Electronic Supplementary Material (ESI) for ChemComm.

Supplementary Information

$\mathbf{R h}($ III $)$-catalyzed and synergistic dual directing groups-enabled redox-neutral [3+3] annulation of N-phenoxyacetamides with α-allenols
Fangyuan Chen, ${ }^{\S}$ Junyuan Tang, ${ }^{\text {§ }}$ Yinhui Wei, Jingyuan Tian, Hui Gao, Wei Yi* and Zhi Zhou*
Key Laboratory of Molecular Target \& Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
*E-mail: yiwei@gzhmu.edu.cn and zhouzhi@gzhmu.edu.cn

Contents

\qquad
I. General.S2
II. Experimental Information and Characterization Data. S2
III. Experimental Mechanistic Studies S17
IV. Synthetic Applications. S24
V. X-Ray Crystallographic Data S26
VI. References S28
VII. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S29

I. General

NMR spectra were recorded on JEOL $400 \mathrm{NMR}\left({ }^{1} \mathrm{H} 400 \mathrm{MHz} ;{ }^{13} \mathrm{C} 100 \mathrm{MHz}\right.$) in $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}$ or DMSO- d_{6}. Abbreviations for data quoted are s, singlet; brs, broad singlet; d, doublet; t, triplet; dd, doublet of doublets; m, multiplet. The residual solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.26 \mathrm{ppm}, \delta_{\mathrm{C}}=77.16 \mathrm{ppm} ; \mathrm{CD}_{3} \mathrm{OD}-d_{4}: \delta_{\mathrm{H}}=3.31 \mathrm{ppm}, \delta_{\mathrm{C}}=49\right.$ ppm; d_{6}-DMSO: $\delta_{\mathrm{H}}=2.50 \mathrm{ppm}, \delta_{\mathrm{C}}=39.52 \mathrm{ppm}$). Mass spectra and high-resolution mass spectra were measured on an agilent TOF-G6230B mass spectrometer and Thermo-DFS mass spectrometer. Thin-layer chromatographies were done on pre-coated silica gel 60 F254 plates (Merck). Silica gel 60H (200-300 mesh) and preparative TLC ($200 \times 200 \mathrm{~mm}, 0.2-0.25 \mathrm{~mm}$ in thickness) manufactured by Qingdao Haiyang Chemical Group Co. (China) were used for general chromatography. $\left[\mathrm{Cp}^{*} \mathrm{IrCl}_{2}\right]_{2},\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2},\left[\mathrm{Ru}(p-\mathrm{cymene}) \mathrm{Cl}_{2}\right]_{2}, \mathrm{Cp} * \mathrm{Co}(\mathrm{CO}) \mathrm{I}_{2}$ and NaOAc were purchased from Aldrich and used without further purification. Other chemicals were purchased from commercial suppliers and were dried and purified when necessary. N-phenoxy amides ${ }^{\text {S1 }}$ and α-allenol substrates ${ }^{\text {S2 }}$ were prepared according to published procedures. Alternatively, these chiral rhodium catalysts can be also purchased from Daicel Chiral Technologies (China) Co., LTD. No attempts were made to optimize yields for substrate synthesis.

II. Experimental Information and Characterization Data

Optimization studies:

The mixture of N-phenoxyacetamide $1 \mathbf{1 a} \quad(0.1 \mathrm{mmol}, 1.0$ equiv), 5-cyclohexylpenta-3,4-dien-2-ol 2a ($0.12 \mathrm{mmol}, 1.2$ equiv), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$ ($5 \mathrm{~mol} \%$), base (1.0 equiv) and additive (1 equiv) in the solvent (0.5 mL) was stirred at the corresponding temperature without exclusion of air or moisture. Afterwards, it was diluted with EtOAc and filtered through a short silica gel column to remove the metal residues. Then, the reaction mixture was concentrated and purified by preparative TLC (eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1$) to give the desired chroman-2-ol derivative 3aa.

Table S1. Conditions screening for the synthesis of 3aa. ${ }^{a}$

			$\xrightarrow[\text { solvent, temperature, } 4 \mathrm{~h}]{\stackrel{\text { catalyst }(5 \mathrm{~mol} \%)}{\text { base (} \text { equiv), additive }}}$		
Entry	catalyst	base	solvent	$T\left({ }^{\circ} \mathrm{C}\right)$	yield (\%) ${ }^{\text {b }}$
1	[$\left.\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	CsOAc	DCE	60	25
2	[$\left.\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	CsOAc	DCE	100	46
3	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	NaOAc	DCE	100	25
4	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	KOAc	DCE	100	43
5	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	AgOAc	DCE	100	42
6	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2}$	DCE	100	n.r.
7	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	$\mathrm{Zn}(\mathrm{OAc})_{2}$	DCE	100	<5
8	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	KOPiv	DCE	100	73
9	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DCE	100	<5
10	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DCE	100	<5
11	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	KOPiv	MeOH	100	37
12	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	KOPiv	MeCN	100	62
13	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	KOPiv	TFE	100	n.r.
14	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	KOPiv	THF	100	69
15	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	KOPiv	dioxane	100	61
16	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	KOPiv	toluene	100	55
17	$\left[\mathrm{Cp}^{\mathrm{E} R h C l}\right]_{2}$	KOPiv	DCE	100	n.r.
18	$\left[\mathrm{Cp}^{\mathrm{Bn}} \mathrm{RhCl}_{2}\right]_{2}$	KOPiv	DCE	100	63
19	[$\left.\mathrm{Cp} * \mathrm{IrCl}_{2}\right]_{2}$	KOPiv	DCE	100	n.r.
20	$\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}$	KOPiv	DCE	100	<5
21^{c}	$\mathrm{Cp}{ }^{*} \mathrm{Co}(\mathrm{CO}) \mathrm{I}_{2}$	KOPiv	DCE	100	n.r.
22^{d}	[$\left.\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	KOPiv	DCE	100	22
23^{e}	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	KOPiv	DCE	100	44
24^{f}	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	KOPiv	DCE	100	n.r.
25^{8}	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	KOPiv	DCE	100	61
26^{h}	$\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$	KOPiv	DCE	100	10
27^{i}	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	KOPiv	DCE	25	34

