Supplementary materials

Divergent functional porous organic polymers used for low concentration CO₂ fixation

Zhifeng Dai, *** Yuanfei Bao, ** Jindong Yuan, ** Jinzhong Yao, b and Yubing Xiong, **

 ^a Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
 ^b College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.

⁺ These authors contribute equal to this work.

Experimental Section

Materials

The typical reagents and substrates including azobisisobutyronitrile (AIBN), bromoacetic acid, 2-bromoethylamine hydrobromide, 2-bromoethanol, ethylene chlorohydrins, and epichlorohydrin were purchased from the Shanghai Aladdin Bio-Chem Technology Co., Ltd. and Beijing InnoChem Science & Technology Co., Ltd. These reagents and substrates were purchased with high purity and used without further purification.

Catalysts Preparation

Synthesis of triphenylphosphine based porous organic polymer (POP-PPh₃). The POP-PPh₃ was synthesized through a radical polymerization method from the vinyl-functionalized triphenylphosphine monomer (v-PPh₃). As a typical run, 1 g of v-PPh₃ was dissolved in 10 mL of THF, followed by addition of 50 mg of AIBN. After maintaining in an autoclave at 100 °C for 24 h, the white powder of POP-PPh₃ was finally obtained after dried and used directly for the next step without further purification (0.99 g, 99.0% yield).

Synthesis of amino functionalized porous organic polymer (POP-PA-NH₂). The polar group functionalized porous organic polymers were synthesized from the phosphonium reaction of triphenylphosphine based polymer POP-PPh₃ with the corresponding functional alkyl bromide. Typically, for the synthesis of POP-PA-NH₂, 300 mg of POP-PPh₃ (0.88 mmol) and 180.6 mg of 2-bromoethylamine hydrobromide (0.88 mmol) were dispersed in 10 mL of toluene with stirring, then the mixture was heated to 110 °C for 48 h under N₂. After cooling to room temperature, the solid was filtered and washed with CH₂Cl₂ for several times. The solid was re-dispersed in 20 mL of triethylamine and stirred for 4 h. Then the triethylamine was removed and the solid was washed with ethyl acetate for several times, and dried under vacuum for 12 h. The product of POP-PA-NH₂ was obtained as orange solid (344.5 mg, 88.8% yield). The weight content of Br⁻ species was calculated to be 8.3 wt%.

The content of the Br⁻ species in the porous organic polymers were calculated according to the following equation:

$$\mathbf{w}(\mathbf{Br}^{-}) = \frac{m_{\mathrm{P}} - m_{\mathrm{S}}}{M_{\mathrm{PG}}} \times M_{Br} \div m_{\mathrm{P}} \times 100\%$$

In which the m_p and m_s represent the amount of the yield products and the substrates used for the phosphonium reaction, respectively. M_{PG} represents the molecular weight of the decorated polar group (PG). M_{Br} represents the atomic weight of the Br⁻ species.

Synthesis of carboxylic acid functionalized porous organic polymer (POP-PA-COOH). For the synthesis of POP-PA-COOH, 300 mg of POP-PPh₃ (0.88 mmol) and 244.5 mg of bromoacetic acid (1.76 mmol) were dispersed in 10 mL of toluene with stirring, then the mixture was heated to 110 °C for 48 h under N₂. After cooling to room temperature, the solid was filtered and washed with ethyl acetate for several times. After dried under vacuum for 12 h, the product POP-PA-COOH was obtained as orange solid (372.6 mg, 87.7 % yield). The content of Br⁻ species in the porous organic polymer was calculated to be 11.2 wt% accordingly.

Synthesis of hydroxyl group functionalized porous organic polymer (POP-PA-OH). For the synthesis of POP-PA-OH, the process was similar to the previous polymer, except 220.0 mg of 2-bromoethanol (1.76 mmol) was used. The product POP-PA-OH was obtained as light yellow solid (354.5 mg, 86.4 % yield). The content of Br⁻ species in the porous organic polymer was calculated to be 9.8 wt% accordingly.

