Supporting Information

Reversing Lewis Acidity from Bismuth to Antimony

Deepti Sharma, ^a Selvakumar Balasubramaniam, ^a Sandeep Kumar, ^b Eluvathingal D. Jemmis *^b and Ajay Venugopal *^a

^[a] School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India.

^[b] Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India

Table of Contents

1. Experimental Procedures

1.1 General Methods

Synthesis and characterization of **1-Sb**

Synthesis and characterization of 2-Sb

Synthesis and characterization of **3-Sb**

Synthesis and characterization of **4-Sb**

Synthesis and characterization of 1-Bi

Synthesis and characterization of 2-Bi

Synthesis and characterization of 3-Bi

Synthesis and characterization of 4-Bi

1.2 Catalysis

General method

NMR spectra of reduction from phosphine oxides to phosphines

Triethylphosphine

Triphenylphosphine

Methyldiphenylphosphine

2. Crystallographic Data

3. Computational Details

4. References

1. Experimental Procedures

1.1 General Methods:

All the reaction procedures were carried out in argon atmosphere using standard glovebox and Schlenk line techniques. ^[1] All the glassware were dried at 200 °C before use. Dichloromethane, *n*-pentane, C₆D₅-Br and CD₂Cl₂ were dried over CaH₂. Na/Ph₂CO was used as a drying agent for toluene and diethyl ether (Et₂O).^[2] The solvents were then distilled, degassed and stored over LiAlH₄ (toluene, *n*-pentane, Et₂O), CaH₂ (CH₂Cl₂, CD₂Cl₂) and 3 Å molecular sieves(C₆D₅-Br) at least a day prior to the use. Thereafter, the solvents were directly condensed into the reaction flask at -196 °C. Anhydrous SbCl₃, BiCl₃, Et₃PO and AgOTf were purchased from Sigma-Aldrich. BiCl₃, Et₃PO and AgOTf were directly taken into glovebox and used in experiments without any further purification. SbCl₃ was purified via sublimation and stored in glovebox. (Mesityl)Li, Tris(mesityl)bismuthine and (Mesityl)₂BiCl were prepared according to the reported literature procedures.^[3,4] (Mesityl)₂SbCl was prepared by an alternative method to reported procedures.^[5] 2-Bromomesitylene was procured from Sigma-Aldrich. It was dried over CaH₂ and stored over 3 Å molecular sieves before use.^[2]

¹H, ¹³C, ¹⁹F and ³¹P NMR spectra were recorded on Bruker Advance III 500 MHz spectrometer at ambient temperature. Chemical shifts (δ) are reported in ppm. ¹H and ¹³C NMR spectra were referenced to the residual signals of the deuterated solvents. The chemical shifts (δ ppm) in ¹H and ¹³C NMR spectra were referenced to the residual signals of the deuterated solvents. ¹⁹F and ³¹P NMR spectra were referenced to CFCl₃ and H₃PO₄ (85%) respectively. Abbreviations for NMR spectra: s (singlet), br (broad), m (multiplet). Percentage yields are reported for the crystallized products. Elemental analyses were performed on samples, well dried at 1×10⁻³ mbar at ambient temperature, on Elemental Vario Micro Cube instrument.

Synthesis and characterization of 1-Sb:

A 20 mL toluene solution of (Mesityl)Li (0.40 g, 3.17 mmol) was added dropwise to a 20 ml toluene solution of SbCl₃ (0.36 g, 1.58 mmol) at -78 °C. The reaction was allowed to attain ambient temperature and stirred for 15 h. The reaction mixture was filtered and toluene was distilled off. The yellow powder was dissolved in 2 mL *n*-pentane. Yellow crystals of **1-Sb** were obtained after 2 days at room temperature.

Yield: 0.37 g, 59 %

Elemental analysis for C₁₈H₂₂SbCl calculated: C, 54.65; H, 5.60; Found: C, 54.27; H, 5.60 ¹H NMR (CD₂Cl₂, 500 MHz): δ 2.12 (s, 6H, *p*-CH₃), 2.64 (s, 12H, *o*-CH₃), 7.32 (s, 4H, C₆H₂) ¹³C{¹H} NMR (CD₂Cl₂, 125 MHz): δ 20.8 (*p*-CH₃), 24.7 (*o*-CH₃), 129.7 (c, C₉H₁₁), 139.8 (a, C₉H₁₁), 141.1 (d, C₉H₁₁), 143.8 (b, C₉H₁₁)

Figure S2: ¹³C NMR spectrum of 1-Sb in CD₂Cl₂.

Synthesis and characterization of 2-Sb:

1-Sb (0.011 g, 0.029 mmol) and Et_3PO (0.004 g, 0.029 mmol) were loaded in a J. Young NMR tube and 0.5 mL of CD_2Cl_2 was condensed on to the mixture. Quantitative conversion from **1-Sb** to **2-Sb** is confirmed by NMR spectroscopy after half an hour at ambient temperature.

¹H NMR (CD₂Cl₂, 500 MHz): δ 1.11 (m, 9H, OPEt₃, CH₃), 1.64 (m, 6H, OPEt₃, CH₂), 2.26 (s, 6H, *p*-CH₃), 2.40 (s, 12H,o-CH₃), 6.88 (s, 4H, C₆H₂)

³¹P NMR (CD₂Cl₂, 202 MHz): δ 50.9 (s, OPEt₃)

---50.98

Synthesis and Characterization of 3-Sb:

1-Sb (0.045 g, 0.11 mmol), and AgOTf (0.029 g, 0.11 mmol) were loaded into a Schlenk flask. Dichloromethane (10 mL) was condensed on to the mixture at -196 °C. The reaction mixture was allowed to attain room temperature and stirred overnight. Thereafter, filtration of reaction mixture gave a yellow solution. The solution was concentrated to 0.5 mL and stored at -30 °C. to receive yellow crystals together with yellow precipitate of **3-Sb**.

Yield: 0.027 g, 47 %

Elemental analysis for $C_{19}H_{22}F_3O_3SSb$ calculated: C, 44.81; H, 4.35; Found: C, 44.96; H, 4.27 ¹H NMR (CD_2CI_2 , 500 MHz): δ 2.28 (s, 6H, p-CH₃), 2.35 (s, 12H, o-CH₃), 6.96 (s, 4H, C₆H₂) ¹H NMR (C_6D_5 -Br, 500 MHz): δ 2.08 (s, 6H, p-CH₃), 2.25 (s, 12H, o-CH₃), 6.69 (s, 4H, C₆H₂) ¹³C{¹H} NMR (C_6D_5 -Br, 125 MHz): δ 21.0 (p-CH₃), 23.4 (o-CH₃), 122.1 (c, C₉H₁₁), 130.0 (a, C₉H₁₁), 140.8 (d, C₉H₁₁), 142.9 (b, C₉H₁₁)

 ^{19}F NMR (CD_2Cl_2, 470 MHz): δ -77.6 (s, 3F, SO_3CF_3)

¹⁹F NMR (C₆D₅-Br, 470 MHz): δ -76.6 (s, 3F, SO₃CF₃)

Figure S5: ¹H NMR spectrum of **3-Sb** in CD₂Cl₂.

Figure S6: ¹⁹F NMR spectrum of **3-Sb** in CD_2Cl_2 .

Figure S9: ¹⁹F NMR spectrum of **3-Sb** in C₆D₅-Br.

Synthesis and characterization of 4-Sb:

1-Sb (0.045 g, 0.11 mmol), $O=PEt_3$ (0.015 g, 0.11 mmol) and AgOTf (0.029 g, 0.11 mmol) were loaded into a Schlenk flask. Dichloromethane (10 mL) was condensed onto the mixture at -196 °C. The reaction mixture was allowed to attain room temperature and stirred for 2 h. Thereafter, filtration of reaction mixture gave a colorless solution. The solution was concentrated to 1.5 mL, layered with n-pentane and stored at -30 °C to obtain colorless crystals of **4-Sb**.

Yield: 0.046 g, 63 %

Elemental analysis for C₂₅H₃₇F₃O₄PSSb calculated: C, 46.67; H, 5.80; Found: C, 46.29; H, 5.92

¹H NMR (CD₂Cl₂, 500 MHz): δ 1.08 (m, 9H, OPEt₃, CH₃), 1.87 (m, 6H, OPEt₃, CH₂), 2.28 (s, 6H, *p*-CH₃), 2.40 (s, 12H, o-CH₃), 6.95 (s, 4H, C₆H₂)

¹H NMR (C₆D₅-Br, 500 MHz): δ 0.70 (m, 9H, OPEt₃, CH₃), 1.42 (m, 6H, OPEt₃, CH₂), 2.13 (s, 6H, *p*-CH₃), 2.48 (s, 12H, *o*-CH₃), 6.80 (s, 4H, C₆H₂)

 $\label{eq:constraint} {}^{13}\text{C}{}^{1}\text{H} \text{NMR} (\text{C}_6\text{D}_5\text{-}\text{Br}, 125 \text{ MHz}): \\ \delta 4.9 (d, {}^2\text{J}_{\text{CP}} = 5.35 \text{ Hz}, \text{ OPEt3}, \text{CH}_3), 17.8 (d, {}^1\text{J}_{\text{CP}} = 64.14 \text{ Hz}, \text{OPEt}_3, \text{CH}_2), 20.9 (p\text{-}\text{CH}_3), 24.2 (o\text{-}\text{CH}_3), 122.1 (c, \text{C}_9\text{H}_{11}), 126.9 (a, \text{C}_9\text{H}_{11}), 139.2 (d, \text{C}_9\text{H}_{11}), 143.8 (b, \text{C}_9\text{H}_{11}) \\ \end{array}$

¹⁹F NMR (CD₂Cl₂, 470 MHz): δ -78.9 (s, 3F, SO₃CF₃)

¹⁹F NMR (C₆D₅-Br, 470 MHz): δ -77.3 (s, 3F, SO₃CF₃)

³¹P NMR (CD₂Cl₂, 202 MHz): δ 81.6 (s, br, OPEt₃)

³¹P NMR (C₆D₅-Br, 202 MHz): δ 72.8 (s, br, OPEt₃)

Figure S12: ³¹P NMR spectrum of 4-Sb in CD₂Cl₂.

Figure S14: ¹⁹F NMR spectrum of 4-Sb in C₆D₅-Br.

Figure S17: Stacked ³¹P NMR spectra of **3-Sb** in CD_2CI_2 with varying concentration of Et_3PO .

Synthesis of 1-Bi:

(Mesityl)₃Bi (0.4 g, 0.70 mmol) and $BiCl_3(0.11 g, 0.35 mmol)$ were loaded into a Schlenk flask and diethyl ether (40 mL) is condensed over the reaction mixture at -196 °C. The reaction was allowed to reach an ambient temperature and left on stirring for 16 h. Thereafter, diethyl ether was distilled off completely and yellowish green solid is washed with *n*-pentane to receive **1-Bi**.

Yield: 0.44 g, 86 %

Elemental analysis for C₁₈H₂₂BiCl calculated: C, 44.77; H, 4.59; Found: C, 44.91; H, 4.63 ¹H NMR (C₆D₅-Br), 500 MHz): δ 2.11 (s, 6H, *p*-CH₃), 2.30 (s, 12H, *o*-CH₃), 7.02 (s, 4H, C₆H₂) ¹³C{¹H} NMR (C₆D₅-Br), 125 MHz): δ 21.1 (*p*-CH₃), 25.4 (*o*-CH₃), 122.1 (c, C₉H₁₁), 131.9 (a, C₉H₁₁), 138.1 (d, C₉H₁₁), 145.3 (b, C₉H₁₁)

Figure S18: ¹H NMR spectrum of **1-Bi** in C₆D₅-Br.

Figure S19: ¹³C NMR spectrum of 1-Bi in C₆D₅-Br.

Synthesis and characterization of 2-Bi:

1-Bi (0.014 g, 0.029 mmol) and Et_3PO (0.004 g, 0.029 mmol) were loaded in a J. Young NMR tube and 0.5 mL of CD_2Cl_2 was condensed onto the mixture. Quantitative conversion from **1-Bi** to **2-Bi** was confirmed by NMR spectroscopy after half an hour.

¹H NMR (CD₂Cl₂, 500 MHz): δ 1.02 (m, 9H, OPEt₃, CH₃), 1.55 (m, 6H, OPEt₃, CH₂), 2.25 (s, 6H, *p*-CH₃), 2.43 (s, 12H, *o*-CH₃), 7.22 (s, 4H, C₆H₂)

³¹P NMR (CD₂Cl₂, 202 MHz): δ 55.2 (s, br, OPEt₃)

Synthesis of 3-Bi:

1-Bi (0.045 g, 0.09 mmol), and AgOTf (0.023 g, 0.09 mmol) were loaded into a Schlenk flask. Dichloromethane (10 mL) was condensed onto the mixture at -196 °C. The reaction mixture was allowed to attain room temperature and stirred overnight. Thereafter, filtration of reaction mixture gave a dark yellow solution. The solution was concentrated to 0.5 mL and stored over - 30 °C to receive yellow precipitate of **3-Bi**.

Yield: 0.023 g, 42 %

Elemental analysis for C₁₉H₂₂F₃O₃SBi calculated: C, 38.26; H, 3.72; Found: C, 37.98; H, 3.78 ¹H NMR (C₆D₅-Br, 500 MHz): δ 2.06 (s, 6H, *p*-CH₃), 2.18 (s, 12H,*o*-CH₃), 7.22 (s, 4H, C₆H₂)

¹⁹F NMR (CD₂Cl₂, 470 MHz): δ -77.8 (s, 3F, SO₃CF₃)

¹⁹F NMR (C₆D₅-Br, 470 MHz): δ -76.4 (s, 3F, SO₃CF₃)

Due to the poor solubility of **3-Bi** in CD_2Cl_2 and C_6D_5 -Br, ¹³C NMR spectrum could not be obtained.

---76.41

Figure S23: ¹⁹F NMR spectrum of **3-Bi** in C_6D_5 -Br.

