Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Copper-catalyzed radical ring-opening halogenation with HX

Shuai Liu,^a Ming Bai,^a Peng-Fei Xu,^a Qing-Xin Sun,^a Xin-Hua Duan,^{a,b} and Li-Na Guo*,^a

^aSchool of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key

Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter,

Xi'an Jiaotong University, Xi'an 710049, China

^bState Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R.

China.

E-mail: guoln81@ xjtu.edu.cn

Table of Contents

1. General Information	S3
2. Starting Materials	S4
2.1 General Procedure A for the Synthesis of Hydroperoxides 1a-1h, 1j, 1m-1n, 1r-1t, 1x	S4
2.2 General Procedure B for the Synthesis of Hydroperoxides 1i, 1o-1q, 1u-1w	S4
2.3 General Procedure C for the Synthesis of Hydroperoxides 1k and 1l	S5
2.4 Safety notes of Hydroperoxides	S5
3. Optimization of Reaction Conditions	S 6
3.1 General Procedure for Halogenation of Cyclopentyl Hydroperoxide 1a	S 6
3.2 Optimization of Chlorination of Cyclopentyl Hydroperoxide 1a	S 7
3.3 Optimization of Fluorination of Cyclopentyl Hydroperoxide 1a	S9
3.4 General Procedure for Halogenation of Cycloketone Oxime Ester 5a	S10
3.5 Optimization of Chlorination of Cycloketone Oxime Ester 5a	S11
3.6 Optimization of Bromination or Iodination of Cycloketone Oxime Ester 5a	S12
4. Representative Procedure for Schemes 2-4	S13
4.1 Representative Procedure for Halogenation of Cycloalkyl Hydroperoxides 1	S13
4.2 Representative Procedure for Chlorination of Cycloketone Oxime Esters 5	S13
4.3 Representative Procedure for Bromination or Iodination of Cycloketone Oxime Esters 5	S13
5. Procedures for Derivatizations of 3a	S15
6. Investigation of the Reaction Mechanism	S16
6.1 Source of Halogen Experiment	S16
6.2 Radical Trapping Experiment	S16
6.3 Radical Inhibiting Experiment	S16
6.4 Iodine clock reaction	S16
6.5 Ring-opening halogenation of cycloalkyl alcohols with HX (aq)	S17
7. Large-Scale Synthesis	S17
8. Characterization of Starting Materials 1	S18
9. Characterization of Products 2-4	S24
10. Characterization of Products 6-8	S35
11. Characterization of Products 9-12	S40
12. Reference	S42
13. ¹ H NMR and ¹³ C NMR Spectra of Starting Materials 1	S43
14. ¹ H NMR and ¹³ C NMR Spectra of Products 2	S67
15. ¹ H NMR and ¹³ C NMR Spectra of Products 3	S91
16. ¹ H NMR and ¹³ C NMR Spectra of Products 4	S102
17. ¹ H NMR and ¹³ C NMR Spectra of Products 6-8	S113
18. ¹ H NMR and ¹³ C NMR Spectra of Products 9-12	S134

1. General Information

Unless otherwise noted, reagents and solvents were obtained from commercial suppliers and were used without further purification. The concentration of HX (aq) are HF (49%), HCl (36%), HBr (40%) and HI (55%-58%). All catalytic reactions were carried out under nitrogen in Schlenk-tube. Analytical TLC: aluminum backed plates pre-coated (0.25 mm) with Merck Silica Gel 60F-254. Column chromatography purifications were carried out using silica gel. Melting points were measured using open glass capillaries in a SGW® X-4A apparatus. ¹H and ¹³C NMR spectra were recorded on a Bruker 400 MHz spectrometer at ambient temperature. Coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad). Infrared spectra were recorded on a Bruker V 70 and only major peaks were reported in cm⁻¹. HRMS were obtained on a WATERS I-Class VION IMS Q-Tof with an ESI source.

2. Starting Materials

2.1 General Procedure A for the Synthesis of Hydroperoxides 1a-1h, 1j, 1m-1n, 1r-1t, 1x⁻¹

In a 25 mL reaction tube was added a solution of H_2O_2 (1.7 mL, 30 mmol, 30% wt in H_2O), and conc. H_2SO_4 (0.1 mL, 1.5 mmol), then added a solution of alcohol (3 mmol) in DCM (0.5 mL) at 0 °C. The reaction mixture was stirred vigorously for 12 h at room temperature. The aqueous layer was extracted with DCM (3 × 10 mL). The combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated to afford residue, which was purified by column chromatography on silica gel to give the target products **1a-1h**, **1j**, **1m-1n**, **1r-1t**, **1x**.

2.2 General Procedure B for the Synthesis of Hydroperoxides 1i, 10-1q, 1u-1w¹

In a 25 mL reaction tube was added a solution of H_2O_2 (1.7 mL, 30 mmol, 30% wt in H_2O), and conc. H_2SO_4 (0.1 mL, 1.5 mmol), then added a solution of alcohol (3 mmol) in THF (0.5 mL) at 0 °C. Then the reaction mixture was stirred vigorously for 12 h at 60 °C. The aqueous layer was extracted with DCM (3 × 10 mL). The combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated to afford residue, which was purified by column chromatography on silica gel to give the target products **1i**, **1o-1q**, **1u-1w**.

2.3 General Procedure C for the Synthesis of Hydroperoxides 1k and 1l²

In a 25 mL reaction tube was added a solution of ketone (10 mmol) in methanol or ethanol (0.5 M), then added H_2O_2 (1.7 mL, 30 mmol, 30% wt in H_2O) and I_2 (0.5 mol, 5 mol %). The reaction mixture was stirred vigorously for 12 h at room temperature. Concentrated the reaction solution, and then the aqueous layer was extracted with DCM (3 × 10 mL). The combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated to afford residue, which was purified by column chromatography on silica gel to give the target products 1k and 1l.

2.4 Safety notes of Hydroperoxides

All cycloalkyl hydroperoxides heated and concentrated by rotovap at below 30 °C and stored under –20 °C. We have never experienced a safety problem with these materials.

3. Optimization of Reaction Conditions

3.1 General Procedure for Halogenation of Cyclopentyl Hydroperoxide 1a

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added catalyst and "X" source (0.4 mmol, 2.0 equiv), then the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cyclopentyl hydroperoxide **1a** (0.2 mmol, 1.0 equiv) in solvent (1.0 mL) was added by syringe under nitrogen atmosphere. The tube was then sealed and mixture was stirred. After the reaction completed, the reaction mixture was diluted with EtOAc (5.0 mL) and H₂O (5.0 mL). The organic layer was washed with saturated brine (3×5 mL) and the water layer was extracted with EtOAc (3×5 mL). The combined organic layer was dried over Na₂SO₄ and concentrated in vacuo, which was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 60:1) to give the correspending target products.

3.2 Optimization of Chlorination of Cyclopentyl Hydroperoxide 1a **Screening of Solvent**

1а	CuCl (10 mol %) HCl (aq) (2.0 equiv) Solvent (1.0 mL) 60 °C, 12 h	2a
Entry	Solvent	Yield ^a (%)
1	NMP	85
2	DMSO	65
3	DMF	81
4	MeOH	60
5	MeCN	79
6	THF	75
7	DCM	17
8	toluene	30
9	H ₂ O	16

aReaction conditions: 1a (0.2 mmol, 1.0 equiv), CuCl (10 mol %), HCl (aq) (0.4 mmol, 2.0 equiv), and solvent (1.0 mL) at 60 °C for 12 h under N2. Isolated yields.

Screening of Catalyst

оон 1а	Catalyst HCI (aq) (2.0 equiv) NMP (1.0 mL) 60 °C, 12 h	CI 2a
Entry	Catalyst (mol %)	Yield ^a (%)
1	CuCl (10)	85
2	CuBr (10)	87
3	Cu(OAc) ₂ (10)	92
4	CuTC (10)	80
5	Cu(CH ₃ CN) ₄ PF ₆ (10)	85
6	$Fe(OTf)_2(10)$	88
7	$Fe(OAc)_2(10)$	66
8	$\operatorname{CoCl}_2(10)$	trace
9	NiCl ₂ (10)	trace
10	$PdCl_2(10)$	trace
11	-	trace

aReaction conditions: 1a (0.2 mmol, 1.0 equiv), catalyst (10 mol %), HCl (aq) (0.4 mmol, 2.0 equiv), and NMP (1.0 mL) at 60 $^{o}\mathrm{C}$ for 12 h under $N_{2}.$ Isolated yields.

Screening of Chloride Source

\bigcirc	OOH Cu(OAc) ₂ (5 mol %) "Cl" (2.0 equiv)	
1a	NMP (1.0 mL) 60 °C, 12 h	2a
Entry	Chloride Source	Yield ^a (%)
1	MgCl ₂	88
2	NaCl	trace
3	NH ₄ Cl	15
4	HCl (aq)	92

"Reaction conditions: 1a (0.2 mmol, 1.0 equiv), Cu(OAc)₂ (10 mol %), chloride source (0.4 mmol, 2.0 equiv), and NMP (1.0 mL) at 60 °C for 12 h under N_2 . Isolated yields.

Screening of Temperature and Amount of Catalyst

	1a Cu(O/ HCl (a NM Temp	Ac) ₂ (X mol %) aq) (2.0 equiv) IP (1.0 mL) perature, 12 h 2a	CI
Entry	Catalyst (mol %)	Temperature (°C)	Yield ^a (%)
1	$Cu(OAc)_2(10)$	60	92
2	$Cu(OAc)_2(10)$	40	89
3	$Cu(OAc)_2(10)$	25	89
4	$Cu(OAc)_2(5)$	25	90 (95) ^b
5	$Cu(OAc)_2(2.5)$	25	83

^aReaction conditions: 1a (0.2 mmol, 1.0 equiv), Cu(OAc)₂ (X mol %), HCl (aq) (0.4 mmol, 2.0 equiv), and NMP (1.0 mL) at X °C for 12 h under N2. Isolated yields. ^bThe cyclopentyl silyl peroxide was used.

Screening of Time

	Cu(OAc) ₂ (5 mol %) HCl (aq) (2.0 equiv) MMP (1.0 mL) 25 °C, Time	2a
Entry	Time (h)	Yield ^a (%)
1	12	92
1	2	90
2	1	88
3	0.5	67

^aReaction conditions: 1a (0.2 mmol, 1.0 equiv), Cu(OAc)₂ (5 mol %), HCl (aq) (0.4 mmol, 2.0 equiv), and NMP (1.0 mL) at 25 °C for X h under $N_2.$ Isolated yields.

3.3 Optimization of Fluorination of Cyclopentyl Hydroperoxide 1a

	оон 1а	Catalyst "F" (2.0 equiv) Solvent (0.2 M) , 25 °C 12 h		F	
Entry	Catalyst (mol %)	Fluorinate Source	Additive	Solvent	Yield ^a (%)
1	$Cu(OAc)_2(5)$	HF (aq)	-	NMP	n.r. (85) ^b
2	$CuF_2(100)$	-	-	NMP	n.r.
3	$Cu(OAc)_2(5)$	HF (aq)	18-crown-6	DMF	n.r.
4	$Cu(OAc)_2(5)$	KF	18-crown-6	DMF	n.r.
5	$Cu(OAc)_2(5)$	KHF ₂	18-crown-6	DMF	n.r.
6	$Cu(OAc)_2(5)$	TBAF	18-crown-6	DMF	n.r.
7	$AgNO_3(10)$	SelectF	-	DMF	n.r.

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), catalyst, fluorinate source (0.4 mmol, 2.0 equiv), and solvent (1.0 mL) at 25 °C for 12 h under N₂. Isolated yields. ^{*b*}85% of **1a** was recovered.

3.4 General Procedure for Halogenation of Cycloketone Oxime Ester 5a

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added catalyst and "X" source (0.4 mmol, 2.0 equiv), then the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cycloketone oxime ester **5a** (0.2 mmol, 1.0 equiv) in solvent (1.0 mL) was added by syringe under nitrogen atmosphere. The tube was then sealed and mixture was stirred at 25 °C for 12 h. After the reaction completed, the reaction mixture was diluted with EtOAc (5.0 mL) and H₂O (5.0 mL). The organic layer was washed with saturated brine (3×5 mL) and the water layer was extracted with EtOAc (3×5 mL). The combined organic layer was dried over Na₂SO₄ and concentrated in vacuo, which was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 15:1) to give the target products **6a-8a**.

