Electronic Supplementary Information

Carboxyboranylamino ethanol: Unprecedented discovery of boron agent for neutron capture therapy in cancer treatment

Yinghuai Zhu, *^a Jianghong Cai, ^b Narayan S Hosmane, *^c Minoru Suzuki,^d Kazuko Uno,^e Yingjun Zhang, *^a Mao Takagaki ^{e,f}

^a The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China
 ^b School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
 ^c Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb,

Illinois 60115, USA. E-mail: <u>hosmane@niu.edu</u>

^d Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka

590-0494, Japan

^e Louis Pasteur Centre Centre for Medical Research, 103-5 Nakamonzen-machi, Sakyo-ku, Kyoto 606-8225, Japan

^f Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 604-8232, Japan

Materials and methods

1. Compounds

All reactions were carried out under an argon atmosphere using standard Schlenk-line techniques. Solvents were dried according to the established methods and freshly distilled before use. Trimethylamine carboxyborane was synthesized according to the literature procedure.¹ The BPA and other reagents and organic solvents were purchased from Sigma-Aldrich and were used as received. The carboranyl compound, methyl 2-hydroxyl-5-(1'-ortho-carbonylmethyl-1',2',3'-triazol-4'-yl)benzonate (2)was friendly provided by HEC Pharm Group (Guangdong, China). The FT-IR spectra were measured using an IRTracer-100 SHIMADZU spectrophotometer with KBr pellets. The FT-IR multiplicities are reported as (peak shape, strength): s = singlet, vs = very strong, m = medium, w = weak. Elemental analyses were measured using a EURO EA equipment. High-resolution mass spectra were obtained using Waters Q-TOF Ultima ESI and Agilent 6230 ESI TOF LC/MS spectrometers. The ¹H, ¹³C, and ¹¹B NMR spectra were recorded using a Bruker 200 analyzer at 200, 64.2 and 50.3 MHz, respectively. All NMR spectra were recorded at ambient temperature.

Inductively coupled plasma-optical emission spectroscopy (ICP-OES) measurements were carried out using a VISTA-MPX instrument.

1.1 Synthesis of 1

Compound 1 was prepared by an amine exchange reaction in which Me₃NBH₂CO₂H (200 mg, 1.71 mmol) and the 2-(dimethylamino)-ethanol (160 mg, 1.72 mmol) were dissolved in anhydrous tetrahydrofuran (15 mL). The resulting mixture was heated to 70 °C for 5 days using an oil bath. After cooling to room temperature, the solvent in the mixture was evaporated in vacuo to produce a pale-yellow sticky residue, as a crude product, which was then purified by recrystallization in tetrahydrofuran and hexane to yield an off-white waxy solid (188 mg) in 75.0 % yield. Elemental Anal: Calcd for C₅H₁₄BNO₃: C, 40.86; H, 9.60; N 9.53; B, 32.66. Found: C, 40.60; H, 9.52; N, 9.45; B, 32.48 (determined by ICP-MS measurement). HRMS(ESI): m/z calc. for $C_5H_{14}BNO_3$ [M+H]⁺: 147.9885 found: 147.9884. ¹H NMR (DMSO-d₆, relative to SiMe₄; ppm): δ 3.63 (t, 2H, C<u>H</u>₂-O), 2.93 (t, 2H, CH₂-N), 2.43 (s, 6H, 2CH₃). ¹³C NMR (DMSO-d₆, relative to SiMe₄; ppm): δ 166.00 (1C, <u>CO</u>₂H), 57.26 (1C, <u>CH</u>₂-N), 56.36 (1C, <u>CH</u>₂-O), 43.86 (2C, 2<u>C</u>H₃). ¹¹B NMR (DMSO-d₆, relative to BF₃·OEt₂; ppm): δ -10.75 (1B, t, ¹*J*_{BH} = 95 Hz). IR (film on KBr, cm⁻¹) 3405 (s, br), 2963 (s, s), 2860 (m, s), 2403 (s, s, v_{BH}), 1676 (s, s), 1469 (s, s), 1403 (s, m), 1190 (m, s), 1163 (s, s), 1121 (s, s), 1105 (s, s), 1074 (s, s), 992 (m, s), 953 (w, s), 908 (w, s), 866 (m, s), 835 (w, s), 709 (w, s), 523 (w, s).

-

Fig. S-1 ¹H NMR (a), ¹³C NMR (b) and ¹¹B NMR (c) in dmso- d_6 and FT-IR (d) spectra of compound **1**.

2. Preincubation for boron loading into tumor cells

The SCCVII tumor cells were incubated and stabilized in logarithmic growth phase in a 10–cm diameter tissue culture dish. After adding 100 μ L of a boron solution described below, the cells were incubated for boron loading into tumor cells for 5 hrs. The detailed conditions of the preincubation and the corresponding ¹⁰B uploading amounts of compounds **1** and **2** were as following:: sample concentration, 20 mg/mL; microscopic observation of tumor cells after pre-incubation, clear & not toxic; adding amount of MEM, 100 μ L/10mL; pre-incubation ¹⁰B concentration, 0.37 ppm for compound **1** and 1.2 ppm for compound **2**; ¹⁰B concentration determined by prompt γ -ray assay, 36.7 ppm for compound **1** and 116.4 ppm for compound **2**.

3. Cytotoxicity: IC₅₀

The IC₅₀ (moles/liter), i.e., the concentration which inhibits the growth of SCCVII tumor cells by 50% after 3 days of continuous exposure to the compounds in the concentration gradient manners, was determined. Suspensions of 10^5 SCCVII cells/200µL MEM containing 10% FCS (fetal cow serum) were incubated for 3 days in 96-well microplate with various concentrations of **1** and **2**. After 3-days of exposure, the cells were washed with PBS and fixed with 70% ethanol. The SCCVII cells were stained with 5 % Giemsa solution for 15 minutes. After removing the solution, the cells were dried in air and Giemsa-stained cells were uniformed by adding 100µL alcohol. The optical absorbance at 595 nm was measured by optical densitometer. The IC₅₀ was determined as the dose producing a 50% density reduction in the optical absorbance. The results are presented in Fig. 1(B).

For IC₅₀ analysis of the uppsala 87 malignant glioma (U87MG) cell lines, malignant melanoma A3750 cell lines, rat cortical neuron cell lines and rat fibroblast like synoviocytes (FLS) cell lines, the standard MTT method was used to analyze IC₅₀ of compound **1** and BPA. The IC₅₀ determinations were performed in the presence of serial dilutions of inhibitor (1000 μ M to 3.906 μ M, 1% DMSO, final) in complete reaction buffer and incubated for 96 hours. The IC50 values of compound **1** and BPA are greater than 1000 μ M for all the examined cell lines.