Synthesis of the comparison non-functionalized porous organic polymer (**POP-PA-Et**). For the synthesis of POP-PA-Et, the process was similar to the previous polymer, except 250 mg of POP-PPh₃ and 240.0 mg of bromoethane (2.2 mmol) was used. The product POP-PA-Et was obtained as light yellow solid (282.8 mg, 85.7 % yield). The content of Br⁻ species in the porous organic polymer was calculated to be 8.5 wt% accordingly.

Catalytic activity test

Typically, the reactions were conducted in a Schlenk tube with 10 mmol of epoxides and CO_2 were purged with a balloon at 333 K over the various catalysts for 48 h. The reactants and products were determined by ¹H NMR spectroscopy. For catalytic evaluation under low CO_2 concentration, 15% CO_2 mixed with 85% N₂ in volume was used and other conditions are the same. For recycling tests, the catalyst was filtered and washed with CH_2Cl_2 for three times, and dried in air. Then, the catalyst was used for the next run without further treatment.

Characterization

Nitrogen sorption isotherms collected at 77 K were measured with a Micromeritics ASAP 2020M systems, and the samples were pre-treated under vacuum at 100 °C for 12 h. The surface areas were calculated by the Brunauer-Emmett-Teller (BET) method. CO₂ sorption isotherms were collected from Micromeritics ASAP2010 at 298 K and 273 K under the pressure of 1 atm CO₂. Before the measurement, the samples were treated under vacuum at 100 °C for 12 h. X-ray Photoelectron Spectroscopy (XPS) spectra were performed on a Thermo ESCALAB 250 with Al K α irradiation at $\theta = 90^{\circ}$ for X-ray sources, and the binding energies were calibrated using the C1s peak at 284.9 eV. Thermal gravimetric analysis (TGA) experiments were performed on a SDT Q600 V8.2 Build100 thermogravimetric analyzer under N₂ flow. Elemental analysis was carried out in the Vario micro cube Organic Element Analyzer (Elementar, Germany). The scanning electron microscopy (SEM) images of the samples were recorded on a Hitachi SU 1510 apparatus. Transmission electron microscopy (TEM) experiments were performed on a JEM-2100F field emission electron microscope (JEOL, Japan) with an acceleration voltage of 110 kV. ¹H NMR spectra were recorded on a Bruker Avance-400 (400 MHz) spectrometer. Chemical shifts were expressed in ppm downfield from TMS at $\delta=0$ ppm. Solid-state cross-polarization magic angle spinning ¹³C and ³¹P NMR (CP/MAS NMR) spectra were recorded on a Varian infinity plus 400 M spectrometer equipped with a magic-angle spin probe in a 4-mm ZrO₂ rotor.

Figure S1. The PXRD spectrum of (A) POP-PA-NH₂, (B) POP-PA-COOH, and (C) POP-PA-OH.

Figure S2. The ³¹P CP/MAS solid state NMR spectrum of POP-PA-NH₂.

Figure S3. Chloranil test of POP-PPh₃, POP-PA-OH, POP-PA-COOH, POP-PA-NH₂. Only the vial contain polymer POP-PA-NH₂ turns blue-green after the addition of chloranil (5%).

Figure S4. The EDS mapping of POP-PA-NH₂.

Figure S5. The XPS (A) survey spectrum and (B) Br3d high resolution spectra of POP-PA-NH₂.

Figure S6. The XPS (A) survey spectrum and (B) Br3d high resolution spectra of POP-PA-COOH.

Figure S7. The XPS (A) survey spectrum and (B) Br3d high resolution spectra of POP-PA-OH.

Figure S8. (A) N_2 sorption isotherms and (B) Pore size distribution of POP-PPh₃. The BET surface area and pore volume of them were listed in table S1.

Figure S9. (A) N_2 sorption isotherms and (B) Pore size distribution of POP-PA-COOH. The BET surface area and pore volume of them were listed in table S1.

Figure S10. (A) N₂ sorption isotherms and (B) Pore size distribution of POP-PA-OH. The BET surface area and pore volume of them were listed in table S1.

Figure S11. (A) N₂ sorption isotherms and (B) Pore size distribution of POP-PA-Et. The BET surface area and pore volume of them were listed in table S1.

Figure S12. (A) SEM and (B) TEM images of POP-PA-COOH.

Figure S13. (A) SEM and (B) TEM images of POP-PA-OH.

Figure S14. TG curves of POP-PA-NH₂, POP-PA-COOH, POP-PA-OH. The weight loss at below 100 °C is due to the removal of solvent.

Figure S15. (A) The CO_2 sorption isotherms of POP-PPh₃ measured at different temperatures and (B) the calculated isosteric heat (Q_{st}) by Virial Method.

Figure S16. (A) The CO_2 sorption isotherms of POP-PA-NH₂ measured at different temperatures and (B) the calculated isosteric heat (Q_{st}) by Virial Method.

Figure S17. (A) The CO_2 sorption isotherms of POP-PA-COOH measured at different temperatures and (B) the calculated isosteric heat (Q_{st}) by Virial Method and Clausius-Clapeyron Method.

Figure S18. (A) The CO_2 sorption isotherms of POP-PA-OH measured at different temperatures and (B) the calculated isosteric heat (Q_{st}) by Virial Method and Clausius-Clapeyron Method.

Figure S19. FT-IR spectrum of POP-PPh₃, POP-PA-OH, POP-PA-COOH, POP-PA-NH₂.

Figure S20. The dependences of conversion and selectivity in the cycloaddition of epichlorohydrin with CO_2 on reaction time over POP-PA-NH₂ under pure CO_2 (1 atm pressure) at 60 °C with catalyst loading of 1.0 mol%.

Figure S21. Recycle test of POP-PA-NH $_2$ in the cycloaddition of CO $_2$ with epoxides.

Polymers	BET	Pore	Element content				
	(m^2/g)	Volume	C (%)	H (%)	N (%)	0	Br (%)
		(cm^{3}/g)				(%)	
POP-PPh ₃	1090	2.31					
POP-PA-NH ₂	783	1.43	66.7 (67.3)	6.2 (5.9)	1.2 (3.0)		8.3 (10.6)
РОР-РА-СООН	754	1.50	65.7 (65.7)	6.2 (5.3)		4.13	11.2 (12.9)
POP-PA-OH	847	1.62	66.4 (67.1)	7.2 (5.6)	—	1.64	9.8 (10.7)
POP-PA-Et	774	1.52	67.4 (69.5)	7.3 (5.8)	_		8.5 (8.6)

Table S1. The textural parameters of various polar groups functionalized hierarchical porous organic polymers.

Material	SA _{BET} (m ² /g)	Adsorption capacity (mg/g)		<i>Q</i> st (kJ/mol)	Ref.
		273 K	298 K	-	
POP-PPh ₃	1090	91.5	52	29.0	This work
POP-PA-NH ₂	783	116	55	31.6	This work
РОР-РА-СООН	754	83	48	29.5	This work
POP-PA-OH	847	97	58	29.6	This work
POP-PBnCl-TPPMg-4	411	55	37	28.8	Ref. S1
POP-PBnCl-TPPMg-12	462	82	50.6	31.8	Ref. S1
POP-BPy	1123	130	70	28.0	Ref. S2
POP-TPP	1200		58.3		Ref. S3
BILP-1	1172	188	131	26.5	Ref. S4
PAF-1	5640	91		15.6	Ref.S5
CMP-0	1018	92.4	53.2		Ref. S6
TNCMP-2	995	115	64		Ref. S6
SMPI-10	112	139	82		Ref. S7
TPI-1	809	108	55	34.4	Ref. S8
FJC-1	1726	126	81	20.7	Ref. S9
Co-CMP	965		79.3		Ref. S10

Table S2. CO_2 adsorption performances over various porous materials.

Enters	Enerida	Product	Temperatur	Time	Conversion	Selectivity
Entry	Epoxide		e (°C)	(h)	(%) ^b	(%) ^b
1	$\sim\sim\sim^{\circ}$		90	48	42.9	99.0
2	°⊂,	$\sim \sim $	90	48	53.5	99.0
3			90	48	64.5	99.0
4			90	48	73.5	99.0
5	C ° Co		90	48	82.0	99.0

Table S3. Cycloaddition of CO_2 with various substrates over the POP-PA-NH₂ catalyst^a

^aConditions: substrates (10 mmol), catalyst (1.0 mol% based on the amount of Br^- species) with 1 atm CO₂. ^bDetermined by liquid NMR.

Entry	Catalyst	Time (h)	Conv. (%)	Selectivity (%)
1	POP-PA-NH ₂	24	27	>99.0
2	POP-PA-NH ₂	48	48.1	>99.0
3	POP-PA-NH ₂	72	67.6	>99.0
4	POP-PA-NH ₂	96	84.7	>99.0
5	POP-PA-COOH	24	23.5	>99.0
6	POP-PA-COOH	48	39.8	>99.0
7	POP-PA-COOH	72	47.4	>99.0
8	POP-PA-COOH	96	51.2	>99.0
9	POP-PA-OH	24	6.8	>99.0
10	POP-PA-OH	48	13.1	>99.0
11	POP-PA-OH	72	18.8	>99.0
12	POP-PA-OH	96	24.2	>99.0

Table S4. Catalytic performance of POP-PA-NH₂, POP-PA-COOH, and POP-PA-OH in the cycloaddition of CO_2 with epoxides under low CO_2 concentration (15% v/v with N₂) conditions.^a

^a Conditions: epichlorohydrin (925 mg, 10 mmol), catalyst (0. 48 mol% based on the Br^{-} species), 60 °C under low CO_2 concentration (15% v/v with N_2) and solvent free conditions.

Supporting References:

- Z. Dai, Y. Tang, F. Zhang, Y. Xiong, S. Wang, Q. Sun, L. Wang, X. Meng, L. Zhao, and F.-S. Xiao, *Chin. J. Catal.*, 2021, 42, 618.
- [2] K. P. Divya, S. Sreejith, B. Balakrishna, P. Jayamurthy, P. Anees, A. Ajayaghosh, *Chem. Commun.* 2010, 46, 6069-6071.
- [3] Z. Dai, [†] Q. Sun, [†] X. Liu, L. Guo, J. Li, S. Pan, C. Bian, L. Wang, X. Hu, X. Meng, L. Zhao, F. Deng, and F.-S. Xiao, *ChemSusChem* 2017, 10, 1186-1192.
- [4] Z. Dai, Q. Sun, X. Liu, C. Bian, Q. Wu, S. Pan, L. Wang, X. Meng, F. Deng, F. S. Xiao, J. Catal. 2016, 338, 202-209.
- [5] M. G. Rabbani, H. M. El-Kaderi, Chem. Mater. 2011, 23, 1650-1653.
- [6] T. Ben, Y. Li, L. Zhu, D. Zhang, D. Cao, Z. Xiang, X. Yao, S. Qiu, *Energy Environ. Sci.* 2012, 5, 8370-8376.
- [7] S. J. Ren, R. Dawson, A. Laybourn, J. X. Jiang, Y. Khimyak, D. J. Adams, A. I. Cooper, *Polym. Chem.* 2012, 3, 928-934.
- [8] Y. Yang, Q. Zhang, Z. Zhang and S. Zhang, J. Mater. Chem. A 2013, 1, 10368-10374.
- [9] M. R. Liebl, J. Senker, Chem. Mater. 2013, 25, 970-980.
- [10]Y. Huang, Z. Lin, H. Fu, F. Wang, M. Shen, X. Wang, R. Cao, *ChemSusChem* 2014, 7, 2647-2653.
- [11]Y. Xie, T.-T. Wang, X.-H. Liu, K. Zou, W.-Q. Deng, Nat. Commun. 2013, 4, 1960.