${ }^{a}$ Reaction Conditions: 1a $(0.1 \mathrm{mmol})$, 2a $(0.12 \mathrm{mmol})$, catalyst ($5 \mathrm{~mol} \%$) and base (1 equiv) in solvent $(0.2 \mathrm{M})$ at the corresponding temperature in an oil bath for 4 h without exclusion of air or moisture. ${ }^{b}$ Isolated yield. ${ }^{c} 10 \mathrm{~mol} \%$ of catalyst was used. ${ }^{d} \mathbf{1} \mathbf{a a}$ was used as the substrate. ${ }^{e} \mathbf{1} \mathbf{1 a b}$ was used as the substrate. ${ }^{f} \mathbf{1 a c}$ was used as the substrate. ${ }^{8} \mathrm{HOPiv}$ (1 equiv) was used as an additive. ${ }^{h} \mathrm{KOH}$ (1 equiv) was used as an additive. ${ }^{i}$ The reaction was conducted for 24 h .

General procedure for the $\mathbf{C}-\mathrm{H}[3+3]$ annulation:

The mixture of N-phenoxyacetamide 1 ($0.2 \mathrm{mmol}, 1.0$ equiv), α-allenol 2 (0.24 $\mathrm{mmol}, 1.2$ equiv), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$ and $\mathrm{KOPiv}(1.0$ equiv) in DCE (1 mL) was stirred at $100{ }^{\circ} \mathrm{C}$ for 4 h without exclusion of air or moisture. Afterwards, it was diluted with EtOAc and filtered through a short silica gel column to remove the metal residues. Then, the reaction mixture was concentrated and purified by preparative TLC to give the desired product 3 .

Characterization of products 3:

(E)-4-(cyclohexylmethylene)-2-methylchroman-2-ol (3aa)

This compound was obtained in 73% yield (37.3 mg) as yellow liquid. Eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} H$ NMR (400 MHz, DMSO- d_{6}): $\delta 7.52(\mathrm{dd}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H})$, 6.85-6.81 (m, 1H), $6.72(\mathrm{dd}, J=8.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.72(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 1 \mathrm{H})$, $1.72-1.58(\mathrm{~m}, 5 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.12(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 153.4,131.5,129.3,126.9,124.2,123.5,121.6$, 118.5, 98.1, 37.9, 37.2, 34.41, 34.39, 27.6, 27.14, 27.05, 27.0.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{2}: 257.1547$; found: 257.1542.
Scale-up synthesis of compound 3aa: The mixture of N-phenoxyacetamides 1a (10 mmol, 1.0 equiv), α-allenol $\mathbf{2 a}$ ($12 \mathrm{mmol}, 1.2$ equiv), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$ and KOPiv (1.0 equiv) in DCE (20 mL) was stirred at $100^{\circ} \mathrm{C}$ for 4 h without exclusion of air or moisture. Afterwards, the solvent was removed under reduced pressure, and the resulted mixture was purified with silica gel column chromatography to afford the corresponding chroman-2-ol derivative 3aa in $68 \%(1.755 \mathrm{~g})$ isolated yield.

${ }^{1} \mathrm{H}^{1} \mathrm{H}$ NOESY:

(E)-4-(cyclohexylmethylene)-2,6-dimethylchroman-2-ol (3ba)

This compound was obtained in 63% yield (34.2 mg) as yellow liquid. Eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.35$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 7.31(\mathrm{~s}, 1 \mathrm{H}), 6.91-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.96(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=14.4,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.41-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~s}$, $3 \mathrm{H}), 1.40-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.19(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 151.3,131.2,130.6,130.0,127.0,124.4,123.0$, 118.3, 98.0, 37.9, 37.2, 34.43, 34.41, 27.6, 27.14, 27.8, 27.0, 20.8.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}: ~[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{2}: 271.1703$; found: 271.1694.

(E)-6-(tert-butyl)-4-(cyclohexylmethylene)-2-methylchroman-2-ol (3ca)

This compound was obtained in 79% yield $(49.5 \mathrm{mg})$ as yellow liquid. Eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.35$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=14.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.41-1.32$ (m, 2H), 1.29 (s, 9H), 1.25-1.17 (m, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, CD $_{3} \mathbf{O D}$): $\delta 151.2,144.0,131.0,127.4,126.6,122.3,120.5$, 118.0, 98.1, 38.0, 37.3, 35.0, 34.5, 32.0, 27.6, 27.13, 27.09.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{2}: 313.2173$; found: 313.2167.

(E)-4-(cyclohexylmethylene)-6-fluoro-2-methylchroman-2-ol (3da)

This compound was obtained in 68% yield (37.5 mg) as yellow liquid. Eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta 7.23$ (dd, $J=10.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.83 (td, $J=8.5,2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=8.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=14.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.47(\mathrm{dd}, J=14.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.65(\mathrm{~m}, 5 \mathrm{H}), 1.54(\mathrm{~s}$, $3 \mathrm{H}), 1.41-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.19(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta 158.7(\mathrm{~d}, J=237.4 \mathrm{~Hz}), 149.5(\mathrm{~d}, J=1.8 \mathrm{~Hz})$, $132.8,126.3(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 124.7(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 119.7(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 115.8(\mathrm{~d}, J=$ $23.9 \mathrm{~Hz}), 109.8(\mathrm{~d}, J=24.1 \mathrm{~Hz}), 98.1,37.9,36.8,34.2,34.1,27.7,27.1,27.02,26.96$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CD $_{3} \mathbf{O D}$): $\delta-125.75-125.84$ (m).
HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{FO}_{2}: 275.1453$; found: 275.1446.