4. Boron uptake assay

The 3.0×10^8 rat FLS cells or 2.5×10^7 U87MG cells were seeded and cultured at room temperature (37 °C, 5%CO) for 24hrs. This culture fluid was removed therefrom by suction, culture fluids containing 1.5 mM of each boron agent (1 and BPA in the boron concentrations of 3.0Mm and 1.5mM, respectively) were added and continued culturing for 24hrs under same conditions. These culture fluids were removed by suction and the cells were washed three times with PBS and treated with trypsin to recover the cells. The number of cells recovered was counted, and HNO₃ (2N, 1.5 ml) was added and the resulting mixture was heated at 80 °C for 12hrs. After filtering with a membrane filter, the boron concentration was determined by ICP-OES. The results are as follows: 1, 1.27 (U87MG) and 0.54 (FLS) µg boron/10⁷ cells; BPA, 0.49 (U87MG) and 0.55 (FLS) µg boron/10⁷ cells.

5. Survival study: colony formation assay

A cell suspension of SCCVII in the logarithmic growth phase was prepared in Eagle's MEM containing 10% heat-inactivated fetal bovine serum and 2mM 1-glutamine. The cells were incubated in the culture dishes (100-mm tissue culture dishes; Corning Glass Works, Corning, NY) at a sub confluent concentration of 5 x 10⁴ cells /10ml/dish, overnight at 36°C in a 5% carbon dioxide atmosphere. A 100 mL solution of 6.0 mg of 1 and/or 2/mL DMSO was added into the dish for boron loading into tumor cells and incubated for 5 hrs. The ¹⁰B concentration (0.37 ppm for 1 and 1.2 ppm 10 B for 2) in the medium was reconfirmed by PGS (prompt γ spectroscopy). After boron loading, the cells were trypsinized and washed three times by PBS, and $5x10^3$ cells/mL MEM(FCS+) were irradiated with thermal neutrons in column-shaped Teflon tubes (1x3 cm). The cells did not adhere to the tubes, and no secondary radiation was caused by bombardment with the thermal neutrons. The irradiation times were 0, 15, 30 and 45 minutes, while the thermal neutrons flux was 1.8×10^9 n/cm². The thermal neutron fluence was determined by averaging two gold foils symmetrically attached to the surface of the Teflon tube along the direction of the incidence of the thermal neutrons.^{2,3} The neutron absorbed dose (Gy) was calculated using the flux-to-dose conversion factor.⁴ The chemical composition of the tumors was assumed to be 10.7% hydrogen, 12.1% carbon, 2% nitrogen, 71.4% oxgen and 3.8% others.⁵ The γ -ray dose rate, including secondary γ -rays, was 1.0×10^{-2} Gy·min⁻¹, according to a thermoluminescence dosimeter attached to the surface of a Teflon tube

containing 1 mL MEM. After thermal neutron exposure, 300 or 900 cells were placed in three Corning 60-mm tissue culture dished containing 6.0 mL MEM to examine colony formation. Ten days later, the colonies were fixed with 70% ethanol and stained with 5% Giemsa solution for quantitative visualization by the naked eye. Values are represented as means \pm SE. Three replications of this *in vitro* BNCT experiments were performed. The *in vitro* cell-killing effects are shown in Fig. 1 (C).

6. Tissue distribution assay.

The tissue distributions of compound 1 in dimethyl sulfoxide solvent were measured using six-week old female nod-scid mice. The mice were housed and treated humanely under standard conditions. U87MG tumor cells, a mammary carcinoma, were then transplanted into the right flank of the young female nod-scid mice of ~20g body weight four weeks before testing. The dosage was 120 mg/Kg and the compound concentration was 30mg/ml in a solution of DMSO (10% v/v)/RH40 (10% v/v)/sterilized water (80% v/v) for injection. The solution was slowly injected into the tail vein of the mice. For comparison, five tissues, tumor, blood, brain liver, and skin samples were collected and analyzed with ICP-OES. The mice were anesthetized (diethyl ether) and bled into heparinized syringes via cardiac puncture before surgery to collect blood. The collected blood was then placed into tared cryogenic tubes and kept frozen at -60 °C. The mice were later sacrificed via cervical dislocation while anesthetized. The tumor and organs samples were collected, placed in tared cryogenic tubes, and kept frozen at -60 $^{\circ}$ C before being subjected to analysis with ICP-OES. The results are shown in Fig. S-2. Each data point represents the average of three mice.

Fig. S-2 Tissue distribution of compound **1**.

7. Statistical analysis

Statistical analysis and drawing graphs were carried out via Prism 9 for macOS version 9.02, GraphPad Software, LLC. The *in vitro* BNCT was carried out in triplicates. The values are the mean \pm SEM from three independent experiments. The significance of the differences in survival rates was assessed by Student's *t* test. The

statistical analyses were performed using Prism 3.0 (GraphPad Software Inc., CA, USA).

8. Live subject statement

All experiments were performed in compliance with the relevant laws and institutional guidelines, and the Animal Ethical Committee of HEC Pharma Co., Ltd. (Dongguang, Guangdong, China) have approved the experiments.

9. Molecular docking

9.1 Molecular docking calculation

The molecular operating environment (MOE) software (Chemical Computing Group 2016) and protein-small molecular docking study Patch dock open-source server (http://bioinfo3d.cs.tau.ac.il/PatchDock/),6-9 which can predict favorable protein-ligand complex structures with high accuracy have been used to calculate the molecular interactions between ligand (small molecule) and receptor (protein). The three-dimensional (3D) crystal structures of the epidermal growth factor receptor (EGFR), 3W32, 3W33, 3BEL, 3BUO, 4I22, 4I24 and 4R3R proteins were retrieved from the Protein Data Bank (PDB) (www.rcsb.org). Solvent impurities and co-crystallized ligand molecule and all water molecules were manually removed by Pymol 2.4 Software package, and then saved the proteins as .pdb files after adding polar hydrogen atoms to the proteins. Both PDB files were uploaded into the Patch dock server for protein-small molecular docking simulation. Docking was performed with complex type configuration settings. The PatchDock server follows a geometry-based molecular docking algorithm to find the docking transformations with good molecular shape complementarity. The PatchDock algorithm separates the Connolly dot surface representation of the molecules into concave, convex and flat patches. These divided complementary patches are matched in order to generate candidate transformations and evaluated by geometric fit and atomic desolvation energy scoring functions. The results show binding sites for 1, 2 and BPA. The association details of each binding site are presented using the "ligand interactions" module of MOE. The calculated results of geometric shape complementarity score (GSCS) are listed in Table S-1. The docking models of BPA, 1 and 2 with EGFR 3W32 proteins are shown in Fig. 2. The active site pockets of 3W32 protein bound with BPA, 1 and 2 were generated by Pymol 2.4 and Chemdraw 10.0 software packages as shown in Fig. S-1.