3.5 Optimization of Chlorination of Cycloketone Oxime Ester 5a Screening of Leaving Group

	Ph	Cu(OAc) ₂ HCI (aq) (2 NMP (25 °C	(5 mol %) 2.0 equiv) 0.2 M) , 12 h	Cl Ph	
	5a			6a	
LG =			-3C 0'4		нож
5		5-1	5-2	5-3	5-4
Ent		Taarin	a Group	Via	da(0/a)
	1 y	Leavin	g Oloup	I lei	u (70)
1	1 y	Leavin	5 5	1 101	80
1	1y	Leavin	5 5 1-1		80 n.r.
1 2 3	<u>1y</u>	Leavin 5	5 -1 -2	1 iei 1	80 n.r. n.r.
1 2 3 4	<u>ry</u>	Leavin 5 5	5 -1 -2 -3	1 IE	80 n.r. n.r. n.r.

^{*a*}Reaction conditions: **5** (0.2 mmol, 1.0 equiv), Cu(OAc)₂ (5 mol %), HCl (aq) (0.4 mmol, 2.0 equiv), and NMP (1.0 mL) at 25 °C for 12 h under N₂. Isolated yields.

Screening of Catalyst

^{*a*}Reaction conditions: **5a** (0.2 mmol, 1.0 equiv), catalyst (5 mol %), HCl (aq) (0.4 mmol, 2.0 equiv), and NMP (1.0 mL) at 25 °C for 12 h under N₂. Isolated yields.

3.6 Optimization of Bromination or Iodination of Cycloketone Oxime Ester 5a Screening of Bromide Source

N Ph	OCOC ₆ F ₅ CuOTf (5 mol %) "Br" (2.0 equiv) NMP (0.2 M) 25 °C, 12 h	Ph Br
5a		7a
Entry	Bromide Source	Yield ^a (%)
1	HBr (aq)	n.r.(53) ^b
2	NaBr	trace
3	KBr	trace
4	TBAB	trace
5	MgBr ₂ ·6H ₂ O	82

^{*a*}Reaction conditions: **5a** (0.2 mmol, 1.0 equiv), CuOTf (5 mol %), bromide source (0.4 mmol, 2.0 equiv), and NMP (1.0 mL) at 25 °C for 12 h under N₂. Isolated yields. ^{*b*}Yield of 3-phenylcyclobutan-1-one.

Screening of Iodide Source

<	N-OCOC ₆ F ₅ U CuOTf (5 mol %) "I" (2.0 equiv) NMP (0.2 M) Ph 25 °C, 12 h	N Ph
	5a	8a
Entry	Iodide Source	Yield ^a (%)
1	HI (aq)	n.r.(32) ^b
2	NaI	trace
3	KI	trace
4	TBAI	trace
5	ZnI ₂	79

^{*a*}Reaction conditions: **5a** (0.2 mmol, 1.0 equiv), CuOTf (5 mol %), iodide source (0.4 mmol, 2.0 equiv), and NMP (1.0 mL) at 25 °C for 12 h under N₂. Isolated yields. ^{*b*}Yield of 3-phenylcyclobutan-1-one.

4. Representative Procedure for Schemes 2-4

4.1 Representative Procedure for Halogenation of Cycloalkyl Hydroperoxides 1

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added $Cu(OAc)_2$ (0.01mmol, 5 mol %), then the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cycloalkyl hydroperoxide 1 (0.2 mmol, 1.0 equiv), and HCl (aq) or HBr (aq) or HI (aq) (0.4 mmol, 2.0 equiv) in NMP (1.0 mL) was added by syringe under nitrogen atmosphere. The tube was then sealed and mixture was stirred at 25 °C for 2 h. After the reaction completed, the reaction mixture was diluted with EtOAc (5.0 mL) and H₂O (5.0 mL). The organic layer was washed with saturated brine (3 × 5 mL) and the water layer was extracted with EtOAc (3 × 5 mL). The combined organic layer was dried over Na₂SO₄ and concentrated in vacuo, which was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 60:1) to give the target products **2**, **3** and **4** in yields as listed in **Scheme 2** and **Scheme 3**.

4.2 Representative Procedure for Chlorination of Cycloketone Oxime Esters 5

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added CuOTf (0.01mmol, 5 mol %), then the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cycloketone oxime esters **5** (0.2 mmol, 1.0 equiv), and HCl (aq) (0.4 mmol, 2.0 equiv) in NMP (1.0 mL) was added by syringe under nitrogen atmosphere. The tube was then sealed and mixture was stirred at 25 °C for 12 h. After the reaction completed, the reaction mixture was diluted with EtOAc (5.0 mL) and H₂O (5.0 mL). The organic layer was washed with saturated brine (3×5 mL) and the water layer was extracted with EtOAc (3×5 mL). The combined organic layer was dried over Na₂SO₄ and concentrated in vacuo, which was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) to give the target products **6** in yields as listed in **Scheme 4**.

4.3 Representative Procedure for Bromination or Iodinaton of Cycloketone Oxime Esters 5

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added CuOTf (0.01mmol, 5 mol %) and MgBr₂·6H₂O or ZnI₂ (0.4 mmol, 2.0 equiv), then the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cycloketone oxime esters **5** (0.2 mmol, 1.0 equiv) in NMP (1.0 mL) was added by syringe under nitrogen atmosphere. The tube was then sealed and mixture was stirred at 25 °C for 12 h. After the reaction completed, the reaction mixture was diluted with EtOAc (5.0 mL) and H₂O (5.0 mL). The organic layer was washed with saturated brine (3

 \times 5 mL) and the water layer was extracted with EtOAc (3 \times 5 mL). The combined organic layer was dried over Na₂SO₄ and concentrated in vacuo, which was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) to give the target products 7 and 8 in yields as listed in **Scheme 4**.

5. Procedures for Derivatization of 3a

Reaction conditions: (a): A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added **3a** (0.2 mmol, 1.0 equiv), K_2CO_3 (0.6 mmol, 3.0 equiv) and Loxoprofen (0.3 mmol, 1.5 equiv), then the tube was evacuated and backfilled with nitrogen for three times. Subsequently, DMF (1 mL) was added by syringe under nitrogen atmosphere. The tube was then sealed and mixture was stirred at 90 °C for 12 h. After the reaction completed, the reaction mixture was diluted with EtOAc (5.0 mL) and H₂O (5.0 mL). The organic layer was washed with saturated brine (3 × 5 mL) and the water layer was extracted with EtOAc (3 × 5 mL). The combined organic layer was dried over Na₂SO₄ and concentrated in vacuo, which was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 7:1) to give the target product **9** in 81% yield.

(b) and (c): A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added **3a** (0.2 mmol, 1.0 equiv), K_2CO_3 (0.6 mmol, 3.0 equiv) and Fluoxetine hydrochloride or Estrone (0.3 mmol, 1.5 equiv), then the tube was evacuated and backfilled with nitrogen for three times. Subsequently, Acetone (1 mL) was added by syringe under nitrogen atmosphere. The tube was then sealed and mixture was stirred at 70 °C for 12 h. After the reaction completed, the reaction mixture filtrated and concentrated in vacuo, which was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give the target product **10** in 78% yield or **11** in 76% yield.

(d): A 10 mL oven-dried reaction tube equipped with a magnetic stirrer was added a solution of **3a** (0.2 mmol, 1.0 equiv) in MeOH (4 mL), then was added NaBH₄ (1.0 mmol, 5.0 equiv) slowly at 0 °C. The reaction mixture was stirred until **3a** completely converted. After that 4 mL (1 N HCl) and 20 mL H₂O was added, the water layer was extracted with DCM (3×5 mL). The combined organic layer was dried over Na₂SO₄ and concentrated in vacuo, which was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give the target product **12** in 92% yield.

6. Investigation of the Reaction Mechanism

6.1 Source of Halogen Experiment

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added $CuCl_2$ (0.24 mmol, 1.2 equiv), then the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cyclopentyl hydroperoxides **1a** (0.2 mmol, 1.0 equiv) in NMP (1.0 mL) was added by syringe under nitrogen atmosphere. The tube was then sealed and mixture was stirred at 25 °C for 2 h.

6.2 Radical Trapping Experiment

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added $Cu(OAc)_2$ (0.01mmol, 5 mol %), MgCl₂ (0.4 mmol, 2.0 equiv) and TEMPO (0.2 mmol, 1.0 equiv), then the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cyclopentyl hydroperoxides **1a** (0.2 mmol, 1.0 equiv) in NMP (1.0 mL) was added by syringe under nitrogen atmosphere. The tube was then sealed and mixture was stirred at 25 °C for 2 h. The yield of **2a** to 10%, along with TEMPO adduct **13** isolated in 33% yield. These results indicate that a radical intermediate might be involved in this transformation.

6.3 Radical Inhibiting Experiment

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added $Cu(OAc)_2$ (0.01mmol, 5 mol %), MgCl₂ (0.4 mmol, 2.0 equiv) and BHT (0.2 mmol, 1.0 equiv), then the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cyclopentyl hydroperoxides **1a** (0.2 mmol, 1.0 equiv) in solvent (1.0 mL) was added by syringe under nitrogen atmosphere. The tube was then sealed and mixture was stirred at 25 °C for 2 h. The yield of **2a** was reduced to 57% yield. This result indicates that the reaction might proceed via a radical pathway.

6.4 Iodine clock reaction

 $\label{eq:Figure 1. Left: Cu(OAc)_2 + NMP; \quad Mid: Cu(OAc)_2 + NMP + HCl; \quad Right: CuCl_2 + NMP$

Figure 2. Left: Cu(OAc)₂ + NMP; Mid: Cu(OAc)₂ + NMP + HBr; Right: CuBr₂+ NMP

In **Figure 1**. It can be observed that when $Cu(OAc)_2$ and NMP was mixed together, the reaction mixture is light blue (Left). When HCl(aq.) was added, the color was quickly changed to yellow (Mid), which is same as the mixture of $CuCl_2$ and NMP. These results indicate that the anion exchange occurred. In **Figure 2**. The similar phenomenon were observed for HBr(aq.).

These results confirmed to a certain extent that anion exchange of $Cu(OAc)_2$ with HX (aq). We believe that the exact initiating catalyst was Cu(I)X species, which is afforded through disproportionation.

6.5 Ring-opening halogenation of cycloalkyl alcohols with HX (aq)

7.1 Large-Scale Synthesis

A 100 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was added Cu(OAc)₂ (0.15 mmol, 5 mol %), then the tube was evacuated and backfilled with nitrogen for three times. Subsequently, a solution of cyclopentyl hydroperoxide **1a** (3 mmol, 1.0 equiv), and HCl (aq) or HBr (aq) (6 mmol, 2.0 equiv) in NMP (15.0 mL) was added by syringe under nitrogen atmosphere. The tube was then sealed and mixture was stirred at 25 °C for 12 h. After the reaction completed, the reaction mixture was diluted with EtOAc (20 mL) and H₂O (20 mL). The organic layer was washed with saturated brine (3×20 mL) and the water layer was extracted with EtOAc (3×20 mL). The combined organic layer was dried over Na₂SO₄ and concentrated in vacuo, which was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 60:1) to give the target product **2a** in 82% yield or **3a** in 78% yield.

8. Characterization of Starting Materials 1

(1-Hydroperoxycyclopentyl)benzene (1a) Colorless oil (380 mg, 71%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.01 (m, 6H), 2.20 – 2.19(m, 2H), 1.86 – 1.81 (m, 4H), 1.67 – 1.66 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 141.7, 127.3, 126.5, 125.5, 94.4, 34.6, 22.7. Spectral data matched literature values.³

1-(1-Hydroperoxycyclopentyl)-2-methylbenzene (1b) White solid (420 mg, 73%). Melting point (°C): 31-32. $R_f = 0.3$ (petroleum ether/ethyl acetate = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 7.6 Hz, 1H), 7.23 – 7.14 (m, 3H), 7.06 (s, 1H), 2.53 (s, 3H), 2.47 – 2.38 (m, 2H), 2.11 – 2.00 (m, 2H), 1.87 – 1.84 (m, 2H), 1.73 – 1.69 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 139.6, 137.5, 132.4, 128.2, 127.9, 125.4, 96.4, 35.4, 23.9, 21.5. IR (neat): v_{max} (cm⁻¹) 3257, 2692, 1683, 1298, 767. HRMS (ESI) calcd for C₁₂H₁₆O₂Na [M+Na]⁺ 215.1043, found 215.1041.

1-Fluoro-3-(1-hydroperoxycyclopentyl)benzene (1c) Colorless oil (400 mg, 68%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 1H), 7.32 (t, *J* = 6.0 Hz, 1H), 7.25 (d, *J* = 8.0 Hz, 1H), 7.19 – 7.16 (m, 1H), 7.03 – 6.95 (m, 1H), 2.36 – 2.22 (m, 2H), 1.98 – 1.85 (m, 4H), 1.83 – 1.73 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.0 (d, *J* = 244.2 Hz), 145.7 (d, *J* = 6.6 Hz), 129.9 (d, *J* = 8.1 Hz), 121.9 (d, *J* = 2.8 Hz), 114.4 (d, *J* = 21.0 Hz), 113.6 (d *J* = 21.8 Hz), 95.1 (d, *J* = 1.7 Hz), 35.9, 23.8. IR (neat): v_{max} (cm⁻¹) 3257, 2751, 1701, 1394, 796. HRMS (ESI) calcd for C₁₁H₁₃FO₂Na [M+Na]⁺ 219.0792, found 219.0793.

