{16}, 1131.47$; Found 1131.4760.

Synthesis of TCP ${ }^{3}$: A mixture of pillar[5]arene $6(1.07 \mathrm{~g}, 1.0 \mathrm{mmol})$ and NaOH $(4.0 \mathrm{~g}, 100.0 \mathrm{mmol})$ in a mixed solvent of THF and $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{ml}, 1: 1, v / v)$ was heated at $50{ }^{\circ} \mathrm{C}$ for 24 h , poured into an aqueous HCl solution ($1.0 \mathrm{M}, 300 \mathrm{~mL}$), and extracted with trichloromethane $(3 \times 100 \mathrm{~mL})$. The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to result in a residue to afford TCP as a white solid ($1.0 \mathrm{~g}, 96 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz ,) $\delta 8.50(\mathrm{~s}, 2 \mathrm{H}$), $8.00(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.33$ (s, 2H), 6.76 (s, 2H), 6.69 (s, 2H), 6.29 (s, 2H), 5.87 (s, 2H), 3.68 (d, 24H), 3.34 (s, $4 \mathrm{H}), 3.14(\mathrm{~s}, 6 \mathrm{H})$.

EYB

Scheme S2. Synthesis of compound EYB.
Synthesis of EYB: A mixture of Eosin Y $(1.30 \mathrm{~g}, 2.0 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, 10$ $\mathrm{mmol}), 1,4$-dibormodecane ($2.40 \mathrm{~g}, 8 \mathrm{mmol}$) and acetonitrile (80.0 mL) were added to a 250 mL round-bottom flask under nitrogen atmosphere. The reaction mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 24 h . After the solid was filtered off, the solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The crude product was purified by silica gel column chromatography using petroleum ether/ethyl acetate $(\mathrm{V} / \mathrm{V}=20: 1)$ as the eluent, compound EYB as shiny red solid (0.92 g, yield 50\%) was isolated. ${ }^{1} \mathrm{H}$ NMR (400 MHz,) $\delta 8.32$ (d, $J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=19.2,7.6,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-$ $7.26(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=18.0,6.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.55(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.36(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.26-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~d}, J=8.7,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-1.77$ (m, 2H), $1.72(\mathrm{~d}, J=5.4,3.4 \mathrm{~Hz}, 2 \mathrm{H})$.

2.2 Preparation of the crystals of Zn (II)TCP.

The crystals of $\mathrm{Zn}(\mathrm{II}) \mathrm{TCP}$ was prepared by heating a mixture of TCP $(20 \mathrm{mg})$ and $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(20 \mathrm{mg})$ in DMF- $\mathrm{H}_{2} \mathrm{O}$ binary solvent (v: v $=5: 3$) at $80^{\circ} \mathrm{C}$ for 24 h . The crystal was kept at 291.4 K during data collection. Using Olex2, the structure was solved with the Superflip structure solution program using Charge Flipping and refined with the ShelXL refinement package using Least Squares minimisation. Crystal Data for $\mathrm{C}_{65} \mathrm{H}_{65} \mathrm{~N}_{2} \mathrm{O}_{20} \mathrm{Zn}(M=1260.56 \mathrm{~g} / \mathrm{mol})$: triclinic, space group P-1 (no. 2), $a=12.3750(9) \AA, b=13.3822(8) \AA, c=20.4459(13) \AA, \alpha=101.724(5)^{\circ}, \beta=$ $90.576(5)^{\circ}, \gamma=109.974(6)^{\circ}, V=3104.2(4) \AA^{3}, Z=2, T=291.4(4) \mathrm{K}, \mu(\mathrm{MoK} \alpha)=0.473$ mm^{-1}, Dcalc $=1.349 \mathrm{~g} / \mathrm{cm}^{3}, 20011$ reflections measured $\left(6.79^{\circ} \leq 2 \theta \leq 51.986^{\circ}\right), 12174$ unique ($R_{\mathrm{int}}=0.0492, \mathrm{R}_{\text {sigma }}=0.1183$) which were used in all calculations. The final R_{1}
was $0.0959(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.2947 .