Table S–1. The calculation of geometric shape complementarity score (GSCS).

EGFR	3W32	3W33	3BEL	3BUO	4I22	4I24	4R3R
Compd							

1	5092	4562	4904	4438	4988	4794	4854
2	3664	3410	3602	3400	3342	3162	3468
BPA	2692	2692	2928	2840	2572	2590	2624

Fig. S-3 Interactions (hydrogen bonds) of amino acid residues of EGFR protein 3W32 with BPA (A), 1 (B) and 2 (C). The Figure was generated using Chemdraw 10.0 and Pymol 2.4 software.

Table S–2. The calculation of geometric shape complementarity score (GSCS).

СМУС	1A93	2A93	1EE4	5I4Z	5150	6E24	6C4U
Compd							
1	4184	4230	4296	4202	4842	4696	5096
2	2778	2758	2814	2804	3298	3032	3396
BPA	2048	1928	2518	1900	2470	2332	2456
СМУС	1NKP	20R9	4Y7R	6G6J	6G6L	6G6K	6E16
Compd							
1	5182	4728	4152	4764	4562	5222	4684
2	3410	3086	3052	2872	3010	3236	3052
BPA	2552	2262	2158	2232	2298	2566	2250

Fig. S-4 Interactions (hydrogen bonds) of amino acid residues of CMYC protein 6G6K with BPA (A), **1** (B) and **2** (C). The Figure was generated using Chemdraw 10.0 and Pymol 2.4 software.

The binding energy was calculated using a Molecular Operating Environment (MOE) software (MOE 2016.08 software package, Chemical Computing Group ULC, Montreal, Quebec, Canada). The software establishes a good correlation between the binding strength and various physico-chemical parameters. The coefficients were fitted from approximately 400 X-ray crystal structures of protein-ligand complexes with available experimental pKi data. Atoms are categorized into about a dozen atom types for the assignment of the ci coefficients. The triple integrals are approximated using Generalized Born integral formulas. The proteins were downloaded from online RCSB Protein Data Bank (PDB). Energy minimization was performed using defaults parameters in MOE by applying the AMBER10 force field.¹⁰ The conformational searching of the compounds **1**, **2** and BPA was conducted by the LowModeMD method. The docking function of MOE can give the correct conformation of the compounds **1**, **2** and BPA to obtain minimum energy structure.

9.2 Molecular docking results of 1 (MUST1) with various EGFR proteins.

leceptor	Ligand	Complex	к Туре	Cluste	ring RMSD	User e-mail
<u>w32.pdb</u>	MUST1.pdb	drug		1.5		1909853wct30001@student.must.edu.m
olution No		ore	Area		ACE	Transformation
	50	92	6:	11.60	-279.85	5 -1.22 1.36 -0.97 27.99 33.45 -4.69
				· ·	nplementarity	
Receptor	Ligand	Complex	сТуре	Cluster	ing RMSD	User e-mail
<u>3w33.pdb</u>	MUST1.pdb	drug		1.5		1909853wct30001@student.must.edu.mo
Solution No	Sc 45	ore 62	Area 60	4.30	ACE -245.10	Transformation 2.20 0.28 2.58 18.34 33.50 12.89
			<u>ownload]</u>	[<u>Help</u>] [FAQ] [Reference ring RMSD	ity Principles [202] User e-mail 1909853wct30001@student.must.edu.m
Solution N	· · ·	core	Area		ACE	Transformation
L		904		95.90	-124.73	
			wnload]	[<u>Help]</u> [f	mplementari AQ] [<u>Referenc</u> ering RMSD	· · · · ·
Solution N		<mark>core</mark> 438	Area	541.50	ACE -52.68	Transformation 8 0.92 -0.45 -1.52 -5.07 5.60 10.59
[<u>About Patc</u>	hDock] [Web :	Server] [Do	<u>wnload]</u>	[<u>Help</u>] []	FAQ] [Reference	-
Receptor	Ligand <u>MUST1.pdb</u>	Complex	сТуре	Cluste 1.5	ring RMSD	User e-mail 1909853wct30001@student.must.edu.m
	<u>1100111pub</u>	drug				
4i22.pdb Solution N	o S	core 988	Area 5	67.40	ACE -83.64	Transformation 4 1.73 -0.66 -0.26 14.42 -14.48 17.73
4i22.pdb Solution N I Molecular [About Pate	o S 49 Docking Alg chDock] [Web	core 988 orithm Ba Server] [D	5 sed on S ownload]	hape C [<u>Help]</u> [-83.64 omplementar FAQ] <u>[Referen</u>	4 1.73 -0.66 -0.26 14.42 -14.48 17.73 rity Principles ces]
4i22.pdb Solution N 1 Molecular	o So 49 Docking Alg	core 988 orithm Ba	5 sed on S ownload]	hape C [<u>Help]</u> [-83.64 omplementar	4 1.73 -0.66 -0.26 14.42 -14.48 17.73 rity Principles ces] User e-mail
4122.pdb Solution N Molecular [About Pate Receptor 4124.pdb Solution N	o Si <u>Docking Alg</u> chDock] [Web Ligand <u>MUST1.pdb</u> lo S	core 988 orithm Ba Server] [D Comple	5 sed on S ownload] x Type Area	i hape C [<u>Help</u>] [Cluste	-83.64 omplementar FAQ] <u>[Referen</u>	4 1.73 -0.66 -0.26 14.42 -14.48 17.73 rity Principles ces User e-mail 1909853wct30001@student.must.edu.m Transformation
4122.pdb Solution N I Molecular [About Pate About Pate Solution N 1 Molecular I About Pate	o Si Docking Alg chDock] [Web Ligand MUST1.pdb lo S 4 Docking Algo hDock] [Web S	core 988 Server] [D Comple drug core 794 writhm Bass Server] [Dc	5 sed on S ownload] x Type Area sed on S ownload]	ihape C [Help] [Cluste 1.5 323.80 hape Ce [Help] [-83.64 omplementar FAQ] [Referen ering RMSD ACE -146.79 omplementar FAQ] [Reference	4 1.73 -0.66 -0.26 14.42 -14.48 17.73 rity Principles ces] User e-mail 1909853wct30001@student.must.edu.m Transformation 9 1.48 -0.33 -1.48 -14.09 34.32 2.21 rity Principles ces]
4i22.pdb Solution N 1 Molecular [About Pate Ai24.pdb Solution N 1 Molecular I About Pate	o Si 49 Docking Alg chDock] [Web Ligand MUST1.pdb lo S 4 Docking Algo	core 988 orithm Ba Server] [D Comple drug core 794	5 sed on S ownload] x Type Area sed on S ownload]	ihape C [Help] [Cluste 1.5 323.80 hape Ce [Help] [-83.64 omplementar FAQ] [Referen ering RMSD ACE -146.79 omplementar	4 1.73 -0.66 -0.26 14.42 -14.48 17.73 rity Principles ces] User e-mail 1909853wct30001@student.must.edu.m Transformation 9 1.48 -0.33 -1.48 -14.09 34.32 2.21 rity Principles
4i22.pdb Solution N 1 Molecular [About Pate About Pate Solution N 1 About Patel	o Si Docking Alg chDock] [Web Ligand MUST1.pdb No S A Docking Algo hDock] [Web S Ligand MUST1.pdb	core 388 Server] [D Comple drug core 794 Server] [Dc Complex	5 sed on S ownload] x Type Area sed on S ownload]	hape C [Help] [Cluste 1.5 323.80 hape Ce [Help] [Cluste	-83.64 omplementar FAQ] [Referen ering RMSD ACE -146.79 omplementar FAQ] [Reference	4 1.73 -0.66 -0.26 14.42 -14.48 17.73 rity Principles ces] User e-mail 1909853wct30001@student.must.edu.m Transformation 9 1.48 -0.33 -1.48 -14.09 34.32 2.21 rity Principles ces] User e-mail