(E)-6-chloro-4-(cyclohexylmethylene)-2-methylchroman-2-ol (3ea)

This compound was obtained in 54% yield (31.4 mg) as yellow solid. Eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta 7.48(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=8.7,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.73$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ $(\mathrm{dd}, J=14.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.32(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.64(\mathrm{~m}, 5 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H})$, $1.42-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.20(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 152.1,132.9,128.9,126.6,126.0,125.2,123.8$, 120.1, $98.3,37.9,36.8,34.22,34.15,27.7,27.1,27.01,26.96$.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{ClO}_{2}$: 291.1157; found: 291.1150.

(E)-6-bromo-4-(cyclohexylmethylene)-2-methylchroman-2-ol (3fa)

This compound was obtained in 67% yield $(45.0 \mathrm{mg})$ as yellow solid. Eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.43(\mathrm{~m}, 1 \mathrm{H})$, 2.41-2.33 (m, 1H), 1.77-1.44 (m, 5H), 1.54 ($\mathrm{s}, 3 \mathrm{H}), 1.42-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.19(\mathrm{~m}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ C D} \mathbf{3} \mathbf{O D}$): δ 152.6, 133.0, 131.9, 126.9, 125.9, 125.8, 120.6, 113.9, 98.3, 37.9, 36.8, 34.22, 34.15, 27.6, 27.1, 27.01, 26.96.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{BrO}_{2}$: 335.0652; found: 335.0642.

(E)-4-(cyclohexylmethylene)-6-iodo-2-methylchroman-2-ol (3ga)

This compound was obtained in 55% yield (42.2 mg) as yellow solid. Eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D}_{\mathbf{3}} \mathrm{OD}$): $\delta 7.79$ ($\mathrm{s}, 1 \mathrm{H}$), 7.36 ($\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.58-6.54 (m, 1H), 5.94 (d, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.79$ (d, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.46$ (dd, $J=$ $14.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.64(\mathrm{~m}, 5 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.32(\mathrm{~m}$, 2H), 1.27-1.19 (m, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 153.3,137.9,133.0,132.8,126.3,125.8,121.0$, 98.3, 83.6, 37.9, 36.7, 34.24, 34.17, 27.6, 27.1, 27.02, 26.98.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{IO}_{2}$: 383.0513; found: 383.0504.

(E)-4-(cyclohexylmethylene)-2-methyl-6-phenylchroman-2-ol (3ha)

This compound was obtained in 62% yield $(41.4 \mathrm{mg})$ as yellow liquid. Eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.35$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.72$ ($\mathrm{s}, 1 \mathrm{H}$), 7.54 ($\mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.40-7.33 (m, $3 \mathrm{H}), 7.26(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82$ (d, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{q}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.75$ $(\mathrm{m}, 3 \mathrm{H}), 1.71-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.20(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathrm{OD}$): $\delta 153.1,142.5,134.9,131.9,129.7,128.1,127.6$, 126.9, 123.6, 122.7, 119.0, 98.4, 38.0, 37.2, 34.4, 34.3, 27.6, 27.11, 27.08, 27.0 .

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{2}: 333.1860$; found: 333.1853.

(E)-4-(cyclohexylmethylene)-2-methyl-6-(trifluoromethyl)chroman-2-ol (3ia)

This compound was obtained in 47% yield (30.6 mg) as yellow liquid. Eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} H$ NMR (400 MHz, CD $_{\mathbf{3}} \mathbf{O D}$): $\delta 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=14.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.41$ $-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.23(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, CD $_{3} \mathbf{O D}$): $\delta 156.2,133.4,133.3,126.1$ ($\mathrm{q}, J=271.7 \mathrm{~Hz}$), 125.9 (q, $J=3.03 \mathrm{~Hz}), 124.2,123.7(\mathrm{q}, J=32.3 \mathrm{~Hz}), 121.6(\mathrm{q}, J=4.04 \mathrm{~Hz}), 119.2,98.8$, $38.0,34.2,34.1,27.62,27.56,27.1,27.00,26.96$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta-62.9$.
HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{O}_{2}: 325.1421$; found: 325.1410 .

(E)-4-(cyclohexylmethylene)-2-hydroxy-2-methylchroman-6-carbonitrile (3ja)

This compound was obtained in 33% yield (18.7 mg) as yellow solid. Eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.25$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CD3OD): $\delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=8.5$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=14.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=$ $14.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.37(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.69-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~s}$, $3 \mathrm{H}), 1.40-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.23(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CD3OD): $\delta 157.2,134.2,132.7,129.2,125.3,125.2,120.3$, $119.9,104.7,99.3,38.0,36.7,34.2,34.0,27.6,27.1,26.96,26.92$.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2}: 282.1499$; found: 282.1491 .
(E)-methyl 4-(cyclohexylmethylene)-2-hydroxy-2-methylchroman-6-carboxylate (3ka)

This compound was obtained in 38% yield (24.0 mg) as yellow liquid. Eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.2$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CD $\mathbf{3 O D}_{3}$): $\delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}$, $J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~s}$, $3 \mathrm{H}), 1.42-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.23(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CD3OD): δ 168.6, 157.6, 132.9, 130.6, 126.5, 126.1, 123.7, $123.4,118.8,99.0,52.4,37.9,36.9,34.3,34.2,27.6,27.1,27.02,26.98$.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{4}: 315.1602$; found: 315.1591 .

(E)-4-(cyclohexylmethylene)-2,8-dimethylchroman-2-ol (3la)

This compound was obtained in 68% yield (36.9 mg) as yellow liquid. Eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} H$ NMR (400 MHz, CD $\left.\mathbf{3} \mathbf{O D}\right): \delta 7.34(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.73 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J$ $=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.67(\mathrm{~m}, 5 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H})$, 1.44-1.33 (m, 2H), 1.30-1.17 (m, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 151.5,131.3,130.4,127.31,127.29,122.8,122.0$, $121.0,98.0,37.9,37.1,34.4,27.5,27.2,27.1,27.0,16.5$.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{2}$: 271.1703; found: 271.1693.