2.3 Preparation of the $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}$.

A mixture of $\mathrm{Zn}(\mathrm{II})$ TCP $(100 \mu \mathrm{~L}, 0.1 \mathrm{~m} \mathrm{~mol})$, EYB ($100 \mu \mathrm{~L}, 0.1 \mathrm{~m} \mathrm{~mol}), \mathrm{PbBr}_{2}(10$ $\mu \mathrm{L}, 0.1 \mathrm{~m} \mathrm{~mol}$) was added to a 7 mL centrifuge tube under vigorously stirred. Next, $10 \mu \mathrm{~L} \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Br}(0.1 \mathrm{mmol}$, DMF) was slowly added dropwise to the above system to obtain $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}$ precursors. Then, a fixed amount of precursor solution was dropped into toluene under vigorous stirring and ultrasound. After that, a yellow-red colloidal solution was formed and stored in vacuum for later use.
2.4 Synthesis of lysozyme-binding aptamer-modified LBA$\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}-\mathrm{NiB}$.

The product LBA- $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}-\mathrm{NiB}$ was facilely synthesized through the condensation of $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}-\mathrm{NiB}$ and $\mathrm{LBA}-\mathrm{NH}_{2}$ as catalyzed by 1-(3-(dimethylamino)-propyl)-3-ethylcarbodiimide hydrochloride (EDCI). $100 \mu \mathrm{~L}$ of product $\mathrm{Pb}(\mathrm{II}) \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}-\mathrm{NiB}$ was dispersed in $100 \mu \mathrm{~L}$ ethanol, and then $2 \mathrm{nmol} \mathrm{LBA}-\mathrm{NH}_{2}$ was added and stirred at room temperature for 24 h. After the product was collected, it was washed with deionized water and then freeze-dried. Subsequently, $10 \mu \mathrm{~L} \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Br}(0.1 \mathrm{mmol}$, DMF) was slowly added dropwise to the above system to obtain precursors. Then, a fixed amount of precursor solution was dropped into toluene under vigorous stirring and ultrasound to obtain LBA-MAPbBr $3_{3} \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset E Y B-N i B$ as a yellow-red colloidal solution.

2.5 Fingerprints collection.

Volunteers were asked to run their fingers across their foreheads and then blot their fingers on the chosen surfaces that were pre-cleaned with water and dried in the air. The collected samples were aged for 12 hours before being subjected to the incubation procedure.

2.6 Latent fingerprint detection.

LBA- $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}-\mathrm{NiB}$ solution ($30 \mu \mathrm{M}$, dichloromethane) is dripped on the surface of substrates printed with latent fingerprints (tinfoil, steel, glass,
resin, plastic). The latent fingerprints were incubated with the solution for the 30 s at room temperature. After this process, the excess solution was carefully removed with a micropipette, and the fingerprints were washed 3 times with dichloromethane. Then the latent fingerprints were acquired images by a Single Lens Reflex (SLR) Camera (Nikon D5100) with a common cut-off filter (JB510) under a 360 nm illumination.

2.7 Energy-transfer efficiency.

Energy-transfer efficiency (Φ_{ET}) was calculated from excitation fluorescence spectra through the equation: $\Phi_{\mathrm{ET}}=1-\mathrm{I}_{\mathrm{DA}} / \mathrm{I}_{\mathrm{D}} .{ }^{4}$