Synthesis and characterization of 4-Bi:

1-Bi (0.045 g, 0.09 mmol), Et₃PO (0.012 g, 0.09 mmol) and AgOTf (0.023 g, 0.09 mmol) were loaded into a Schlenk flask. Dichloromethane (5 mL) was condensed onto the mixture at -196 °C. The reaction mixture was allowed to attain room temperature and stirred for 4 h. Thereafter, filtration of reaction mixture gave a pale-yellow solution. The solution was concentrated to 1 mL, layered with *n*-pentane and stored over -30 °C to obtain colorless crystals of **4-Bi**.

Yield: 0.038 g, 56 %

Elemental analysis for C₂₅H₃₇F₃O₄PSBi calculated: C, 41.10; H, 5.10; Found: C, 41.34; H, 5.02

¹H NMR (CD₂Cl₂, 500 MHz): δ 1.00(m, 9H, OPEt₃, CH₃), 1.63(m, 6H, OPEt₃, CH₂), 2.25 (s, 6H, *p*-CH₃), 2.40 (s, 12H, *o*-CH₃), 7.27 (s, 4H, C₆H₂)

¹H NMR (C₆D₅-Br, 500 MHz): δ 0.57 (m, 9H, OPEt₃, CH₃), 1.08 (m, 6H, OPEt₃, CH₂), 2.11 (s, 6H, *p*-CH₃), 2.49 (s, 12H,*o*-CH₃), 7.19 (s, 4H, C₆H₂)

¹³C{¹H} NMR (C₆D₅-Br, 125 MHz): δ 5.0 (d, ${}^{1}J_{CP}$ =5.16 Hz, OPEt₃, CH₃), 17.9 (d, ${}^{1}J_{CP}$ =65.33 Hz OPEt₃, CH₂), 21.3 (*p*-CH₃), 25.9 (*o*-CH₃), 122.1 (c, C₉H₁₁), 131.8 (a, C₉H₁₁), 138.4 (d, C₉H₁₁), 146.3 (b, C₉H₁₁)

¹⁹F NMR (CD₂Cl₂, 470 MHz): δ -78.7 (s, 3F, SO₃CF₃)

¹⁹F NMR (C₆D₅-Br, 470 MHz): δ -77.3 (s, 3F, SO₃CF₃)

³¹P NMR (CD₂Cl₂, 202 MHz): δ 64.6 (s, br, OPEt₃)

³¹P NMR (C₆D₅-Br, 202 MHz): δ 65.2 (s, br, OPEt₃)

--78.75

Figure S27: ³¹P NMR spectrum of 4-Bi in CD₂Cl₂.

Figure S29: ¹³C NMR spectrum of **4-Bi** in C₆D₅-Br.

Figure S31: ^{31}P NMR spectrum of 4-Bi in $C_6D_5\text{-Br}.$

han ann ta mana àn muit than chranta ann àman dh ai manainigeagairt	and the second second second second second	Mes	2BiOTf + 2.0eq TEPO
an ferneral feld for an el de anna engeneran y de styrten al anna de la factor de anna de la factor an		Mes	2BiOTf + 1.6eq TEPO
المجرينة فأحداث المستحد فاستندعت والمراقط والمحاولة والمعارفة عروا فالمراجع والمقار والماروا	and a stand of the second states of the second states of the		And a spectra de la contra de la
		Mes	² BiOTf + 1.4eq TEPO
ŊĸŢĸĊĸĊĸŎĸŎĸĸŎĸĸŢĸĊŢĊĸĸŎĊĸĸĸĊĸĊĸĊĊĸŎŎĸŔĸŎĸŶĸĊĸŎŎĸŎĸŎĸŶ	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	Mes	₂ BiOTf + 1.2eq TEPO
***************************************	ىلىنىنىڭ ^ر ەتىرىكى بىرىكى بىلىن تەرىخەنىي قايانىيە تەرىخەن بىلىنىن تەرىخەن بىلىنى بەتلەر بىلىن بىلەر بىلەر بىلەر يىلىنىنى بىلەر ب	Mes	₂ BiOTf + 0.9eq TEPO
where the second s	www.ch.ch.idfogradiantirtirtirtalianionenia	idente a produce dan sidar abelangi dan sidar si	-
		Mes ₂	BiOTf + 0.6eq TEPO
an a		Mes	2BiOTf + 0.3eq TEPO
Α			
Heren the house of the second s			
70	60	50	40

Figure S32: Stacked ³¹P NMR spectrum of **3-Bi** in CD₂Cl₂ with varying concentration of Et₃PO.

Figure S34: Stacked ³¹P NMR spectrum of 4-Sb vs 4-Bi.

1.2 Catalysis

General method:

All the manipulations were carried out in argon atmosphere either using Schlenk techniques or glovebox. J Young NMR tubes were oven dried at 200 °C. The phosphine oxides were purchased from Sigma-Aldrich and used without any purification. The catalytic reactions were performed in C_6D_5 -Br.

Experimental procedure for deoxygenation of phosphine oxide:

Catalyst, **3-Sb** (0.002 g, 0.0039 mmol) or **3-Bi** (0.002 g, 0.0033 mmol) and respective phosphine oxide (0.039 mmol for **3-Sb**, 0.033 mmol for **3-Bi**) were loaded into a J. Young NMR tube in glovebox. C_6D_5Br (0.6 mL) was added to the reaction mixture followed by 3 equivalents of PhSiH₃ (w.r.t. phosphine oxide). The NMR tube was then sealed, brought out of glovebox and transferred to an oil bath pre-heated at 60 °C. The reaction was then monitored at various time intervals by ¹H NMR and ³¹P NMR until the conversion from phosphine oxide to phosphine was complete. NMR data is provided for the reaction mixture after the conversion.

Table S1. Reduction of phosphine oxides to respective phosphines catalyzed by **3-Sb** and **3-Bi**. Percentage of conversion was determined by ³¹P NMR spectroscopy.

		$\begin{array}{c} O \\ II \\ R^{1} \overset{O}{P} \overset{O}{R^{3}} & \frac{3}{P} \\ R^{2} & P \\ 1 \text{ eq} \end{array}$	3-Sb or 3-Bi (10 mol%) PhSiH ₃ (3 eq), C ₆ D ₅ Br 60°C		$R^{1} \stackrel{H}{\searrow} R^{3}$ R^{2}	
	Substrate	Product	3-Sb		3-Bi	
			Time	conv(%)	Time	conv(%)
	O II Et ^{-P} \-Et Et	∵ Et ^{_P} _Et Et	24 hr	74	30 hr	66
	O Ⅲ Ph P <mark>\</mark> Ph Ph	 Ph ^{∕P} ([→] Ph Ph	12 hr	92	30 hr	>97
	O II Ph ^{- P} - Me Ph	 Ph ^{∕─P} ∕─Me Ph	9 hr	>98	15 hr	>99
'nE	O Bu∽ ^P \ ^{_n} Bu ⁿ Bu	ⁿ Bu∕ ^P ∖ ^{−n} Bu ⁿ Bu	29 hr	82	42 hr	71.5
F	O II Ph-P\-H Ph	Ph ^{-P} \-H Ph	45 min	>99	1.25 hr	>99
I	O II Ph P CI Ph	Ph ^P \H Ph	5 hr	>99	8.5 hr	>99
Ph	2R: PPh ₂ O O	Ph ₂ P: PPh ₂	36 hr	99	45 hr	66

NMR spectra for reduction of Phosphine oxides to phosphines:

Triethylphosphine

¹H NMR (500 MHz, C₆D₅Br): δ = 1.21 (m, 6H), 1.49 (m, 9H). ³¹P NMR: δ = -19.4 ppm.

Figure S37: Stacked ³¹P NMR spectrum of reduction of Et_3PO to Et_3P using catalyst 3-Sb in C_6D_5 -Br.

Figure S38: Stacked ³¹P NMR spectrum of reduction of Et_3PO to Et_3P using catalyst **3-Bi** in C_6D_5 -Br.

Triphenylphosphine

¹H NMR (500 MHz, C₆D₅Br): δ = 7.30 (6H), 7.20 (3H), 7.14 (6H) ppm. ³¹P: δ = -5.5 ppm.

---5.50

Figure S41: Stacked ³¹P NMR spectrum of reduction of Ph_3PO to Ph_3P using catalyst **3-Sb** in C_6D_5 -Br.

Ph₃PO 28.9 ppm

Figure S42: Stacked ³¹P NMR spectrum of reduction of Ph₃PO to Ph₃P using catalyst **3-Bi** in C₆D₅-Br.

Methyldiphenylphosphine

¹H NMR (500 MHz, C_6D_5 -Br): δ = 1.37 (s, br, 3H), 7.04–7.07 (m, 7H), 7.36 (m, 3H).

³¹P NMR: δ = -26.7 ppm.

Figure S45: Stacked ³¹P NMR spectrum of reduction of MePh₂PO to MePh₂P using catalyst 3-Sb in C_6D_5 - Br.

Figure S46: Stacked ³¹P NMR spectrum of reduction of MePh₂PO to MePh₂P using catalyst **3-Bi** in C₆D₅-Br.

Diphenylphosphine

¹H NMR (500 MHz, C₆D₅-Br): δ = 5.20 (d, J = 216.3 Hz, 1H), 7.11-7.16 (br, 6H), 7.37-7.42 (br, 4H)

³¹P NMR: δ = -39.9 ppm.

50 130 110 90 70 30 -30 -50 -70 chemical shift (ppm) -150 -190 50 10 -10 -90 -110 -130 -170 -210 -230

Figure S48: ³¹P NMR spectrum in C₆D₅-Br.

Figure S50: Stacked ³¹P NMR spectrum of reduction of $Ph_2(H)PO$ to Ph_2PH using catalyst **3-Bi** in C_6D_5 - Br.

Figure S51: Stacked ³¹P NMR spectrum of reduction of $Ph_2(CI)PO$ to Ph_2PH using catalyst **3-Sb** in C_6D_5 - Br.

Figure S52: Stacked ³¹P NMR spectrum of reduction of Ph₂(Cl)PO to Ph₂PH using catalyst **3-Bi** in C6D5- Br.

1,2-Bis(diphenylphosphino)ethane

¹H NMR (500 MHz, C_6D_5 -Br): δ = 01.10(d,2H), 1.58(d,2H), 7.11-7.16 (br, 6H), 7.37-7.42 (br, 4H)

³¹P NMR: δ = -12.5 ppm.

Figure S54: ³¹P NMR spectrum in C_6D_5 -Br.

Figure S55: Stacked ³¹P NMR spectrum of reduction of $Ph_2(O)P(CH_2)_2P(O)Ph_2$ to $Ph_2P(CH_2)_2PPh_2$ using catalyst **3-Sb** in C_6D_5 - Br.

Figure S56: Stacked ³¹P NMR spectrum of reduction of $Ph_2(O)P(CH_2)_2P(O)Ph_2$ to $Ph_2P(CH_2)_2PPh_2$ using catalyst **3-Bi** in C_6D_5 - Br.

<u>Tributylphosphine</u>

¹H NMR (500 MHz, C_6D_5 -Br): δ = 0.9(m,9H), 1.39(m,18H)

³¹P NMR: δ = -31.6 ppm.

Figure S57: : ¹H NMR spectrum in C_6D_5 -Br.

mannen	 ana mana ana ana ana ana ana ana ana ana	 	deranga yan din salama yan din din din dinana ya

Figure S58:	: ³¹ P I	NMR :	spectrum	in	C_6D_5 -Br.
-------------	---------------------	-------	----------	----	---------------

Figure S59: Stacked ³¹P NMR spectrum of reduction of $(C_4H_9)_3PO$ to $(C_4H_9)_3P$ using catalyst **3-Sb** in C_6D_5 - Br.

Figure S60: Stacked ³¹P NMR spectrum of reduction of $(C_4H_9)_3PO$ to $(C_4H_9)_3P$ using catalyst **3-Bi** in C_6D_5 - Br.

2. Crystallographic Data

Crystals were layered with Paratone oil before mounting on diffractometer. Single-crystal X-ray crystallography for structural analysis was performed on a Bruker Kappa APEX II CCD Diffractometer, using Mo-Kα radiation, having a wavelength of 0.71073 Å, equipped with a CCD detector by using the APEX software package.^[6] A matrix scan was used to determine the initial lattice parameters. Reflections were merged and corrected for Lorenz and polarization effects and background using SAINT.^[7] Absorption corrections, including odd and even ordered spherical harmonics were performed using SADABS.^[8] Space group assignments were based upon systematic absences, E statistics, and successful refinement of the structures. The structures were solved by SHELXT (version 2018/2) and refined by SHELXTL (version 2018/3) software package installed in the platform WinGX.^[9,10] All non-hydrogen atoms, including those in disordered molecules, were refined anisotropically. Hydrogen atoms are placed at calculated positions and refined using a riding model.

In **4-Sb**, the solvent used for crystallization was dichloromethane and layered with pentane. Final Fourier difference electron density map showed the presence of pentane in the lattice. However, the solvent molecule was so entangled by disorder that it was not possible to model them to chemically meaningful positions. Hence the solvent molecule was squeezed. In both **4-Sb** and **4-Bi** the portion of the 'triethyl-phosphine oxide (O=PEt₃)" was found to be disordered and was modelled with two orientations with relative occupancies of 0.68:0.32 and 0.65:0.35 respectively for the two parts.