(E)-8-bromo-4-(cyclohexylmethylene)-2-methylchroman-2-ol (3ma)

This compound was obtained in 46% yield (30.9 mg) as yellow liquid. Eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{\mathbf{3}} \mathbf{O D}$): $\delta 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.75 (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J$ $=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H})$, 1.41-1.33 (m, 2H), 1.27-1.20 (m, 3H).
${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 150.1,133.0,132.7,126.4,125.5,123.7,122.1$, 112.7, 99.0, 38.0, 34.3, 34.2, 27.5, 27.1, 27.01, 26.97.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-H]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{BrO}_{2}$: 335.0652; found: 335.0647.

(E)-4-(cyclohexylmethylene)-2,7-dimethylchroman-2-ol (3na)

This compound was obtained in 69% yield (37.6 mg) as yellow liquid. Eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} H$ NMR (400 MHz, CD $\left.\mathbf{3} \mathbf{O D}\right): \delta 7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.58(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=14.5$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 2 \mathrm{H})$, 1.51 ($\mathrm{s}, 3 \mathrm{H}$), 1.40-1.32 (m, 2H), 1.26-1.17 (m, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 153.3,139.4,130.5,126.8,124.1,122.6,120.6$, 118.8, 98.1, 37.8, 37.2, 34.5, 27.5, 27.2, 27.09, 27.05, 21.2.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{2}: 271.1703$; found: 271.1697.

(E)-4-(cyclohexylmethylene)-7-methoxy-2-methylchroman-2-ol (3oa)

This compound was obtained in 57% yield (32.8 mg) as yellow liquid. Eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.3$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}$, CD $_{\mathbf{3}} \mathbf{O D}$): $\delta 7.41(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=8.8,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.31(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{~d}, J=14.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.49(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.69-1.63$ $(\mathrm{m}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.42-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.18(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 161.5,154.4,129.4,126.5,125.2,116.3,108.7$, 102.8, 98.4, 55.6, 37.8, 37.2, 34.6, 27.5, 27.2, 27.12, 27.08.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{3}: 287.1652$; found: 287.1644.
(E)-4-(cyclohexylmethylene)-2-methyl-3,4-dihydro-2H-benzo $[g]$ chromen-2-ol (3pa)

This compound was obtained in 54% yield (33.2 mg) as yellow liquid. Eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.35$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.89(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=14.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.39(\mathrm{~m}, 1 \mathrm{H})$, $1.82-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.42-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.26(\mathrm{~m}$, 3 H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 152.3,135.5,133.1,130.4,128.9,127.0,126.8$, $125.6,124.6,123.0,112.9,98.40,98.35,38.1,34.32,34.27,27.9,27.8,27.2,27.1$, 27.0.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{2}: 307.1703$; found: 307.1695.
(E)-tert-butyl (2-(4-(cyclohexylmethylene)-2-hydroxy-2-methylchroman-6-yl) ethyl)carbamate (3qa)

This compound was obtained in 53% yield $(42.1 \mathrm{mg})$ as yellow solid. Eluent: $\mathrm{PE} / \mathrm{EA}=$ $3 / 1, R_{f}=0.35$.
${ }^{1} H$ NMR (400 MHz, CD $_{3} \mathbf{O D}$): $\delta 7.36(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{~d}, J=14.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.67$ (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.50(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.75$ (m, 3H), 1.71-1.65 (m, 2H), $1.52(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.37-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.21$ (m, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 158.4,152.0,132.4,131.4,129.8,127.0,124.5$, $123.2,118.5,98.1,79.9,43.3,37.9,37.2,36.6,34.5,28.8,27.5,27.2,27.1,27.0$.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{NO}_{4}: 400.2493$; found: 400.2483 .
(S)-methyl 2-((tert-butoxycarbonyl)amino)-3-((E)-4-(cyclohexylmethylene)-2-

hydroxy-2-methylchroman-6-yl)propanoate (3ra)

This compound was obtained in 47% yield (42.7 mg) as yellow solid. Eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.3$.
${ }^{\mathbf{1}} \mathrm{H}$ NMR (400 MHz, CD3OD): $\delta 7.36(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=$ 8.3 Hz, 1H), $6.00(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.27(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{dd}, J=$ $13.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.34(\mathrm{~m}, 1 \mathrm{H})$, $1.79-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.35-1.31(\mathrm{~m}, 2 \mathrm{H})$, 1.27-1.20 (m, 3H)
${ }^{13}$ C NMR (100 MHz, CD3OD): $\delta 174.3,157.7,152.4,131.6,130.1,126.9,125.1$, $123.2,118.5,98.2,80.6,56.7,52.6,38.1,38.1,38.0,37.1,34.5,28.7,27.5,27.2$, 27.04, 27.00.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{NO}_{6}: 458.2548$; found: 458.2539 .

(E)-4-(cyclohexylmethylene)-2-ethylchroman-2-ol (3ab)

This compound was obtained in 51% yield (27.8 mg) as yellow liquid. Eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CD3OD): $\delta 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=$ 14.4 Hz, 1H), $2.51(\mathrm{~d}, ~ J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.34(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 5 \mathrm{H})$, $1.71-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.20(\mathrm{~m}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CD3OD): δ 153.5, 131.5, 129.3, 126.7, 124.2, 123.7, 121.5, $118.5,99.9,37.9,34.5,34.4,34.3,33.8,27.14,27.06,27.0,8.3$.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{2}: 271.1703$; found: 271.1696 .
(E)-4-(cyclohexylmethylene)-2-propylchroman-2-ol (3ac)

This compound was obtained in 43% yield (24.5 mg) as yellow liquid. Eluent: $\mathrm{DCM} / \mathrm{PE}=1 / 1, \mathrm{R}_{\mathrm{f}}=0.35$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathbf{O D}$): $\delta 7.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=$ $14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.34(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.67(\mathrm{~m}, 7 \mathrm{H})$, $1.57-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.23(\mathrm{~m}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta 153.5,131.5,129.3,126.8,124.2,123.7,121.5$, 118.5, 99.7, 43.3, 37.9, 35.0, 34.43, 34.35, 27.2, 27.06, 27.05, 18.0, 14.7.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{2}$: 285.1860; found: 285.1850.