Where $I_{D A}$ and I_{D} are the fluorescence intensities of the emission of $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}$ (donor and acceptor) and MAPbBr_{3} (donor) respectively when excited at 360 nm . The energy-transfer efficiency (Φ_{ET}) was calculated as 74.6% in toluene, measured under the condition of $[\mathrm{TCP}]=2 \times 10^{-5} \mathrm{M}$, $\left[\mathrm{MAPbBr}_{3}\right]=1.25 \times 10^{-4} \mathrm{M},[E Y B]=5 \times 10^{-7} \mathrm{M}$, and $\lambda_{\mathrm{ex}}=360 \mathrm{~nm}$. And the secondstep energy-transfer efficiency (Φ_{ET}) was calculated as 74.6% in toluene.
2.8 The PLQY can be calculated using the following formula: ${ }^{5}$

$$
\Phi=\Phi_{R} \frac{\int F\left(\lambda_{e m}\right)}{\int F_{R}\left(\lambda_{e m}\right)} \frac{A_{R}\left(\lambda_{e x}\right)}{A\left(\lambda_{e x}\right)} \frac{n^{2}}{n_{R}{ }^{2}}
$$

where Φ is the PLQY, $\int F\left(\lambda_{\text {em }}\right)$ is the integrated intensity of emission, $\mathrm{A}\left(\lambda_{\mathrm{ex}}\right)$ is the percentage of light absorbed at the excitation wavelength, n is the refractive index, and subscript R denoted the reference data. The PLQY of $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}$ is 34.5%, and $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP}$ is 5.8%, respectively. The correction factor $\left(n^{2} / n_{R}{ }^{2}\right)$ was derived from the point source, which was found to be valid for many detector geometries. ${ }^{6}$ In short, as emission passes from a material with a high to low refractive index, the refractive angle will affect the portion of photons that could be collected, thus, correlating the calculation of PLQY with the refractive index n. A detailed derivation method can be found in the references. ${ }^{7}$

Figure. S1 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $\mathbf{1}$.

Figure. $\mathbf{S 2}{ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $\mathbf{2}$.

Figure. $\mathbf{S 3}{ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $\mathbf{3}$.

Figure. S4 MS-ES mass spectra of $\mathbf{3}$.

Figure. S5 ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 4 .

Figure. $\mathbf{S 6}^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $\mathbf{5}$.

Figure. $\mathbf{S 7}{ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $\mathbf{6}$.

Figure. S8 ESI-MS spectrum of $\mathbf{6}$.

Figure. S9 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 298 \mathrm{~K}\right)$ of TCP.

Figure $\mathbf{S 1 0}{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{E Y B}$ in CDCl_{3}.

Figure S11. Crystal structure of $\mathrm{Zn}(\mathrm{II})$ TCP from (a) side, (b) top view, and (c) linear polymer.
Solvent molecules are omitted for clarity. Zn (II)TCP coordination polymer was synthesized by coordination reaction between TCP and $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in DMF$\mathrm{H}_{2} \mathrm{O}$ double solvent at $80{ }^{\circ} \mathrm{C}$. As shown in Figure S11, crystallographic analysis reveals that the $\mathrm{Zn}(\mathrm{II})$ coordination polymer crystallizes in the monoclinic crystal system with the space group P-1. $\left[\mathrm{Zn}(\mathrm{TCP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{DMF})_{2}\right]_{\mathrm{n}}$ exhibits 1D coordination polymer (Figure S11c). The asymmetric unit contains one $\mathrm{Zn}(\mathrm{II})$ ion, one TCP-ligand, and two coordinated water molecules, and two exposed carboxyl site groups that are not involved in the coordination.

Table S1 Crystallographic data for $\mathrm{Zn}(\mathrm{II}) \mathrm{TCP}$.

Compound	Zn (II)TCP
Identification code	zhongkp_0327
Empirical formula	$\mathrm{C}_{65} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{O}_{20} \mathrm{Zn}$
Formula weight	1260.56
Temperature/K	291.4(4)
Crystal system	triclinic
Space group	P-1
a/ \AA	12.3750(9)
b/ \AA	13.3822(8)
c/ \AA	20.4459(13)
$\alpha /{ }^{\circ}$	101.724(5)
$\beta /{ }^{\circ}$	90.576(5)
$\gamma /{ }^{\circ}$	109.974(6)
Volume $/ \AA^{3}$	3104.2(4)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.349
μ / mm^{-1}	0.473
$F(000)$	1320.0
Crystal size/ mm^{3}	$0.18 \times 0.15 \times 0.12$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.710)$
2θ range for data collection $/{ }^{\circ}$	6.79 to 51.986
Index ranges	$-15 \leq \mathrm{h} \leq 12,-16 \leq \mathrm{k} \leq 16,-25 \leq 1 \leq 23$
Reflections collected	20011
Independent reflections	$12174\left[\mathrm{R}_{\text {int }}=0.0492, \mathrm{R}_{\text {sigma }}=0.1183\right]$
Data/restraints/parameters	12174/6/806
Goodness-of-fit on F^{2}	1.021
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0959, \mathrm{wR}_{2}=0.2288$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1785, \mathrm{wR}_{2}=0.2947$
Largest diff. peak/hole / e \AA^{-3}	0.71/-0.87

Table S2 Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathrm{Zn}(\mathrm{II}) \mathrm{TCP}$. $\mathrm{U}_{\text {eq }}$ is defined as $1 / 3$ of of the trace of the orthogonalised U_{IJ} tensor.

Atom	\boldsymbol{x}	\boldsymbol{y}	z	U(eq)
Zn1	382.6(7)	1261.6(6)	4283.3(4)	61.3(3)
O2	1988(4)	1606(4)	4211(2)	64.5(13)
O4	-590(5)	-303(4)	3920(3)	91.4(18)
O5	2347(3)	429(3)	4730(2)	55.7(11)
O7	6376(4)	378(4)	4634(3)	71.0(14)
O6CA	3679(4)	5860(4)	4512(2)	67.9(13)
O11	-464(5)	590(4)	3145(3)	94.5(19)
O13	5395(5)	3671(4)	1161(2)	74.6(15)
O16	7753(4)	1691(5)	4325(3)	92.6(19)
O17	3980(5)	8978(4)	3045(3)	76.0(15)
O20	-1254(4)	2939(4)	2028(2)	65.1(13)
O21	78(4)	2630(4)	4283(3)	72.3(14)
O 23	1696(5)	417(5)	1800(3)	87.3(17)
O9AA	1048(5)	6117(4)	1084(3)	85.5(16)
O1BA	-304(5)	6507(4)	3660(3)	87.1(17)
O2BA	5419(7)	7315(6)	1029(3)	120(3)
C31	4185(5)	2479(4)	3913(3)	44.6(14)
C34	6298(5)	4928(4)	2595(3)	39.5(13)
C0AA	5909(5)	3927(4)	2784(3)	40.1(13)
C37	6352(5)	5900(4)	3016(3)	41.4(13)
O40	1464(6)	2765(6)	-83(3)	103(2)
C42	5604(5)	3928(4)	3445(3)	40.0(13)
C43	5292(5)	2932(4)	3731(3)	42.1(13)
O46	6629(7)	8969(6)	1162(4)	127(3)
C48	3870(5)	1582(4)	4222(3)	40.7(13)
C50	2658(5)	1155(5)	4404(3)	48.0(15)
C1	6847(5)	6919(5)	2773(3)	43.4(14)
C8BA	4715(5)	1165(4)	4351(3)	43.8(14)
C6	5946(5)	5881(4)	3659(3)	41.5(13)
C8	5826(5)	1619(5)	4189(3)	42.8(14)
C7CA	4628(5)	2450(4)	1856(3)	43.6(14)
C12	4800(5)	7151(4)	3940(3)	44.3(14)
C2AA	4878(6)	7929(5)	3569(3)	49.9(15)
C15	5775(5)	2894(4)	2270(3)	44.0(14)
C18	6100(5)	2499(5)	3870(3)	47.0(14)
N20	2131(7)	4229(5)	2732(3)	75.0(19)

C7AA	-554(6)	2876(5)	1522(3)	51.9(16)
C24	5842(5)	6879(5)	4123(3)	48.4(15)
C25	5591(5)	4886(5)	3850(3)	45.5(14)
C27	7771 (5)	7796(5)	3125(3)	49.2(15)
C29	6745(6)	1233(5)	4381(3)	53.3(16)
C32	3709(5)	1624(5)	2014(3)	50.9(15)
C5BA	6401(6)	7029(5)	2176(3)	51.6(15)
O36	635(6)	3910(5)	3394(4)	107(2)
C38	-1544(7)	2106(7)	2400(4)	83(2)
C39	2880(6)	7713(5)	3638(3)	54.6(17)
C0CA	-295(5)	5463(5)	1849(4)	55.6(17)
C44	3716(6)	6640(5)	4151(3)	50.7(16)
C45	7751(6)	8830(5)	2303(4)	61.0(18)
C47	8218(6)	8765(5)	2909(3)	54.2(16)
C6AA	4446(6)	2870(5)	1313(3)	56.5(17)
C9BA	3955(6)	8207(5)	3419(3)	53.2(16)
C4CA	6850(6)	7967(5)	1941(3)	54.7(16)
C5CA	-409(6)	3644(5)	1117(4)	54.7(16)
O9	-56(8)	1250(6)	5203(3)	132(3)
C1AA	677(6)	2091(6)	860(4)	64(2)
C3AA	-11(6)	2123(5)	1385(4)	58.1(18)
C4AA	2629(6)	1231(5)	1660(3)	54.6(16)
C5AA	2781(6)	6926(5)	4010(3)	56.2(17)
C19	-642(6)	5565(5)	2483(4)	56.4(17)
C22	2454(6)	1666(5)	1123(4)	59.6(18)
C8AA	9(6)	6388(6)	3008(4)	58.9(17)
C0BA	749(6)	6245(6)	1747(4)	60.4(18)
C28	1051(6)	7141(5)	2907(4)	54.6(17)
C3BA	2157(11)	6728(11)	967(6)	174(7)
C4BA	2609(6)	5330(7)	4756(4)	79(2)
C33	1833(6)	7988(5)	3485(4)	64.5(19)
C6BA	5211(11)	4197(8)	656(5)	130(4)
N7BA	6602(7)	1103(6)	23(4)	100(2)
C41	-969(6)	4505(5)	1277(3)	57.3(17)
C1CA	792(6)	2817(7)	446(4)	68(2)
C2CA	1381(6)	7047(5)	2255(4)	63.6(19)
C3CA	1283(6)	1255(6)	713(4)	72(2)
C49	252(7)	3583(6)	581(4)	65.2(19)
C52	-1032(7)	5585(7)	3865(4)	87(3)
C53	3371(6)	2472(5)	954(3)	60.4(19)

C56	$1792(8)$	$19(8)$	$2373(5)$	$105(3)$
C58	$6256(10)$	$8051(8)$	$1322(4)$	$86(3)$
C59	$4961(8)$	$9350(6)$	$2699(5)$	$83(2)$
C62	$1201(8)$	$4349(7)$	$2974(5)$	$81(2)$
C69	$2726(10)$	$4840(11)$	$2267(6)$	$145(5)$
C72	$7566(11)$	$779(10)$	$-44(6)$	$141(5)$
C74	$2531(15)$	$3476(12)$	$2942(6)$	$192(8)$
C77	$5530(30)$	$851(14)$	$-445(12)$	$380(30)$
O80	$5410(20)$	$1588(18)$	$-193(11)$	$317(10)$
C9CA	$-877(6)$	$-270(6)$	$3335(4)$	$62.2(18)$
C8CA	$6560(12)$	$1545(12)$	$723(8)$	$209(9)$
C3	$1251(16)$	$3005(18)$	$-646(8)$	$223(10)$

Figure S12 Partial spectra of ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 298 \mathrm{~K}$) of EYB upon complexation with 2.0 equiv. of $\mathrm{Zn}(\mathrm{II}) \mathrm{TCP}(5 \mathrm{mg} / \mathrm{mL})$; (a) $\mathrm{Zn}(\mathrm{II}) \mathrm{TCP}$; (b) $\mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}$; (c) EYB .
${ }^{1} \mathrm{H}$ NMR titration results showed that the peaks of the alkyl protons H_{1} and H_{2} in the EYB had a large shift to the upfield ($\Delta \delta=-0.12$ and -0.21 ppm , respectively) because of the shielding effect of the pillar[5]arene with electron-rich cavities, while the phenyl proton Ha from Zn (II)TCP moved downfield.

Figure S13 Partial spectra of ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}, 298 \mathrm{~K}$) titration of $\mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}$ with different equivalents of Pb^{2+} : (a) 0 ; (b) 0.4 ; (c) 0.8 ; (d) 1.2 .

The uncoordinated carboxyl group in the Zn (II)TCP further coordinated with the added Pb^{2+} ions, thereby introducing Pb^{2+} ions into the $\mathrm{Zn}(\mathrm{II})$ TCP $\supset E Y B$ assembly. The ${ }^{1} \mathrm{H}$ NMR titration experiments showed that the signal of the benzene ring proton gradually shifted upfield with the increase of Pb^{2+} concentration, indicating that Pb^{2+} ion coordinated with carboxyl groups.

Figure $\mathbf{S 1 4} \mathrm{UV} / \mathrm{Vis}$ spectrum of $\mathrm{Pb}(\mathrm{II}) / \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}$ and $\mathrm{LBA}-\mathrm{Pb}(\mathrm{II}) / \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset E Y B$. To achieve the targeted binding of lysozyme of fingerprint ridges, amino-group-labeled LBA (LBA-NH2) was further modified with $\mathrm{Pb}(\mathrm{II}) / \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}$, showed that a typical absorption was observed at 277 nm , indicating the formation of $\mathrm{LBA}-\mathrm{Pb}(\mathrm{II}) / \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}$.

Figure S15 FT-IR spectra of $\mathrm{LBA}-\mathrm{Pb}(\mathrm{II}) / \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}$ and $\mathrm{Pb}(\mathrm{II}) / \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}$, the stretching vibration absorption peaks of $-\mathrm{C}-\mathrm{N}$ and the bending vibration absorption peaks of $-\mathrm{N}-\mathrm{H}-$ appeared at 1237 and $1561 \mathrm{~cm}^{-1}$, respectively.

Figure S16 Representative SEM and TEM images showing the morphology of (a) Zn (II) TCP, (b) $\mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}$, (c) MAPbBr 3 @ $\mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}$, (d) $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset E Y B-\mathrm{NiB} ;$ TEM of (e) $\mathrm{Zn}(\mathrm{II}) \mathrm{TCP}$, (f) $\mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB},(\mathrm{g}) \mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}$, (h) $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}-$ NiB , and (i) HAADF-STEM image and EDS elemental mappings of different elements of $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Pb}$, Br, Zn, and S recorded from $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}-\mathrm{NiB}$.

Figure $\mathbf{S 1 7}$ TEM-EDS spectra of $\mathrm{MAPbBr} 3_{3} @ \mathrm{Zn}(\mathrm{II})$ TCP-EYB.

Figure $\mathbf{S 1 8}$ (a) Normalized absorption spectrum of eosin Y and emission spectrum of MAPbBr_{3}, (b) Normalized absorption spectrum of Nile Blue and emission spectrum of $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}$.

Figure S19 CLSM image of (a) $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP}$, (b) $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}$ and (c) $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}-\mathrm{NiB}$ in toluene $\left(\lambda_{\mathrm{ex}}=360 \mathrm{~nm}\right)$.

Figure S20 Absorption spectrum of $\mathrm{MAPbBr}_{3}, \mathrm{MAPbBr}_{3} @ \mathrm{Zn}$ (II)TCP and Fluorescein; (b) Fluorescence spectra of $\mathrm{MAPbBr}_{3}, \mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP}$ and Fluorescein.

Figure S21 (a) Normalized absorption spectrum of Nile blue and emission spectrum of MAPbBr_{3}, and eosin Y; (b) Fluorescence spectra of $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP}$ upon excitation at 360 nm before and after the addition of NiB , inset: fluorescence images of $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP}$ (left) and $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP}-\mathrm{NiB}$ (right); (c) Fluorescence decay profiles of $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP}$ and $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP}-\mathrm{NiB}$; (d) Normalized absorption spectrum of Methylene Blue (MB) and emission spectrum of MAPbBr_{3}; (e) Fluorescence spectra of $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}$ (II)TCP upon excitation at 360 nm before and after the addition of MB.

In $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP}-\mathrm{NiB}$ system, the energy transfer efficiency was calculated to be 6.6 \% at the donor/acceptor ratio of 260:1 (Figure S21, Table S3), lower than that of $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset E Y B-\mathrm{NiB}$ system, owing to the less rarely overlap between the absorption spectrum of NiB and the emission spectrum of MAPbBr_{3} (Figure S21a). In addition, As shown in Figure S21e, with the gradual
addition of MB to $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP}$, the fluorescence intensity of the $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP}$ does not change when excited at 360 nm , which is due to no spectral overlap between the absorption band of MB and the emission band of MAPbBr ${ }_{3}$ QDs.

Table S3. Multiexponential fit parameters for the decay of photoluminescence lifetime at $360 \mathrm{~nm} .^{7}$

	$\tau_{1}(\mathrm{~ns})$	B_{1}	$\tau_{2}(\mathrm{~ns})$	B_{2}	$\tau_{3}(\mathrm{~ns})$	B_{3}	average lifetime(ns)
$\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP}$	0.63	-801786.4	82.42	7945.09	0.83	803366.8	4.78
$\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP}$	1.10	4121.59	6.20	606.036	1.75	345	1.45
$\supset \mathrm{EYB}$							
$\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP}$	0.86	2833	2.23	1345	2.01	4847	1.05
$\supset \mathrm{EYB}^{2} \mathrm{NiB}$							

Table S4. Multiexponential fit parameters for the decay of photoluminescence lifetime at $360 \mathrm{~nm} .{ }^{7}$

	$\tau_{1}(\mathrm{~ns})$	B_{1}	$\tau_{2}(\mathrm{~ns})$	B_{2}	$\tau_{3}(\mathrm{~ns})$	B_{3}	average
							lifetime(ns)
$\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP}$	9.52	2477.47	39.59	345.18	2.03	6847.97	4.87
$\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP}$	11.76	1831.59	52.67	402.12	1.78	5540.08	4.55
-NiB							

Figure S22 Fluorescence spectra of LBA-MAPbBr ${ }_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}-\mathrm{NiB}$ with different water fractions in ethanol $\left(\lambda_{\mathrm{ex}}=360 \mathrm{~nm}\right)$.

Figure S23 Relative fluorescence intensity of LBA-MAPbBr $3_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}-\mathrm{NiB}$ placed in the air and added water $\left(\lambda_{\mathrm{ex}}=360 \mathrm{~nm}, \lambda_{\mathrm{em}}=670 \mathrm{~nm}\right)$.

Figure S24 Latent fingerprint on glass slide under (a) natural light and (b) 360 nm light irradiation. (c) Fluorescence image of latent fingerprints labeled by LBA- $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}-\mathrm{NiB}$ on the slide.

Figure S25 Latent fingerprints imaging experiments. (a) Fluorescence image of latent fingerprints labeled by LBA- $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}$ and (b) LBA- $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}-\mathrm{NiB}$ on the blue plastic under 360 nm light irradiation. (c) High-resolution fluorescence images of latent fingerprints showing pore.

Figure S26 Luminescence image (under 360 nm irradiation) of whole LFPs on different substrates developed by a LBA- $\mathrm{MAPbBr}_{3} @ \mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset E Y B-N i B$ solution and Level 1, level 2, and level 3 details of local LFPs on glass, tinfoil, resin, iron and plastic developed by a LBAMAPbBr 3 @ $\mathrm{Zn}(\mathrm{II}) \mathrm{TCP} \supset \mathrm{EYB}-\mathrm{NiB}$ solution and the variations of the fluorescence intensity between the fingerprint ridges. Level 1: refers to the overall characteristics of the whole fingerprint, including the shape of the fingerprint (whorl, loop, arch, etc.), the core point (also called the center point), and the triangle point. Level 2 details are the macroscopic detail features of the fingerprint ridge, generally divided into ending, bifurcation, island, and short ridge. Level 3 details are the microscopic detail features of the fingerprint, which mainly include the shape of the ridge edge and the width of the ridge and pore. ${ }^{8}$

References

1. (a) S. B. Wang, B. Y. Guan, X. W. D. Lou, J. Am. Chem. Soc. 2018, 140, 5037-5040. (b) P. J. Yang, P. J. Ou, Y. X. Fang, X. C. Wang, Angew. Chem. Int. Ed. 2017, 56, 3992-3996.
2. (a) J. Ye, M. M. Byranvand, C. O. Martinez, R. L. Z. Hoye, M. Saliba, L. Polavarapu, Angew. Chem. Int. Ed. 2021, 60, 2 - 27. (b) L. Xu, J. Li, B. Cai, J. Song, F. Zhang, T. Fang, H. Zeng, Nat. Commun. 2020, 11, 3902. (c) J. Wang, T. Wei, X. Li, B. Zhang, J. Wang, C. Huang, Q. Yuan, Angew. Chem. Int. Ed. 2014, 53, 1616-1620. (d) M. Famulok, G. Mayer, A. M. Blind, Acc. Chem. Res. 2000, 33, 591-599.
3. (a) Z. Li, X. Li, Y. W. Yang, Small. 2019, 15, 1805509. (b) S. N. Talapaneni, D. Kim, G. Barin, O. Buyukcakir, S. H. Je, A. Coskun, Chem. Mater. 2016, 28, 4460-4466. (c) X. L. Wu, Y. Chen, W. J. Hu, Y. A. Liu, X. S. Jia, J. S. Li, B. Jiang, Wen, K. Org. Biomol. Chem. 2017, 15, 4897-4900. (d) N. L. Strutt, D. Fairen-Jimenez, J. Iehl, M. B. Lalonde, R. Q. Snurr, O. K. Farha, J. T. Hupp, J. F. Stoddart, J. Am. Chem. Soc. 2012, 134, 17436-17439.
4. K. Acharyya, S. Bhattacharyya, H. Sepehrpour, S. Chakraborty, S. Lu, B. Shi, X. Li, P. S. Mukherjee, P. J. Stang, J. Am. Chem. Soc. 2019, 141, 14565-14569.
5. (a) K. Rurack, M. Spieles, Anal. Chem. 2011, 83, 1232. (b) J. R. Lakowicz, Principles of Fluorescence Spectroscopy; 3rd ed.; Springer, 2006.
6. (a) J. Hermans, S. Levinson, J. Opt. Soc. Am. 1951, 41, 460. (b) J. N. Demas, G. A. Crosby, Review. J. Phys. Chem. 1971, 75, 991.
7. Z.-J. Li, E. Hofman, J. Li, A. H. Davis, C.-H. Tung, L.-Z. Wu, W. Zheng, Adv. Funct. Mater. 2018, 28, 1704288.
8. Y. L. Wang, C. Li, H. Q. Qu, C. Fan, P. J. Zhao, R. Tian, M. Q. Zhu, J. Am. Chem. Soc. 2020, 142, 7497-7505.