Table S2. Crystal data and structure refiner	ment for 3-Sb.		
Identification code	3-Sb		
CCDC Number	2086626		
Empirical formula	$C_{19}H_{22}F_3O_3SSb$		
Formula weight	509.17		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	<i>P</i> -1		
Unit cell dimensions	<i>a</i> = 7.2653(19) Å	$\alpha=85.443(8)^\circ$	
	<i>b</i> = 16.097(4) Å	$\boldsymbol{\beta}=89.167(9)^\circ$	
	<i>c</i> = 17.027(5) Å	$\gamma=84.022(8)^\circ$	
Volume	1974.2(9) Å ³		
Z	4		
Density (calculated)	1.713 mg/m ³		
Absorption coefficient	1.547 mm ⁻¹		
<i>F</i> (000)	1016		
Crystal size	0.058 x 0.047 x 0.035 mm	3	
Theta range for data collection	1.200 to 24.999°		
Index ranges	-8<=h<=8, -19<=k<=19, -20<=l<=20		
Reflections collected	43116		
Independent reflections	6962 [R _{int} = 0.0774]		
Completeness to theta = 24.999°	99.9 %		
Absorption correction	Semi-empirical from equiv	valents	
Max. and min. transmission	0.948 and 0.916		
Refinement method	Full-matrix least-squares	on F ²	
Data / restraints / parameters	6962 / 6 / 492		
Goodness-of-fit on F ²	1.112		
Final R indices [I>2sigma(I)]	$R_1 = 0.0642$, $wR_2 = 0.1384$		
R indices (all data)	$R_1 = 0.0844$, $wR_2 = 0.1481$		
Extinction coefficient	n/a		
Largest diff. peak and hole	1.695 and -1.918 e.Å ⁻³		

Table 53. Crystal data and structure refine	ment for 4-5b.	
Identification code	4-Sb	
CCDC Number	2086627	
Empirical formula	$C_{29}H_{37}F_3O_4PSSb$	
Formula weight	691.36	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/n	
Unit cell dimensions	<i>a</i> = 10.277(4) Å	<i>α</i> = 90°
	<i>b</i> = 15.806(6) Å	$\theta = 96.915(13)^{\circ}$
	<i>c</i> = 19.121(7) Å	γ = 90°
Volume	3083(2) Å ³	
Z	4	
Density (calculated)	1.489 mg/m ³	
Absorption coefficient	1.064 mm ⁻¹	
<i>F</i> (000)	1408	
Crystal size	0.095 x 0.055 x 0.045 mm	3
Theta range for data collection	2.376 to 24.999°	
Index ranges	-12<=h<=12, -18<=k<=18,	-22<=l<=22
Reflections collected	36134	
Independent reflections	5433 [R _{int} = 0.1417]	
Completeness to theta = 24.999°	99.9 %	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	0.954 and 0.906	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	5433 / 100 / 353	
Goodness-of-fit on F ²	1.015	
Final R indices [I>2sigma(I)]	$R_1 = 0.0551$, $wR_2 = 0.1094$	
R indices (all data)	$R_1 = 0.1032$, $wR_2 = 0.1316$	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.586 and -0.667 e.Å ⁻³	

Table S3. Crystal data and structure refinement for 4-Sb.

 Table S4. Crystal data and structure refinement for 4-Bi.

Identification code	4-Bi		
CCDC Number	2086625		
Empirical formula	$C_{25}H_{37}BiF_3O_4PS$		
Formula weight	730.55		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	<i>a</i> = 9.601(2) Å	α = 71.295(8)°	
	<i>b</i> = 12.221(3) Å	β = 77.227(8)°	
	<i>c</i> = 13.822(3) Å	γ = 82.243(8)°	
Volume	1494.6(6) Å ⁻³		
Z	2		
Density (calculated)	1.623 mg/m ³		
Absorption coefficient	6.067 mm ⁻¹		
F(000)	720		
Crystal size	0.055 x 0.045 x 0.035	mm ⁻³	
Theta range for data collection	2.440 to 24.998°		
Index ranges	-11<=h<=11, -14<=k<	=14, -16<=l<=16	
Reflections collected	38738		
Independent reflections	5262 [R _{int} = 0.0714]		
Completeness to theta = 24.998°	99.9 %		
Absorption correction	Semi-empirical from	equivalents	
Max. and min. transmission	0.816 and 0.731		
Refinement method	Full-matrix least-squa	ires on F ²	
Data / restraints / parameters	5262 / 122 / 377		
Goodness-of-fit on F ²	1.029		
Final R indices [I>2sigma(I)]	$R_1 = 0.0371$, $wR_2 = 0.0371$	0737	
R indices (all data)	$R_1 = 0.0604, wR_2 = 0.0604$	0827	
Extinction coefficient	n/a		
Largest diff. peak and hole	0.656 and -0.447 e.Å ⁻³		

Figure S61: Solid-state structure of **4-Bi**. Thermal ellipsoids are drawn at 35% probability level and hydrogen atoms are omitted for clarity. Selected distances in **4-Bi**: Bi-O1 2.528(5), Bi-O2 2.349(4), P1-O2 1.491(5).

3. Computational Details

All the calculations are carried out using Gaussian 16 program package, Version-C.^[11] Geometry optimization are carried out at B3LYP-D3 level of theory with Def2-TZVP basis set for Sb and Bi and 6-31G(d,p) basis set for all the other elements (C, H, O, P, F, S and Cl). The nature of stationary points is examined by vibrational frequency calculations at the same level of theory. Natural Bond Orbital (NBO) analysis is performed (using Gaussian 09, version-D program package^[12]) to get the Natural Population Analysis (NPA) charges with the NBO6 method at the same level of theory.^[13]

Figure S62: Important bond lengths (black) and NBO charges (blue) at B3LYP-D3 level of theory with the Def2-TZVP basis set for Sb and 6-31G(d, p) basis set for all other atoms with IEFPCM solvation model and dichloromethane solvent. Values in the parenthesis are bond lengths obtained from the gas phase calculation. H-atoms are not shown for simplicity.

Figure S63: Important bond lengths (black) and NBO charges (blue) at B3LYP-D3 level of theory with the Def2-TZVP basis set for Bi and 6-31G(d, p) basis set for all other atoms with IEFPCM solvation model and dichloromethane solvent. Values in the parenthesis are bond lengths obtained from the gas phase calculation. H-atoms are not shown for simplicity.

Figure S64: A schematic correlation diagram depicting the evolution of the acceptor orbitals (LUMO) of **1-Sb**, **1-Bi**, $[(Mesityl)_2Sb]^+$ and $[(Mesityl)_2Bi]^+$ and their interaction with OPEt₃ on either end. Energies of interaction, ΔH (kcalmol⁻¹), between the Lewis acids and OPEt₃, are provided below the arrows.

Cartesian coordinates of all the optimized geometries at B3LYP-D3 level of theory with the Def2-TZVP basis set for Bi and 6-31G (d, p) basis set for all other atoms with IEFPCM solvation model and dichloromethane solvent.

1-Sb

Total energy including ZPVE: -1399.472815 a. u.

Total electronic and thermal enthalpies: -1399.448372 a. u.

С	1.622630000	-0.026886000	-0.009837000
С	1.562282000	0.813520000	1.127441000
С	2.667560000	1.620925000	1.428463000
С	3.821909000	1.632515000	0.641901000
С	3.861639000	0.794941000	-0.475217000
С	2.785578000	-0.033255000	-0.815817000
С	0.354080000	0.918643000	2.033752000
С	4.980277000	2.541394000	0.975074000
С	2.921962000	-0.897129000	-2.056043000
С	-1.679394000	-0.027856000	-0.309558000
С	-1.619150000	1.230638000	-0.954618000
С	-2.690992000	2.121632000	-0.820801000
С	-3.829992000	1.802490000	-0.078078000
С	-3.896059000	0.532314000	0.498623000
С	-2.851813000	-0.395555000	0.387499000
С	-0.441387000	1.675478000	-1.800022000
С	-4.953391000	2.796346000	0.092404000
С	-3.050103000	-1.753731000	1.023847000
Н	2.622382000	2.260752000	2.307206000
Н	4.754119000	0.782177000	-1.096838000
Н	-0.071728000	-0.057085000	2.274339000
Н	0.623913000	1.409183000	2.972900000
Н	-0.438222000	1.509615000	1.563904000
Н	4.858347000	3.519796000	0.493793000
Н	5.054566000	2.716480000	2.052501000
Н	5.929958000	2.123937000	0.627582000
Н	2.194324000	-0.623999000	-2.829777000
Н	3.915583000	-0.783118000	-2.497000000
Н	2.783389000	-1.961685000	-1.837755000
Н	-2.636064000	3.086580000	-1.320465000

Н	-4.793066000	0.245496000	1.043398000
Н	0.382743000	2.047888000	-1.184507000
Н	-0.037916000	0.868375000	-2.424090000
Н	-0.741206000	2.476290000	-2.481199000
Н	-4.791803000	3.417314000	0.982355000
Н	-5.025357000	3.471229000	-0.765814000
Н	-5.917455000	2.294279000	0.217328000
Н	-4.110675000	-1.932043000	1.220695000
Н	-2.690683000	-2.566500000	0.385021000
Н	-2.513167000	-1.837313000	1.973017000
Sb	0.019166000	-1.363012000	-0.622780000
Cl	0.133927000	-2.648974000	1.455947000

2-Sb

Total energy including ZPVE: -2053.627354 a. u.

Total electronic and thermal enthalpies: -2053.589998 a. u.

С	2.346286000	0.000787000	-0.032096000
С	2.994235000	-1.001318000	0.726746000
С	4.162557000	-0.675641000	1.431256000
С	4.725258000	0.600487000	1.394957000
С	4.097827000	1.566256000	0.604403000
С	2.927763000	1.291639000	-0.114266000
С	2.533697000	-2.441227000	0.806423000
С	5.961213000	0.933236000	2.196179000
С	2.347954000	2.407785000	-0.962584000
С	-0.803319000	-1.481021000	0.058607000
С	-0.859708000	-1.395731000	1.472776000
С	-1.876011000	-2.077697000	2.157492000
С	-2.859510000	-2.818035000	1.500576000
С	-2.817936000	-2.855308000	0.105819000
С	-1.815268000	-2.202921000	-0.624710000
С	0.094873000	-0.581765000	2.322299000
С	-3.927945000	-3.555491000	2.270944000
С	-1.892428000	-2.290489000	-2.136239000
С	-2.028255000	3.743291000	0.778513000
С	-1.624171000	3.706792000	2.259691000

С	-3.152005000	1.012497000	0.838249000
С	-4.580803000	1.563551000	0.946965000
С	-2.527532000	2.288083000	-1.735664000
С	-1.578106000	3.126611000	-2.603905000
Н	4.647627000	-1.450236000	2.022352000
Н	4.532710000	2.561588000	0.539917000
Н	3.018998000	-3.035935000	0.026443000
Н	2.798949000	-2.875654000	1.775460000
Н	1.460135000	-2.556195000	0.661080000
Н	5.692676000	1.328735000	3.183919000
Н	6.584355000	0.048618000	2.358478000
Н	6.568982000	1.694401000	1.697155000
Н	1.354547000	2.700972000	-0.613673000
Н	2.996800000	3.287448000	-0.935310000
Н	2.249978000	2.109662000	-2.013315000
Н	-1.909637000	-2.005862000	3.242882000
Н	-3.590865000	-3.399288000	-0.432994000
Н	1.007939000	-1.138892000	2.550405000
Н	0.385115000	0.347434000	1.835692000
Н	-0.378139000	-0.331718000	3.276924000
Н	-3.600161000	-4.573297000	2.516602000
Н	-4.160386000	-3.052903000	3.214820000
Н	-4.851825000	-3.643222000	1.691123000
Н	-2.832699000	-2.752942000	-2.447728000
Н	-1.843286000	-1.302415000	-2.609483000
Н	-1.069081000	-2.879196000	-2.549875000
Н	-3.040193000	4.142005000	0.647499000
Н	-1.351027000	4.389447000	0.210036000
Н	-0.626106000	3.276541000	2.380676000
Н	-1.612335000	4.718779000	2.673531000
Н	-2.325288000	3.111664000	2.853144000
Н	-2.731927000	0.809474000	1.828001000
Н	-3.135866000	0.056493000	0.305427000
Н	-5.019838000	1.760504000	-0.035629000
Н	-5.218383000	0.831793000	1.451211000
Н	-4.618161000	2.490096000	1.527675000
Н	-3.533072000	2.722051000	-1.714193000
Н	-2.624203000	1.273254000	-2.139135000
Н	-1.938276000	3.152918000	-3.636029000
Н	-1.511794000	4.159093000	-2.247798000
Н	-0.570582000	2.701831000	-2.605898000

0	-0.511539000	1.553235000	0.060299000
Ρ	-1.947781000	2.096273000	-0.010656000
Sb	0.542578000	-0.310661000	-1.218600000
Cl	1.608229000	-2.346442000	-2.390466000

1-Bi

Total energy including ZPVE: -1373.848632 a. u.

Total electronic and thermal enthalpies: -1373.823830 a. u.

С	1.682409000	0.195729000	0.071905000
С	1.627601000	1.079072000	1.173246000
С	2.725935000	1.914712000	1.421222000
С	3.866023000	1.909529000	0.613442000
С	3.897939000	1.028435000	-0.470211000
С	2.826642000	0.172553000	-0.755709000
С	0.430556000	1.190909000	2.092614000
С	5.016873000	2.847924000	0.887310000
С	2.942544000	-0.737846000	-1.964046000
С	-1.741608000	0.192591000	-0.234200000
С	-1.672458000	1.413205000	-0.942707000
С	-2.744750000	2.311550000	-0.864253000
С	-3.887305000	2.034139000	-0.109681000
С	-3.953283000	0.803170000	0.547384000
С	-2.907407000	-0.128667000	0.492570000
С	-0.481153000	1.809483000	-1.792594000
С	-5.013028000	3.034943000	-0.004830000
С	-3.085648000	-1.440656000	1.223701000
Н	2.686625000	2.590312000	2.273231000
Н	4.778468000	1.003859000	-1.108735000
Н	0.094202000	0.213468000	2.446354000
Н	0.672087000	1.801702000	2.966689000
Н	-0.416665000	1.657160000	1.580729000
Н	4.875784000	3.801932000	0.363996000
Н	5.104752000	3.072989000	1.954427000
Н	5.967145000	2.427095000	0.545236000
Н	2.199102000	-0.495584000	-2.733974000
Н	3.925398000	-0.639533000	-2.432140000

Н	2.815430000	-1.794505000	-1.701844000
Н	-2.687252000	3.247998000	-1.415512000
Н	-4.848614000	0.552764000	1.112761000
Н	0.349310000	2.171650000	-1.179254000
Н	-0.096216000	0.978010000	-2.396189000
Н	-0.753570000	2.603069000	-2.493479000
Н	-4.853612000	3.714025000	0.842056000
Н	-5.086501000	3.651567000	-0.905785000
Н	-5.976111000	2.540073000	0.152559000
Н	-4.133952000	-1.594567000	1.493484000
Н	-2.771555000	-2.296282000	0.616381000
Н	-2.491955000	-1.472625000	2.141699000
Bi	0.014586000	-1.254040000	-0.488255000
Cl	0.132812000	-2.437287000	1.770088000

2-Bi

Total energy including ZPVE: -2028.007129 a. u.