(E)-2-butyl-4-(cyclohexylmethylene)chroman-2-ol (3ad)

This compound was obtained in 39% yield (23.3 mg) as yellow liquid. Eluent: $\mathrm{DCM} / \mathrm{PE}=1 / 1, \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{\mathbf{3}} \mathbf{O D}$): $\delta 7.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=$ $14.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.54(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.74(\mathrm{~m}, 5 \mathrm{H})$, $1.70-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.33(\mathrm{~m}, 4 \mathrm{H}), 1.28-1.20(\mathrm{~m}, 3 \mathrm{H}), 0.94$ (t, J $=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 153.5,131.5,129.3,126.8,124.2,123.7,121.5$, $118.5,99.8,40.7,38.0,35.0,34.43,34.37,27.2,27.1,27.0,26.9,24.1,14.5$.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{2}$: 299.2016; found: 299.2006 .

(E)-4-butylidene-2-methylchroman-2-ol (3ae)

This compound was obtained in 37% yield (16.1 mg) as yellow liquid. Eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.3$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta 7.54(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=$ $14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.48(\mathrm{~m}$, $2 \mathrm{H}), 0.99$ (t, J=7.4 Hz, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$): δ 153.5, 133.0, 129.3, 126.6, 124.3, 123.4, 121.6, 118.5, 98.2, 28.0, 27.54, 27.49, 23.6, 23.5.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{2}: 217.1234$; found: 217.1223.

(E)-2-methyl-4-(2-methylpropylidene)chroman-2-ol (3af)

This compound was obtained in 65% yield (28.3 mg) as yellow liquid. Eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.3$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta 7.52(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=$ $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.10-1.05(\mathrm{~m}$, $6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): δ 153.4, 132.9, 129.3, 126.6, 124.3, 123.4, 121.6, 118.5, 98.1, 37.0, 27.9, 27.6, 23.6, 23.5.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{2}: 217.1234$; found: 217.1222.
(E)-2-methyl-4-(2-methylbutylidene)chroman-2-ol (3ag)

This compound was obtained in 83% yield (38.5 mg) as yellow liquid. Eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.35$. An inseparable mixture of two diastereoisomers was obtained, and the ratio was determined to be $1 / 1$ by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 7.53(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.72$ $(\mathrm{m}, 1 \mathrm{H}), 2.58-2.44(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 1.5 \mathrm{H}), 1.51(\mathrm{~s}, 1.5 \mathrm{H}), 1.48-1.37(\mathrm{~m}, 2 \mathrm{H})$, 1.08-1.03 (m, 3H), 0.95-0.87 (m, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathrm{OD}$): $\delta 153.5,153.4,131.9,129.3,127.6,127.5,124.3$, 123.4, 121.6, 98.3, 98.2, 37.41, 37.37, 35.0, 34.9, 31.6, 31.5, 27.6, 27.3, 21.4, 21.2, 12.6, 12.4 .

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{2}: 231.1390$; found: 231.1380.

(E)-4-benzylidene-2-methylchroman-2-ol (3ah)

This compound was obtained in 43% yield (21.7 mg) as yellow solid. Eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D}_{3} \mathrm{OD}$): $\delta 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 4 \mathrm{H})$, $7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ C D} 3 \mathbf{3 O D}$): $\delta 154.0,138.6,130.9,130.5,130.1,129.2,127.8$, 124.9, 124.8, 123.4, 121.8, 118.7, 98.0, 37.8, 27.8.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{2}: 251.1077$; found: 251.1072.

(E)-2-methyl-4-(4-methylbenzylidene)chroman-2-ol (3ai)

This compound was obtained in 42% yield (22.3 mg) as white solid. Eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.35$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D}_{3} \mathrm{OD}$): $\delta 7.68(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.12(\mathrm{~m}, 6 \mathrm{H})$, 6.94-6.89 (m, 1H), $6.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=$ $14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 153.9,137.7,135.7,130.5,130.0,129.8,124.9$, 123.5, 121.8, 118.7, 98.0, 97.9, 37.9, 27.8, 21.3.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{2}: 265.1234$; found: 265.1229.

(E)-4-(4-fluorobenzylidene)-2-methylchroman-2-ol (3aj)

This compound was obtained in 39% yield (21.0 mg) as white solid. Eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.35$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.69(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 2 \mathrm{H})$, 7.23-7.15 (m, 2H), 7.13-7.07 (m, 2H), $6.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.02$ (d, $J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (d, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.53$ (s, 3H).
${ }^{13}$ C NMR (100 MHz, CD ${ }_{3}$ OD): $\delta 163.0(\mathrm{~d}, J=246.1 \mathrm{~Hz}), 153.9,134.8(\mathrm{~d}, J=2.8$ $\mathrm{Hz}), 132.3(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 130.9,130.2,124.9,123.7(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 123.2,121.8$, 118.7, 115.9 (d, $J=21.6 \mathrm{~Hz}$), 97.9 (d, $J=5.5 \mathrm{~Hz}$), 37.7, 27.8.
${ }^{19}$ F NMR (376 MHz, CD $_{3} \mathrm{OD}$): - 177.47.
HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M - H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{FO}_{2}: 269.0983$; found: 269.0977.

The tested unsuccessful allenols:

III.Experimental Mechanistic Studies

Deuterium-labeling experiments:

N-phenoxyacetamide 1a (0.10 mmol) was dissolved in DCE $(0.5 \mathrm{~mL})$ in the presence of $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$ and KOPiv (0.1 mmol). $\mathrm{D}_{2} \mathrm{O}$ (20 equiv) was used as the deuterium source. The reaction was conducted under the standard condition for 0.5 h , afterwards, 1a was recovered by flash column chromatography on silica gel (Eluent: PE/EA $=2 / 1$) and was analyzed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy. 30% deuteration was detected by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis.