1-Chloro-3-(1-hydroperoxycyclopentyl)benzene (1d) Colorless oil (413 mg, 65%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.38 (s, 1H), 7.28 – 7.18 (m, 4H), 2.22 – 2.12(m, 2H), 1.89 – 1.79 (m, 4H), 1.75 – 1.66 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 145.1, 134.4, 129.7, 127.7, 126.8, 124.6, 95.1, 35.8, 23.8. IR (neat): v_{max} (cm⁻¹) 3395, 2963, 1681, 1474, 785. HRMS (ESI) calcd for C₁₁H₁₃O₂CINa [M+Na]⁺ 235.0496, found 235.0500.

1-(1-Hydroperoxycyclopentyl)-4-(trifluoromethyl)benzene (1e) Colorless oil (501 mg, 68%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.56 (m, 4H), 7.43 (s, 1H), 2.34 – 2.28 (m, 2H), 2.00 – 1.89 (m, 4H), 1.84 – 1.79 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 147.1, 129.7 (q, *J* = 32.2 Hz), 126.7, 125.3 (q, *J* = 3.7 Hz), 124.1 (q, *J* = 270.3 Hz), 95.1, 36.0, 23.9. IR (neat): v_{max} (cm⁻¹) 3431, 2897, 1651, 1399, 776. HRMS (ESI) calcd for $C_{12}H_{13}F_3O_2Na$ [M+Na]⁺ 269.0760, found 269.0760.

2-(1-Hydroperoxycyclopentyl)naphthalene (1f) White solid (445 mg, 65%). Melting point (°C): 55-57. $R_f = 0.3$ (petroleum ether/ethyl acetate = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.90 – 7.82 (m, 3H), 7.61 (dd, J = 8.4, 1.6 Hz, 1H), 7.55 – 7.45 (m, 2H), 7.37 (s, 1H), 2.48 – 2.35 (m, 2H), 2.12 – 2.07(m, 2H), 2.01 – 1.93 (m, 2H), 1.87 – 1.82 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 140.1, 133.1, 132.8, 128.3, 128.2, 127.6, 126.3, 126.1, 125.3, 124.8, 95.7, 35.8, 24.0. IR (neat): v_{max} (cm⁻¹) 3389, 2733, 1701, 1414, 750, 732. HRMS (ESI) calcd for C₁₅H₁₆O₂Na [M+Na]⁺ 251.1043, found 251.1045.

1-(1-Hydroperoxycyclopentyl)naphthalene (1g) White solid (424 mg, 62%). Melting point (°C): 55-56. $R_f = 0.3$ (petroleum ether/ethyl acetate = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.59 – 8.57 (m, 1H), 7.92 – 7.86 (m, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.61 (d, J = 6.4 Hz, 1H), 7.54 – 7.47 (m, 2H), 7.43 (t, J =8.0 Hz, 1H), 7.18 (s, 1H), 2.62 – 2.58 (m, 2H), 2.31 – 2.18 (m, 2H), 2.03 – 1.90 (m, 2H), 1.84 – 1.70 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 137.7, 134.7, 131.6, 129.2, 129.0, 126.2, 126.0, 125.7, 125.6, 124.8, 96.7, 36.5, 24.1. IR (neat): v_{max} (cm⁻¹) 3379, 2698, 1678, 1387, 763. HRMS (ESI) calcd for C₁₅H₁₆O₂Na [M+Na]⁺ 251.1043, found 251.1061.

2-(1-Hydroperoxycyclopentyl)thiophene (1h) Colorless oil (331 mg, 65%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (s, 1H), 7.18 (d, J = 5.1 Hz, 1H), 6.96 (d, J = 3.6 Hz, 1H), 6.89 (t, J = 4.8 Hz, 1H), 2.31 – 2.20 (m, 2H), 1.99 – 1.88 (m, 2H), 1.85 – 1.76 (m, 2H), 1.73 – 1.68 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 146.1, 125.7, 124.1, 123.9, 92.0, 36.0, 22.8. IR (neat): v_{max} (cm⁻¹) 3128, 2697, 1414, 750. HRMS (ESI) calcd for C₉H₁₂O₂SNa [M+Na]⁺ 207.0450, found 207.0452.

(3-(1-Hydroperoxycyclopentyl)propyl)benzene (1i) Colorless oil (363 mg, 55%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.21 (t, *J* = 7.2 Hz, 2H), 7.14 – 7.09 (m, 4H), 2.58 – 2.55 (m, 2H), 1.82 – 1.71 (m, 2H), 1.67 – 1.59 (m, 6H), 1.52 – 1.45 (m, 2H), 1.42 – 1.34 (m,

2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.5, 128.4, 128.3, 125.8, 94.7, 36.2, 35.7, 34.9, 26.2, 24.5. IR (neat): v_{max} (cm⁻¹) 3410, 2902, 1703, 1284, 749. HRMS (ESI) calcd for C₁₄H₂₀O₂Na [M+Na]⁺ 243.1356, found 243.1351.

1-Hydroperoxy-1-phenyl-2,3-dihydro-1H-indene (1j) White solid (352 mg, 52%). Melting point (°C): 61-62. $R_f = 0.3$ (petroleum ether/ethyl acetate = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 1H), 7.41 (d, J = 8.0 Hz, 2H), 7.37 – 7.34 (m, 4H), 7.31 – 7.26 (m, 2H), 7.26 – 7.22 (m, 1H), 3.19 – 3.12 (m, 1H), 2.96 – 2.89 (m, 1H), 2.64 – 2.57 (m, 1H), 2.44 – 2.31 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 146.2, 142.5, 142.4, 129.2, 128.4, 127.5, 126.8, 126.42, 126.36, 125.2, 97.5, 40.1, 30.2. IR (neat): v_{max} (cm⁻¹) 3396, 2922, 1446, 757, 700. HRMS (ESI) calcd for C₁₅H₁₄O₂Na [M+Na]⁺ 249.0886, found 249.0884.

1-Hydroperoxy-1-methoxycyclopentane (1k) Colorless oil (257 mg, 65%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 8.27 (br, 1H), 3.32 (s, 3H), 2.01 – 1.90 (m, 2H), 1.81 – 1.71 (m, 2H), 1.71 – 1.64 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 117.6, 50.5, 33.4, 23.8. IR (neat): v_{max} (cm⁻¹) 3420, 2957, 1711, 1172, 751. HRMS (ESI) calcd for C₆H₁₃O₃N [M+H]⁺ 133.0859, found 133.0858.

1-Ethoxy-1-hydroperoxycyclopentane (11) Colorless oil (272 mg, 62%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (br, 1H), 3.58 (q, *J* = 7.2 Hz, 2H), 2.00 – 1.92 (m, 2H), 1.76 – 1.70 (m, 2H), 1.69 – 1.62 (m, 4H), 1.21 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 117.3, 58.7, 33.7, 23.7, 15.5. IR (neat): v_{max} (cm⁻¹) 3741, 2960, 1732, 1261, 751. HRMS (ESI) calcd for C₇H₁₄O₃Na [M+Na]⁺ 169.0835, found 169.0841.

(1-Hydroperoxycyclobutyl)benzene (1m) Colorless oil (344 mg, 70%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.38 (m, 5H), 7.35 – 7.31 (m, 1H), 2.50 (t, J = 7.6, 4H), 2.20 – 2.08 (m, 1H), 1.88 – 1.75 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 142.0, 128.4, 127.9, 126.3, 88.1, 31.1, 14.0. IR (neat): v_{max} (cm⁻¹) 3396, 3030, 1684, 1449, 1276, 760. HRMS (ESI) calcd for C₁₀H₁₂O₂Na [M+Na]⁺ 187.0730, found 187.0735.

(1-Hydroperoxycyclohexyl)benzene (1n) Colorless oil (351 mg, 61%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (dd, J = 7.2, 0.4 Hz, 2H), 7.40 (t, J = 7.6 Hz, 2H), 7.30 (t, J = 7.2 Hz, 1H), 7.13 (s, 1H), 2.18 – 2.15 (m, 2H), 1.86 – 1.72 (m, 5H), 1.62 – 1.59 (m, 2H), 1.38 – 1.26 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 144.8, 128.6, 127.5, 125.7, 84.5, 34.1, 25.6, 22.0. IR (neat): v_{max} (cm⁻¹) 3189, 2821, 1678, 754. HRMS (ESI) calcd for C₁₂H₁₆O₂Na [M+Na]⁺ 215.1043, found 215.1046,

1-Hydroperoxy-1-phenylcycloheptane (10) Colorless oil (340 mg, 55%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (dd, J = 8.0, 1.0 Hz, 2H), 7.36 (t, J = 8.4 Hz, 2H), 7.27 (t, J = 8.0 Hz, 1H), 7.23 (s, 1H), 2.18 – 1.99 (m, 4H), 1.84 – 1.74 (m, 2H), 1.70 – 1.63 (m, 2H), 1.60 – 1.52 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 145.9, 128.6, 127.3, 125.6, 89.2, 37.7, 30.1, 22.7. IR (neat): v_{max} (cm⁻¹) 3409, 2922, 1445, 1009, 753, 699. HRMS (ESI) calcd for $C_{13}H_{18}O_2Na$ [M+Na]⁺ 229.1199, found 229.1204.

1-Hydroperoxy-1-phenylcyclooctane (1p) Colorless oil (343 mg, 52%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.48(m, 2 Hz), 7.41 – 7.34 (m, 2H), 7.33 – 7.28 (m, 1H), 7.13 (s, 1H), 2.25 – 2.19 (m, 1H), 2.05 – 1.95 (m, 3H), 1.74 – 1.68 (m, 5H), 1.56 – 1.52 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 127.6, 126.4, 125.1, 88.1, 30.5, 27.4, 24.1, 20.8. IR (neat): v_{max} (cm⁻¹) 3362, 2920, 1683, 1445, 756, 699. HRMS (ESI) calcd for C₁₄H₂₀O₂Na [M+Na]⁺ 243.1356, found 243.1355.

1-Hydroperoxy-1-phenylcyclododecane (1q) White solid (410 mg, 49%). Melting point (°C): 101-102. $R_f = 0.3$ (petroleum ether/ethyl acetate = 30:1).¹H NMR (400 MHz, CDCl₃) δ 7.36 (dd, J = 8.2, 1.0 Hz, 2H), 7.30 (t, J = 7.6 Hz, 2H), 7.24 – 7.18 (m, 1H), 7.07 (s, 1H), 2.03 – 1.88 (m, 2H), 1.63 – 1.57 (m, 2H), 1.30 (s, 16H), 1.11 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 128.5, 127.3, 125.8, 88.6, 30.3, 26.3, 26.2, 22.3, 22.0, 19.4. IR (neat): v_{max} (cm⁻¹) 3332, 2897, 1632, 1396, 765, 700, 685. HRMS (ESI) calcd for C₁₈H₂₈O₂Na [M+Na]⁺ 299.1982, found 299.1983.

Ethyl 4-hydroperoxy-4-phenylcyclohexane-1-carboxylate (1r) Colorless oil (317 mg, 40%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 7.6 Hz, 2H), 7.39 (t, J = 7.4 Hz, 2H), 7.31 (t, J = 7.2 Hz, 1H), 7.08 (s, 1H), 4.13 (q, J = 7.0 Hz, 2H), 2.67 – 2.59 (m, 1H), 2.23 – 2.13 (m, 2H), 2.09 – 1.98 (m, 3H), 1.91 – 1.79 (m, 2H), 1.25 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.2, 142.8, 128.7, 127.8, 126.2, 84.2, 60.3, 39.7, 31.2, 23.7, 14.3. IR (neat): v_{max} (cm⁻¹) 3467, 3028, 1709, 1194, 760. HRMS (ESI) calcd for C₁₅H₂₀O₄Na [M+Na]⁺ 287.1254, found 287.1257.

(4,4-Difluoro-1-hydroperoxycyclohexyl)benzene (1s) White solid (410 mg, 60%). Melting point(°C): 55-56. $R_f = 0.3$ (petroleum ether/ethyl acetate = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 7.2 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.28 – 7.25 (m, 1H), 7.19 (s, 1H), 2.29 – 2.16 (m, 3H), 2.13 – 1.93 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 141.7, 127.9, 127.0, 124.3,122.0 (dd, J = 236.7, 236.8 Hz), 81.8 (d, J = 1.6 Hz), 29.4 (d, J = 9.6 Hz), 28.6 (dd, J = 24.0, 24.1 Hz). IR (neat): v_{max} (cm⁻¹) 3129, 2720, 1643, 1410, 790. HRMS (ESI) calcd for C₁₂H₁₄F₂O₂Na [M+Na]⁺ 251.0854, found 251.0863.

(1-Hydroperoxy-2-methylcyclopentyl)benzene (1t) Colorless oil (375 mg, 65%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.35 (m, 4H), 7.34 – 7.27 (m, 1H), 7.22 (s, 1H), 2.48 – 2.42 (m, 1H), 2.30 – 2.09 (m, 3H), 1.98 – 1.81 (m, 2H), 1.40 – 1.33 (m, 1H), 0.55 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.5, 128.4, 127.6, 127.2, 98.7, 41.5, 32.3, 30.0, 21.2, 18.7. IR (neat): v_{max} (cm⁻¹) 3398, 2965, 1603, 1456, 788. HRMS (ESI) calcd for C₁₂H₁₆O₂Na [M+Na]⁺ 215.1043, found 215.1045.

(2-Heptyl-1-hydroperoxycyclopentyl)benzene (1u) Colorless oil (447 mg, 54%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.35 (m, 4H), 7.34 – 7.28 (m, 1H), 7.21 (s, 1H), 2.50 – 2.41 (m, 1H), 2.23 – 2.17 (m, 1H), 2.11 – 2.01 (m, 1H), 2.00 – 1.78 (m, 3H), 1.47 – 1.39 (m, 1H), 1.28 – 1.19 (m, 4H), 1.17 – 1.01 (m, 7H), 0.84 (t, *J* = 7.1 Hz, 3H), 0.68 – 0.58 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 140.7, 128.5, 127.6, 127.2, 98.6, 47.1, 32.3, 31.9, 31.2, 29.7, 29.5, 29.3, 27.9, 22.7, 21.5, 14.2. IR (neat): v_{max} (cm⁻¹) 3396, 2955, 1719, 1449, 760, 700. HRMS (ESI) calcd for

C₁₈H₂₈O₂Na [M+Na]⁺ 299.1982, found 299.1979.

(1-Hydroperoxy-2-methylcyclohexyl)benzene (1v) Colorless oil (321 mg, 52%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.37 (m, 4H), 7.3 – 7.27 (m, 1H), 6.92 (s, 1H), 2.31 – 2.27 (m, 1H), 2.10 – 2.0 (m, 3H), 1.84 – 1.77 (m, 1H), 1.73 – 1.68 (m, 1H), 1.54 – 1.63 (m, 2H), 1.39 – 1.34 (m, 1H), 0.65 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 128.7, 127.6, 126.1, 87.8, 37.1, 28.4, 25.1, 21.5, 19.7, 15.9. IR (neat): v_{max} (cm⁻¹) 3424, 2936, 1691, 1446, 755. HRMS (ESI) calcd for C₁₃H₁₈O₂Na [M+Na]⁺ 229.1199, found 229.1205.

Ethyl 2-(4-((2-hydroperoxy-2-phenylcyclopentyl)methyl)phenyl)propanoate (1w) Colorless oil (662 mg, 60%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.47(m, 2H), 7.43 – 7.39 (m, 2H), 7.34 – 7.30 (m, 2H), 7.14 (d, J = 8.0 Hz, 2H), 6.96 (d, J = 8.0 Hz, 2H), 4.16 – 4.02 (m, 2H), 3.64 (q, J = 7.0 Hz, 1H), 2.57 – 2.48 (m, 1H), 2.43 – 2.27 (m, 3H), 1.95 – 1.84 (m, 3H), 1.82 – 1.76 (m, 1H), 1.45 (d, J = 7.2 Hz, 4H), 1.19 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.8, 140.4, 139.4, 138.2, 129.0, 128.7, 127.9, 127.3, 127.2, 98.1, 60.7, 48.6, 45.2, 38.0, 31.3, 29.2, 21.3, 18.6, 14.2. IR (neat): v_{max} (cm⁻¹) 3422, 3057, 2341, 1730, 1175, 762. HRMS (ESI) calcd for C₂₃H₂₈O₄Na [M+Na]⁺ 391.1880, found 391.1882.

(1S,2R,4R)-2-Hydroperoxy-2-phenylbicyclo[2.2.1]heptane (1x) Colorless oil (422 mg, 69%) $R_f = 0.3$ (petroleum ether/ethyl acetate = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 7.6 Hz, 2H), 7.40 – 7.35 (m, 2H), 7.32 – 7.29 (m, 1H), 6.98 (br, 1H), 2.73 (s, 1H), 2.42 (s, 1H), 2.10 – 2.01 (m, 2H), 1.91 (d, J = 14 Hz, 1H), 1.55 – 1.43 (m, 2H), 1.31 (d, J = 9.6 Hz, 1H), 1.17 – 1.00 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 140.2, 128.6, 128.2, 127.8, 94.8, 44.3, 40.0, 36.9, 36.6, 29.0, 23.8. IR (neat): v_{max} (cm⁻¹) 3449, 2958, 1449, 1324, 758, 700. HRMS (ESI) calcd for C₁₃H₁₆O₂Na [M+Na]⁺ 227.1043, found 227.1046.

9. Characterization of Products 2-4

5-Chloro-1-phenylpentan-1-one (2a) White solid (35.4 mg, 90%). Melting point (°C): 63-64. $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.2 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 3.58 (t, J = 6.2 Hz, 2H), 3.02 (t, J = 6.8 Hz, 2H), 1.98 – 1.82 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 136.8, 133.1, 128.6, 128.0, 44.8, 37.6, 32.1, 21.5. Spectral data matched literature values.⁴

5-Chloro-1-(o-tolyl)pentan-1-one (2b) Light yellow oil (35.1 mg, 84%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 7.6 Hz, 1H), 7.37 (t, J = 7.2 Hz, 1H), 7.26 (t, J = 7.6 Hz, 2H), 3.57 (t, J = 6.2 Hz, 2H), 2.94 (t, J = 6.8 Hz, 2H), 2.49 (s, 3H), 1.87 – 1.45 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 202.8, 137.0, 136.9, 131.0, 130.2, 127.3, 124.7, 43.7, 39.5, 31.0, 20.6, 20.3. IR (neat): v_{max} (cm⁻¹) 2928, 1682, 1128, 752, 648. HRMS (ESI) calcd for C₁₂H₁₆ClO [M+H]⁺ 211.0884, found 211.0876.

5-Chloro-1-(3-fluorophenyl)pentan-1-one (2c) Colorless oil (36.7 mg, 86%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.6 Hz, 1H), 7.64 (d, J = 9.2 Hz, 1H), 7.48 – 7.43 (m, 1H), 7.29 – 7.25 (m, 1H), 3.59 (t, J = 6.4 Hz, 2H), 3.00 (t, J = 6.4 Hz, 2H), 2.00 – 1.81 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 198.3 (d, J = 2.0 Hz), 162.9 (d, J = 246.4 Hz), 138.9 (d, J = 6.0 Hz), 130.3 (d, J = 7.5 Hz), 123.8 (d, J = 2.9 Hz), 120.1 (d, J = 21.3 Hz), 114.7 (d, J = 22.0 Hz), 44.7, 37.7, 31.9, 21.4. IR (neat): v_{max} (cm⁻¹) 2957, 1689, 1250, 751, 682. HRMS (ESI) calcd for C₁₁H₁₃CIFO [M+H]⁺ 215.0634, found 215.0629.

5-Chloro-1-(3-chlorophenyl)pentan-1-one (2d) Colorless oil (40.4 mg, 88%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.82 (d, *J* = 7.6 Hz, 1H), 7.53 (d, *J* = 8.0 Hz, 1H), 7.41 (t, *J* = 8.0 Hz, 1H), 3.58 (t, *J* = 6.4z, 2H), 2.99 (t, *J* = 6.8 Hz, 2H), 1.96 – 1.80 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 198.3, 138.4, 135.0, 133.0, 130.0, 128.2, 126.1, 44.7, 37.7, 31.9, 21.3. IR (neat): v_{max} (cm⁻¹) 2956, 1688, 1213, 750, 650. HRMS (ESI) calcd for C₁₁H₁₃Cl₂O [M+H]⁺ 231.0038, found 231.0030.

5-Chloro-1-(4-(trifluoromethyl)phenyl)pentan-1-one (2e) Colorless oil (45.4 mg, 86%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.0Hz, 2H), 7.73 (d, J = 8.4 Hz, 2H), 3.59 (t, J = 6.0 Hz, 2H), 3.04 (t, J = 6.8 Hz, 2H), 1.99 – 1.83 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 197.5, 138.4, 133.4 (q, J = 32.4 Hz), 126.6, 124.7 (q, J = 3.7 Hz), 122.5 (q, J = 271.1 Hz), 43.6, 36.9, 30.9, 20.3. IR (neat): v_{max} (cm⁻¹) 2957, 1692, 1324, 1128, 750, 602. HRMS (ESI) calcd for C₁₂H₁₃ClF₃O [M+H]⁺ 265.0602, found 265.0607.

5-Chloro-1-(naphthalen-2-yl)pentan-1-one (2f) White solid (40 mg, 81%). Melting point (°C): 84-85. $R_f = 0.3$ (petroleum ether/ethyl acetate = 50:1). ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 8.03 (dd, J = 8.8, 1.6 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.89 (t, J = 8.0 Hz, 2H), 7.72 – 7.54 (m, 2H), 3.61 (t, J = 6.4 Hz, 2H), 3.15 (t, J = 6.4 Hz, 2H), 2.03 – 1.86 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 135.6, 134.2, 132.5, 129.7, 129.6, 128.51, 128.48, 127.8, 126.8, 123.8, 44.8, 37.6, 32.1, 21.7. IR (neat): v_{max} (cm⁻¹) 2929, 1668, 1233, 747, 480. HRMS (ESI) calcd for C₁₅H₁₆ClO [M+H]⁺ 247.0884, found 247.0873.

5-Chloro-1-(naphthalen-1-yl)pentan-1-one (2g) Colorless oil (40.6 mg, 82%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 50:1). ¹H NMR (400 MHz, CDCl₃) δ 8.58 (d, J = 8.8 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.89 – 7.84 (m, 2H), 7.64 – 7.46 (m, 3H), 3.59 (t, J = 6.4 Hz, 2H), 3.09 (t, J = 6.8 Hz, 2H), 2.01 – 1.86 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 204.0, 136.0, 134.0, 132.6, 130.1, 128.5, 128.0, 127.4, 126.5, 125.7, 124.4, 44.7, 41.1, 32.1, 22.0. IR (neat): v_{max} (cm⁻¹) 2954, 1679, 1100, 775, 648. HRMS (ESI) calcd for C₁₅H₁₆CIO [M+H]⁺ 247.0884, found 247.0878.

5-Chloro-1-(thiophen-2-yl)pentan-1-one (2h) Colorless oil (27.4 mg, 68%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 3.6 Hz, 1H), 7.63 (d, J = 4.8 Hz, 1H), 7.14 (t, J = 5.2 Hz, 1H), 3.58 (t, J = 6.4 Hz, 2H), 2.95 (t, J = 6.8 Hz, 2H), 1.98 – 1.82 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 192.6, 144.2, 133.6, 131.8, 128.1, 44.7, 38.3, 32.0, 21.8. IR (neat): v_{max} (cm⁻¹) 2956, 1659, 1415, 1236, 750, 648. HRMS (ESI) calcd for C₉H₁₂ClO [M+H]⁺ 203.0292 found 203.0296.

8-Chloro-1-phenyloctan-4-one (2i) Colorless oil (34.9 mg, 73%). $R_f = 0.3$ (petroleum ether/ethyl

acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.18 (m, 2H), 7.13 – 7.08 (m, 3H), 3.44 (t, *J* = 6.4 Hz, 2H), 2.54 (t, *J* = 7.6 Hz, 2H), 2.33 (t, *J* = 7.2 Hz, 4H), 1.89 – 1.79 (m, 2H), 1.73 – 1.59 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 209.2, 140.5, 127.44, 127.36, 124.9, 43.6, 40.9, 40.7, 34.0, 30.9, 24.1, 20.0. IR (neat): v_{max} (cm⁻¹) 2934, 1711, 1262, 750, 701. HRMS (ESI) calcd for C₁₄H₁₉ClONa [M+Na]⁺ 261.1017, found 261.1013.

(2-(2-Chloroethyl)phenyl)(phenyl)methanone (2j) Colorless oil (24 mg, 49%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 50:1). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 7.2 Hz, 2H), 7.60 (t, *J* = 7.6 Hz, 1H), 7.49 – 7.45 (m, 3H), 7.40 (d, *J* = 7.6 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 2H), 3.74 (t, *J* = 7.2 Hz, 2H), 3.17 (t, *J* = 7.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 198.1, 138.6, 137.6, 137.5, 133.4, 131.3, 130.6, 130.4, 129.3, 128.5, 126.3, 45.1, 36.6. IR (neat): v_{max} (cm⁻¹) 2924, 1661, 1275, 751, 707. HRMS (ESI) calcd for C₁₅H₁₄ClO [M+H]⁺ 245.0728, found 245.0717.

Methyl 5-chloropentanoate (2k) Colorless oil (13.0 mg, 43%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 3.68 (s, 3H), 3.55 (t, *J* = 6.0 Hz, 2H), 2.36 (t, *J* = 6.8 Hz, 2H), 1.86 - 1.75 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 173.7, 51.6, 44.5, 33.2, 31.8, 22.2. IR (neat): v_{max} (cm⁻¹) 2924, 1276, 751. HRMS (ESI) calcd for C₆H₁₁ClO₂Na [M+Na]⁺ 173.0340, found 173.0348.

Ethyl 5-chloropentanoate (21) Colorless oil (15.8 mg, 48%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 4.13 (q, J = 7.2 Hz, 2H), 3.55 (t, J = 6.2 Hz, 2H), 2.34 (t, J = 7.0 Hz, 2H), 1.87 – 1.74 (m, 4H), 1.26 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 60.4, 44.5, 33.5, 31.9, 22.3, 14.3. IR (neat): v_{max} (cm⁻¹) 2926, 1276, 751. HRMS (ESI) calcd for $C_7H_{14}ClO_2$ [M+H]⁺ 165.0604, found 165.0611.

4-Chloro-1-phenylbutan-1-one (2m) Colorless oil (35 mg, 96%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 7.2 Hz, 2H), 7.57 (t, J = 7.2 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 3.68 (t, J = 6.2 Hz, 2H), 3.18 (t, J = 7.0 Hz, 2H), 2.31 – 2.18 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 199.0, 136.7, 133.2, 128.7, 128.0, 44.7, 35.3, 26.8. Spectral data matched literature values.⁴

6-Chloro-1-phenylhexan-1-one (2n) Colorless oil (25.3 mg, 60%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.92 (m, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 3.55 (t, J = 6.8 Hz, 2H), 2.99 (t, J = 7.4 Hz, 2H), 1.88 – 1.72 (m, 4H), 1.59 – 1.48 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 200.0, 137.0, 133.0, 128.6, 128.0, 44.9, 38.3, 32.5, 26.6, 23.5. Spectral data matched literature values.⁴

7-Chloro-1-phenylheptan-1-one (20) White solid (31.4 mg, 70%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). Melting point (°C): 34-36. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.2 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 3.53 (t, J = 6.6 Hz, 2H), 2.97 (t, J = 7.2 Hz, 2H), 1.81 – 1.74 (m, 4H), 1.54 – 1.35 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 200.3, 137.0, 128.6, 128.0, 45.1, 38.4, 32.4, 28.6, 26.7, 24.1. Spectral data matched literature values.⁵

8-Chloro-1-phenyloctan-1-one (2p) Colorless oil (20 mg, 42%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.2 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 3.53 (t, J = 6.8 Hz, 2H), 2.97 (t, J = 7.4 Hz, 2H), 1.83 – 1.70 (m, 4H), 1.50 – 1.33 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 200.5, 137.0, 132.9, 128.6, 128.1, 45.1, 38.5, 32.6, 29.2, 28.8, 26.7, 24.2. Spectral data matched literature values.⁶

12-Chloro-1-phenyldodecan-1-one (2q) Colorless oil (46 mg, 78%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.2 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.4 Hz, 2H), 3.52 (t, J = 6.8 Hz, 2H), 2.96 (t, J = 7.4 Hz, 2H), 1.81 – 1.68 (m, 4H), 1.45 – 1.26 (m, 14H). ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 136.1, 131.8, 127.5, 127.0, 44.2, 37.6, 31.6, 28.45, 28.43, 28.41, 28.3, 27.8, 25.8, 23.3. IR (neat): v_{max} (cm⁻¹) 2925, 1686, 1217, 751, 691. HRMS (ESI) calcd for C₁₈H₂₈ClO [M+H]⁺ 295.1823, found 295.1816.

Ethyl 2-(2-chloroethyl)-5-oxo-5-phenylpentanoate (2r) Yellow oil (29.5 mg, 52%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.90 (m, 2H), 7.60 – 7.54 (m, 1H), 7.46 (t, J = 7.6 Hz, 2H), 4.17 (q, J = 7.0 Hz, 2H), 3.69 – 3.47 (m, 2H), 3.04 – 2.99 (m, 2H), 2.76 – 2.69 (m, 1H), 2.29 – 2.13 (m, 1H), 2.06 – 1.92 (m, 3H), 1.25 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.0, 174.8, 136.7, 133.2, 128.6, 128.0, 60.7, 42.5, 42.1, 35.9, 34.9, 26.1, 14.3. IR (neat): v_{max} (cm⁻¹) 2961, 1727, 1156, 750, 691. HRMS (ESI) calcd for C₁₅H₁₉ClO₃Na [M+Na]⁺ 305.0915, found 305.0903.

6-Chloro-4,4-difluoro-1-phenylhexan-1-one (2s) White solid (18.3 mg, 37%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). Melting point (°C): 48-49. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 7.2 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 3.71 (t, J = 7.8 Hz, 2H), 3.21 (t, J = 7.6 Hz, 2H), 2.53 – 2.26 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 196.8, 135.4, 132.4, 127.7, 127.0, 122.2 (t, J = 240.2 Hz), 39.2 (t, J = 25.2 Hz), 35.8 (t, J = 6.0 Hz), 29.93 (t, J = 3.0 Hz), 29.88 (t, J = 24.0 Hz). IR (neat): v_{max} (cm⁻¹) 2947, 1688, 1216, 748, 690. HRMS (ESI) calcd for C₁₂H₁₃ClF₂ONa [M+Na]⁺ 269.0515, found 269.0516.

5-Chloro-1-phenylhexan-1-one (2t) Colorless oil (33.7 mg, 80%). $R_f = 0.4$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.2 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.4 Hz, 2H), 4.14 – 4.02 (m, 1H), 3.01 (td, J = 7.0, 1.8 Hz, 2H), 2.03 – 1.72 (m, 4H), 1.53 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.8, 136.9, 133.1, 128.6, 128.0, 58.5, 39.7, 37.8, 25.3, 21.3. IR (neat): v_{max} (cm⁻¹) 2928, 1684, 1225, 751, 691. HRMS (ESI) calcd for C₁₂H₁₆ClO [M+H]⁺ 211.0884, found 211.0881.

5-Chloro-1-phenyldodecan-1-one (2u) Colorless oil (40 mg, 68%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.2 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 3.97 – 3.91 (m, 1H), 3.03 – 2.99 (m, 2H), 2.04 – 1.94 (m, 1H), 1.89 – 1.82 (m, 2H), 1.80 – 1.68 (m, 3H), 1.58 – 1.47 (m, 1H), 1.45 – 1.36 (m, 1H), 1.31 – 1.23 (m, 8H), 0.88 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.8, 136.9, 133.1, 128.6, 128.0, 63.9, 38.5, 37.9, 37.8, 31.8, 29.2, 29.1, 26.5, 22.7, 21.2, 14.1. IR (neat): v_{max} (cm⁻¹) 2926, 1686, 1225, 751, 691. HRMS (ESI) calcd for C₁₈H₂₈ClO [M+H]⁺ 295.1823, found 295.1815.

6-Chloro-1-phenylheptan-1-one (2v) Colorless oil (36.9 mg, 82%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.2 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.4 Hz, 2H), 4.13 – 3.98 (m, 1H), 3.00 (t, J = 7.4 Hz, 2H), 1.87 – 1.69 (m, 4H), 1.66 – 1.54 (m, 2H), 1.51 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 200.1, 137.0, 133.0, 128.6, 128.0, 58.7, 40.2, 38.4, 26.4, 25.4, 23.7. IR (neat): v_{max} (cm⁻¹) 2931, 1685, 1220, 751, 691. HRMS (ESI) calcd for C₁₃H₁₇ClONa [M+Na]⁺ 247.0860, found 247.0859.

Ethyl 2-(4-(2-chloro-6-oxo-6-phenylhexyl)phenyl)propanoate (2w) Colorless oil (39.6 mg, 51%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 7.2 Hz, 2H), 7.49 (t, J = 7.4 Hz, 1H), 7.39 (t, J = 7.6 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 8.1 Hz, 2H), 4.17 – 3.94 (m, 3H), 3.62 (q, J = 7.1 Hz, 1H), 2.96 (d, J = 6.8 Hz, 2H), 2.92 (dd, J = 12.6, 6.6 Hz, 2H), 2.04 – 1.94 (m, 1H), 1.89 – 1.76 (m, 2H), 1.73 – 1.67 (m, 1H), 1.41 (d, J = 7.2 Hz, 3H), 1.14 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.7, 174.6, 139.1, 136.8, 136.6, 133.1, 129.6, 128.6, 128.0, 127.5, 63.6, 60.8, 45.2, 44.5, 37.8, 37.1, 21.2, 18.6, 14.2. IR (neat): v_{max} (cm⁻¹) 2936, 1728, 1173, 752, 692. HRMS (ESI) calcd for C₂₃H₂₇ClO₃Na [M+Na]⁺ 409.1541, found 409.1536.

(3-(Chloromethyl)cyclopentyl)(phenyl)methanone (2x) Yellow oil (29.4 mg, 66%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.90 (m, 2H), 7.56 (t, J = 7.6 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 4.48 – 4.42 (m, 0.455H), 4.40 – 4.34 (m, 0.545 H), 3.17 (d, J = 6.8 Hz, 1H), 3.03 (d, J = 7.2 Hz, 1H), 2.93 – 2.85 (m, 0.409 H), 2.63 – 2.48 (m, 1H), 2.30 – 2.15 (m, 1H), 2.10 – 1.94 (m, 2H), 1.79 – 1.71 (m, 0.543 H), 1.68 – 1.59 (m, 1H), 1.37 – 1.26 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 199.4, 137.0, 136.9, 133.1, 128.6, 128.6, 128.1, 128.0, 61.3, 60.7, 45.5, 44.4, 43.6, 43.4, 37.0, 36.6, 33.7, 33.1, 30.3, 30.2. IR (neat): v_{max} (cm⁻¹) 2963, 1684, 1181, 752, 691. HRMS (ESI) calcd for C₁₃H₁₆ClO [M+H]⁺ 223.0884, found 223.0881.

5-Bromo-1-phenylpentan-1-one (3a) Colorless oil (38.1 mg, 79%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). Melting point (°C): 33-34. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.2 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 3.45 (t, J = 6.4 Hz, 2H), 3.02 (t, J = 6.8 Hz, 2H), 2.02 – 1.82 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 136.8, 133.1, 128.6, 128.0, 37.4, 33.4, 32.2, 22.8. Spectral data matched literature values.⁷

5-Bromo-1-(naphthalen-2-yl)pentan-1-one (3b) White solid (41.2 mg, 71%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 50:1). Melting point (°C): 89-90. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 8.03 (dd, J = 8.6, 1.8 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.89 (t, J = 8.2 Hz, 2H), 7.67 – 7.51 (m, 2H), 3.49 (t, J = 6.2 Hz, 2H), 3.15 (t, J = 6.8 Hz, 2H), 2.07 – 1.92 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 199.6,

135.6, 134.2 132.5, 129.7 129.6 128.52, 128.49, 127.8, 126.8, 123.8, 37.5, 33.4 32.3 22.9. IR (neat): v_{max} (cm⁻¹) 2994, 1679, 1275, 748, 507. HRMS (ESI) calcd for $C_{15}H_{16}BrO$ [M+H]⁺ 291.0379, found 291.0371.

8-Bromo-1-phenyloctan-4-one (3c) Colorless oil (28.3 mg, 50%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.17 (m, 2H), 7.13 – 7.09 (m, 3H), 3.32 (t, J = 6.6 Hz, 2H), 2.55 (t, J = 7.6 Hz, 2H), 2.36 – 2.32(m, 4H), 1.88 – 1.80 (m, 2H), 1.78 – 1.73 (m, 2H), 1.67 – 1.59 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 209.1, 140.5, 127.44, 127.37, 124.9, 40.9, 40.6, 34.0, 32.3, 31.1, 24.1, 21.2. IR (neat): v_{max} (cm⁻¹) 3025, 1679, 1275, 748, 700. HRMS (ESI) calcd for C₁₄H₁₉IOBrNa [M+Na]⁺ 305.0512, found 305.0504.

6-Bromo-1-phenylhexan-1-one (3d) White solid (27 mg, 53%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). Melting point (°C): 33-34. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.6 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 3.43 (t, J = 6.8 Hz, 2H), 3.00 (t, J = 7.2 Hz, 2H), 1.97 – 1.87 (m, 2H), 1.82 – 1.74 (m, 2H), 1.57 – 1.50 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 200.0, 137.0, 133.0, 128.6, 128.0, 38.3, 33.7, 32.6, 27.9, 23.3. Spectral data matched literature values.⁸

7-Bromo-1-phenylheptan-1-one (3e) White solid (34.4 mg, 64%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). Melting point (°C): 42-43. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 7.2 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 3.41 (t, *J* = 6.8 Hz, 2H), 2.97 (t, *J* = 7.4 Hz, 2H), 1.92 – 1.83 (m, 2H), 1.79 – 1.72 (m, 2H), 1.54 – 1.36 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 200.3, 137.0, 133.0, 128.6, 128.0, 38.4, 33.9, 32.6, 28.4, 28.0, 24.0. Spectral data matched literature values.⁷

12-Bromo-1-phenyldodecan-1-one (3f) White solid (48 mg, 71%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). Melting point (°C): 34-35. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 6.8 Hz, 2H), 7.59 – 7.52 (m, 1H), 7.45 (t, J = 7.6 Hz, 2H), 3.40 (t, J = 7.0 Hz, 2H), 2.96 (t, J = 7.4 Hz, 2H), 1.89 – 1.80 (m, 2H), 1.78 – 1.69 (m, 2H), 1.45 – 1.26 (m, 14H). ¹³C NMR (100 MHz, CDCl₃) δ 200.6, 137.1, 132.9, 128.6, 128.1, 38.6, 34.1, 32.8, 29.48, 29.46, 29.44, 29.42, 29.37, 28.8, 28.2, 24.4. Spectral data matched literature values.⁸

5-Bromo-1-(thiophen-2-yl)pentan-1-one (3g) Colorless oil (26.2 mg, 53%). $R_f = 0.3$ (petroleum

ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, *J* = 3.8, 1.0 Hz, 1H), 7.64 (dd, *J* = 4.8, 1.0 Hz, 1H), 7.16 – 7.11 (m, 1H), 3.45 (t, *J* = 6.2 Hz, 2H), 2.95 (t, *J* = 6.8 Hz, 2H), 1.97 – 1.88 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 192.6, 144.2, 133.6, 131.8, 128.1, 38.2, 33.3, 32.1, 23.1. Spectral data matched literature values.⁹

5-Bromo-1-phenylhexan-1-one (3h) Colorless oil (38.7 mg, 76%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.93 (m, 2H), 7.61 – 7.54 (m, 1H), 7.47 (t, J = 7.6 Hz, 2H), 4.23 – 4.12 (m, 1H), 3.03 – 2.99 (m, 2H), 2.04 – 1.84 (m, 4H), 1.74 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.7, 136.9, 133.1, 128.6, 128.0, 51.2, 40.5, 37.6, 26.4, 22.4. Spectral data matched literature values.⁸

5-Bromo-1-phenyldodecan-1-one (3i) Colorless oil (30.5 mg, 45%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.6 Hz, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 4.10 – 4.05 (m, 1H), 3.03 – 2.99 (m, 2H), 2.06 – 1.99 (m, 1H), 1.96 – 1.86 (m, 3H), 1.87 – 1.80 (m, 2H), 1.58 – 1.48 (m, 1H), 1.45 – 1.38 (m, 1H), 1.32 – 1.24 (m, 8H), 0.88 (t, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.8, 136.9, 133.1, 128.6, 128.0, 58.3, 39.1, 38.5, 37.7, 31.8, 29.2, 29.0, 27.6, 22.7, 22.3, 14.1. IR (neat): v_{max} (cm⁻¹) 2925, 1686, 1274, 751, 691. HRMS (ESI) calcd for C₁₈H₂₈BrO [M+H]⁺ 339.1318, found 339.1308.

6-Bromo-1-phenylheptan-1-one (3j) Colorless oil (43 mg, 80%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.2 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 4.19 – 4.11 (m, 1H), 3.00 (t, J = 7.2 Hz, 2H), 1.94 – 1.75 (m, 4H), 1.72 (d, J = 6.4 Hz, 3H), 1.65 – 1.57 (m, 1H), 1.56 – 1.47 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 200.1, 136.9, 133.0, 128.6, 128.0, 51.6, 41.0, 38.4, 27.6, 26.5, 23.5. IR (neat): v_{max} (cm⁻¹) 2930, 1684, 1211,751, 691. HRMS (ESI) calcd for C₁₃H₁₇BrONa [M+Na]⁺ 291.0355, found 291.0344.

Ethyl 2-(4-(2-bromo-6-oxo-6-phenylhexyl)phenyl)propanoate (3k) Colorless oil (37 mg, 43%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 7.2 Hz, 2H), 7.49 (t, J = 7.4 Hz, 1H), 7.39 (t, J = 7.6 Hz, 2H), 7.18 (d, J = 8.4 Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H), 4.19 – 4.11 (m, 1H), 4.09 – 3.96 (m, 2H), 3.62 (q, J = 7.0 Hz, 1H), 3.13 – 3.07 (m, 2H), 2.94 – 2.89 (m, 2H), 2.04 – 1.98 (m, 1H), 1.90 – 1.78 (m, 3H), 1.41 (d, J = 7.2 Hz, 3H), 1.14 (t, J = 7.2 Hz, 3H). ¹³C NMR

(100 MHz, CDCl₃) δ 199.7, 174.6, 139.2, 137.2, 136.8, 133.1, 129.5, 128.6, 128.0, 127.6, 60.8, 57.1, 45.22, 45.20, 37.7, 37.6, 22.3, 18.6, 14.2. IR (neat): v_{max} (cm⁻¹) 2933, 1728, 1172, 752, 691. HRMS (ESI) calcd for C₂₃H₂₇BrO₃Na [M+Na]⁺ 453.1036, found 453.1027.

5-Iodo-1-phenylpentan-1-one (4a) Yellow solid (46.2 mg, 80%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). Melting point (°C): 74-75. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.2 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.4 Hz, 2H), 3.22 (t, J = 6.6 Hz, 2H), 3.00 (t, J = 6.8 Hz, 2H), 1.94 – 1.83 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 136.8, 133.1, 128.7, 128.0, 37.2, 33.0, 25.1, 6.3. Spectral data matched literature values.⁷

5-Iodo-1-(naphthalen-2-yl)pentan-1-one (4b) Yellow solid (49.5 mg, 73%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 50:1). Melting point (°C): 81-82. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 8.03 (dd, J = 8.6, 1.4 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.89 (t, J = 7.8 Hz, 2H), 7.54 – 7.62 (m, 2H), 3.26 (t, J = 6.4 Hz, 2H), 3.13 (t, J = 6.8 Hz, 2H), 2.01 – 1.88 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 199.5, 135.6, 134.1, 132.5, 129.7, 129.6, 128.52, 128.50, 127.8, 126.8, 123.8, 37.3, 33.0, 25.2, 6.3. IR (neat): v_{max} (cm⁻¹) 2947, 1670, 1210, 750, 598. HRMS (ESI) calcd for C₁₅H₁₆IO [M+H]⁺ 339.0240, found 339.0236.

8-Iodo-1-phenyloctan-4-one (4c) Colorless oil (35.7 mg, 54%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (t, J = 7.2 Hz, 2H), 7.21 – 7.16 (m, 3H), 3.16 (t, J = 6.8 Hz, 2H), 2.62 (t, J = 7.2 Hz, 2H), 2.43 – 2.38 (m, 4H), 1.96 – 1.87 (m, 2H), 1.85 – 1.75 (m, 2H), 1.70 – 1.62 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 209.1, 140.5, 127.44, 127.37, 124.9, 40.9, 40.4, 34.0, 31.8, 24.1, 23.5, 5.2. IR (neat): v_{max} (cm⁻¹) 2930, 1710, 1211, 749, 700. HRMS (ESI) calcd for C₁₄H₁₉IONa [M+Na]⁺ 353.0373, found 353.0372.

6-Iodo-1-phenylhexan-1-one (4d) Yellow oil (24.9 mg, 41%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.2 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 3.21 (t, J = 7.0 Hz, 2H), 2.99 (t, J = 7.4 Hz, 2H), 1.93 – 1.84 (m, 2H), 1.81 – 1.73 (m, 2H), 1.54 – 1.46 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 200.0, 137.0, 133.0, 128.6, 128.0, 38.3, 33.3, 30.2, 23.1, 6.8. Spectral data matched literature values.⁸

7-Iodo-1-phenylheptan-1-one (4e) Yellow solid (42.5 mg, 67%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). Melting point (°C): 44-45. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.2 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 3.19 (t, J = 7.0 Hz, 2H), 2.97 (t, J = 7.4 Hz, 2H), 1.90 – 1.80 (m, 2H), 1.79 – 1.72 (m, 2H), 1.50 – 1.37 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 199.3, 136.0, 131.9, 127.6, 127.0, 37.3, 32.2, 29.3, 27.2, 23.0, 6.1. Spectral data matched literature values.⁸

12-Iodo-1-phenyldodecan-1-one (4f) White solid (58 mg, 75%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). Melting point (°C): 39-40. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.2 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 3.18 (t, J = 7.0 Hz, 2H), 2.96 (t, J = 7.4 Hz, 2H), 1.85 – 1.79 (m, 2H), 1.77 – 1.69 (m, 2H), 1.40 – 1.27 (m, 14H). ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 136.1, 131.8, 127.5, 127.0, 37.6, 32.5, 29.5, 28.44, 28.42, 28.40, 28.36, 28.33, 27.5, 23.3, 6.4. Spectral data matched literature values.⁸

5-Iodo-1-(thiophen-2-yl)pentan-1-one (4g) Colorless oil (32.5 mg, 55%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz,) δ 7.72 (dd, J = 2.8, 0.8 Hz), 7.64 (dd, J = 3.6, 1.2 Hz), 7.13 (dd, J = 3.6, 1.2 Hz), 3.22 (t, J = 6.8 Hz), 2.94 (t, J = 7.2 Hz), 1.96 – 1.83 (m). ¹³C NMR (100 MHz, CDCl₃) δ 192.6, 144.2, 133.7, 131.9, 128.2, 38.1, 32.9, 25.5, 6.2. IR (neat): v_{max} (cm⁻¹) 2934, 1660, 1262, 751, 700. HRMS (ESI) calcd for C₉H₁₁IOSNa [M+Na]⁺ 316.9468 found 316.9473.

5-Iodo-1-phenylhexan-1-one (4h) Colorless oil (46 mg, 76%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.2 Hz, 2H), 7.60 – 7.53 (m, 1H), 7.46 (t, J = 6.6 Hz, 2H), 4.29 – 4.15 (m, 1H), 3.03 – 2.98 (m, 2H), 1.94 (d, J = 6.8 Hz, 3H), 1.93 – 1.69 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 199.7, 136.8, 133.1, 128.6, 128.0, 42.2, 37.4, 29.6, 28.9, 24.4. IR (neat): v_{max} (cm⁻¹) 2929, 1682, 1261, 751, 690. HRMS (ESI) calcd for C₁₂H₁₆IO [M+H]⁺ 303.0240, found 303.0236.

5-Iodo-1-phenyldodecan-1-one (4i) White solid (38 mg, 49%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.2 Hz, 2H), 7.60 – 7.51 (m, 1H), 7.46 (t, J = 7.6 Hz, 2H), 4.22 – 4.09 (m, 1H), 3.03 – 2.98 (m, 2H), 2.03 – 1.77 (m, 5H), 1.75 – 1.66 (m, 1H), 1.57 – 1.47 (m, 1H), 1.40 – 1.39 (m, 1H), 1.31 – 1.25 (m, 8H), 0.89 (t, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.7, 136.8, 133.1, 128.6, 128.0, 40.6, 40.0, 39.6, 37.6, 31.8, 29.5, 29.2, 28.8, 24.2, 22.7, 14.1. IR (neat): v_{max} (cm⁻¹) 2924, 1686, 1450, 1233, 751. HRMS (ESI) calcd for C₁₈H₂₇IONa [M+Na]⁺ 409.0999, found 409.0992.

6-Iodo-1-phenylheptan-1-one (4j) Colorless oil (43 mg, 68%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 60:1). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.2 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 4.28 – 4.12 (m, 1H), 3.00 (t, J = 7.2 Hz, 2H), 1.93 (d, J = 6.8 Hz, 3H), 1.90 – 1.83 (m, 1H), 1.81 – 1.72 (m, 2H), 1.70 – 1.66 (m, 1H), 1.61 – 1.55 (m, 1H), 1.53 – 1.46 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 200.1, 137.0, 133.0, 128.6, 128.0, 42.7, 38.4, 30.3, 29.5, 29.0, 23.3. IR (neat): v_{max} (cm⁻¹) 2981, 1729, 1346, 761, 690. HRMS (ESI) calcd for C₁₃H₁₈IO [M+H]⁺ 317.0397, found 317.0388.

Ethyl 2-(4-(2-iodo-6-oxo-6-phenylhexyl)phenyl)propanoate (4k) Colorless oil (57.5 mg, 60%). $R_f = 0.3$ (petroleum ether/ethyl acetate = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 7.2 Hz, 2H), 7.47 (t, J = 6.8 Hz, 1H), 7.36 (t, J = 7.6 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 7.04 (d, J = 8.4 Hz, 2H), 4.25 – 4.14 (m, 1H), 4.09 – 3.95 (m, 2H), 3.59 (q, J = 7.0 Hz, 1H), 3.21 – 3.05 (m, 2H), 2.91 – 2.86 (m, 2H), 1.99 – 1.94 (m, 1H), 1.83 – 1.67 (m, 3H), 1.39 (d, J = 7.2 Hz, 3H), 1.11 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 174.6, 139.2, 138.4, 136.8, 133.1, 129.2, 128.6, 128.1, 127.6, 60.8, 47.0, 45.2, 38.9, 37.8, 37.5, 24.4, 18.6, 14.2. IR (neat): v_{max} (cm⁻¹) 3446, 2979, 1728, 1206, 752, 657. HRMS (ESI) calcd for C₂₃H₂₇IO₃Na [M+Na]⁺ 501.0897, found 501.0897.

10. Characterization of Products 6-8

4-Chloro-3-phenylbutanenitrile (6a) Colorless oil (32.3 mg, 90%). $R_f = 0.2$ (petroleum ether/ethyl acetate = 15:1). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.26 (m, 3H), 7.19 (d, J = 6.8 Hz, 2H), 3.78 – 3.68 (m, 2H), 3.331 – 3.24 (m, 1H), 2.87 (dd, J = 16.8, 5.6 Hz, 1H), 2.75 (dd, J = 16.8, 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 138.3, 129.2, 128.4, 127.3, 117.7, 47.0, 44.2, 21.7. IR (neat): v_{max} (cm⁻¹) 2920, 2250, 1453, 1260, 752. HRMS (ESI) calcd for C₁₀H₁₁ClN [M+H]⁺180.0575 found 180.0575.

4-Bromo-3-phenylbutanenitrile (7a) Colorless oil (36.7 mg, 82%). $R_f = 0.2$ (petroleum ether/ethyl acetate = 15:1). ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.26 (m, 3H), 7.20 – 7.18 (m, 2H), 3.65 – 3.58 (m, 2H), 3.33 – 3.27 (m, 1H), 2.89 (dd, J = 16.8, 5.6 Hz, 1H), 2.78 (dd, J = 16.8, 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 138.7, 129.2, 128.5, 127.1, 117.6, 44.0, 35.3, 22.7. IR (neat): v_{max} (cm⁻¹) 2962, 2248, 1496, 1229, 760. HRMS (ESI) calcd for C₁₀H₁₁BrN [M+H]⁺ 224.0069, found 224.0083.

4-Iodo-3-phenylbutanenitrile (8a) Colorless oil (43 mg, 79%). $R_f = 0.2$ (petroleum ether/ethyl acetate = 15:1). ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.31 (m, 3H), 7.27 – 7.21 (m, 2H), 3.51 (d, *J* = 7.2 Hz, 2H), 3.31 – 3.20 (m, 1H), 2.93 (dd, *J* = 16.8, 5.6 Hz, 1H), 2.83 (dd, *J* = 16.8, 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 139.5, 129.2, 128.5, 126.9, 117.7, 44.3, 24.5, 9.0. IR (neat): v_{max} (cm⁻¹) 2960, 2313, 1692, 1421, 1050, 699. HRMS (ESI) calcd for C₁₀H₁₁IN [M+H]⁺ 271.9931 found 271.9933.

3-(4-Bromophenyl)-4-chlorobutanenitrile (6b) Colorless oil (41.2 mg, 80%). $R_f = 0.2$ (petroleum ether/ethyl acetate = 15:1). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 3.82 – 3.72 (m, 2H), 3.37 – 3.28 (m, 1H), 2.92 (dd, J = 16.8, 5.6 Hz, 1H), 2.80 (dd, J = 16.8, 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 137.2, 132.3, 129.0, 122.5, 117.4, 46.6, 43.6, 21.6. IR (neat): v_{max} (cm⁻¹) 2958, 2249, 1592, 1489, 1010, 747. HRMS (ESI) calcd for C₁₀H₁₀BrClN [M+H]⁺ 257.9680 found 257.9689.

4-Bromo-3-(4-bromophenyl)butanenitrile (7b) Colorless oil (45.3 mg, 75%). $R_f = 0.2$ (petroleum ether/ethyl acetate = 15:1). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.4 Hz, 2H), 7.14 (d, J = 8.4 Hz, 2H), 3.70 – 3.58 (m, 2H), 3.37 – 3.31 (m, 1H), 2.93 (dd, J = 16.8, 5.2 Hz, 1H), 2.82 (dd, J = 16.8, 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 137.6, 132.3, 128.9, 122.5, 117.4, 43.4, 34.8, 22.6. IR (neat): v_{max} (cm⁻¹) 2961, 2250, 1489, 1232, 1145, 823, 667. HRMS (ESI) calcd for C₁₀H₁₀Br₂ClN [M+H]⁺ 301.9175 found 301.9161.

3-(4-Bromophenyl)-4-iodobutanenitrile (8b) Colorless oil (49 mg, 70%). $R_f = 0.2$ (petroleum ether/ethyl acetate = 15:1). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 8.4 Hz, 2H), 3.47 (d, J = 7.0 Hz, 2H), 3.28 – 3.17 (m, 1H), 2.90 (dd, J = 16.8, 5.6 Hz, 1H), 2.80 (dd, J = 16.8, 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 138.4, 132.4, 128.7, 122.5, 117.4, 43.8, 24.4, 8.2. IR (neat): v_{max} (cm⁻¹) 2968, 2315, 1786, 1515, 1056, 764. HRMS (ESI) calcd for C₁₀H₁₀BrICINNa [M+H]⁺ 371.8855, found 371.8851.

Methyl 4-(1-chloro-3-cyanopropan-2-yl)benzoate (6c) Colorless oil (42.5 mg, 90%). $R_f = 0.2$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.4 Hz, 2H), 3.92 (s, 3H), 3.87 – 3.77 (m, 2H), 3.47 – 3.39 (m, 1H), 2.96 (dd, J = 16.8, 5.6 Hz, 1H), 2.85 (dd, J = 16.8, 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 143.1, 130.4, 130.4, 127.4, 117.2, 52.3, 46.5, 44.0, 21.5. IR (neat): v_{max} (cm⁻¹) 2955, 2249, 1720, 1279, 751. HRMS (ESI) calcd for C₁₂H₁₂ClNO₂Na [M+Na]⁺ 260.0449 found 260.0452.

Methyl 4-(1-bromo-3-cyanopropan-2-yl)benzoate (7c) Colorless oil (44.4 mg, 79%). $R_f = 0.2$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.4 Hz, 2H), 3.92 (s, 3H), 3.73 – 3.64 (m, 2H), 3.47 – 3.41 (m, 1H), 2.97 (dd, J = 16.8, 5.6 Hz, 1H), 2.87 (dd, J = 16.8, 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 143.5, 130.4, 130.3, 127.2, 117.2,
52.3, 43.8, 34.6, 22.5. IR (neat): v_{max} (cm⁻¹) 2955, 2249, 1720, 1284, 1111, 708. HRMS (ESI) calcd for $C_{12}H_{12}BrNO_2Na$ [M+Na]⁺ 303.9944 found 303.9949.

Methyl 4-(1-cyano-3-iodopropan-2-yl)benzoate (8c) Colorless oil (38.2 mg, 58%). $R_f = 0.2$ (petroleum ether/ethyl acetate = 8:1). ¹H (400 MHz, CDCl₃) δ 8.06 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 3.92 (s, 3H), 3.51 (d, J = 7.2 Hz, 2H), 3.37 – 3.27 (m, 1H), 2.92 (dd, J = 16.8, 5.6 Hz, 1H), 2.84 (dd, J = 16.8, 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 144.3, 130.4, 130.3, 127.0, 117.2, 52.3, 44.1, 24.3, 7.8. IR (neat): v_{max} (cm⁻¹) 2954, 2313, 1719, 1283, 1111, 707. HRMS (ESI) calcd for C₁₂H₁₃INO₂ [M+H]⁺ 329.9986 found 329.9995.

3-Benzyl-4-chlorobutanenitrile (6d) Colorless oil (33.7 mg, 87%). $R_f = 0.2$ (petroleum ether/ethyl acetate = 15:1). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (t, J = 7.2 Hz, 2H), 7.28 – 7.25 (m, 1H), 7.20 (d, J = 6.8 Hz, 2H), 3.66 (dd, J = 11.6, 4.4 Hz, 1H), 3.52 (dd, J = 11.6, 4.0 Hz, 1H), 2.87 – 2.75 (m, 2H), 2.55 (dd, J = 16.8, 6.0 Hz, 1H), 2.47 (dd, J = 16.8, 6.4 Hz, 1H), 2.43 – 2.33 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 137.4, 129.0, 128.9, 127.1, 117.7, 46.1, 39.7, 37.3, 19.6. IR (neat): v_{max} (cm⁻¹) 2926, 2247, 1780, 1276, 750. HRMS (ESI) calcd for C₁₁H₁₃CIN [M+H]⁺ 194.0731, found 194.0733.

3-Benzyl-4-bromobutanenitrile (7d) Colorless oil (33.4 mg, 70%). $R_f = 0.2$ (petroleum ether/ethyl acetate = 15:1). ¹H NMR (400 MHz, CDCl₃) δ 7.34 (t, J = 7.2 Hz, 2H), 7.29 – 7.25 (m, 1H), 7.21 (d, J = 7.2 Hz, 2H), 3.55 (dd, J = 10.8, 4.0 Hz, 1H), 3.40 (dd, J = 10.8, 6.4 Hz, 1H), 2.87 – 2.76 (m, 2H), 2.57 (dd, J = 16.8, 6.0 Hz, 1H), 2.48 (dd, J = 16.8, 6,4 Hz, 1H), 2.40 – 2.31 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 137.4, 129.0, 128.9, 127.1, 117.7, 39.4, 38.2, 35.6, 20.7. IR (neat): v_{max} (cm⁻¹) 2926, 2247, 1780, 1447, 1254, 744. HRMS (ESI) calcd for C₁₁H₁₃BrN [M+H]⁺ 238.0023, found 238.0023.

3-Benzyl-4-iodobutanenitrile (8d) Colorless oil (38.3 mg, 67%). $R_f = 0.2$ (petroleum ether/ethyl acetate = 15:1). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.27 (m, 3H), 7.21 (d, J = 7.2 Hz, 2H), 3.37 (dd, J = 10.4, 4.4 Hz, 1H), 3.20 (dd, J = 10.4, 6.4 Hz, 1H), 2.80 – 2.76 (m, 2H), 2.54 (dd, J = 16.8, 5.6 Hz, 1H), 2.42 (dd, J = 16.8, 6.4 Hz, 1H), 2.05 – 1.99 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 137.6, 129.1, 129.0, 127.2, 117.7, 39.7, 39.1, 22.8, 10.6. IR (neat): v_{max} (cm⁻¹) 2977, 2314, 1778, 1418, 1059, 700. HRMS (ESI) calcd for C₁₁H₁₃IN [M+H]⁺ 286.0087, found 286.0094.

3-(Benzyloxy)-4-chlorobutanenitrile (6e) Colorless oil (27.3 mg, 65%). $R_f = 0.2$ (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.31 (m, 5H), 4.70 (d, J = 11.6 Hz, 1H), 4.66 (d, J = 11.6 Hz, 1H), 3.94 – 3.89 (m, 1H), 3.67 (dd, J = 12.0, 4.4 Hz, 1H), 3.61 (dd, J = 11.6, 6.4 Hz, 1H), 2.79 – 2.67 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 136.7, 128.7, 128.4, 128.0, 116.7, 74.1, 72.5, 44.0, 21.5. IR (neat): v_{max} (cm⁻¹) 2919, 2252, 1728, 1275, 749. HRMS (ESI) calcd for C₁₁H₁₂CINONa [M+Na]⁺ 232.0500, found 232.0499.

3-(Benzyloxy)-4-bromobutanenitrile (7e) Colorless oil (28 mg, 55%). $R_f = 0.2$ (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.33 (m, 5H), 4.70 (d, J = 11.6 Hz, 1H), 4.64 (d, J = 11.6 Hz, 1H), 3.96 – 3.87 (m, 1H), 3.54 (dd, J = 10.8, 4.0 Hz, 1H), 3.47 (dd, J = 11.2, 6.8 Hz, 1H), 2.82 – 2.69 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 136.7, 128.8, 128.5, 128.1, 116.8, 73.7, 72.5, 32.3, 22.5. IR (neat): v_{max} (cm⁻¹) 2919, 2252, 1720, 1417, 1067, 744. HRMS (ESI) calcd for C₁₁H₁₂BrNONa [M+Na]⁺ 275.9995, found 276.0004.

N OBn

3-(Benzyloxy)-4-iodobutanenitrile (8e) Colorless oil (20 mg, 33%). $R_f = 0.2$ (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.31 (m, 5H), 4.70 (d, J = 11.6 Hz, 1H). 4.60 (d, J = 11.2 Hz, 1H), 3.72 – 3.62 (m, 1H), 3.39 (dd, J = 10.8, 4.0 Hz, 1H), 3.32 (dd, J = 10.8, 6.4 Hz, 1H), 2.74 – 2.73 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 136.6, 128.7, 128.4, 128.0, 116.6, 73.6, 72.2, 23.9, 6.3. IR (neat): v_{max} (cm⁻¹) 2975, 2314, 1695, 1514, 1056, 745. HRMS (ESI) calcd for C₁₁H₁₂INONa [M+Na]⁺ 323.9856, found 323.9860.

tert-Butyl 4-(chloromethyl)-4-(cyanomethyl)piperidine-1-carboxylate (6f) Colorless oil (46.5 mg, 85%). $R_f = 0.2$ (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 3.62 (s, 2H), 3.47 – 3.37 (m, 4H), 2.56 (s, 2H), 1.68 – 1.60 (m, 4H), 1.45 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 154.1, 116.2, 79.7, 55.9, 49.2, 36.1, 31.7, 27.9, 24.0. IR (neat): v_{max} (cm⁻¹) 2930, 2242, 1688, 1277, 750. HRMS (ESI) calcd for C₁₃H₂₁ClN₂O₂Na [M+Na]⁺295.1184, found 295.1186.

tert-Butyl 4-(bromomethyl)-4-(cyanomethyl)piperidine-1-carboxylate (7f) Colorless oil (39.3 mg, 62%). $R_f = 0.2$ (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 3.52 (s, 2H), 3.45 – 3.36 (m, 4H), 2.57 (s, 2H), 1.69 – 1.63 (m, 4H), 1.45 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 154.6, 116.8, 80.2, 39.7, 39.1, 35.9, 33.0, 28.5, 25.6. IR (neat): v_{max} (cm⁻¹) 2974, 2314, 1689, 1422, 1162. HRMS (ESI) calcd for C₁₃H₂₁BrN₂O₂Na [M+Na]⁺ 339.0679, found 339.0676.

tert-Butyl 4-(cyanomethyl)-4-(iodomethyl)piperidine-1-carboxylate (8f) Colorless oil (40.2 mg, 55%). $R_f = 0.2$ (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 3.43 – 3.38 (m, 4H), 3.37 (s, 2H), 2.53 (s, 2H), 1.73 – 1.62 (m, 4H), 1.45 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 154.6, 116.7, 80.2, 39.5, 34.8, 33.9, 28.5, 27.6, 16.1. IR (neat): v_{max} (cm⁻¹) 2959, 2248, 1487, 1072, 815. $C_{13}H_{21}IN_2O_2Na$ [M+Na]⁺ 387.0540, found 387.0541.

11. Characterization of Products 9-12

5-Oxo-5-phenylpentyl 2-(4-((2-oxocyclopentyl)methyl)phenyl)propanoate (9) Colorless oil (65.8 mg, 81%). $R_f = 0.4$ (petroleum ether/ethyl acetate = 7:1). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 7.2 Hz, 2H), 7.56 (t, J = 7.3 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H), 4.12 – 4.09 (m, 2H), 3.68 (q, J = 6.8 Hz, 1H), 3.10 (dd, J = 10, 3.6 Hz, 1H), 2.94 (t, J = 6.8 Hz, 2H), 2.49 – 2.44 (m, 1H), 2.36 – 2.29 (m, 2H), 2.18 – 2.02 (m, 2H), 1.99 – 1.89 (m, 1H), 1.78 – 1.67 (m, 5H), 1.57 – 1.51 (m, 1H), 1.47 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.7, 174.7, 138.8, 138.4, 136.9, 133.1, 129.1, 128.6, 128.0, 127.5, 64.4, 51.0, 45.2, 38.2, 37.8, 35.2, 29.2, 28.1, 20.54, 20.49, 18.5. IR (neat): v_{max} (cm⁻¹) 2958, 1729, 1683, 1450, 1158, 752, 691. HRMS (ESI) calcd for C₂₆H₃₀O₄Na [M+Na]⁺429.2036, found 429.2033.

5-(Methyl(3-phenyl-3-(4-(trifluoromethyl)phenoxy)propyl)amino)-1-phenylpentan-1-one (10) Colorless oil (72.2 mg, 78%). $R_f = 0.4$ (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.4 Hz, 2H), 7.47 (t, J = 7.0 Hz, 1H), 7.41 – 7.30 (m, 4H), 7.29 – 7.15 (m, 5H), 6.82 (d, J = 8.4 Hz, 2H), 5.25 – 5.22 (m, 1H), 2.84 (t, J = 7.2 Hz, 2H), 2.57 – 2.46 (m, 1H), 2.41 – 2.26 (m, 3H), 2.16 (s, 3H), 2.11 – 2.06 (m, 1H), 1.93 – 1.88 (m, 1H), 1.68 – 1.61 (m, 2H), 1.46 – 1.41 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 200.2, 160.7, 141.2, 137.0, 133.0, 128.8, 128.6, 128.0, 127.8, 127.1 (q, J = 269.6 Hz), 126.7 (q, J = 3.7 Hz), 125.9, 122.6 (q, J = 32.5 Hz), 115.8, 78.3, 57.6, 53.6, 42.2, 38.3, 36.5, 27.0, 22.1. IR (neat): v_{max} (cm⁻¹) 2938, 2795, 1685, 1614, 1327, 1256, 1112, 751, 700. HRMS (ESI) calcd for C₂₈H₃₀F₃NO₂Na [M+Na]⁺ 470.2301, found 470.2310.

(8S,9R,13R,14R)-13-Methyl-3-((5-oxo-5-phenylpentyl)oxy)-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (11) White solid (65 mg, 76%). $R_f = 0.4$ (petroleum ether/ethyl acetate = 10:1). Melting point (°C): 113-114. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 7.2 Hz, 2H), 7.56 (t, J = 7.6 Hz, 1H), 7.47 (t, J = 7.5 Hz, 2H), 7.19 (d, J = 8.5 Hz, 1H), 6.72 – 6.63 (m, 2H), 3.99 (t, J = 6.0 Hz, 2H), 3.07 (t, J = 7.0 Hz, 2H), 2.93 – 2.85 (m, 2H), 2.50 (dd, J = 18.8, 8.5 Hz, 1H), 2.40 – 2.38 (m, 1H), 2.27 – 2.25 (m, 1H), 2.17 – 2.04 (m, 2H), 1.97 – 1.86 (m, 5H), 1.68 – 1.52 (m, 4H), 1.50 – 1.38 (m, 3H), 0.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 200.1, 157.0, 137.7, 137.0, 133.0, 132.0, 128.6, 128.1, 126.3, 114.5, 112.1, 67.5, 50.4, 48.0, 44.0, 38.4, 38.1, 35.9, 31.6, 29.7, 28.9, 26.6, 25.9, 21.6, 21.0, 13.9. IR (neat): v_{max} (cm⁻¹) 2929, 2870, 1733, 1684, 1496, 1253, 1056, 756, 693. HRMS (ESI) calcd for C₂₉H₃₄O₃Na [M+Na]⁺ 453.2400, found 453.2396.

5-Bromo-1-phenylpentan-1-ol (12) Colorless oil (44.6 mg, 92%). $R_f = 0.4$ (petroleum ether/ethyl acetate = 10:1) ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.17 (m, 5H), 4.60 – 4.57 (m, 1H), 3.31 (t, *J* = 6.8 Hz, 2H), 1.92 (s, 1H), 1.83 – 1.78 (m, 2H), 1.76 – 1.69 (m, 1H), 1.68 – 1.58 (m, 1H), 1.56 – 1.43 (m, 1H), 1.38 – 1.31 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 144.6, 128.6, 127.7, 125.9, 74.4, 38.1, 33.7, 32.7, 24.5. Spectral data matched literature values.¹⁰

12. Reference

- 1. J.-C. Yang, L. Chen, F. Yang, P. Li and L.-N. Guo, Org. Chem. Front., 2019, 6, 2792.
- 2. K. Zmitek, M. Zupan, S. Stavbera and J. Iskra, J. Org. Chem., 2007, 72, 6534.
- 3. R. Sakamoto, T. Kato, S. Sakurai and K. Maruoka, Org. Lett., 2018, 20, 1400.
- 4. X. Fan, H. Zhao, J. Yu, X. Bao and C. Zhu, Org. Chem. Front., 2016, 3, 227.
- 5. S. Sumino, T. Ui and I. Ryu, Org. Lett., 2013, 15, 3142.
- 6. L. Rakers, F. Schafers and F. Glorius, Chem. Eur. J., 2018, 24, 15529.
- 7. D. Wang, J. Mao and C. Zhu, Chem. Sci., 2018, 9, 5805.
- 8. J.-L. Shi, Y. Wang, Z. Wang, B. Dou and J. Wang, Chem. Commun., 2020, 56, 5002.
- 9. Y.-Q. Wang, F. Huang and S.-L. Zhang, Eur. J. Org. Chem., 2020, 32, 5178.
- 10. R. Kumar, H. Kawasaki and T. Harada, Org. Lett., 2013, 15, 4198.

13. ¹H NMR and ¹³C NMR Spectra of Starting Materials 1

 ^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of 1a

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of **1b**

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of 1c

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of 1d

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of 1f

^1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of 1g

 ^1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of 1j

^1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of 1m

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of 1n

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of 1o

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of 1p

 ^1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of 1q

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of 1r

^1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of 1s

^1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of 1t

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of 1u

$\begin{array}{c} 7,3,98\\ 7,7,328\\ 7,7,328\\ 7,7,328\\ 7,7,328\\ 7,7,328\\ 7,7,328\\ 7,7,328\\ 7,7,238\\ 7,7,23$

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of 1v

^1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of 1w

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of 1x

100 90 f1 (ppm)

14. ¹H NMR and ¹³C NMR Spectra of Products 2

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **2a**

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 2b

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **2c**

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 2d

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 2f

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 2g

 ^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 2i

 ^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 2j

 ^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 2l

-199.0

 ^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 2m

^1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of product **20**

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 2q

7,9527,7,5817,5827,5827,5827,5847,5847,5847,5847,5847,5847,5847,5847,5847,5847,5845,5225,

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **2r**

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **2s**

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 2t

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **2u**

7,9,69 7,7,581 7,7,581 7,7,581 7,7,581 7,7,581 7,7,581 7,7,581 7,7,581 7,7,582 7,7,485 7,7,445 7,7,445 2,3,930 3,3,9

 ^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 2v

^1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of product 2w

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **2**x

15. ¹H NMR and ¹³C NMR Spectra of Products 3

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3a**

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3b**

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 3c

110 100 f1 (ppm)

90 80 70 60 50 40 30

0

20 10

140 130 120

160 150

210

200 190 180 170

 ^1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of product **3d**

^1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of product 3e

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product **3f**

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 3g

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 3h

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 3i

 ^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 3j

^1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of product 3k

16. ¹H NMR and ¹³C NMR Spectra of Products 4

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 4a

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 4b

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 4c

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 4e

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 4f

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 4g

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 4i

 ^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 4j

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 4k

17. ¹H NMR and ¹³C NMR Spectra of Products 6-8

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 6a

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 7a

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 8a

 ^1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of product **6b**

 ^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 7b

^1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of product 8b

 ^1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (100 MHz, CDCl₃) spectra of product 6c

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 7c

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 8c

 ^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 6d

 ^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 7d

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 8d

 ^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 6e

 ^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 7e

 ^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 8e

¹H NMR (400 MHz, CDCl₃) spectra of product **6g**

^1H NMR (400 MHz, CDCl₃) spectra of product 7g

¹H NMR (400 MHz, CDCl₃) spectra of product 8g

18. ¹H NMR and ¹³C NMR Spectra of Products 9-12

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 9

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 10

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 11

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of product 12