Total electronic and thermal enthalpies: -2027.969382 a. u.

С	2.386693000	0.121848000	0.177370000
С	3.050441000	-0.909903000	0.877911000
С	4.189204000	-0.594308000	1.634015000
С	4.699682000	0.703272000	1.707434000
С	4.047330000	1.703735000	0.983008000
С	2.905172000	1.436683000	0.216246000
С	2.621263000	-2.360619000	0.839567000
С	5.904948000	1.019527000	2.560979000
С	2.273563000	2.587796000	-0.543172000
С	-0.792152000	-1.525096000	0.182192000
С	-0.900946000	-1.365630000	1.584862000
С	-1.932232000	-2.028554000	2.268148000
С	-2.862141000	-2.840864000	1.614938000
С	-2.744585000	-2.979804000	0.230862000
С	-1.733810000	-2.334627000	-0.494785000
С	0.030074000	-0.506601000	2.413784000
С	-3.946829000	-3.557484000	2.382802000
С	-1.727806000	-2.509765000	-1.999814000
С	-2.609253000	3.085770000	1.534474000

С	-2.477207000	2.297580000	2.845666000
С	-3.397485000	0.707679000	-0.021739000
С	-4.879427000	1.103524000	0.046493000
С	-2.527038000	3.147049000	-1.407072000
С	-1.497519000	4.273958000	-1.574860000
Н	4.692451000	-1.391145000	2.178563000
Н	4.436950000	2.719469000	1.012230000
Н	3.003964000	-2.850137000	-0.060890000
Н	3.003842000	-2.900407000	1.710948000
Н	1.535931000	-2.475912000	0.816440000
Н	5.603121000	1.296796000	3.578940000
Н	6.574198000	0.157790000	2.644459000
Н	6.476181000	1.858849000	2.152420000
Н	1.250295000	2.776415000	-0.206033000
Н	2.851603000	3.506116000	-0.408709000
Н	2.232766000	2.389235000	-1.621657000
Н	-2.014093000	-1.895566000	3.345175000
Н	-3.467225000	-3.593270000	-0.303415000
Н	0.998106000	-0.992170000	2.563838000
Н	0.219662000	0.457675000	1.941815000
Н	-0.401905000	-0.324789000	3.402040000
Н	-3.606278000	-4.547942000	2.709562000
Н	-4.236308000	-3.001782000	3.279997000
Н	-4.839882000	-3.707971000	1.768516000
Н	-2.557441000	-3.144673000	-2.321759000
Н	-1.837500000	-1.549907000	-2.521824000
Н	-0.796156000	-2.959408000	-2.353335000
Н	-3.623613000	3.479534000	1.406186000
Н	-1.929354000	3.944407000	1.529354000
Н	-1.459977000	1.921427000	2.975296000
Н	-2.714255000	2.941738000	3.696885000
Н	-3.159004000	1.441853000	2.873670000
Н	-3.134476000	0.024155000	0.790787000
Н	-3.179891000	0.169391000	-0.949922000
Н	-5.165664000	1.773879000	-0.769354000
Н	-5.500937000	0.206748000	-0.028899000
Н	-5.124497000	1.595020000	0.992789000
Н	-3.543933000	3.546571000	-1.327397000
Н	-2.510681000	2.478151000	-2.275720000
Н	-1.704955000	4.840614000	-2.486812000
Н	-1.524254000	4.974167000	-0.734265000

Н	-0.484349000	3.869489000	-1.646772000
0	-0.743998000	1.617321000	0.093098000
Ρ	-2.204380000	2.092317000	0.053859000
Bi	0.547457000	-0.203042000	-1.142819000
Cl	1.808037000	-2.150369000	-2.494571000

[(Mesityl)₂Sb]⁺

Total energy including ZPVE: -939.035342 a. u.

Total electronic and thermal enthalpies: -939.012966 a. u.

С	1.644268000	-0.233894000	0.126115000
С	1.675668000	0.886995000	1.009571000
С	2.845398000	1.635311000	1.081880000
С	3.983222000	1.331265000	0.311974000
С	3.939129000	0.221164000	-0.533842000
С	2.795375000	-0.574440000	-0.637245000
С	0.512541000	1.289447000	1.892838000
С	5.215792000	2.187359000	0.421474000
С	2.805976000	-1.720418000	-1.622482000
С	-1.634913000	-0.199933000	-0.120437000
С	-1.633016000	0.974294000	-0.936476000
С	-2.804260000	1.719926000	-1.018434000
С	-3.974340000	1.368541000	-0.321983000
С	-3.961529000	0.212997000	0.463164000
С	-2.820481000	-0.583184000	0.572196000
С	-0.439987000	1.443714000	-1.743308000
С	-5.204706000	2.226252000	-0.436850000
С	-2.870895000	-1.784808000	1.488001000
Н	2.888448000	2.479056000	1.765897000
Н	4.811938000	-0.028937000	-1.130713000
Н	0.059140000	0.436444000	2.407744000
Н	0.846769000	1.990039000	2.661183000
Н	-0.278774000	1.780153000	1.319250000
Н	4.989879000	3.224854000	0.150350000
Н	5.585029000	2.202073000	1.453106000
Н	6.018721000	1.829209000	-0.226509000
Н	2.389588000	-1.411309000	-2.588072000

Н	3.823710000	-2.075399000	-1.800801000
Н	2.219627000	-2.582695000	-1.278132000
Н	-2.821341000	2.602008000	-1.653250000
Н	-4.858807000	-0.072125000	1.005289000
Н	0.326275000	1.893949000	-1.106575000
Н	0.037872000	0.634883000	-2.303202000
Н	-0.752110000	2.198700000	-2.468055000
Н	-5.015145000	3.225181000	-0.027076000
Н	-5.485174000	2.362169000	-1.487078000
Н	-6.054072000	1.793141000	0.095871000
Н	-3.901945000	-2.101082000	1.661712000
Н	-2.334442000	-2.650854000	1.079363000
Н	-2.427842000	-1.555640000	2.463661000
Sb	-0.009937000	-1.540732000	0.000570000

[(Mesityl)₂Sb(OPEt₃)]⁺

Total energy including ZPVE: -1593.234942 a. u.

Total electronic and thermal enthalpies: -1593.199933 a. u.

С	2.322716000	0.101790000	-0.360726000
С	3.060871000	-1.103327000	-0.392580000
С	4.328514000	-1.140737000	0.197346000
С	4.890682000	-0.015773000	0.808415000
С	4.163928000	1.176956000	0.782155000
С	2.893076000	1.265616000	0.198512000
С	2.529860000	-2.367970000	-1.036795000
С	6.242073000	-0.090697000	1.476312000
С	2.200403000	2.611970000	0.207690000
С	-0.589654000	-1.549299000	-0.322138000
С	-0.513966000	-1.760770000	1.076691000
С	-1.355490000	-2.718029000	1.657474000
С	-2.255376000	-3.478303000	0.904418000
С	-2.296636000	-3.270650000	-0.476581000
С	-1.479283000	-2.323423000	-1.104285000
С	0.442283000	-1.023169000	1.990088000
С	-3.130946000	-4.515972000	1.562330000
С	-1.592471000	-2.167948000	-2.609567000

С	-1.925601000	3.043257000	1.672765000
С	-1.493955000	2.340019000	2.968306000
С	-3.125088000	0.560084000	0.552702000
С	-4.539885000	1.000210000	0.960985000
С	-2.554061000	2.866353000	-1.223636000
С	-1.622192000	4.018114000	-1.630863000
Н	4.893951000	-2.069556000	0.170442000
Н	4.601810000	2.071969000	1.218445000
Н	2.050774000	-2.179217000	-2.006757000
Н	3.340420000	-3.076593000	-1.224241000
Н	1.789822000	-2.865091000	-0.401617000
Н	6.142963000	-0.430946000	2.514497000
Н	6.902168000	-0.797928000	0.965249000
Н	6.733794000	0.886069000	1.497980000
Н	1.438649000	2.665109000	0.990778000
Н	2.923093000	3.412845000	0.383107000
Н	1.694967000	2.825285000	-0.740112000
Н	-1.305888000	-2.873763000	2.732777000
Н	-2.984974000	-3.857042000	-1.080485000
Н	1.461779000	-1.406096000	1.879705000
Н	0.480720000	0.045907000	1.779300000
Н	0.148457000	-1.152667000	3.034813000
Н	-2.601541000	-5.473237000	1.643043000
Н	-3.414010000	-4.215423000	2.575462000
Н	-4.043228000	-4.694588000	0.986194000
Н	-2.291499000	-2.899913000	-3.021201000
Н	-1.958173000	-1.175090000	-2.897439000
Н	-0.630889000	-2.321905000	-3.112264000
Н	-2.920517000	3.491760000	1.769405000
Н	-1.231298000	3.849934000	1.416555000
Н	-0.494361000	1.909749000	2.870672000
Н	-1.472728000	3.064615000	3.785786000
Н	-2.186428000	1.540801000	3.247386000
Н	-2.661112000	-0.058738000	1.326600000
Н	-3.146244000	-0.053689000	-0.353469000
Н	-5.020365000	1.608429000	0.189753000
Н	-5.158030000	0.112631000	1.116319000
Н	-4.534507000	1.568436000	1.895268000
Н	-3.560922000	3.231951000	-0.995091000
Н	-2.657018000	2.136968000	-2.034893000
Н	-1.999144000	4.484964000	-2.543994000

Н	-1.571641000	4.789455000	-0.857644000
Н	-0.607559000	3.661522000	-1.827704000
0	-0.504051000	1.425541000	0.017833000
Р	-1.976073000	1.936944000	0.231435000
Sb	0.390655000	0.098721000	-1.326685000

[(Mesityl)₂Bi]⁺

Total energy including ZPVE: -913.413829 a. u.

Total electronic and thermal enthalpies: -913.391071 a. u.

С	1.709473000	0.003247000	0.150285000
С	1.741901000	1.102338000	1.049310000
С	2.899536000	1.875377000	1.104521000
С	4.020179000	1.606400000	0.299618000
С	3.970748000	0.511100000	-0.564177000
С	2.835556000	-0.302725000	-0.650990000
С	0.585811000	1.459498000	1.959781000
С	5.238157000	2.489164000	0.379398000
С	2.835183000	-1.436575000	-1.651364000
С	-1.697180000	0.053680000	-0.175652000
С	-1.630229000	1.264634000	-0.923654000
С	-2.764096000	2.073619000	-0.976205000
С	-3.957499000	1.738858000	-0.317202000
С	-4.013062000	0.531388000	0.385709000
С	-2.912138000	-0.323458000	0.462708000
С	-0.404527000	1.718983000	-1.687884000
С	-5.141518000	2.666859000	-0.363416000
С	-3.053514000	-1.596683000	1.270465000
Н	2.943092000	2.708306000	1.802041000
Н	4.831598000	0.284360000	-1.187884000
Н	0.220257000	0.595084000	2.524990000
Н	0.890571000	2.212858000	2.689665000
Н	-0.260999000	1.864607000	1.398436000
Н	5.015527000	3.488149000	-0.013763000
Н	5.560424000	2.619788000	1.417821000
Н	6.073529000	2.079315000	-0.193207000
Н	2.370896000	-1.131953000	-2.596175000

Н	3.852463000	-1.765059000	-1.877756000
Н	2.291722000	-2.320340000	-1.288105000
Н	-2.727051000	2.991582000	-1.557236000
Н	-4.936278000	0.250386000	0.885301000
Н	0.351273000	2.143961000	-1.021672000
Н	0.071259000	0.905333000	-2.241566000
Н	-0.676920000	2.490109000	-2.412098000
Н	-5.012138000	3.480861000	0.360807000
Н	-5.247327000	3.128160000	-1.349797000
Н	-6.071121000	2.148120000	-0.116147000
Н	-4.106276000	-1.824235000	1.452699000
Н	-2.626176000	-2.468850000	0.760682000
Н	-2.569312000	-1.508075000	2.248982000
Bi	-0.021876000	-1.385382000	0.021765000

[(Mesityl)₂Bi(OPEt₃)]⁺

Total energy including ZPVE: -1567.608799 a. u.

Total electronic and thermal enthalpies: -1567.573458 a. u.