The mixture of N-phenoxyacetamide $\mathbf{1 a}(0.10 \mathrm{mmol}, 1.0$ equiv), α-allenol 2a (0.12 mmol, 1.2 equiv), $\left[C p^{*} \mathrm{RhCl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$ and KOPiv ($0.1 \mathrm{mmol}, 1.0$ equiv) in DCE
(0.5 mL) was stirred under the standard conditions for $0.5 \mathrm{~h} . \mathrm{D}_{2} \mathrm{O}$ (20 equiv) was used as the deuterium source. Afterwards, the solvent was removed under reduced pressure, and the resulted mixture was purified by preparative TLC (eluent: $\mathrm{DCE} / \mathrm{PE}=5 / 1$) to afford the desired product 3aa in 58\% yield. The deuterium incorporation was analyzed by ${ }^{1} \mathrm{H}$-NMR spectroscopy. The result showed that approximately 30% deuteration was observed at the ortho position of the directing group and 81% deuteration at the allylic position.

In a sealed tube, the mixture of 3ea $(0.10 \mathrm{mmol})$ in $\mathrm{CD}_{3} \mathrm{OD}(0.5 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ for 3 h . Afterwards, 3ea was recovered by removal of the solvent and analyzed by ${ }^{1} \mathrm{H}$-NMR spectroscopy. 30% deuteration was detected at the allylic position.

General procedure for estimation of the KIE:

An equimolar mixture of $\mathbf{1 a}$ ($0.1 \mathrm{mmol}, 1.0$ equiv) and $\mathbf{1 a}-\boldsymbol{d}_{5}$ ($0.1 \mathrm{mmol}, 1.0$ equiv) was allowed to react with $\mathbf{2 a}(0.12 \mathrm{mmol}, 1.2$ equiv) in DCE $(0.5 \mathrm{~mL})$ in the presence of $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$ and $\mathrm{KOPiv}(0.1 \mathrm{mmol}, 1.0$ equiv). The reaction was stopped after 0.5 h , and the product was isolated in 31% (7.9 mg) isolated yield by preparative TLC and analyzed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy. The doublet at $\delta: 7.51$ $(0.61 \mathrm{H})$ were used for calculation and an average value of $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}=1.6$ was obtained.

Another two parallel KIE experiments were performed by treating 1 equiv of 1a or 1 equiv of $\mathbf{1 a} \mathbf{-} \boldsymbol{d}_{\mathbf{5}}$ with 1.2 equiv of $\mathbf{2 a}$ separately under the standard conditions for 0.5 h. Afterwards, the two reactions were mixed and the solvent was removed under reduce pressure, the resulted mixture was purified by preparative TLC to afford the corresponding product $\mathbf{3 a a}$ in $35 \%(9.1 \mathrm{mg})$ isolated yield. The doublet at $\delta: 7.51$ $(0.56 \mathrm{H})$ were used for calculation and an average value of $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}=1.3$ was obtained.

Control experiment:

The mixture of N-phenoxyacetamide 1a ($0.2 \mathrm{mmol}, 1.0$ equiv), α-allenol 4 (0.24 mmol, 1.2 equiv), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$ and KOPiv ($0.2 \mathrm{mmol}, 1.0$ equiv) in DCE $(1.0 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ in an oil bath for 4 h without exclusion of air or moisture. Afterwards, the solvent was removed under reduced pressure, and the resulted mixture was purified by preparative TLC (Eluent: $\mathrm{DCM} / \mathrm{PE}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.4$) to afford the desired product $\mathbf{5}$ in $64 \%(30.8 \mathrm{mg})$ isolated yield as yellow solid.
${ }^{1} H$ NMR (400 MHz, CD $_{3} \mathbf{O D}$): $\delta 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39-7.33(\mathrm{~m}, 2 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.71(\mathrm{~m}, 4 \mathrm{H})$, $1.70-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.19(\mathrm{~m}, 3 \mathrm{H}), 1.12-1.03(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 162.8,157.6,155.0,133.1,126.4,125.7,120.7$, 118.1, 115.5, 40.6, 38.7, 34.4, 27.34, 27.25.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}+\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{2}: 243.1380$; found: 243.1377.

The mixture of N-phenoxyacetamide 1a (0.2 mmol , 1.0 equiv), α-allenol 6 (0.24 mmol, 1.2 equiv), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$ and KOPiv ($0.2 \mathrm{mmol}, 1.0$ equiv) in DCE $(1.0 \mathrm{~mL})$ was stirred at $100{ }^{\circ} \mathrm{C}$ in an oil bath for 4 h without exclusion of air or moisture. Afterwards, the solvent was removed under reduced pressure, and the resulted mixture was purified by preparative TLC (Eluent: $\mathrm{PE} / \mathrm{EA}=5 / 1, \mathrm{R}_{\mathrm{f}}=0.3$) to afford the desired product 7 in 42% (23.0 mg) isolated yield as yellow liquid.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 7.10$ (td, $J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.94 ($\mathrm{dd}, J=7.5,1.7$
$\mathrm{Hz}, 1 \mathrm{H}), 6.82-6.76(\mathrm{~m}, 2 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.51$ (m, 4H), 1.42-1.37 (m, 2H), $1.12(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta 154.9,142.4,140.0,135.4,131.5,129.4,129.1$, 126.9, 120.5, 116.5, 72.0, 39.4, 30.1, 30.0, 29.1, 27.9.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{2}: 271.1703$; found: 271.1698.