9.3 Molecular docking results of 2 (HEC1) with various EGFR proteins.

Molecular Docking Algorithm Based on Shape Complementarity Principles

Receptor	Ligand	Complex	туре		ing RMSD	User e-mail
<u>3w32.pdb</u>	HEC1.pdb	drug		1.5		1909853wct30001@student.must.edu.mo
Solution N	lo	Score	Area		ACE	Transformation
1		3664		390.30	-153.08	0.97 0.70 0.40 17.77 34.32 16.24
					mplementari AQ] [Referenc	ty Principles es]
Receptor	Ligand	Complex	Type	Cluster	ing PMSD	User e-mail
<u>3w33.pdb</u>	HEC1.pdb	drug	Type	1.5	ing RMSD	1909853wct30001@student.must.edu.mo
•		-				
Solution No		<mark>Score</mark> 3410	Area	422.00	ACE -140.70	Transformation 1.25 -0.35 -0.90 16.71 32.05 9.77
Receptor	Ligand	Complex [*]	Туре		ng RMSD	User e-mail
<u>3bel.pdb</u>	HEC1.pdb	drug		1.5		1909853wct30001@student.must.edu.mo
						190905546650001@5646616.111456.644.1110
Solution N	-	Score	Area		ACE	Transformation
1	-	3602		419.60	-132.3	Transformation 3 2.50 -0.34 -1.88 15.94 35.98 93.58
1 Molecular [About Patc Receptor	Docking Ale hDock] [Web Ligand	3602 gorithm Bas Server] [Do Complex ⁻	sed on s	419.60 Shape Co] [<u>Help</u>] [] Clusterin	-132.3	Transformation 3 2.50 - 0.34 - 1.88 15.94 35.98 93.58 ity Principles ces] User e-mail
1 Molecular [About Patc Receptor	Docking Ale	3602 gorithm Bas Server] [Do	sed on s	419.60 Shape Co] [<u>Help] [</u>]	-132.3 omplementar FAQ] [Reference	Transformation 3 2.50 - 0.34 - 1.88 15.94 35.98 93.58 ity Principles ces] Ity Principles
1 Molecular [About Patc Receptor 3buo.pdb Solution No	Docking Ale hDock] [Web Ligand HEC1.pdb	3602 gorithm Bas Server] [Do Complex ⁻ drug Score	sed on s ownload Type Area	419.60 Shape Co] [Help] [J Clusterir 1.5	-132.3 omplementar FAQ] [Reference ng RMSD ACE	Transformation 3 2.50 -0.34 -1.88 15.94 35.98 93.58 ity Principles ity Principles User e-mail 1909853wct30001@student.must.edu.mo Transformation
1 Molecular [About Patc Receptor 3buo.pdb Solution No	Docking Ale hDock] [Web Ligand HEC1.pdb	3602 gorithm Bas Server] [Do Complex ⁻ drug	sed on s ownload Type Area	419.60 Shape Cc] [Help] [I Clusterin 1.5	-132.3 omplementar FAQ] [Reference ng RMSD	Transformation 3 2.50 -0.34 -1.88 15.94 35.98 93.58 ity Principles ity Principles User e-mail 1909853wct30001@student.must.edu.mo Transformation
1 Molecular [About Patc Receptor 3buo.pdb Solution No L Molecular	Docking Ale hDock] [Web Ligand HEC1.pdb	3602 gorithm Bas Server] [Do Complex ' drug Score 3400 gorithm Ba	sed on s ownload Type Area sed on	419.60 Shape Co] [Help] [] Clusterir 1.5 401.50 Shape C	-132.3 omplementar FAQ] [Reference ng RMSD ACE -91.69	Transformation 3 2.50 -0.34 -1.88 15.94 35.98 93.58 ity Principles :ees] User e-mail 1909853wct30001@student.must.edu.mo Transformation 1.00 -0.44 -2.30 -3.65 3.87 11.54 rity Principles
1 Molecular [About Patc Receptor 3buo.pdb Solution No 1 Molecular [About Patc	Docking Ale hDock] [Web Ligand HEC1.pdb	3602 gorithm Bas Server] [Do Complex ' drug Score 3400 gorithm Ba	sed on sourcesson sed on sourcesson sed on sourcesson sed on ownload	419.60 Shape Cc] [Help] [I Clusterin 1.5 401.50 Shape C] [Help] [-132.3 omplementar FAQ] [Reference ng RMSD ACE -91.69 omplementa	Transformation 3 2.50 -0.34 -1.88 15.94 35.98 93.58 ity Principles :ees] User e-mail 1909853wct30001@student.must.edu.mo Transformation 1.00 -0.44 -2.30 -3.65 3.87 11.54 rity Principles
1 Molecular [About Patc Receptor 3buo.pdb Solution No L Molecular	Docking Alg hDock] [Web Ligand HEC1.pdb Docking Alg hDock] [Web	3602 gorithm Bas Server] [Do Complex ' drug Score 3400 gorithm Ba Server] [D	sed on sourcesson sed on sourcesson sed on sourcesson sed on ownload	419.60 Shape Cc] [Help] [I Clusterin 1.5 401.50 Shape C] [Help] [-132.3 omplementar FAQ] [Reference ng RMSD ACE -91.69 omplementa FAQ] [Reference	Transformation 3 2.50 - 0.34 - 1.88 15.94 35.98 93.58 3 2.50 - 0.34 - 1.88 15.94 35.98 93.58 ity Principles ity Principles User e-mail 1909853wct30001@student.must.edu.mo Transformation 9 1.00 - 0.44 - 2.30 - 3.65 3.87 11.54 rity Principles ity Principles
1 Molecular [About Patc Receptor 3buo.pdb Solution No Molecular [About Patc Receptor #122.pdb Solution No	Docking Alg hDock] [Web Ligand HEC1.pdb Docking Alg hDock] [Web Ligand HEC1.pdb	3602 gorithm Bas Server] [Do Complex 7 drug Score 3400 gorithm Ba Server] [D Complex	sed on s ownload Type Area sed on ownload Type Area	419.60 Shape Co] [Help] [] Clusterin 1.5 401.50 Shape C] [Help] [Cluster 1.5	-132.3 omplementar FAQ] [Reference ng RMSD ACE -91.69 omplementa FAQ] [Reference	Transformation 3 2.50 -0.34 -1.88 15.94 35.98 93.58 ity Principles ies] User e-mail 1909853wct30001@student.must.edu.mo Transformation 9 1.00 -0.44 -2.30 -3.65 3.87 11.54 rity Principles icces] User e-mail 1909853wct30001@student.must.edu.mo
1 Molecular [About Patc Receptor 3buo.pdb Solution No [Molecular Solution No Solution No Molecular	Docking Ale hDock] [Web Ligand HEC1.pdb Docking Ale hDock] [Web Ligand HEC1.pdb Docking Ale	3602 gorithm Bas Server] [Do Complex 7 drug Score 3400 gorithm Ba Server] [D Complex drug Score 3342 gorithm Ba	sed on source of the sed on a set on a	419.60 Shape Co [Help] [] Clusterin 1.5 401.50 Shape C [] [Help] [Cluster 1.5 397.40 Shape C	-132.3 omplementar FAQ] [Reference ng RMSD ACE -91.69 omplementa FAQ] [Reference ing RMSD ACE -151.9	Transformation 3 2.50 -0.34 -1.88 15.94 35.98 93.58 ity Principles ces] User e-mail 1909853wct30001@student.must.edu.mo Transformation 9 1.00 -0.44 -2.30 -3.65 3.87 11.54 rity Principles uces] User e-mail 1909853wct30001@student.must.edu.mo Transformation 9 -1.59 -0.07 -0.23 11.79 -14.94 11.79 arity Principles arity Principles

Solution No

1

Score

3162

 Area
 ACE
 Transformation

 336.20
 -12.14
 2.52 - 0.26 - 0.27 - 1.81 48.71 - 9.02

	-	-		e Complement p] [FAQ] [Refere	arity Principles ences]
Receptor	Ligand	Complex	Type Clus	tering RMSD	User e-mail
<u>4r3r.pdb</u>	HEC1.pdb	drug	1.5		1909853wct30001@student.must.edu.mo
Solution N	١o	Score	Area	ACE	Transformation
1		3468	390.4	0 -98.	78 -0.44 1.39 -0.16 -63.72 8.66 -32.63

9.4 Molecular docking results of BPA with various EGFR proteins.

Molecular Docking Algorithm Based on Shape Complementarity Principles

Molecular Docking Algorithm Based on Shape Complementarity Principles [About PatchDock] [Web Server] [Download] [Help] [FAQ] [References]

Receptor <u>3w33.pdb</u>	Ligand <u>BPA1.pdb</u>	Complex T drug	Гуре	Clustering RM 1.5		User e-mail 1909853wct30001@student.must.edu.mo
Solution No) (Score	Area	ACE		Transformation
1		2692	2	94.00	-129.49	-2.52 0.55 -0.13 16.53 31.11 7.81

-

Molecular Docking Algorithm Based on Shape Complementarity Principles

[About PatchDock] [Web Server] [Download] [Help] [FAQ] [References]

Receptor <u>3w32.pdb</u>	Ligand <u>BPA1.pdb</u>	Complex drug	Туре	Clusteri 1.5	ng RMSD		Jser e-mail 1909853wct30001@student.must.edu.mo
Solution No		Score	Area		ACE		Transformation
1		2692	2	98.70	-104	4.21	2.90 -1.18 -2.59 26.31 34.38 -3.29
Receptor	Ligand	Complex	Туре	Cluster	ring RMSD)	User e-mail
<u>3bel.pdb</u>	BPA1.pdb	drug		1.5	-		1909853wct30001@student.must.edu.mo
Solution No	b	Score	Area	1	ACE		Transformation
1		2928		324.50	-	94.98	3 -1.79 -0.42 1.48 15.42 36.03 94.76

Molecular Docking Algorithm Based on Shape Complementarity Principles

[About PatchDock] [Web Server] [Download] [Help] [FAQ] [References]

Receptor <u>3buo.pdb</u>	Ligand <u>BPA1.pdb</u>	Complex drug	Type Cluster 1.5	ing RMSD	-	Jser e-mail 909853wct30001@student.must.edu.mo
Solution N	0	Score	Area	ACE		Transformation
1		2840	298.60	-8	36.23	2.38 -0.37 2.01 -1.64 3.90 12.78
2		2024	202.20			

Molecular Docking Algorithm Based on Shape Complementarity Principles [About PatchDock] [Web Server] [Download] [Help] [FAQ] [References]

Receptor	Ligand	Complex [·]	Type Cluste	ring RMSD	User e-mail
<u>4i22.pdb</u>	<u>BPA1.pdb</u>	drug	1.5		1909853wct30001@student.must.edu.mo
Solution N	0	Score	Area 297.10	ACE -67.	Transformation

Receptor	Ligand	Complex T	ype	Clustering R	MSD	Us	ser e-mail
<u>4i24.pdb</u>	BPA1.pdb	drug		1.5		19	909853wct30001@student.must.edu.mo
Solution N	lo	Score	Area	Α	CE		Transformation
		2590	2	282.50	-1.4	40	-0.56 -0.18 -1.36 -2.65 47.86 -7.88
		-					ty Principles es]
		Algorithm Ba Yeb Server] [[
[<u>About Pa</u>		-	Download		<u>Q] [Refer</u>	ence	
[<u>About Pa</u> Receptor	tchDock] [W	<u>eb Server]</u> [<u>C</u> Complex	Download] [<u>Help] [FA</u>	<u>Q] [Refer</u>	ence	<u>es]</u>
	itchDock] [W Ligand BPA1.pdb	<u>eb Server]</u> [<u>C</u> Complex	Download	[] [<u>Help</u>] [FA Clustering 1.5	<u>Q] [Refer</u>	ence	es] User e-mail

9.5 Molecular docking results of 1 (MUST1) with various c-myc proteins.

Molecular Docking Algorithm Based on Shape Complementarity Principles

Molecular Docking Algorithm Based on Shape Complementarity Principles [About PatchDock] [Web Server] [Download] [Help] [FAQ] [References]

Receptor	Ligand	Compl	ех Туре	Clust	ering RMSD	User e-mail
<u>1a93.pdb</u>	MUST1.p	odb drug		1.5		1909853wct30001@student.must.edu.mo
Solution N	No	Score	Area		ACE	Transformation
1		4184		515.10	-45.	20 2.77 -0.07 2.78 47.00 42.77 2.01
Receptor	Ligand	Compl	ех Туре	Cluste	ering RMSD	User e-mail
2a93.pdb	MUST1.p		ex type	1.5		1909853wct30001@student.must.edu.mo
Solution N	٧o	Score	Area		ACE	Transformation
1		4230		514.90	-86.	59 2.47 -0.69 -1.31 3.64 -14.39 3.77
Receptor	Ligand	Comp	lex Type	Clust	ering RMSD	User e-mail
<u>1ee4.pdb</u>	-		lex type	1.5	ening Khob	1909853wct30001@student.must.edu.mo
Colution	Ne	Coore	A		ACE	Transformation
Solution 1	NO	Score 4296	Area	510.00	ACE -45.9	
Receptor	Ligand	Complex	Туре	Clusterin	Ig RMSD	User e-mail
5i4z.pdb	MUST1.pdb	o drug		1.5		1909853wct30001@student.must.edu.mo
Solution N	0	Score	Area		ACE	Transformation
		4202	5	74.10	-115.94	1.78 0.97 -1.65 51.00 23.80 7.48
Receptor	Ligand	Comple	х Туре	Cluster	ing RMSD	User e-mail
5i50.pdb	MUST1.pd	<u>b</u> drug		1.5	-	1909853wct30001@student.must.edu.mo
olution N	lo	Score	Area		ACE	Transformation
L		4842	5	78.00	-129.26	1.98 -1.34 -3.10 -0.85 -8.42 -29.15
Receptor	Ligand	Comple	x Type	Cluster	ing RMSD	User e-mail
<u>6e24.pdb</u>	MUST1.pd			1.5	-	1909853wct30001@student.must.edu.mo
		Score	Area		ACE	Turnetermenting
Solution N	0	Score	Area		ACE	Transformation

Molecular Docking Algorithm Based on Shape Complementarity Principles

Receptor 6c4u.pdb	Ligand MUST1.pdf		ех Туре	Clust 1.5	tering RMSD	User e-mail 1909853wct30001@student.must.edu.mo
Solution I		Score	Area		ACE	Transformation
1		5090	6	02.90	-132.21	2.44 -0.55 -2.26 34.61 -26.71 -58.71
Receptor	Ligand	Comple	х Туре	Cluste	ering RMSD	User e-mail
<u>1nkp.pdb</u>	MUST1.pdb	drug		1.5		1909853wct30001@student.must.edu.mo
Solution N		Score	Area	20.10	ACE -74,28	Transformation
L	5	5182	0.	38.10	-74.28	-2.53 -0.19 1.19 32.22 27.73 92.80
Receptor	Ligand	Complex	к Туре	Cluste	ering RMSD	User e-mail
2or9.pdb	MUST1.pdb	drug		1.5		1909853wct30001@student.must.edu.mo
Solution N		core	Area	1.00	ACE	Transformation
1	4	728	53	4.00	-165.26	-0.02 -0.55 -0.67 62.69 101.53 -28.53
Receptor	Ligand	Comple	ех Туре	Clus	tering RMSD	User e-mail
<u>4y7r.pdb</u>	MUST1.pdb	drug		1.5		1909853wct30001@student.must.edu.m
Solution N		Score	Area		ACE	Transformation
1		4152		497.10	-72.8	0 -0.26 0.23 2.26 10.04 1.92 19.31
Receptor	Ligand	Comple	х Туре		ering RMSD	User e-mail
<u>6g6j.pdb</u>	MUST1.pdb	drug		1.5		1909853wct30001@student.must.edu.mo
Solution N		Score	Area		ACE	Transformation
1		4764		579.80	-92.00	-2.88 0.83 -2.98 49.85 89.47 195.86
Receptor	Ligand	Comple	ex Type	Clus	tering RMSD	User e-mail
<u>6g6l.pdb</u>	MUST1.pdb			1.5		1909853wct30001@student.must.edu.m
Solution N	No s	Score	Area		ACE	Transformation
1	4	4562	5	54.40	-80.45	1.85 0.72 -1.94 -98.42 29.03 -48.05
Receptor	Ligand	Comple	х Туре	Cluste	ering RMSD	User e-mail
<u>6g6k.pdb</u>	MUST1.pdb	drug		1.5		1909853wct30001@student.must.edu.mo
Solution N 1		core 222	Area 63	8.00		Transformation -1.71 -0.34 2.96 -55.03 -41.21 -73.26
Receptor	Ligand	Comple		Clust	ering RMSD	User e-mail
6e16.pdb	MUST1.pdb		v ivhe	1.5		1909853wct30001@student.must.edu.mo
Solution N	o S	core	Area		ACE	Transformation
L	1	684		28.10	-55.55	-2.71 0.57 -2.93 106.75 71.34 -13.81

9.6 Molecular docking results of 2 (HEC1) with various c-myc proteins.

Molecular Docking Algorithm Based on Shape Complementarity Principles

Receptor <u>1a93.pdb</u>	Ligand <u>HEC1.pdb</u>	Complex T drug	~	Clustering RMS 1.5		User e-mail 1909853wct30001@student.must.edu.mo
Solution No	D S	Score	Area	ACE		Transformation
1	2	2778	35	53.30	-79.94	-1.68 -0.45 1.08 44.53 6.92 -1.80

Receptor 2a93.pdb	Ligand <u>HEC1.pdb</u>	Complex Type drug	Cluster 1.5	ring RMSD	<mark>User e-mai</mark> 1909853wo	l ct30001@student.must.edu.mo
Solution N 1	0	Score A 2758	rea 332.30	ACE		ormation 0.26 1.39 2.62 -15.33 3.64
Receptor 1ee4.pdb	Ligand <u>HEC1.pdb</u>	Complex Type drug	e Cluste 1.5	ring RMSD	User e-ma 1909853w	il rct30001@student.must.edu.mo
Solution N	0	Score Ai 3080	r <mark>ea</mark> 369.80	ACE -71.6	Transform 2.30 0.31 2	ation .66 8.94 46.99 103.51
eceptor ii4z.pdb	Ligand <u>HEC1.pdb</u>	Complex Type drug	Clusterir 1.5	ng RMSD	User e-mail 1909853wct	30001@student.must.edu.mo
olution No)	Score Ar 2804	ea 352.80	ACE -91	Transfor 0 -1.32 0.3	mation 6 1.15 50.89 28.78 8.88
Receptor 5i50.pdb	Ligand <u>HEC1.pdb</u>	Complex Type drug	Clustering 1.5	RMSD	ser e-mail 909853wct300	01@student.must.edu.mo
Solution No 1		Score Area	A 388.90	-68.17	Fransformati 0.17 0.43 -2.3	on 7 -1.42 -10.09 -30.64
Receptor <u>6e24.pdb</u>	Ligand <u>HEC1.pdb</u>	Complex Type drug	Cluster 1.5	ing RMSD	<mark>User e-mail</mark> 1909853wc	t30001@student.must.edu.mo
Solution N 1	lo	Score Ar 3032	ea 342.20	ACE -107.	Transform 7 0.75 -0.84	nation 1.03 178.57 -0.93 12.23
Receptor <u>6c4u.pdb</u>	Ligand <u>HEC1.pdb</u>	Complex Type drug	Cluster 1.5	ing RMSD	User e-mail 1909853wc	t30001@student.must.edu.mo
Solution N 1	0	Score Are 3396	ea 387.60	ACE -32.	Transforn -2.45 -0.11	nation L 0.49 63.94 -6.64 -22.41
Receptor <u>1nkp.pdb</u>	Ligand HEC1.pdl	Complex Type o drug	e Cluste 1.5	ring RMSD	User e-mai 1909853wa	l ct30001@student.must.edu.mo
Solution N 1	lo	Score A 3410	area 377.10	ACE 59.	Transform -0.62 -1.2	nation 0 -0.34 54.69 54.62 48.69
Receptor 20r9.pdb	Ligand <u>HEC1.pdb</u>	Complex Type drug	Cluster 1.5	ring RMSD	User e-ma 1909853w	il ct30001@student.must.edu.mo
olution No)	Score Ai 3086	r ea 332.00	ACE -9		rmation 30 -0.48 67.02 75.14 -7.12
Receptor 4y7r.pdb	Ligand HEC1.pdb	Complex Type drug	Clusterin 1.5	ig RMSD	User e-mail 1909853wct3	0001@student.must.edu.mo
Solution N 1	0	Score Are 3052	ea 321.70	ACE -134.	Transform -2.32 0.88	nation 0.71 14.43 27.72 16.77
Receptor 5g6j.pdb	Ligand <u>HEC1.pdb</u>	Complex Type drug	Clusterin 1.5	g RMSD	User e-mail 1909853wct3(0001@student.must.edu.mo
Solution No		Score Are	a 325.40	ACE -52.93	Fransformati 1.25 -0.91 1.3	on 8 24.74 16.15 172.18
Receptor 6g6l.pdb	Ligand <u>HEC1.pdb</u>	Complex Type drug	Cluster 1.5	ing RMSD	<mark>User e-mai</mark> 1909853wo	l ct30001@student.must.edu.mo
Solution N	0	Score Are	ea 356.10	ACE 8.	Transform 0.17 1.22	nation 1.04 -78.29 -11.22 -57.36

Receptor	Ligand	Complex ⁻	Туре	Cluster	ing RMSD	User e-mail
<u>6g6k.pdb</u>	HEC1.pdb	drug		1.5		1909853wct30001@student.must.edu.mo
Solution No	S	core	Area		ACE	Transformation
1	32	236	4	106.10	-66.44	1.27 0.16 2.74 -57.63 -41.98 -67.64
Receptor	Ligand	Complex	Туре	Cluste	ering RMSD	User e-mail
<u>6e16.pdb</u>	HEC1.pdb	drug		1.5	-	1909853wct30001@student.must.edu.mo
Solution No) S	core	Area		ACE	Transformation
1	3	052		345.10	-79.	17 1.39 -0.44 -1.99 104.76 72.83 -14.38

9.7 Molecular docking results of BPA with various c-myc proteins.

Molecular Docking Algorithm Based on Shape Complementarity Principles

Receptor	Ligand	Complex Typ	e Cluste	ring RMSD		User e-mail
<u>1a93.pdb</u>	BPA.pdb	drug	1.5			1909853wct30001@student.must.edu.m
Solution N	lo	Score	Area	ACE		Transformation
1		2048	220.2	0 1	L.71	-2.66 -0.27 -1.50 47.53 38.28 -0.36
2		2008	261.7	0 -61	L.43	-1.17 0.71 -2.28 43.24 7.21 0.47
Receptor	Ligand	Complex Type	Clustering	RMSD	User	e-mail
<u>2a93.pdb</u>	BPA.pdb	drug	1.5		1909	853wct30001@student.must.edu.mo
Solution N	0	Score A	rea	ACE	Tra	Insformation
1		1928	207.70	-41.31	-0.6	69 -0.06 -1.40 -5.41 -16.17 -4.31
Receptor	Ligand	Complex Type	Clusteri	ng RMSD	Us	ser e-mail
<u>1ee4.pdb</u>	BPA.pdb	drug	1.5		19	909853wct30001@student.must.edu.mo
Solution N	lo	Score	Area	ACE	1	Transformation
1		2518	304,40	-35.1	8 -	-2.36 -0.80 -2.59 8.77 43.77 100.60

Molecular Docking Algorithm Based on Shape Complementarity Principles

[About PatchDock] [Web Server] [Download] [Help] [FAQ] [References]