С	2.370971000	0.005525000	-0.196603000
С	3.051331000	-1.228886000	-0.107003000
С	4.292120000	-1.272499000	0.538706000
С	4.879177000	-0.128553000	1.089690000
С	4.206837000	1.087487000	0.949421000
С	2.964592000	1.181704000	0.306137000
С	2.491163000	-2.515438000	-0.678525000
С	6.199265000	-0.210939000	1.817153000
С	2.320854000	2.547434000	0.191382000
С	-0.722098000	-1.593705000	-0.205686000
С	-0.674699000	-1.788598000	1.193892000
С	-1.569549000	-2.698242000	1.774439000
С	-2.495006000	-3.422584000	1.017224000
С	-2.508051000	-3.229190000	-0.366948000
С	-1.636287000	-2.329710000	-0.992253000
С	0.306046000	-1.083694000	2.106542000
С	-3.429209000	-4.410072000	1.672654000
С	-1.716136000	-2.179685000	-2.500018000

С	-1.936106000	2.996444000	1.976018000
С	-1.425057000	2.212972000	3.194234000
С	-3.177131000	0.645285000	0.639679000
С	-4.612328000	1.084725000	0.968611000
С	-2.543971000	3.072763000	-0.923846000
С	-1.546349000	4.184561000	-1.282990000
Н	4.817458000	-2.222748000	0.605678000
Н	4.663913000	1.993440000	1.341532000
Н	2.134992000	-2.396243000	-1.709461000
Н	3.255767000	-3.295976000	-0.700164000
Н	1.649532000	-2.888560000	-0.086586000
Н	6.048187000	-0.501666000	2.864097000
Н	6.858406000	-0.958854000	1.365975000
Н	6.718965000	0.751444000	1.816480000
Н	1.502495000	2.667209000	0.906502000
Н	3.053842000	3.336790000	0.376257000
Н	1.899572000	2.721940000	-0.805641000
Н	-1.541704000	-2.843388000	2.852193000
Н	-3.216418000	-3.788038000	-0.974235000
Н	1.304890000	-1.523928000	2.023032000
Н	0.405414000	-0.024270000	1.869144000
Н	-0.009867000	-1.170107000	3.149411000
Н	-2.963009000	-5.400944000	1.736492000
Н	-3.683497000	-4.104421000	2.691808000
Н	-4.356694000	-4.522481000	1.103687000
Н	-2.442935000	-2.877583000	-2.922745000
Н	-2.029041000	-1.171850000	-2.800651000
Н	-0.754583000	-2.386479000	-2.984456000
Н	-2.947218000	3.384298000	2.141838000
Н	-1.291625000	3.857095000	1.769367000
Н	-0.402027000	1.864321000	3.036457000
Н	-1.431765000	2.861185000	4.073998000
Н	-2.052715000	1.344436000	3.414017000
Н	-2.775645000	-0.016781000	1.412613000
Н	-3.145185000	0.072086000	-0.292404000
Н	-5.039166000	1.714149000	0.183007000
Н	-5.244595000	0.198202000	1.062588000
Н	-4.665772000	1.630347000	1.914861000
Н	-3.517585000	3.488032000	-0.641849000
Н	-2.716071000	2.408201000	-1.778704000
Н	-1.917133000	4.745459000	-2.144400000

Н	-1.413004000	4.890020000	-0.458136000
Н	-0.567457000	3.772129000	-1.541857000
0	-0.533404000	1.486284000	0.189128000
Ρ	-1.984357000	2.010615000	0.447011000
Bi	0.377128000	0.081704000	-1.267222000

3-Sb

Total energy including ZPVE: -1900.655515 a. u.

Total electronic and thermal enthalpies: -1900.624148 a. u.

С	-0.818710000	1.440245000	0.275431000
С	-0.894412000	1.647716000	-1.122256000
С	-1.723886000	2.668144000	-1.605862000
С	-2.473798000	3.487289000	-0.758662000
С	-2.381261000	3.268060000	0.618524000
С	-1.568661000	2.262074000	1.150965000
С	-0.141989000	0.818539000	-2.140224000
С	-3.331418000	4.599579000	-1.310964000
С	-1.509209000	2.118141000	2.660330000
С	2.273271000	0.088251000	0.310386000
С	2.850153000	1.359987000	0.076329000
С	4.135267000	1.428802000	-0.472854000
С	4.872081000	0.283452000	-0.789448000
С	4.305221000	-0.959767000	-0.503476000
С	3.025407000	-1.082775000	0.052790000
С	2.152321000	2.667024000	0.394250000
С	6.238561000	0.391240000	-1.421009000
С	2.518788000	-2.479398000	0.349269000
С	-2.811010000	-1.942774000	-0.738383000
Н	-1.782987000	2.826240000	-2.680506000
Н	-2.954303000	3.897328000	1.295629000
Н	-0.676474000	-0.111075000	-2.351527000
Н	-0.039277000	1.369474000	-3.078874000
Н	0.856839000	0.543487000	-1.796923000
Н	-2.764449000	5.537376000	-1.362963000
Н	-3.679572000	4.372404000	-2.322714000
Н	-4.204867000	4.782767000	-0.678097000

Н	-0.512557000	2.350700000	3.055830000
Н	-2.208984000	2.805810000	3.141609000
Н	-1.767930000	1.106736000	2.993206000
Н	4.577455000	2.406916000	-0.649184000
Н	4.877131000	-1.862636000	-0.705780000
Н	1.416950000	2.928018000	-0.372294000
Н	1.619200000	2.641950000	1.350087000
Н	2.879376000	3.481191000	0.452262000
Н	6.155939000	0.465069000	-2.512452000
Н	6.770224000	1.282902000	-1.075199000
Н	6.853769000	-0.485430000	-1.198668000
Н	3.354716000	-3.177693000	0.439867000
Н	1.955005000	-2.528751000	1.288252000
Н	1.857983000	-2.845855000	-0.441359000
0	-0.267408000	-1.512904000	-0.289945000
0	-1.490131000	-2.980445000	1.340494000
0	-0.892765000	-3.799421000	-0.982889000
S	-1.243914000	-2.707446000	-0.078395000
F	-3.105168000	-0.851839000	-0.023540000
F	-3.808540000	-2.822000000	-0.639810000
F	-2.645934000	-1.599339000	-2.019018000
Sb	0.318791000	-0.138235000	1.213987000

3-Bi

Total energy including ZPVE: -1875.030903 a. u.

Total electronic and thermal enthalpies: -1874.999161 a. u.

С	0.915150000	1.481388000	-0.175011000
С	0.999852000	1.683038000	1.220435000
С	1.879933000	2.660890000	1.704410000
С	2.672701000	3.437835000	0.856037000
С	2.574361000	3.217929000	-0.520880000
С	1.710911000	2.253018000	-1.051446000
С	0.206803000	0.883340000	2.230413000
С	3.585214000	4.506504000	1.407430000
С	1.661245000	2.084169000	-2.558630000
С	-2.345240000	0.143954000	-0.137673000

С	-2.889658000	1.419079000	0.143380000
С	-4.151506000	1.497792000	0.744264000
С	-4.893898000	0.357434000	1.067290000
С	-4.356840000	-0.888875000	0.740488000
С	-3.099801000	-1.020177000	0.133994000
С	-2.177704000	2.715882000	-0.182597000
С	-6.233243000	0.474338000	1.753556000
С	-2.616880000	-2.417728000	-0.196753000
С	2.820147000	-1.939449000	1.019912000
Н	1.946712000	2.817132000	2.779024000
Н	3.183849000	3.811824000	-1.198472000
Н	0.671052000	-0.091162000	2.401979000
Н	0.162531000	1.409330000	3.187808000
Н	-0.816546000	0.696494000	1.898262000
Н	3.066852000	5.472069000	1.459472000
Н	3.921998000	4.262645000	2.419250000
Н	4.466986000	4.645069000	0.774653000
Н	0.668634000	2.307238000	-2.968940000
Н	2.363508000	2.762548000	-3.049501000
Н	1.929727000	1.067203000	-2.869183000
Н	-4.570384000	2.478760000	0.958115000
Н	-4.932925000	-1.786826000	0.953163000
Н	-1.313384000	2.878459000	0.466752000
Н	-1.813852000	2.743004000	-1.215905000
Н	-2.853600000	3.566058000	-0.059692000
Н	-6.107583000	0.534264000	2.841770000
Н	-6.766908000	1.376470000	1.439161000
Н	-6.867944000	-0.391924000	1.545479000
Н	-3.451118000	-3.123833000	-0.195164000
Н	-2.152947000	-2.472546000	-1.189211000
Н	-1.873840000	-2.769946000	0.523995000
0	0.293206000	-1.598152000	0.421486000
0	1.714623000	-2.803119000	-1.247757000
0	1.021826000	-3.914265000	0.919530000
S	1.346913000	-2.700075000	0.171260000
F	3.119260000	-0.773310000	0.438301000
F	3.865799000	-2.763634000	0.923413000
F	2.543982000	-1.726633000	2.311619000
Bi	-0.337100000	-0.125263000	-1.164346000

4-Sb

Total energy including ZPVE: -2554.819832 a. u.

Total electronic and thermal enthalpies: -2554.775615 a. u.

С	1.149056000	1.337967000	0.613809000
С	1.819320000	1.005597000	1.814229000
С	2.540216000	2.001345000	2.489168000
С	2.644441000	3.306505000	2.008168000
С	2.014862000	3.605775000	0.797829000
С	1.277624000	2.649303000	0.089879000
С	1.865684000	-0.382057000	2.417759000
С	3.399797000	4.364714000	2.775820000
С	0.655091000	3.081625000	-1.223525000
С	-1.063768000	-1.332848000	0.778430000
С	-1.681100000	-0.861066000	1.963560000
С	-2.539451000	-1.714783000	2.670562000
С	-2.818191000	-3.015709000	2.246815000
С	-2.209773000	-3.461842000	1.072295000
С	-1.340082000	-2.649735000	0.331912000
С	-1.469622000	0.523437000	2.541579000
С	-3.732298000	-3.915953000	3.042324000
С	-0.740813000	-3.239349000	-0.93000000
С	4.363944000	-0.930349000	-0.574842000
С	-4.106244000	2.702584000	-0.762973000
С	-4.220618000	3.011329000	0.737586000
С	-4.132369000	-0.229128000	-0.346025000
С	-5.591835000	-0.358810000	-0.806172000
С	-3.157193000	0.877827000	-2.896994000
С	-2.321237000	1.919166000	-3.655652000
Н	3.044513000	1.739073000	3.417287000
Н	2.104616000	4.609621000	0.387906000
Н	2.756049000	-0.910751000	2.067271000
Н	1.918574000	-0.322034000	3.509317000
Н	1.010227000	-0.998348000	2.147850000
Н	2.730600000	4.907344000	3.455385000
Н	4.196249000	3.926572000	3.384771000
Н	3.847713000	5.103409000	2.104010000
Н	-0.432633000	3.156929000	-1.145793000
Н	1.045151000	4.054864000	-1.532574000
Н	0.872999000	2.373673000	-2.031808000
----	--------------	--------------	--------------
Н	-3.013070000	-1.343678000	3.577331000
Н	-2.421546000	-4.467384000	0.715192000
Н	-0.567431000	0.556340000	3.160475000
Н	-1.365295000	1.285688000	1.771970000
Н	-2.313310000	0.798192000	3.181676000
Н	-3.164800000	-4.487576000	3.787154000
Н	-4.490127000	-3.340742000	3.582858000
Н	-4.242484000	-4.638741000	2.398436000
Н	-1.233632000	-4.180189000	-1.188141000
Н	-0.844164000	-2.569557000	-1.791408000
Н	0.327890000	-3.436036000	-0.808833000
Н	-5.091448000	2.631545000	-1.236148000
Н	-3.555633000	3.495135000	-1.280376000
Н	-3.232969000	3.054368000	1.204273000
Н	-4.710620000	3.977527000	0.883316000
Н	-4.812421000	2.254140000	1.260946000
Н	-4.067875000	-0.093245000	0.737541000
Н	-3.564609000	-1.139482000	-0.563684000
Н	-5.668541000	-0.529890000	-1.883841000
Н	-6.056235000	-1.211298000	-0.303145000
Н	-6.179050000	0.530528000	-0.559125000
Н	-4.190313000	0.856248000	-3.260205000
Н	-2.744359000	-0.127478000	-3.041102000
Н	-2.299173000	1.671782000	-4.720185000
Н	-2.739053000	2.925242000	-3.555586000
Η	-1.291257000	1.939322000	-3.290978000
0	1.837834000	-1.565380000	-0.283466000
0	2.670215000	-1.122314000	-2.602983000
0	3.311184000	-3.232389000	-1.384078000
0	-1.777596000	1.291007000	-0.499190000
Р	-3.201829000	1.153655000	-1.091869000
S	2.912472000	-1.819121000	-1.327355000
F	4.086715000	0.371079000	-0.426054000
F	5.436012000	-1.056878000	-1.367617000
F	4.656142000	-1.447997000	0.628767000
Sb	0.044898000	-0.074245000	-0.616817000

4-Bi

Total energy including ZPVE: -2529.198951 a. u.

Total electronic and thermal enthalpies: -2529.154373 a. u.

С	1.254243000	1.371003000	0.701514000
С	1.920721000	1.021743000	1.896044000
С	2.666414000	2.002181000	2.567648000
С	2.789190000	3.306364000	2.086271000
С	2.150773000	3.622294000	0.883919000
С	1.391918000	2.678889000	0.180521000
С	1.925194000	-0.371279000	2.487558000
С	3.571120000	4.349624000	2.848372000
С	0.748511000	3.112789000	-1.122143000
С	-1.144225000	-1.275088000	0.950483000
С	-1.758644000	-0.683828000	2.079110000
С	-2.693877000	-1.429855000	2.812000000
С	-3.041541000	-2.738191000	2.466200000
С	-2.423829000	-3.304628000	1.349013000
С	-1.485353000	-2.598039000	0.585059000
С	-1.462323000	0.721466000	2.557837000
С	-4.036229000	-3.522468000	3.287869000
С	-0.892909000	-3.288177000	-0.628170000
С	4.402804000	-0.979062000	-0.555228000
С	-4.314540000	2.531194000	-0.593152000
С	-4.469505000	2.572213000	0.934473000
С	-4.043736000	-0.412695000	-0.643603000
С	-5.513591000	-0.578069000	-1.056902000
С	-3.243396000	1.172778000	-2.991420000
С	-2.472659000	2.366258000	-3.574791000
Н	3.172662000	1.730449000	3.492053000
Н	2.249359000	4.627636000	0.479285000
Н	2.754647000	-0.952563000	2.076140000
Н	2.049325000	-0.327875000	3.573898000
Н	1.013274000	-0.927646000	2.269039000
Н	2.917008000	4.911385000	3.527090000
Н	4.358466000	3.895196000	3.457231000
Н	4.035268000	5.074612000	2.172538000
Н	-0.342591000	3.117080000	-1.048996000
Н	1.076006000	4.117317000	-1.402519000

Н	1.016397000	2.445209000	-1.950970000
Н	-3.169129000	-0.968995000	3.675754000
Н	-2.686518000	-4.318910000	1.055661000
Н	-0.513231000	0.762600000	3.100745000
Н	-1.392815000	1.429355000	1.732030000
Н	-2.246233000	1.065987000	3.238396000
Н	-3.529913000	-4.083296000	4.083323000
Н	-4.766158000	-2.864227000	3.768791000
Н	-4.578801000	-4.248196000	2.674386000
Н	-1.313461000	-4.289498000	-0.750964000
Н	-1.102283000	-2.737041000	-1.554332000
Н	0.193428000	-3.382344000	-0.548260000
Н	-5.285726000	2.441693000	-1.092145000
Н	-3.846867000	3.450535000	-0.961067000
Н	-3.496891000	2.652957000	1.425892000
Н	-5.072119000	3.436661000	1.225486000
Н	-4.967531000	1.674628000	1.313891000
Н	-3.927628000	-0.473530000	0.442642000
Н	-3.427094000	-1.218023000	-1.055763000
Н	-5.644594000	-0.533570000	-2.142069000
Н	-5.878527000	-1.551961000	-0.719379000
Н	-6.150616000	0.187709000	-0.604589000
Н	-4.279829000	1.155957000	-3.345052000
Н	-2.782167000	0.227227000	-3.300060000
Н	-2.451879000	2.299618000	-4.665784000
Н	-2.939553000	3.319066000	-3.307526000
Н	-1.440888000	2.380042000	-3.214082000
0	1.906130000	-1.711940000	-0.226573000
0	2.675687000	-1.217890000	-2.549378000
0	3.430071000	-3.312533000	-1.367752000
0	-1.837287000	1.327408000	-0.591601000
Ρ	-3.261663000	1.154568000	-1.164242000
S	2.972660000	-1.918628000	-1.284911000
F	4.091429000	0.317558000	-0.428774000
F	5.476339000	-1.090310000	-1.348260000
F	4.711013000	-1.466585000	0.656871000
Bi	0.083211000	-0.103091000	-0.580548000

OPEt₃

Total energy including ZPVE: -654.134097 a. u.

Total electronic and thermal enthalpies: -654.121674 a. u.

С	0.483605000	-1.200410000	-0.846977000
C	1.774730000	-1.912798000	-0.421679000
С	1.132918000	1.232241000	0.667230000
С	1.667924000	1.913843000	-0.600224000
С	-1.565753000	0.820047000	-0.371927000
С	-2.772904000	-0.091638000	-0.632168000
Н	0.628146000	-0.643606000	-1.779796000
Н	-0.311727000	-1.930567000	-1.032620000
Н	1.635749000	-2.442977000	0.524948000
Н	2.077394000	-2.643203000	-1.177618000
Н	2.600732000	-1.205771000	-0.293899000
Н	1.945879000	0.741219000	1.213667000
Н	0.701088000	1.970097000	1.353235000
Н	0.875186000	2.425350000	-1.154142000
Н	2.420473000	2.662906000	-0.336643000
Н	2.141737000	1.195487000	-1.275968000
Н	-1.211259000	1.275124000	-1.303533000
Н	-1.843111000	1.640603000	0.300233000
Н	-3.610112000	0.486914000	-1.033504000
Н	-2.535392000	-0.876990000	-1.356525000
Н	-3.103937000	-0.573885000	0.291838000
0	-0.538224000	-0.737380000	1.727796000
Ρ	-0.161879000	-0.049958000	0.431495000

Cartesian coordinates of all the optimized geometries at B3LYP-D3 level of theory with the Def2-TZVP basis set for Bi and 6-31G(d,p) basis set for all other atoms. (Gas phase calculation)

1-Sb (g)

Total energy including ZPVE: -1399.466885 a. u.

Total electronic and thermal enthalpies: -1399.442470 a. u.

С	1.610631000	-0.030268000	0.008737000
С	1.540243000	0.766301000	1.176059000
С	2.620244000	1.602935000	1.486623000
С	3.760112000	1.682795000	0.684554000
С	3.812760000	0.884196000	-0.459182000
С	2.761440000	0.030124000	-0.810858000
С	0.350744000	0.779155000	2.111598000
С	4.889900000	2.622099000	1.031537000
С	2.911636000	-0.793233000	-2.076586000
С	-1.668134000	-0.035255000	-0.302689000
С	-1.613592000	1.192006000	-1.004365000
С	-2.667892000	2.104526000	-0.879142000
С	-3.784422000	1.836749000	-0.086473000
С	-3.843684000	0.598899000	0.556628000
С	-2.816966000	-0.348503000	0.457343000
С	-0.452911000	1.581536000	-1.899464000
С	-4.891032000	2.851052000	0.073367000
С	-3.003298000	-1.664086000	1.179616000
Н	2.567065000	2.209456000	2.388333000
Н	4.696353000	0.922425000	-1.092745000
Н	0.024502000	-0.230199000	2.371051000
Н	0.601370000	1.299001000	3.040292000
Н	-0.503772000	1.291831000	1.660300000
Н	4.718867000	3.616677000	0.600633000
Н	4.986343000	2.749606000	2.114077000
Н	5.846819000	2.259422000	0.644180000
Н	2.163594000	-0.527787000	-2.833589000
Н	3.894322000	-0.631430000	-2.527646000
Н	2.814320000	-1.867539000	-1.885490000
Н	-2.615474000	3.045212000	-1.423735000
Н	-4.722629000	0.354099000	1.149472000

Н	0.400553000	1.950384000	-1.322675000
Н	-0.090380000	0.743458000	-2.509347000
Н	-0.753683000	2.366625000	-2.598672000
Н	-4.716916000	3.485069000	0.951808000
Н	-4.959654000	3.511416000	-0.796458000
Н	-5.862508000	2.366255000	0.210903000
Н	-4.047603000	-1.792586000	1.477201000
Н	-2.727092000	-2.521055000	0.558277000
Н	-2.386169000	-1.720984000	2.080655000
Sb	0.026438000	-1.375632000	-0.641147000
Cl	0.131103000	-2.746369000	1.350462000

2-Sb (g)

Total energy including ZPVE: -2053.614686 a. u.

Total electronic and thermal enthalpies: -2053.577602 a. u.

С	2.431759000	0.209354000	-0.050708000
С	3.146396000	-0.533447000	0.917610000
С	4.218136000	0.075005000	1.584729000
С	4.614703000	1.386116000	1.320093000
С	3.912344000	2.096276000	0.345251000
С	2.834135000	1.533764000	-0.348138000
С	2.837637000	-1.969899000	1.280871000
С	5.749928000	2.025652000	2.083347000
С	2.146550000	2.385291000	-1.398419000
С	-0.546456000	-1.495448000	0.257147000
С	-0.737085000	-0.986809000	1.568466000
С	-1.776884000	-1.500089000	2.356934000
С	-2.641277000	-2.499607000	1.903693000
С	-2.445927000	-2.984735000	0.611618000
С	-1.421238000	-2.503071000	-0.216962000
С	0.117584000	0.097480000	2.191118000
С	-3.732670000	-3.047020000	2.791506000
С	-1.317164000	-3.107243000	-1.601807000
С	-2.914124000	3.262051000	-1.223443000
С	-2.106225000	4.535317000	-0.935429000
С	-2.624699000	2.209156000	1.517745000

С	-4.010250000	2.770358000	1.866703000
С	-3.453573000	0.436167000	-0.639982000
С	-3.377487000	-0.033469000	-2.098731000
Н	4.759450000	-0.499587000	2.334120000
Н	4.212118000	3.116412000	0.113568000
Н	3.367273000	-2.656356000	0.614262000
Н	3.153077000	-2.180566000	2.307649000
Н	1.777241000	-2.211304000	1.193809000
Н	5.383631000	2.522489000	2.990872000
Н	6.491028000	1.283562000	2.396136000
Н	6.260602000	2.783990000	1.481627000
Н	1.082696000	2.515119000	-1.180736000
Н	2.608636000	3.375445000	-1.451561000
Н	2.226226000	1.938333000	-2.396770000
Н	-1.913901000	-1.102764000	3.361285000
Н	-3.112622000	-3.754296000	0.227644000
Н	1.100649000	-0.282046000	2.477728000
Н	0.278394000	0.933745000	1.510305000
Н	-0.359039000	0.481329000	3.098446000
Н	-3.353847000	-3.861688000	3.421174000
Н	-4.128472000	-2.277677000	3.462428000
Н	-4.564240000	-3.449362000	2.204801000
Н	-2.243071000	-3.625292000	-1.867725000
Н	-1.127131000	-2.356434000	-2.375721000
Н	-0.492239000	-3.822333000	-1.660251000
Н	-3.982695000	3.410191000	-1.028883000
Н	-2.814690000	2.977235000	-2.276591000
Н	-1.040040000	4.361921000	-1.105734000
Н	-2.428758000	5.353239000	-1.586305000
Н	-2.232484000	4.865778000	0.101052000
Н	-1.831417000	2.903166000	1.815238000
Н	-2.437856000	1.272207000	2.051865000
Н	-4.812860000	2.084935000	1.576706000
Н	-4.092426000	2.929587000	2.946142000
Н	-4.195388000	3.731949000	1.378182000
Н	-4.472717000	0.747622000	-0.380869000
Н	-3.178914000	-0.377899000	0.037914000
Н	-3.975958000	-0.938655000	-2.235278000
Н	-3.754614000	0.725174000	-2.792036000
Н	-2.348550000	-0.267891000	-2.381978000
0	-0.855497000	1.535054000	-0.534624000

Р	-2.321932000	1.822523000	-0.251574000
Sb	0.783697000	-0.583427000	-1.240393000
Cl	2.027801000	-2.628217000	-1.857125000

Total energy including ZPVE: -1373.841012 a. u.

Total electronic and thermal enthalpies: -1373.816169 a. u.

С	1.655074000	0.212239000	0.100344000
С	1.605381000	0.985842000	1.280975000
С	2.658875000	1.870268000	1.548801000
С	3.749372000	2.016719000	0.688853000
С	3.778875000	1.240221000	-0.471041000
С	2.751802000	0.339945000	-0.779314000
С	0.469071000	0.905981000	2.275570000
С	4.849090000	3.005764000	0.992588000
С	2.862499000	-0.457291000	-2.065309000
С	-1.725931000	0.172720000	-0.201673000
С	-1.715986000	1.291402000	-1.063460000
С	-2.764991000	2.217262000	-1.001089000
С	-3.827143000	2.065249000	-0.108896000
С	-3.831285000	0.938156000	0.715985000
С	-2.806445000	-0.016810000	0.685322000
С	-0.602933000	1.543135000	-2.062278000
С	-4.930011000	3.093076000	-0.025028000
С	-2.904490000	-1.199823000	1.620705000
Н	2.624225000	2.461571000	2.461543000
Н	4.622597000	1.333456000	-1.151819000
Н	0.326934000	-0.116142000	2.636823000
Н	0.666043000	1.544747000	3.140673000
Н	-0.475204000	1.227957000	1.827024000
Н	4.595443000	4.003505000	0.612740000
Н	5.014397000	3.101681000	2.070147000
Н	5.794665000	2.710457000	0.527895000
Н	2.056293000	-0.216897000	-2.770231000
Н	3.803937000	-0.241894000	-2.577670000
Н	2.834356000	-1.538425000	-1.885790000

-2.750973000	3.075077000	-1.670621000
-4.661160000	0.790770000	1.404260000
0.325848000	1.845089000	-1.567308000
-0.378389000	0.655671000	-2.671301000
-0.879723000	2.333062000	-2.765517000
-4.712682000	3.838852000	0.749906000
-5.050981000	3.630976000	-0.970217000
-5.889246000	2.631605000	0.229476000
-3.883611000	-1.230182000	2.106403000
-2.760373000	-2.151254000	1.099923000
-2.140091000	-1.156918000	2.401819000
0.031923000	-1.265454000	-0.517905000
0.155479000	-2.637908000	1.585975000
	-2.750973000 -4.661160000 0.325848000 -0.378389000 -0.879723000 -4.712682000 -5.050981000 -5.889246000 -3.883611000 -2.760373000 -2.140091000 0.031923000 0.155479000	-2.7509730003.075077000-4.6611600000.7907700000.3258480001.845089000-0.3783890000.655671000-0.8797230002.333062000-4.7126820003.838852000-5.0509810003.630976000-5.8892460002.631605000-3.883611000-1.230182000-2.760373000-2.151254000-2.140091000-1.2654540000.031923000-2.637908000

Total energy including ZPVE: -2027.991576 a. u.

Total electronic and thermal enthalpies: -2027.953838 a. u.

С	-2.440724000	-0.224706000	0.163994000
С	-3.160440000	0.754934000	0.882675000
С	-4.268945000	0.356179000	1.642376000
С	-4.690781000	-0.973055000	1.705678000
С	-3.976002000	-1.922215000	0.973370000
С	-2.861323000	-1.572109000	0.200795000
С	-2.808793000	2.226057000	0.870227000
С	-5.867308000	-1.374406000	2.563444000
С	-2.149072000	-2.671198000	-0.565103000
С	0.674826000	1.509518000	0.217297000
С	0.793436000	1.268427000	1.607032000
С	1.799857000	1.926045000	2.331319000
С	2.693470000	2.815923000	1.731134000
С	2.567449000	3.035734000	0.358988000
С	1.581583000	2.397385000	-0.406378000
С	-0.103374000	0.322047000	2.375260000
С	3.745591000	3.531558000	2.544107000
С	1.563183000	2.671929000	-1.895648000
С	2.993398000	-2.844282000	1.523844000

).159352000
).124975000
.395525000
.496481000
2.199514000
L.001180000
0.039516000
1.732643000
0.889309000
3.593286000
2.610995000
2.181468000
0.268517000
0.390518000
1.647840000
.399046000
.135188000
2.490997000
L.872749000
.378486000
.929654000
.407250000
943706000
2.188223000
2.483917000
2.203934000
.413948000
1.557281000
2.918849000
3.679938000
2.780416000
.636364000
L.095528000
0.927484000
.244718000
).828385000
).828385000 L.294238000
).828385000 L.294238000 2.303691000
0.828385000 1.294238000 2.303691000 2.387071000

Н	0.968119000	-4.043296000	-1.558540000
0	0.943822000	-1.700239000	0.005818000
Ρ	2.439301000	-1.987641000	-0.000150000
Bi	-0.649022000	0.234737000	-1.175375000
Cl	-1.864892000	2.146790000	-2.401551000

[(Mesityl)₂Sb]⁺ (g)

Total energy including ZPVE: -938.982771 a. u.