Scheme S1 Proposed catalytic cycle for the formation of compound $\mathbf{5}$ and $\mathbf{7}$

Study on the coordination effect:

The mixture of N-phenoxyacetamide $\mathbf{1 a}(0.2 \mathrm{mmol}, 1.0$ equiv), allene $\mathbf{8}(0.24 \mathrm{mmol}$, 1.2 equiv), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$ and KOPiv ($0.2 \mathrm{mmol}, 1.0$ equiv) in DCE (1.0 mL) was stirred at $100{ }^{\circ} \mathrm{C}$ in an oil bath for 4 h without exclusion of air or moisture. Afterwards, the reaction was monitored by TLC and resulted in inseparable complexes.

The mixture of N-phenoxyacetamide 1a ($0.2 \mathrm{mmol}, 1.0$ equiv), NHTs-tethered allene 9 ($0.24 \mathrm{mmol}, 1.2$ equiv), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$ and $\mathrm{KOPiv}(0.2 \mathrm{mmol}, 1.0$ equiv) in DCE (1.0 mL) was stirred at $100^{\circ} \mathrm{C}$ in an oil bath for 4 h without exclusion of air or moisture. Afterwards, the solvent was removed under reduced pressure, and the resulted mixture was purified by preparative TLC (Eluent: DCM/PE $=3 / 1, \mathrm{R}_{\mathrm{f}}=$ 0.3) to afford the desired product $\mathbf{1 0}$ in $31 \%(25.5 \mathrm{mg})$ isolated yield as yellow solid.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3): $\delta 7.51(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.88-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.11(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.87$ ($\mathrm{s}, 3 \mathrm{H}$), 1.79-1.59 (m, 5H), 1.35-1.30 (m, 2H), 1.28-1.14 (m, 3H).
${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 150.1,143.2,138.5,134.3,129.3,128.6,127.3$, 123.1, 122.9, 121.1, 120.9, 117.5, 85.1, 37.2, 36.8, 33.9, 33.2, 26.3, 25.9, 21.6.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}+\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}: 412.1941$; found: 412.1941.

IV.Synthetic Applications

Derivatizations of product 3aa:

The mixture of chroman-2-ol 3aa ($0.2 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{LiAlH}_{4}(0.6 \mathrm{mmol}, 3.0$
equiv) in THF (1.0 mL) was added methanol (4.0 equiv), the resulted mixture was stirred at room temperature for 4 h without exclusion of air or moisture. Afterwards, the reaction was quenched by methanol, diluted with EtOAc and filtered through a short silica gel column to remove the metal residues. Then, the reaction mixture was concentrated and purified by preparative TLC (eluent: PE/EA = 5/1) to give the desired (E)-2-(1-cyclohexyl-4-hydroxypent-1-en-2-yl) phenol 11 in 61% isolated yield (31.7 mg) as light yellow solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CD $\left.\mathbf{3}_{\mathbf{3}} \mathbf{O D}\right): \delta 7.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.78-6.72 (m, 2H), 5.26 (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.59(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.76(\mathrm{~m}, 1 \mathrm{H})$, $2.56-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.38(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.66(\mathrm{~m}, 5 \mathrm{H}), 1.40-1.29(\mathrm{~m}, 3 \mathrm{H})$, $1.16-1.11(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D}_{\mathbf{3}} \mathbf{O D}$): $\delta 155.4,139.4,135.5,132.5,131.5,128.8,120.5$, 116.2, $67.6,41.4,38.5,34.44,34.36,27.2,27.1,23.1$.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{2}: 259.1703$; found: 259.1706 .

The mixture of 3aa ($0.2 \mathrm{mmol}, 1.0$ equiv) and methylmagnesium bromide (0.4 mmol, 2.0 equiv) in THF (1.0 mL) was stirred at room temperature for 12 h under an atmosphere of nitrogen. Afterwards, the reaction was quenched by saturated ammonium chloride solution and diluted with EtOAc. Then, the reaction mixture was concentrated and purified by preparative TLC (eluent: PE/EA $=5 / 1$) to give the desired (E)-2-(1-cyclohexyl-4-hydroxy-4-methylpent-1-en-2-yl) phenol 12 in 51% isolated yield (28.0 mg) as light yellow solid.
${ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $\left.\mathbf{~}\right)$: $\delta 9.10(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.91$ $(\mathrm{m}, 1 \mathrm{H}), 6.73-6.67(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 2 \mathrm{H})$, $2.44-2.34(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 5 \mathrm{H}), 1.30-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.13-1.04(\mathrm{~m}, 3 \mathrm{H}), 0.87(\mathrm{~s}$, 6 H).
${ }^{13}$ C NMR (100 MHz, CD $\mathbf{3} \mathbf{O D}$): $\delta 155.2,140.9,135.2,134.0,131.5,128.6,120.6$, $116.4,72.5,44.5,38.8,34.2,29.6,27.2,27.1$.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{2}: 273.1860$; found: 273.1867.

The mixture of chroman-2-ol 3a ($0.2 \mathrm{mmol}, 1.0$ equiv) and ethynylmagnesium bromide ($0.4 \mathrm{mmol}, 2.0$ equiv) in THF (1.0 mL) was stirred at room temperature for 12 h under an atmosphere of nitrogen. Afterwards, the reaction was quenched by saturated ammonium chloride solution and diluted with EtOAc. Then, the reaction mixture was concentrated and purified by preparative TLC (eluent: PE/EA $=5 / 1$) to give the desired (E)-2-(1-cyclohexyl-4-hydroxy-4-methylhex-1-en-5-yn-2-yl) phenol 13 in 54% isolated yield (30.8 mg) as light yellow solid.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}): $\delta 9.11(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.92$ $(\mathrm{m}, 1 \mathrm{H}), 6.72-6.66(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 1 \mathrm{H}), 2.94$ (d, $J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.41(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.60(\mathrm{~m}, 5 \mathrm{H})$, 1.31-1.22 (m, 3H), 1.20-1.10 (m, 2H), 1.04 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta 155.2,141.9,134.0,133.4,131.9,128.7,120.4$, 116.1, 89.0, 72.3, 68.8, 44.3, 38.6, 34.3, 34.2, 30.1, 27.2, 27.1, 27.0.