Receptor 5i4z.pdb	Ligand BPA.pdb	Complex Type drug	Clustering 1.5		User e-mail 1909853wct30001@student.must.edu.mo
Solution N	0	Score /	Area	ACE	Transformation
1		1900	208.80	-56.50	2.04 -1.42 1.05 23.58 32.47 11.58
Receptor	Ligand	Complex Typ	e Clusteri	ng RMSD	User e-mail
<u>5i50.pdb</u>	BPA.pdb	drug	1.5		1909853wct30001@student.must.edu.mo
Solution N	lo	Score	Area	ACE	Transformation
1		2470	284.20	-21.1	2 -0.20 0.56 -3.11 -4.42 -8.24 -27.39

- -

Molecular Docking Algorithm Based on Shape Complementarity Principles [About PatchDock] [Web Server] [Download] [Help] [FAQ] [References]

Receptor <u>6e24.pdb</u>	Ligand <u>BPA.pdb</u>	Complex Typ drug	pe Clusterir 1.5	ng RMSD	User e-mail 1909853wct30001@student.must.edu.mo	
Solution N	0	Score	Area	ACE	Transformation	
1		2332	251.00	-54.59	-3.06 -1.07 0.34 179.06 -1.17 11.88	

Receptor <u>6c4u.pdb</u>	Ligand BPA.pdb	Complex Type drug	Clustering 1.5	RMSD	User e-mail 1909853wct30001@student.must.edu.mo
Solution N			ea	ACE	Transformation
1		Score Ai 2456	268.50	-104.44	3.13 -0.14 0.45 38.30 -24.32 -61.07
Receptor	Ligand	Complex Type		ng RMSD	
<u>1nkp.pdb</u>	BPA.pdb	drug	1.5		1909853wct30001@student.must.edu.mo
Solution No	D		Area	ACE	Transformation
		2552	271.10	18.	31 1.09 -0.40 2.09 54.11 54.76 49.19
Receptor	Ligand	Complex Type	Clustering	RMSD	User e-mail
2or9.pdb	BPA.pdb	drug	1.5		1909853wct30001@student.must.edu.mo
Solution N	0	Score A	rea	ACE	Transformation
1		2262	278.40	-74.31	0.68 1.46 1.74 -7.54 19.66 27.57
Receptor	Ligand	Complex Type	Clusterin	a RMSD	User e-mail
4y7r.pdb	BPA.pdb	drug	1.5		1909853wct30001@student.must.edu.mo
Solution N	lo	Score	Area	ACE	Transformation
1		2158	237.40	-54.0	
Decentor	Ligand	Complex Type	Clusterin		Llear a mail
Receptor 6g6j.pdb	Ligand <u>BPA.pdb</u>	Complex Type drug	Clusterin 1.5	IY KMSD	User e-mail 1909853wct30001@student.must.edu.mo
Solution N	0	Score /	Area 283,20	ACE 3.03	Transformation 3 2.98 -0.28 -1.73 47.41 90.76 205.24
±		2232	203.20	5.0.	5 2.36 -0.26 -1.75 47.41 90.76 203.24
Receptor	Ligand	Complex Type	Clusteri	ng RMSD	User e-mail
<u>6g6l.pdb</u>	BPA.pdb	drug	1.5		1909853wct30001@student.must.edu.mo
Solution N	0	Score	Area	ACE	Transformation
1		2298	288.60	22.4	8 1.76 0.31 2.14 -107.16 4.13 -15.93
Receptor	Ligand	Complex Type	Clusterin	g RMSD	User e-mail
<u>6g6k.pdb</u>	BPA.pdb	drug	1.5		1909853wct30001@student.must.edu.mo
Solution N	0	Score A	rea	ACE	Transformation
L		2566	316.80	-59.63	1.61 0.04 0.17 -56.83 -42.21 -68.42
Receptor	Ligand	Complex Type	Clusterin		User e-mail
6e16.pdb	BPA.pdb	drug	1.5		1909853wct30001@student.must.edu.mo
Solution N	0	Score A	rea	ACE	Transformation
1	-	2250	251.10	-59.73	

10. Analysis data of 2.

Product name: methyl 2-hydroxyl-5-(1'-*ortho*-carbonylmethyl-1',2',3'-triazol-4'-yl)-benzonate. *Product information*: Compound no: HEC156312, off-white solid.

Analysis: ¹H NMR (400MHz, CDCl₃) δ 10.85(s, 1H), 7.92(d, 1H), 7.87(s, 1H), 7.41-7.43(m, 2H), 5.07(s, 2H), 3.97(s, 3H), 3.90(s, 1H), 1.86-3.00(m, 10H). LC-MS(ES-AP): [M+H]⁺ = 377.30. HRMS: C₁₃H₂₁B₁₀N₃O₃, m/z: 377.2643. HPLC purity: 98.64%.

References

1 B. E. Spielvogel, F. U. Ahmed and A. T. McPhail, Compounds of pharmacological

interest, in *Inorganic Syntheses* (H. R. Allcock, Editor), Singapore, John Wiley & Sons, 1989, **25**, 79.

2 D. W. Rogers, Health. Phys., 1984, 46, 891.

3 R. L. Maughan, P. J. Chuba, A. T. Porter, E. Ben-Josef and D. R. Lucas, *Med. Phys.*, 1997, **24**, 1241.

4 R. S. Caswell, J. J. Coyne and M. L. Randolph, Radiat. Res., 1980, 83, 217.

5 W. S. Snyder, M. J. Cook, E. S. Nasset, L. R. Karhausen, G. P. Howells and I. Tipton, Cross and elemental content of reference man. In *Report of the task Group on*

Reference Man (W. S. Snyder, Ed.). pp. 273–324. Pergamon Press, Oxford, 1975.

6 P. T. Lang, S. R. Brozell, S. Mukherjee, E. F. Pettersen, E. C. Meng and V. Thomas, et al., *RNA (New York, N.Y.)*, 2009, **15**, 1219.

7 D. Schneidman-Duhovny, Y. Inbar, R. Nussinov, H. J. Wolfson, *Nucl. Acid Res.*, 2005, **33**, W363.

8 S. Salentin, S. Schreiber, V. J. Haupt, M. F. Adasme, M. Schroeder, *Nucl. Acids Res.*, 2015, **43(W1)**, W443.

9 W. L. De Lano, The PyMOL Molecular Graphics System. San Carlos, CA, USA: De Lano Scientific, 2004.

10 R. S. S. Murali, R. S. S. Siddhardha, D. R. Babu, S. Venketesh, R. Basavaraju and G. N. Rao, *Spectrochim. Acta Part A: Mol. Biomol. Spectr.*, 2017, **180**, 217.