Total electronic and thermal enthalpies: -938.959663 a. u.

С	1.651347000	-0.203672000	0.105154000
С	1.683098000	0.955288000	0.944383000
С	2.867360000	1.677252000	1.022207000
С	4.023177000	1.317053000	0.302371000
С	3.978312000	0.174238000	-0.501423000
С	2.822767000	-0.599205000	-0.608778000
С	0.510043000	1.420323000	1.783004000
С	5.276105000	2.136706000	0.430688000
С	2.841842000	-1.784696000	-1.546956000
С	-1.651415000	-0.204076000	-0.105198000
С	-1.683814000	0.954079000	-0.945481000
С	-2.868188000	1.675809000	-1.023246000
С	-4.023531000	1.316138000	-0.302304000
С	-3.978041000	0.174067000	0.502432000
С	-2.822268000	-0.599120000	0.609792000
С	-0.511284000	1.418169000	-1.785366000
С	-5.276287000	2.136149000	-0.430091000
С	-2.840527000	-1.783746000	1.549052000
Н	2.911770000	2.546083000	1.673923000
Н	4.863375000	-0.116184000	-1.060637000
Н	0.031185000	0.601026000	2.328097000
Н	0.841779000	2.148578000	2.525995000
Н	-0.263368000	1.897492000	1.175069000
Н	5.062149000	3.203146000	0.303910000
Н	5.707266000	2.015780000	1.432054000
Н	6.033212000	1.844023000	-0.299761000
Н	2.459360000	-1.511686000	-2.537414000

Н	3.858457000	-2.160488000	-1.683759000
Н	2.237049000	-2.626600000	-1.184409000
Н	-2.913164000	2.543971000	-1.675820000
Н	-4.862733000	-0.116032000	1.062396000
Н	0.263247000	1.894640000	-1.178330000
Н	-0.033815000	0.598400000	-2.331026000
Н	-0.843186000	2.146674000	-2.528034000
Н	-5.063048000	3.201670000	-0.294197000
Н	-5.702960000	2.022977000	-1.434234000
Н	-6.036408000	1.837974000	0.294963000
Н	-3.856898000	-2.159993000	1.686429000
Н	-2.235310000	-2.625647000	1.187157000
Н	-2.457957000	-1.509620000	2.539169000
Sb	0.000153000	-1.505112000	-0.000059000

[(Mesityl)₂Sb(OPEt₃)]⁺ (g)

Total energy including ZPVE: -1593.184245 a. u.

Total electronic and thermal enthalpies: -1593.148608 a. u.

С	-2.333626000	-0.056607000	-0.360798000
С	-3.038886000	1.168251000	-0.326302000
С	-4.301521000	1.202190000	0.271200000
С	-4.890631000	0.059549000	0.822965000
С	-4.196526000	-1.148558000	0.725142000
С	-2.932345000	-1.236384000	0.129960000
С	-2.483988000	2.451114000	-0.911961000
С	-6.237827000	0.133433000	1.497010000
С	-2.276402000	-2.598532000	0.047622000
С	0.622174000	1.535409000	-0.324804000
С	0.561873000	1.750597000	1.074837000
С	1.432429000	2.686986000	1.646443000
С	2.347019000	3.422865000	0.886427000
С	2.373784000	3.210085000	-0.494725000
С	1.525122000	2.286999000	-1.115671000
С	-0.406159000	1.039260000	1.997479000
С	3.248946000	4.444421000	1.532084000
С	1.605465000	2.147151000	-2.624907000

С	1.879986000	-3.157076000	1.604185000
С	1.395695000	-2.552297000	2.931766000
С	3.079536000	-0.593888000	0.692227000
С	4.492064000	-1.057483000	1.084171000
С	2.563531000	-2.760210000	-1.260532000
С	1.655610000	-3.891345000	-1.769883000
Н	-4.846621000	2.142920000	0.294552000
Н	-4.658165000	-2.055306000	1.108978000
Н	-1.995789000	2.296335000	-1.883694000
Н	-3.284226000	3.175253000	-1.082706000
Н	-1.746237000	2.917029000	-0.251008000
Н	-6.129434000	0.442706000	2.543736000
Н	-6.889795000	0.863750000	1.009039000
Н	-6.744435000	-0.835434000	1.492020000
Н	-1.540932000	-2.741197000	0.845220000
Н	-3.024773000	-3.390155000	0.132574000
Н	-1.750306000	-2.749039000	-0.902230000
Н	1.390605000	2.851133000	2.720821000
Н	3.068891000	3.781986000	-1.104603000
Н	-1.419958000	1.435484000	1.885040000
Н	-0.465644000	-0.031995000	1.799956000
Н	-0.111821000	1.178204000	3.040964000
Н	2.762620000	5.427120000	1.551779000
Н	3.484228000	4.177863000	2.566360000
Н	4.187449000	4.557703000	0.982052000
Н	2.355361000	2.825797000	-3.037821000
Н	1.878725000	1.133859000	-2.942652000
Н	0.652853000	2.392270000	-3.108690000
Н	2.880008000	-3.594861000	1.701741000
Н	1.208776000	-3.955808000	1.271525000
Н	0.400008000	-2.114237000	2.826200000
Н	1.343679000	-3.332826000	3.694475000
Н	2.075302000	-1.776263000	3.296028000
Н	2.600531000	-0.038142000	1.503993000
Н	3.105395000	0.096517000	-0.157588000
Н	4.993458000	-1.593123000	0.272795000
Н	5.103123000	-0.184153000	1.324880000
Н	4.480647000	-1.703121000	1.967088000
Н	3.573984000	-3.125986000	-1.045448000
Н	2.667144000	-1.971637000	-2.016038000
Н	2.052787000	-4.289048000	-2.706740000

00
00
00
)0
000
)

[(Mesityl)₂Bi]⁺(g)

Total energy including ZPVE: -913.357898 a. u.

Total electronic and thermal enthalpies: -913.334537 a. u.

С	1.713647000	0.041227000	0.119849000
С	1.725072000	1.188828000	0.966478000
С	2.894732000	1.937356000	1.040479000
С	4.050993000	1.606984000	0.308186000
С	4.020611000	0.472595000	-0.507601000
С	2.877827000	-0.322575000	-0.612513000
С	0.541954000	1.619914000	1.808623000
С	5.288737000	2.451425000	0.432475000
С	2.907263000	-1.496273000	-1.565943000
С	-1.713576000	0.041487000	-0.119832000
С	-1.724633000	1.189496000	-0.965892000
С	-2.894183000	1.938261000	-1.039808000
С	-4.050665000	1.607678000	-0.308037000
С	-4.020615000	0.472912000	0.507312000
С	-2.878027000	-0.322486000	0.612096000
С	-0.541231000	1.621020000	-1.807412000
С	-5.288836000	2.451383000	-0.433046000
С	-2.907877000	-1.496589000	1.565025000
Н	2.924990000	2.802891000	1.697560000
Н	4.905627000	0.205634000	-1.078769000
Н	0.115017000	0.792509000	2.385487000
Н	0.843610000	2.385363000	2.526696000
Н	-0.263124000	2.037284000	1.197763000
Н	5.055239000	3.512316000	0.293372000
Н	5.720496000	2.349514000	1.435481000
Н	6.052681000	2.166437000	-0.293999000
Н	2.500642000	-1.222289000	-2.546539000

Н	3.928906000	-1.848297000	-1.726953000
Н	2.332928000	-2.358760000	-1.200033000
Н	-2.924074000	2.804204000	-1.696362000
Н	-4.905773000	0.205902000	1.078244000
Н	0.263309000	2.038777000	-1.196102000
Н	-0.113579000	0.793794000	-2.383978000
Н	-0.842825000	2.386312000	-2.525679000
Н	-5.054118000	3.513849000	-0.309595000
Н	-5.728708000	2.336381000	-1.431172000
Н	-6.047213000	2.175744000	0.302843000
Н	-3.929614000	-1.848556000	1.725562000
Н	-2.333538000	-2.358995000	1.198952000
Н	-2.501533000	-1.223052000	2.545861000
Bi	-0.000078000	-1.345335000	-0.000015000

[(Mesityl)₂Bi(OPEt₃)]⁺ (g)

Total energy including ZPVE: -1567.557333 a. u.

Total electronic and thermal enthalpies: -1567.521252 a. u.

С	-2.389582000	-0.069736000	-0.170259000
С	-3.095314000	1.151460000	-0.114361000
С	-4.334011000	1.180198000	0.532831000
С	-4.891371000	0.036291000	1.115291000
С	-4.189547000	-1.166594000	1.005900000
С	-2.948119000	-1.248165000	0.362520000
С	-2.564360000	2.431673000	-0.726762000
С	-6.212716000	0.105232000	1.839627000
С	-2.263917000	-2.595702000	0.280701000
С	0.663659000	1.591212000	-0.209782000
С	0.623153000	1.782727000	1.190975000
С	1.506612000	2.708224000	1.763220000
С	2.411701000	3.451819000	0.999112000
С	2.416268000	3.259427000	-0.385663000
С	1.555145000	2.346564000	-1.004832000
С	-0.335492000	1.057164000	2.111343000
С	3.327442000	4.460987000	1.645477000
С	1.611920000	2.214226000	-2.515477000

C	2.113896000	-2.956250000	1.915988000
С	1.703844000	-2.185218000	3.180456000
С	3.205670000	-0.524824000	0.610326000
С	4.647028000	-0.908731000	0.982209000
С	2.661489000	-2.947641000	-0.997376000
С	1.740711000	-4.135102000	-1.321603000
Н	-4.885127000	2.116919000	0.572899000
Н	-4.624696000	-2.072229000	1.422026000
Н	-2.184392000	2.283591000	-1.747408000
Н	-3.352981000	3.184110000	-0.801926000
Н	-1.748818000	2.859936000	-0.135119000
Н	-6.068833000	0.435342000	2.875645000
Н	-6.892886000	0.817818000	1.363990000
Н	-6.705984000	-0.869970000	1.871463000
Н	-1.453000000	-2.680700000	1.010093000
Н	-2.975190000	-3.403783000	0.467557000
Н	-1.823723000	-2.775526000	-0.708036000
Н	1.481908000	2.856849000	2.840488000
Н	3.104215000	3.837357000	-0.998250000
Н	-1.349198000	1.459290000	2.020463000
Н	-0.400319000	-0.009208000	1.889396000
Н	-0.027465000	1.170791000	3.153985000
Н	2.844588000	5.444558000	1.690249000
Н	3.580345000	4.176669000	2.670870000
Н	4.256671000	4.580939000	1.081238000
Н	2.339877000	2.908213000	-2.942032000
Н	1.905524000	1.207641000	-2.840132000
Н	0.646695000	2.442919000	-2.983152000
Н	3.125606000	-3.368087000	2.007407000
Н	1.438196000	-3.799195000	1.736647000
Н	0.693746000	-1.779533000	3.086179000
Н	1.720478000	-2.855875000	4.042908000
Н	2.387290000	-1.357024000	3.390209000
Н	2.758683000	0.127784000	1.366500000
Н	3.174730000	0.047595000	-0.322877000
Н	5.118368000	-1.539791000	0.223146000
Н	5.249461000	-0.001544000	1.073205000
Н	4.695409000	-1.431606000	1.941846000
Н	3.679415000	-3.283011000	-0.769117000
Н	2.738010000	-2.267265000	-1.854686000
Н	2.100368000	-4.650707000	-2.215215000

Н	1.717792000	-4.863365000	-0.506048000
Н	0.715898000	-3.803496000	-1.510107000
0	0.594279000	-1.497645000	0.176883000
Ρ	2.072929000	-1.939451000	0.405735000
Bi	-0.417030000	-0.100108000	-1.247043000

3-Sb (g)

Total energy including ZPVE: -1900.645737 a. u.

Total electronic and thermal enthalpies: -1900.614489 a. u.

-			
С	0.781681000	-1.477231000	0.241771000
С	0.815222000	-1.705243000	-1.153933000
С	1.561157000	-2.787651000	-1.639155000
С	2.269419000	-3.646552000	-0.797007000
С	2.223009000	-3.403406000	0.577820000
С	1.493626000	-2.336827000	1.111343000
С	0.107489000	-0.832489000	-2.167005000
С	3.035270000	-4.822983000	-1.351777000
С	1.483969000	-2.164625000	2.619223000
С	-2.241677000	-0.016820000	0.331552000
С	-2.868009000	-1.276331000	0.182247000
С	-4.159995000	-1.332423000	-0.350505000
С	-4.856407000	-0.182083000	-0.730408000
С	-4.241689000	1.053355000	-0.523955000
С	-2.952469000	1.163849000	0.012242000
С	-2.212775000	-2.583819000	0.579894000
С	-6.231762000	-0.274654000	-1.345208000
С	-2.395408000	2.557203000	0.220729000
С	2.878361000	1.920055000	-0.641544000
Н	1.588191000	-2.961211000	-2.712819000
Н	2.767632000	-4.061083000	1.251747000
Н	0.692363000	0.067614000	-2.372773000
Н	-0.027989000	-1.372966000	-3.107794000
Н	-0.873791000	-0.502748000	-1.820489000
Н	2.400697000	-5.717090000	-1.394389000
Н	3.390505000	-4.626907000	-2.367761000
Н	3.900567000	-5.067710000	-0.728340000

Н	0.481210000	-2.299427000	3.044756000
Н	2.130907000	-2.904797000	3.097197000
Н	1.839786000	-1.175101000	2.927332000
Н	-4.639641000	-2.302583000	-0.462557000
Н	-4.782894000	1.963160000	-0.774850000
Н	-1.493525000	-2.922949000	-0.171079000
Н	-1.669035000	-2.512080000	1.528559000
Н	-2.966635000	-3.366248000	0.702797000
Н	-6.164646000	-0.371948000	-2.435990000
Н	-6.779880000	-1.146093000	-0.974158000
Н	-6.826874000	0.618882000	-1.134256000
Н	-3.208572000	3.282091000	0.313314000
Н	-1.789271000	2.637467000	1.130319000
Н	-1.760403000	2.868009000	-0.613667000
0	0.328419000	1.474752000	-0.342768000
0	1.404401000	3.057008000	1.280073000
0	0.956355000	3.728544000	-1.132596000
S	1.269410000	2.714592000	-0.135598000
F	3.134848000	0.889416000	0.176592000
F	3.867751000	2.808392000	-0.556392000
F	2.792058000	1.468568000	-1.896371000
Sb	-0.257228000	0.171617000	1.181066000

Total energy including ZPVE: -1875.018991 a. u.

Total electronic and thermal enthalpies: -1874.987215 a. u.

С	0.823831000	1.518548000	-0.158559000
С	0.886065000	1.731921000	1.235512000
С	1.657052000	2.800400000	1.713713000
С	2.361176000	3.654683000	0.862823000
С	2.283633000	3.423257000	-0.512883000
С	1.527572000	2.370201000	-1.037481000
С	0.180146000	0.856890000	2.247176000
С	3.156242000	4.815258000	1.410479000
С	1.482359000	2.197874000	-2.544501000
С	-2.322290000	0.018018000	-0.144874000

С	-2.923349000	1.283248000	0.037147000
С	-4.192957000	1.352351000	0.622091000
С	-4.885758000	0.207767000	1.024914000
С	-4.291603000	-1.034276000	0.794629000
С	-3.025793000	-1.155886000	0.207008000
С	-2.260629000	2.582615000	-0.373594000
С	-6.235078000	0.312227000	1.693549000
С	-2.477760000	-2.549111000	-0.022207000
С	2.926569000	-1.827409000	0.997796000
Н	1.708518000	2.965735000	2.787861000
Н	2.824210000	4.077866000	-1.193316000
Н	0.729909000	-0.074109000	2.405253000
Н	0.099305000	1.370460000	3.209092000
Н	-0.826656000	0.582474000	1.924359000
Н	2.538372000	5.720121000	1.469067000
Н	3.525814000	4.607333000	2.418983000
Н	4.014994000	5.048592000	0.773677000
Н	0.468897000	2.331182000	-2.946447000
Н	2.113815000	2.938731000	-3.041684000
Н	1.839390000	1.210172000	-2.860423000
Н	-4.656543000	2.327260000	0.758638000
Н	-4.830497000	-1.938479000	1.069701000
Н	-1.485510000	2.884457000	0.336603000
Н	-1.780020000	2.518371000	-1.357017000
Н	-2.997139000	3.388621000	-0.432496000
Н	-6.125105000	0.392685000	2.782224000
Н	-6.783575000	1.196844000	1.355787000
Н	-6.851643000	-0.569242000	1.493396000
Н	-3.277419000	-3.292270000	0.033351000
Н	-2.013486000	-2.653350000	-1.010858000
Н	-1.715137000	-2.812866000	0.715196000
0	0.383207000	-1.590819000	0.445366000
0	1.823741000	-2.680463000	-1.276982000
0	1.217545000	-3.887665000	0.877931000
S	1.486896000	-2.653967000	0.151144000
F	3.148727000	-0.633378000	0.433355000
F	4.017368000	-2.584151000	0.874465000
F	2.655978000	-1.649885000	2.296378000
Bi	-0.290627000	-0.193136000	-1.135349000

4-Sb (g)

Total energy including ZPVE: -2554.799744 a. u.

Total electronic and thermal enthalpies: -2554.755610 a. u.

С	1.308856000	1.514323000	0.466868000
С	2.014488000	1.359458000	1.683198000
С	2.745797000	2.445559000	2.182690000
С	2.817241000	3.669074000	1.516355000
С	2.140586000	3.792117000	0.301600000
С	1.395518000	2.738731000	-0.239408000
С	2.067109000	0.073296000	2.479817000
С	3.585393000	4.830158000	2.100511000
С	0.717901000	2.964648000	-1.577186000
С	-1.003436000	-0.970919000	1.050777000
С	-1.588126000	-0.251111000	2.123074000
С	-2.468153000	-0.913909000	2.987463000
С	-2.815337000	-2.256496000	2.818378000
С	-2.252832000	-2.943131000	1.742686000
С	-1.347387000	-2.331369000	0.862569000
С	-1.335376000	1.218351000	2.385400000
С	-3.754750000	-2.943682000	3.779987000
С	-0.768786000	-3.193594000	-0.242259000
С	4.237014000	-1.186472000	-0.748329000
С	-4.237143000	2.172524000	-1.975363000
С	-4.476780000	3.312436000	-0.974423000
С	-4.260757000	0.078792000	0.109213000
С	-5.728999000	-0.220536000	-0.224321000
С	-3.132297000	-0.502425000	-2.524003000
С	-2.329815000	-0.082439000	-3.763972000
Н	3.282134000	2.323664000	3.121729000
Н	2.198805000	4.731004000	-0.245174000
Н	2.878076000	-0.562655000	2.115764000
Н	2.250882000	0.287130000	3.537073000
Н	1.153044000	-0.515830000	2.403799000
Н	2.941443000	5.442545000	2.744483000
Н	4.425603000	4.487774000	2.712315000
Н	3.978830000	5.485295000	1.317074000
Н	-0.370488000	2.897034000	-1.496982000
Н	0.972082000	3.950984000	-1.974986000

Н	1.036539000	2.224204000	-2.321034000
Н	-2.911334000	-0.355651000	3.809913000
Н	-2.516651000	-3.986590000	1.582393000
Н	-0.349129000	1.386444000	2.825323000
Н	-1.386003000	1.807494000	1.468717000
Н	-2.078347000	1.610900000	3.086509000
Н	-3.206783000	-3.344615000	4.641640000
Н	-4.508117000	-2.251587000	4.169776000
Н	-4.273286000	-3.782597000	3.305758000
Н	-1.411304000	-4.057383000	-0.435536000
Н	-0.647199000	-2.656384000	-1.189430000
Н	0.223125000	-3.565852000	0.031203000
Н	-5.180057000	1.770538000	-2.363203000
Н	-3.660236000	2.531918000	-2.834207000
Н	-3.528048000	3.675628000	-0.570045000
Н	-4.986051000	4.149270000	-1.460614000
Н	-5.099354000	2.985895000	-0.135022000
Н	-4.180053000	0.774090000	0.950506000
Н	-3.736124000	-0.829351000	0.421293000
Н	-5.825972000	-0.916591000	-1.063586000
Н	-6.216798000	-0.683211000	0.638509000
Н	-6.288205000	0.687098000	-0.471752000
Н	-4.147750000	-0.813870000	-2.795878000
Н	-2.658610000	-1.358833000	-2.029723000
Н	-2.239141000	-0.924002000	-4.456255000
Η	-2.814761000	0.739029000	-4.300636000
Н	-1.320882000	0.234694000	-3.488712000
0	1.775241000	-1.503064000	0.040219000
0	2.268918000	-1.946336000	-2.374604000
0	3.012768000	-3.559386000	-0.566680000
0	-1.904181000	1.324437000	-0.773576000
Р	-3.264070000	0.803940000	-1.245151000
S	2.693802000	-2.199626000	-0.993204000
F	3.977977000	0.100790000	-1.020461000
F	5.203760000	-1.618370000	-1.562304000
F	4.659028000	-1.280961000	0.519896000
Sb	0.217488000	-0.078850000	-0.522500000

Total energy including ZPVE: -2529.177736 a. u.

Total electronic and thermal enthalpies: -2529.133170 a. u.

С	1.336333000	1.458410000	0.601843000
С	2.024645000	1.198566000	1.806538000
С	2.757225000	2.236553000	2.399668000
С	2.841435000	3.509203000	1.833854000
С	2.174155000	3.736160000	0.628170000
С	1.428722000	2.732804000	-0.000909000
С	2.052514000	-0.151496000	2.489200000
С	3.611830000	4.614660000	2.515554000
С	0.750358000	3.061890000	-1.316840000
С	-1.080147000	-1.124495000	1.052396000
С	-1.709012000	-0.415093000	2.102114000
С	-2.682207000	-1.064521000	2.876047000
С	-3.047330000	-2.394647000	2.652189000
С	-2.407846000	-3.081860000	1.619138000
С	-1.433874000	-2.472938000	0.815845000
С	-1.382507000	1.020977000	2.450948000
С	-4.078512000	-3.075257000	3.520212000
С	-0.815689000	-3.298436000	-0.294948000
С	4.379798000	-1.151013000	-0.565875000
С	-4.562440000	2.207667000	-0.538350000
С	-4.628922000	2.188459000	0.995822000
С	-3.934524000	-0.663935000	-0.739639000
С	-5.384253000	-1.004576000	-1.111634000
С	-3.491984000	1.103872000	-3.044456000
С	-2.902949000	2.402690000	-3.614809000
Н	3.284156000	2.036429000	3.330714000
Н	2.239854000	4.716978000	0.161247000
Н	2.847091000	-0.774158000	2.070558000
Н	2.241057000	-0.035879000	3.560879000
Н	1.122865000	-0.709134000	2.364095000
Н	2.964119000	5.186170000	3.192566000
Н	4.437704000	4.217686000	3.113696000
Н	4.026356000	5.321009000	1.789489000
Н	-0.337717000	2.970603000	-1.243573000
Н	0.984664000	4.083019000	-1.630089000

Н	1.086545000	2.395660000	-2.121871000
Н	-3.166997000	-0.512424000	3.679203000
Н	-2.678281000	-4.117943000	1.425150000
Н	-0.402743000	1.100128000	2.929340000
Н	-1.358653000	1.661427000	1.567873000
Н	-2.122610000	1.423531000	3.149121000
Н	-3.605679000	-3.555697000	4.385738000
Н	-4.813055000	-2.361750000	3.906953000
Н	-4.615337000	-3.854903000	2.970670000
Н	-1.306065000	-4.271961000	-0.377886000
Н	-0.906841000	-2.809100000	-1.274141000
Н	0.251459000	-3.464990000	-0.126899000
Н	-5.541491000	1.996564000	-0.984256000
Н	-4.251786000	3.194710000	-0.897854000
Н	-3.655634000	2.427033000	1.429366000
Н	-5.353478000	2.925800000	1.352951000
Н	-4.932062000	1.208124000	1.376482000
Н	-3.774407000	-0.752176000	0.338760000
Н	-3.235548000	-1.370369000	-1.199845000
Н	-5.562461000	-0.945251000	-2.189887000
Н	-5.612636000	-2.026562000	-0.796278000
Н	-6.097840000	-0.341603000	-0.612396000
Н	-4.542668000	0.980811000	-3.331214000
Н	-2.948472000	0.234803000	-3.434561000
Н	-2.931260000	2.385182000	-4.707824000
Н	-3.464679000	3.281388000	-3.282095000
Н	-1.863402000	2.527350000	-3.300592000
0	1.860714000	-1.659851000	-0.095040000
0	2.538582000	-1.360383000	-2.472294000
0	3.184654000	-3.453722000	-1.197392000
0	-1.938176000	1.314747000	-0.747174000
Ρ	-3.360163000	1.006090000	-1.218569000
S	2.865479000	-2.028073000	-1.201522000
F	4.143798000	0.165916000	-0.483662000
F	5.410950000	-1.358058000	-1.390098000
F	4.701060000	-1.604516000	0.655221000
Bi	0.190281000	-0.120614000	-0.563990000

OPEt₃

Total energy including ZPVE: -654.124084 a. u.

Total electronic and thermal enthalpies: -654.111685 a. u.

С	0.499012000	-1.186048000	-0.868415000
С	1.763831000	-1.927091000	-0.415010000
С	1.132687000	1.228056000	0.678113000
С	1.671327000	1.930475000	-0.575703000
С	-1.556091000	0.826258000	-0.390605000
С	-2.776243000	-0.078789000	-0.609942000
Н	0.676704000	-0.618219000	-1.789425000
Н	-0.302822000	-1.901424000	-1.082323000
Н	1.585051000	-2.450644000	0.528267000
Н	2.073632000	-2.663348000	-1.162873000
Н	2.600811000	-1.237083000	-0.263635000
Н	1.942152000	0.729626000	1.222822000
Н	0.697506000	1.952209000	1.376568000
Н	0.878841000	2.445309000	-1.127834000
Н	2.419836000	2.681036000	-0.303252000
Н	2.151183000	1.223679000	-1.259883000
Н	-1.208132000	1.259162000	-1.335993000
Н	-1.817500000	1.661664000	0.269906000
Н	-3.621152000	0.496553000	-1.000526000
Н	-2.560361000	-0.877421000	-1.327157000
Н	-3.079970000	-0.545699000	0.330717000
0	-0.550492000	-0.757390000	1.701154000
Ρ	-0.162599000	-0.056897000	0.426985000

4. References

[1] R. J. Errington in *Advanced Practical Inorganic and Metal Organic Chemistry*, Blackie Academic & Professional, London, **1997**.

[2] W. F. Armarego, C. L. L. Chai in *Purification of Laboratory Chemicals*, Elsevier, United Kingdom, **2013**.

[3] A. H[°]ubner, T. Bernert, I. S[°]anger, E. Alig, M. Bolte, L. Fink, M. Wagner, H.-W. Lerner, *Dalton Trans.*, **2010**, 39, 7528-7533.

[4] M. Yoshihiro, K. Masamichi, S. Hitomi, *Bull. Chem. Soc. Jpn.*, **1992**, 65, 3504-3506.

[5] M. Ates, H. J. Breunig, A. S.-Neshan, M. Tegeler, Z. Naturforsch., 1986, 41b, 321-326.

[6] Bruker APEX3 software package (version 2016.9-0): Bruker AXS, 2016

[7] SAINT; part of Bruker APEX3 software package (version 2016.9-0): Bruker AXS, **2016**.

[8] SADABS; part of Bruker APEX3 software package (version 2016.9-0): Bruker AXS, **2016**

[9] G. M. Sheldrick, Acta Cryst., 2015, C71, 3-8.

[10] L. J. Farrugia, J. Appl. Cryst., **2012**, 45, 849-854.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Wallingford, CT, **2016**.

[12] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford, CT, USA, **2009**.

[13] E. D. Glendening, C. R. Landis, F. Weinhold, J. Comput. Chem. 2013, 34, 1429-1437.