HRMS (ESI) $\boldsymbol{m} / \boldsymbol{z}:[\mathbf{M}-\mathbf{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{2}$: 283.1703; found: 283.1709.

V. X-Ray Crystallographic Data

Experimental: The sample was dissolved in appropriate amount of EtOAc followed by the addition of PE to furnish a saturated solution. Afterwards, the mixture was allowed to stand at $-20{ }^{\circ} \mathrm{C}$ to form the crystals. A suitable crystal was selected and measured on a XtaLAB Synergy R, DW system, HyPix diffractometer. The crystal was kept at 149.99(10) K during data collection. Using Olex2, the structure was solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimisation. The crystallographic data have already been deposited at the Cambridge Crystallographic Data Centre (CCDC numbers: 2084815), which can be acquired from
www.ccdc.cam.ac.uk/data_request/cif.
The ellipsoid contour percent probability level is 50% for the image of the structure.

Table S2. Crystal data and structure refinement for 3ai

Identification code	127-3
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}$
Formula weight	266.32
Temperature/K	149.99(10)
Crystal system	triclinic
Space group	P-1
a/Å	8.3313(17)
b/Å	8.8068(15)
c/Å	10.2625(15)
$\alpha /{ }^{\circ}$	77.537(14)
$\beta /{ }^{\circ}$	72.055(16)
γ°	75.300(16)
Volume/A ${ }^{3}$	685.1(2)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.291
μ / mm^{-1}	0.083
$\mathrm{F}(000)$	284.0
Crystal size/mm ${ }^{3}$	$0.14 \times 0.12 \times 0.1$
Radiation	Mo K $\alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ}$	4.22 to 49.994
Index ranges	$-7 \leq \mathrm{h} \leq 9,-10 \leq \mathrm{k} \leq 10,-9 \leq 1 \leq 12$
Reflections collected	4266
Independent reflections	$2399\left[\mathrm{R}_{\mathrm{int}}=0.0788, \mathrm{R}_{\text {sigma }}=0.1001\right]$
Data/restraints/parameters	2399/0/184
Goodness-of-fit on F^{2}	0.998
Final R indexes [$\mathrm{I}>=2 \sigma$ (I]	$\mathrm{R}_{1}=0.0832, \mathrm{wR}_{2}=0.2123$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1104, \mathrm{wR}_{2}=0.2471$
Largest diff. peak/hole / e \AA^{-3}	0.41/-0.43

VI. References

[S1] (a) H. M. Petrassi, K. B. Sharpless and J. W. Kelly, Org. Lett., 2001, 3, 139; (b) N. Takeda, O. Miyata and T. Naito, Eur. J. Org. Chem., 2007, 1491; (c) D. Tang, Y. Gai, A. Polemeropoulos, Z. Chen and Z. Wang, Bioorg. Med. Chem. Lett., 2008, 18, 5078; (d) G. Liu, Y. Shen, Z. Zhou and X. Lu, Angew. Chem., Int. Ed., 2013, 52, 6033. [S2] (a) J. Ye, S. Li, B. Chen, W. Fan, J. Kuang, J. Liu, Y. Liu, B. Miao, B. Wan, Y. Wang, X. Xie, Q. Yu, W. Yuan and S. Ma, Org. Lett., 2012, 14, 1346; (b) J. Kuang, H. Luo and S. Ma, Adv. Synth. Catal., 2012, 354, 933.

VII. Copies of ${ }^{\mathbf{1}} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

3aa- ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6})

3aa- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum of 3aa:

3ba- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ba- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

$\begin{aligned} & \text { op } \\ & \stackrel{0}{0} \\ & \stackrel{1}{0} \end{aligned}$		$\begin{aligned} & \text { O్O } \\ & \text { © } \end{aligned}$	

3ca- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ca- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3da- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

-

3da- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

\square
\square

3da- ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ea- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ea- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

앙	Town ia
กั่	M Mowio icio
T	-4ir

®.
N
in

3fa- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3fa- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ga- ${ }^{-1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ga- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ha- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

	$\begin{aligned} & \text { 20్口 } \\ & \text { OOO } \end{aligned}$

3ha- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ia- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ia- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ia- ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ja- ${ }^{-1} \mathrm{H}$ NRR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ja- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

[^0]3ka- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ka- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

$\begin{aligned} & \text { N} \\ & \text { O. } \\ & \text { © } \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { in } \\ & \end{aligned}$	 	$\begin{aligned} & \mathbf{0} \\ & \text { O. } \end{aligned}$	

3la- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3la- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

呂	骼	

3ma- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ma- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

$\begin{aligned} & \circ \\ & \stackrel{\circ}{0} \\ & \stackrel{\circ}{1} \end{aligned}$		$\stackrel{\ddots}{0}$ $\stackrel{\sim}{\sim}$ $\underset{1}{+}$

3na- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3na- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

$$
\begin{aligned}
& \stackrel{\infty}{\infty}
\end{aligned}
$$

3oa- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3oa- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3pa- ${ }^{-1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3pa- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

※
ג子dig mmmNNNNN

3qa- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3qa- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

8 ∞		 	$\stackrel{\text { O }}{\stackrel{\text { N }}{\infty}}$		

3ra- ${ }^{-1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ra- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

8	0
0	0
0	0
1	1

3ab- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ab- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ac- ${ }^{-1} \mathrm{H}$ NRR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ac- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)
드N

3ad- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ad- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ae- ${ }^{-1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ae- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3af- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3af- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ag- ${ }^{-1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ag- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ah- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ah- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ai- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3ai- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3aj- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

은 mioniog
$\stackrel{\text { ®. }}{\square}$

3aj- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

3aj- ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

5- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

5- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

7- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

7- ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

10- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

10- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

11- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

11- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

12- ${ }^{-1}$ H NMR (400 MHz , DMSO- d_{6})

12- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

13- ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6})

13- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

[^0]:

