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1 Materials and Methods

Chemicals and reagents were purchased from AcROS-ORGANICS, ALFA-AESAR, CHEMPUR or SIGMA
ALDRICH and used directly without further purification unless specified otherwise. Moisture- or
oxygen-sensitive reactions were carried out in dried glassware—heated under vacuum—using
standard Schlenk techniques in a dry argon atmosphere (Argon 5.0 from SAUERSTOFFWERKE
FRIEDRICHSHAFEN). Anhydrous toluene was obtained from an M. BRAUN solvent purification
system (MB-SPS-800) and stored over activated molecular sieves (3 A) for several days
Anhydrous 1,4-dioxane and DMF were purchased from ACROS-ORGANICS (extra dry, < 50 ppm
H,0, AcroSealTM) and further stored over activated molecular sieves (3 A). Other anhydrous
solvents were obtained by drying over activated molecular sieves (3 A) for several days.!]
Cyclohexane for column chromatography was purchased in technical grade and purified by
distillation under reduced pressure. Other solvents were purchased and used in analytical

grade.

Thin layer chromatography was carried out using silica gel-coated aluminum plates with a
fluorescence indicator (MEeRck 60 F2s4). The visualization of spots was achieved using UV-light
(Amax = 254 and 366 nm) or Seebach staining reagent (5.0 g molybdatophosphoric acid, 2.0 g
CeS04 - 4 H,0, 20 mL H2S04 conc., 150 mL H;0). In some cases, the thin layer chromatography

plates were deactivated with triethylamine (NEts) before they were used.

Flash column chromatography was carried out using silica gel 60 (grain size 40-63 um) from
MACHERY-NAGEL or aluminum oxide basic 90 from MACHERY-NAGEL. Desactivated silica gel. In
specially denoted cases the silica gel was deactivated with triethylamine (NEts). Therefore,
silica gel was suspended in NEt3 and cyclohexane (v/v: 1/1) for 1 solvent was removed under

reduced pressure.

Nuclear magnetic resonance (NMR) spectra were recorded at 300 K using BRUKER Avance |
[400.1 MHz (*H), 101.6 MHz (*3C)] and BRUKER Avance Il HD [500.3 MHz (*H), 125.8 MHz (}3C)]
spectrometers. Chemical shifts are reported in parts per million (ppm, 6 scale) relative to the
signal of tetramethylsilane (6=0.00 ppm). 'HNMR spectra are referenced to
tetramethylsilane as an internal standard or the residual solvent signal of CDCl3
(6 = 7.26 ppm). 13C NMR spectra are referenced to tetramethylsilane as an internal standard

or the solvent signal of CDCls (6=77.16 ppm).l2 19F spectra are referenced to
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tetramethylsilane following the IUPAC recommendations.! Coupling constants J are given in

Hertz [Hz].

The analysis followed first order, and the multiplets were abbreviated using the following
codes: singlet (s), broad singlet (br), doublet (d), triplet (t), quartet (q), multiplet (m) and

combinations thereof, such as doublet of doublets (dd).

High Resolution Mass Spectrometry (HRMS) were measured on a THERMO FISCHER SCIENTIFIC INC.
Exactive via electro spray ionization (ESI) or atmospheric pressure chemical ionization (APCI)

with an orbitrap analyzer.

Cyclic voltammograms (CVs) were measured in solution and inside a glovebox using a
METROHM Autolab PGSTAT 128N. As working electrode, a glassy carbon or platinum disc
electrode (2 mm diameters) was used. A platinum rod served as counter electrode, and as
reference electrode a Ag/AgNOs electrode containing a silver wire immersed in an inner
chamber filled with 0.1 m AgNOs containing 0.1 M n-BuaNPFe in the outer chamber were used.

For the internal reference, the ferrocene/ferrocenium (Fc/Fc*) redox couple was used.

UV/Vis absorption spectra were measured on a SHIMADzU UV-1800 using Quartz (Suprasil)

cuvettes (10 mm path length) from HELLMA ANALYTICS.

Fluorescence spectra were recorded on a Jasco FP-8300 and were measured in Quartz
(Suprasil) cuvettes (10 mm path length) from HELLMA ANALYTICS at 25 °C. Unless otherwise
noted, the respective absorption maxima with the longest wavelength of the compound was

used for excitation.

The Light source for the reductive dehalogenations was a commercially available nail dryer
lamp, which contains four UV-A bulbs (9 W, 365 nm), purchased from MYLEE BEAUTY
(https://www.justbeauty.co.uk) and used as shown below (Figure S1). Reaction vessels were
placed in front of the UV-A bulbs under vigorous stirring while cooling with compressed air

(see Figure S1).
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Figure S1: Representative reaction set-up in front (left) and side view (right) with the reaction vessels placed in
front of the nail dryer lamp.
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2 Synthetic Manipulations

PhPT and MePT were synthesized according to literature procedures.*>!

2.1 Decamethoxypillar[5]arene (1)

OMe
CH>

MeO

The synthesis was carried out following a modified procedure by Boinski et al.lf
1,4-Dimethoxybenzene (700 mg, 5.06 mmol) and paraformaldehyde (152 mg, 5.06 mmol,
1 eq.) were dissolved in 1,2-dichloroethane (50 mL) and trifluoroacetic acid (2.5 mL, 5 vol%)
was added. The mixture was refluxed for 3 h. After cooling to rt the mixture was poured into
MeOH (100 mL) and the precipitate was filtered. To obtain more product, the filtrate was
concentrated and poured into MeOH again. The brown solid was purified by column
chromatography (silica gel, CH.Cl,/EtOAc: 100/1) to afford dimethoxypillar[5]arene (1,
507 mg, 0.68 mmol, 67%) as a white solid.

R: 0.50 (CH,Cl,/EtOAc: 100/1); *H NMR (400 MHz, CDCls): & 6.74 (s, 10H), 3.77 (s, 10H), 3.62
(s, 30H); 13C NMR (101 MHz, CDCls): § 151.1, 128.5, 114.4, 56.0, 29.9; HRMS (ESI*): m/z calcd.
for CasHs1010 751.3477 [M+H]*, found 751.3453.
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2.2 Hydroxynonamethoxypillar[5]arene (2)

The synthesis was carried out following a modified procedure by Han et al.l”}
Dimethoxypillar[5]arene (1, 1.00 g, 1.33 mmol) was dissolved in anh. CHCl3 (40 mL) at -15 °C.
BBrs (0.51 mL, 1.33 g, 5.33 mmol, 4 eq.) in CHCls (2 mL) was slowly added via syringe. The
mixture was kept below -8 °C for 2.5 h. Then H;0 (40 mL) was added. The organic layer was
separated, and the aqueous layer was extracted with CH;Cl, (3 x 70 mL). The combined
organic layers were washed with brine (50 mL). The solvent was removed under reduced
pressure, and the brown residue was purified by column chromatography (silica gel,

cyclohexane/EtOAc: 10/1 to 3/1) to afford 2 (399 mg, 0.541 mmol, 41%) as a slightly red solid.

Rs 0.24 (cyclohexane/EtOAc: 3/1); *H NMR (500 MHz, CDCls, spectrum contains residues of
CH2Cl; bound by the pillarene at 4.79 ppm): § 6.87 (s, OH, 1H), 6.73 (s, 1H), 6.70 (s, 2H), 6.69
(s, 1H), 6.65 (s, 1H), 6.65 (s, 1H), 6.61 (s, 1H), 6.60 (s, 2H), 6.59 (s, 1H), 3.79 (s, OCHs, 3H), 3.78
(3 x5, CH2, 6H), 3.75 (s, CH2, 2H), 3.73 (s, CH2, 2H), 3.73 (s, OCH3, 3H), 3.69 (s, OCHs, 3H), 3.62
(s, OCHs, 3H), 3.60 (s, OCHs, 6H), 3.59 (s, OCHs, 3H), 3.56 (s, OCHs, 3H), 3.50 (s, OCHs, 3H);
13C NMR (126 MHz, CDCls, spectrum contains residues of CH2Cl, complexed in the pillarene at
53.18 ppm)? 6 151.95,151.19, 151.07, 151.05, 151.03, 151.01, 150.90, 148.70, 147.64, 130.10,
129.43, 128.79, 128.48, 128.42, 128.37, 128.22, 127.81, 126.91, 125.08, 118.98, 114.67,
114.59, 114.41, 114.18, 113.95, 113.07, 113.00, 56.44, 56.20, 56.14, 56.07, 55.97, 55.92,
31.03, 30.18, 30.02, 29.70, 28.95; HRMS (ESI*): m/z calcd. for CasHasO10N 737.3314 [M+H]*,
found 737.3320.

2 Signals of six C-atoms are missing due to overlap with the peaks at 151.01, 114.67, 114.18, 56.44, 55.9 (overlap
of 3 C-atoms) ppm.
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2.3 Nonamethoxypillar[5]arene triflate (S1)

S1

The synthesis was carried out following a modified procedure by Han et al.l”}
Monohydroxypillar[5]arene (250 mg, 339 umol) and anh. pyridine (50 uL, 54 mg, 535 umol,
1.8 eq.) were dissolved in anh. CHxCl; at 0 °C, and the mixture was stirred for 30 min at 0 °C.
Tf,0 (90 umL, 143 mg, 619 umol, 1.6 eq.) was slowly added. The resulting purple-brown
mixture was stirred at 0 °C for 30 min and at rt for 2.5 h. The solvent was removed under
reduced pressure, and the residue was purified by column chromatography (silica gel,

cyclohexane/EtOAc: 3/1) to afford S1 (271 mg, 312 umol, 92%) as a brown solid.

R: 0.30 (cyclohexane/EtOAc: 3/1); *H NMR (500 MHz, CDCls): & 7.11 (s, 1H), 6.82 (s, 1H), 6.78
(s, 1H), 6.763 (s, 1H), 6.759 (s, 2H), 6.755 (s, 1H), 6.73 (s, 1H), 6.71 (s, 2H), 3.84 (s, 2H), 3.79 (s,
2H), 3.78 (s, 4H), 3.76 (s, 2H), 3.69 (s, 3H), 3.68 (s, 3H), 3.68 (s, 3H), 3.66 (s, 3H), 3.65 (s, 3H),
3.64 (s, 3H), 3.64 (s, 3H), 3.63 (s, 3H), 3.60 (s, 3H); 3C NMR (126 MHz, CDCls): § 156.1, 151.10,
151.06, 151.04, 150.96, 150.9, 150.75, 150.72, 141.2, 132.4, 129.8, 129.3, 128.9, 128.4, 128.3,
127.2,126.9,123.2,118.9 (q, Ycr = 322.4 Hz), 114.39, 114.37, 114.34, 114.26, 114.18, 114.16,
113.9,113.8,113.7, 56.1, 55.99, 55.96, 55.89, 55.87, 55.7, 55.6, 55.5, 30.8, 29.8, 29.73, 29.65,
29.6; FNMR (471 MHz, CDCls): 6 -74.0; HRMS (ESI*): m/z calcd. for CasHs101:NFsS
886.3079[M+NH,]*, found 886.3065.
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2.4 10-(4-Chlorophenyl)-10H-phenothiazine (S2)

Cl

CLO

Phenothiazine (500 mg, 2.51 mmol), 1-bromo-4-chlorobenzene (481 mg, 2.51 mmol, 1.0 eq.),
KO'Bu (338 mg, 3.01 mmol, 1.2 eq.), Pd(OAc); (15.5 mg, 75.0 umol, 3 mol%) and SPhos
(30.9 mg, 75.0 mmol, 3 mol%) were dissolved in anh. and degassed toluene (10 mL) and
stirred at 100 °C for 16 h. After cooling to rt the mixture was filtered through a pad of Celite®
and rinsed with EtOAc. The solvent was removed under reduced pressure, and the residue
was purified by column chromatography (silica gel, cyclohexane) to afford S2

(565 mg,1.83 mmol, 73%) as a white solid.

R 0.08 (cyclohexane); *H NMR (400 MHz, CDCls): & 7.57-7.54 (m, 2H), 7.34-7.31 (m, 2H),
7.05-7.02 (m, 2H), 6.90-6.81 (m, 4H), 6.23 (dd, J = 8.1, 1.4 Hz, 2H); 13C NMR (101 MHz, CDCl3):
6 144.05, 139.97, 133.88, 131.93, 131.12, 127.08, 127.05, 123.00, 121.16, 116.55; HRMS
(ESI*): m/z calcd. for C1gH12NCIS* 309.0373 [M]*, found 309.0378.
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2.5 10-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-10H-
phenothiazine (3)

L0

The synthesis was carried out following a modified procedure by Hou et al.l¥! Phenothiazine
$2 (500 mg, 1.61 mmol), Pd2dbas (7.40 mg, 8.00 umol, 0.5 mol%.), XPhos (15.6 mg, 32.0 umol,
2.0 mol%), bis(pinacolato)diboron (492 mg, 1.94 mmol, 1.2eq.) and KOAc (475 mg,
4.84 mmol, 3.0 eq.) were dissolved in anh. and degassed 1,4-dioxane (16 mL) and stirred at
100 °C for 16 h. After cooling to rt the reaction mixture was filtered through a pad of Celite®
and rinsed with EtOAc. The solvent was removed under reduced pressure and the residue was
purified by recrystallisation from /PrOH to obtain 3 (580 mg, 1.45 mmol, 90%) as colorless

crystals.

14 NMR (400 MHz, CDCl3): 6 8.01-7.99 (m, 2H), 7.37-7.34 (m, 2H), 7.04 (dd, J = 7.3, 1.8 Hz,
2H), 6.88-6.80 (m, 4H), 6.29 (dd, J = 7.9, 1.5 Hz, 2H), 1.38 (s, 12H); 3C NMR (101 MHz, CDCl3):
6 144.28, 144.04, 137.26, 128.95, 127.01, 126.98, 122.90, 121.57, 117.20, 84.22, 67.26,
25.082; HRMS (ESI*): m/z calcd. for C24H2402NBS 401.1615 [M]*, found 401.1618.

3 One Signal is missing du to coupling to 1°B/1B.
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2.6 Pillar[5]arene PA-PhPT

CH

4MeO

PA-PhPT

Pillarene triflate S1 (209.5 mg, 241.0 mmol), boronic ester 3 (120.0 mg, 299.0 umol, 1.2 eq.),
Pdx(dba)s (22.2 mg, 24.2 umol, 10 mol%), XPhos (19.8 mg, 48.2 umol, 20 mol%) and Ks3POa
(520 mg, 2.45 mmol, 10.2 eq.) were dissolved in a mixture of degassed toluene (15 mL) and
degassed H,0 (1.5 mL). The resulting mixture was stirred at 100 °C for 16 h. After cooling to
rt, H,O (20 mL) was added and the aqg. layer was extracted with CH,Cl; (3 x 30 mL). The
combined organic layers were washed with brine (20 mL), dried over Na;SO4 and the solvent
was removed under reduced pressure. The residue was purified by column chromatography
(silica gel deactivated with NEts, cyclohexane/EtOAc: 10/1 to 3/1) to afford PA-PhPT (232 mg,

234 pmol, 97%) as a light-yellow solid.

Rs 0.16 (cyclohexane/EtOAc: 3/1); 'H NMR (500 MHz, CDCl3) § 7.43-7.42 (m, 2H), 7.38-7.37
(m, 2H), 7.18 (s, 1H), 7.04 (dd, /= 7.5, 1.7 Hz, 2H), 6.89 (ddd, J=8.2, 7.8, 1.6 Hz, 2H), 6.86 (s,
1H), 6.83 (ddd, J = 7.6, 7.5, 1.3 Hz, 2H), 6.81 (s, 1H), 6.79 (s, 1H), 6.77 (s, 2H), 6.75 (s, 1H), 6.69
(s, 1H), 6.68 (s, 1H), 6.33 (dd, J = 8.2, 1.3 Hz, 2H), 6.00 (s, 1H), 3.94 (s, 2H), 3.82 (s, 2H), 3.80 (s,
2H), 3.79 (s, 2H), 3.73 (s, 2H), 3.67 (s, 3H), 3.66 (s, 3H), 3.65 (s, 6H), 3.64 (s, 3H), 3.62 (s, 3H),
3.60 (s, 3H), 3.57 (s, 3H), 3.35 (s, 3H); 3C NMR (126 MHz, CDCls)? § 156.94, 151.43, 151.18,
151.11, 151.02, 150.87, 150.54, 144.49, 142.65, 139.30, 138.21, 132.85, 132.46, 132.34,
130.26, 128.71, 128.62, 128.60, 128.54, 128.04, 127.88, 127.55, 127.01, 126.95, 122.70,
120.62, 116.35, 114.74, 114.72, 114.46, 114.41, 114.23, 114.04, 113.50, 112.76, 56.10, 56.07,
56.03, 55.97, 55.96, 55.95, 55.89, 55.84, 55.10, 32.51, 30.51, 30.17, 29.92, 29.77; HRMS (ESI*):
m/z calcd. for Ce2He009NS 994.3983 [M+H]*, found 994.3970.

2 Signals of five C-atoms are missing due to the overlap with the peaks 151.02, 128.71, 128.54, 114.23 (overlap
of 3 C-atoms).
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2.7 1-(4-Bromobutoxy)-4-bromobenzene (S3)

Br
Br\/\/\o/©/

S3

The synthesis was carried out following a modified procedure by Li et al.l®! 4-Bromophenol
(400 mg, 2.32 mmol) and 1,4-dibromobutane (1.7 mL, 3.1 g, mmol, 6.2 eq.) were dissolved in
acetone (240 mL). K,COs (2.00 g, 14.5 mmol, 6.3 eq.) was added and the mixture was stirred
at 70 °C for 16 h. Remaining K,CO3 and KBr were separated by filtration and the solvent was
removed under reduced pressure. The remaining oil was purified by distillation at 10 mbar to
recover the excess of 1,4-dibromobutane (bp: 65 °C) and at 5.5 - 1072 mbar (bp: 120 °C) to
obtain $3 (2.00 g, 7.72 mmol, 96%) as a colorless oil.

14 NMR (400 MHz, CDCls): § 7.39-7.34 (m, 2H), 6.78-6.74 (m, 2H), 3.96 (t, J = 6.0 Hz, 2H), 3.48
(t, J = 6.6 Hz, 2H), 2.09-2.02 (m, 2H), 1.95-1.87 (m, 2H); 3C NMR (101 MHz, CDCls): & 158.2,
132.4,116.5,113.1, 67.3, 33.4, 29.6, 28.0; HRMS (APCI*): m/z calcd. for CsH16’°Br,0 303.9006
[M+NHa4]*, found 303.9004.
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2.8 10-(4-(4-Bromobutoxy)phenyl)-10H-phenothiazine (4)

Br

Phenothiazine (1.58 g, 7.94 mmol), aryl bromide S3 (2.50 g, 8.11 mmol, 1.02 eq.), Pd(OAc):
(18.9 mg, 84 umol, 10 mol%), SPhos (33.4 mg, 81.0 umol, 10 mol%) and Cs,COs (5.28 g,
16.2 mmol, 2.0 eq.) were dissolved in a mixture of anh. and degassed 1,4-dioxane (20 mL) and
anh. and degassed toluene (20 ml) and stirred at 100 °C for 16 h. The reaction mixture was
filtered through a pad of Celite® and rinsed with CH2Cl; (100 mL). The solvent was removed
under reduced pressure and the residue was purified by column chromatography (silica gel
deactivated with NEts, cyclohexane/EtOAc: 50/1) to afford 4 (1.20 g, 3.45 mmol, 43%) as a

light beige solid.

R 0.34 (cyclohexane/EtOAc: 50/1); *H NMR (500 MHz, CDCls): & 7.31-7.28 (m, 2H), 7.10-7.07
(m, 2H), 6.98 (dd, J=7.4,1.7 Hz, 2H), 6.82 (ddd, J = 8.2, 7.9, 1.7 Hz, 2H), 6.78 (ddd, J = 7.4, 7.3,
1.7 Hz, 2H), 6.18 (dd, J = 8.1, 1.3 Hz, 2H), 4.07 (t, J = 6.0 Hz, 2H), 3.53 (t, J = 6.6 Hz, 2H), 2.12
(tt,J=7.2, 6.5 Hz, 2H), 2.00 (tt, J = 7.2, 5.9 Hz, 2H); 3C NMR (126 MHz, CDCl3): 6 158.7, 144.8,
133.5,132.4,126.9, 126.8,122.4,119.8, 116.5, 115.8, 67.3, 33.5, 29.6, 28.1; HRMS (ESI*): m/z
calcd. for C2oH200NBrS* 425.0443 [M]*, found 425.0446.
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2.9 Pillar[5]arene PA-C4-PhPT

Me O>
CH, CH,
MeO

PA-C4-PhPT

Phenothiazine 4 (70 mg, 136 umol mmol, 1.2 eq.) and NaH (60% in mineral oil, 11 mg,
280 umol, 2.0 eq.) were dissolved in anh. DMF (2 mL) at 0 °C. After the solution was stirred at
0°C for 1 h, hydroxypillarene 2 (100.0 mg, 136 umol) was added, and the mixture was stirred
at 0°Cfor 1 h and at rt for 16 h. H,0 (10 mL) was added and the aq. layer was extracted with
CHCl; (3x 30 mL). The combined organic layers were washed with H,0 (3 x 30 mL) and brine
(30 mL), dried over Na;SO4 and the solvent was removed under reduced pressure. The residue
was purified by column chromatography (SiO2/NEts, cyclohexane/EtOAc: 5/1). PA-C4-PhPT

(135 mg, 133 umol, 97%) was obtained as a colorless solid.

R 0.28 (cyclohexane/EtOAc: 5/1); *H NMR (500 MHz, CDCls): § 7.31-7.28 (m, 2H), 7.11-7.08
(m, 2H), 6.99 (dd, J = 7.4, 1.7 Hz, 2H), 6.83 (ddd, J = 7.5, 7.2, 1.7 Hz, 2H), 6.78-6.76 (m, 8H),
6.75 (s, 1H), 6.74 (s, 1H), 6.734 (s, 1H), 6.732 (s, 1H), 6.19 (dd, J=8.1, 1.3 Hz, 2H), 4.09 (t,
J=6.2 Hz, 2H),3.93 (t,J = 6.0 Hz, 2H), 3.81 (s, 2H), 3.78 (s, 2H), 3.77 (s, 6H), 3.641 (s, 3H), 3.636
(s, 12H), 3.634 (s, 3H), 3.628 (s, 3H), 3.623 (s, 6H), 2.08-2.03 (m, 2H), 2.01-1.96 (m, 2H);
13C NMR (126 MHz, CDCl5)? 6 158.84, 151.06, 151.02, 151.00, 150.98, 150.95, 150.13, 144.80,
133.39, 132.42, 128.52, 128.45, 128.41, 128.35, 128.31, 126.94, 126.76, 122.38, 119.82,
116.46, 115.76, 115.19, 114.39, 114.37, 114.34, 114.27, 114.25, 68.17, 67.98, 56.05, 56.00,
55.97, 55.93, 55.89, 30.00, 29.96, 29.86, 29.83, 29.72, 26.60, 26.50; HRMS (ESI*): m/z calcd.
for CesH71011N2S 1099.4773 [M+NH4]*, found 1099.4773.

2 Signals of 17 C-atoms are missing due to overlap with the peaks at 151.06 (overlap of 3 C-atoms), 150.98
(overlap of 3 C-atoms), 128.45, 128.41 (overlap of 5 C-atoms), 114.39, 114.37, 114.34, 114.25, 56.00, 55.97
(overlap of 3 C-atoms), and 55.93 ppm.
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10-(4-Bromobutyl)-10H-phenothiazine (5)

Br

1,4-Dibromobutane (0.88 mL, 1.62 g, 7.46 mmol, 2.9 eq.) and NaH (60% in mineral oil, 150 mg,
3.75 mmol, 1.5eq.) were suspended in anh. DMF (10 mL). A solution of phenothiazine
(500 mg, 2.51 mmol) in DMF (2.5 mL) was added over 2.5 h with a syringe pump. After
addition the mixture was stirred at rt for 16 h. H,O (10 mL) was added, and the resulting
precipitate was dissolved in CH.Cl,; (20 mL). The aq. layer was extracted with CHCl;
(3 x 30 mL). The combined organic layers were washed with H,0 (4x 30 mL), brine (30 mL) and
dried over Na;SOs. The solvent was removed under reduced pressure and the residue was
purified by column chromatography (SiO2/NEts, cyclohexane/EtOAc: 1/0to 100/1). 5 (531 mg,

1.60 mmol, 63%) was obtained as a colorless oil.

R:0.27 (cyclohexane); *H NMR (400 MHz, CDCls, spectra contains EtOAc): § 7.17-7.13 (m, 4H),
6.94-6.86 (m, 4H), 3.90 (br, 2H), 3.39 (t, J = 6.3 Hz, 2H), 2.00-1.94 (m, 4H); 13C NMR (101 MHz,
CDCl3): 6 127.7,127.4,125.7, 122.8, 115.8, 46.5, 33.5, 30.1, 25.5; HRMS (ESI*): m/z calcd. for
Ci6H16"°BrNS 330.0181 [M]*, found 330.0182.
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2.10 Pillar[5]arene PA-C4-PT

o

OMe O>
CH, CH,
MeO 4MeO

PA-C4-PT

10-(4-Bromobutyl)-10H-phenothiazine (5, 136 mg, 407 umol, 1.5eq.) and NaH (60% in
mineral oil, 22 mg, 550 umol, 2.0 eq.) were dissolved in anh. DMF (3.5 mL) at O °C. After the
solution had been stirred at 0 °C for 1 h, hydroxypillarene 2 (200.0 mg, 271 umol) was added
and the mixture was stirred at 0 °C for 1 h and at rt for 16 h. H,O (10 mL) was added and the
aq. layer was extracted with CH,Cl, (3x 30 mL). The combined organic layers were washed
with H20 (3 x 30 mL) and brine (30 mL), dried over Na2SO4 and the solvent was removed under
reduced pressure. The residue was purified by column chromatography (SiO2/NEts,

cyclohexane/EtOAc: 5/1). PA-C4-PT (230 mg, 232 umol, 84%) was obtained as a colorless solid.

R: 0.27 (cyclohexane/EtOAc: 5/1); *H NMR (500 MHz, CDCls): § 7.15-7.10 (m, 4H), 6.91-6.87
(m, 4H), 6.77 (s, 1H), 6.76 (s, 1H), 6.75 (s, 1H), 6.74 (s, 1H), 6.734 (s, 1H), 6.732 (s, 1H), 6.71 (s,
2H), 6.70 (s, 1H), 6.66 (s, 1H), 3.95 (t, J = 6.9 Hz, 2H), 3.84 (t, J = 6.1 Hz, 2H), 3.77 (s, 2H), 3.76
(s, 4H), 3.74 (s, 2H), 3.73 (s, 2H), 3.63 (3 x s, 9H), 3.62 (s, 3H), 3.613 (s, 3H), 3.605 (s, 3H), 3.595
(s, 3H), 3.57 (s, 3H), 3.52 (s, 3H), 2.08-2.02 (m, 2H), 1.93—1.88 (m, 2H); 13C NMR (126 MHz,
CDCl3)? & 151.04, 151.01, 150.98, 150.95, 150.94, 150.91, 150.08, 145.37, 128.50, 128.46,
128.43, 128.40, 128.36, 128.33, 128.28, 127.67, 127.38, 125.38, 122.65, 115.59, 115.11,
114.39, 114.37, 114.33, 114.31, 114.25, 114.20, 114.14, 67.98, 55.96, 55.93, 55.86, 47.04,
30.03, 29.96, 29.82, 29.58, 27.28, 27.07, 23.82; HRMS (ESI*): m/z calcd. for CeoHsaO10NS
990.4245 [M+H]*, found 990.4244, CeoHs7010N2S 1007.4511 [M+NH4]*, found 1007.4509.

2 Signals of 14 C-atoms are missing due to the overlap with the peaks at 151.01, 150.98, 150.95, 128.36, 128.33,
128.28, 114.33, 114.25, 55.96 (overlap of four C-atoms), 55.93 (overlap of three C-atoms), 55.86 and 29.82 ppm.
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2.11 General Procedure for Reductive Dehalogenation

The respective bromide 6 or 7 (200 umol) was dissolved in anh. acetonitrile (2.5 mL) ina 10 mL
reaction tube equipped with a septum cap and a magnetic stir bar. The respective photoredox
catalyst (10.0 umol, 5 mol%), N,N-diisopropylethylamine (5.0 eq.) and formic acid (5.0 eq.)
were added. The reaction mixture was degassed with three freeze-pump-thaw cycles. The
tube was backfilled with argon and vigorously stirred in front of a nail dryer lamp (365 nm) for
48 hours (see Figure S1). The reaction was cooled with compressed air. After the irradiation
0.3 mL of the reaction mixture were diluted with 0.3 mL of MeCN-d3 and the conversion was
determined by the ratio of starting material to product in the *H NMR spectra. In some cases,
Na,S0s was added to reduce phenothiazine radical cations. Each reaction was performed

three times, and the conversions were averaged.
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3 NMR Spectra
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Figure S2: *H NMR spectrum of 1 in CDCl3 (400 MHz).
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Figure S3: 13C NMR spectrum of 1 in CDCls (101 MHz).
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(3) in CDCI3(101 MHz).
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Figure S22: 13C NMR-spectrum of 1-(4-bromobutoxy)-4-bromobenzene (S3) in CDClz (101 MHz).
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Figure $25: *H NMR-spectrum of PA-C4-PhPT in CDCl3 (500 MHz).
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Figure S27: H,H-COSY spectrum of PA-C4-PhPT in CDClz (500, 126 MHz).
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Figure S28: HSQC spectrum of PA-C4-PhPT in CDCls3 (500, 126 MHz). Blue: CHz groups, red: CH or CHs groups.
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100
110
120
F130
140
150
160
F170
180
190
t200
210

5 [ppm]

S32



[ o co@ os
SHa® o iyl S
SRG8 - PR 33
I/ N\ N \

Br

[ ry by T
B‘.O 7‘.5 7‘.0 6‘.5 G‘.O 5‘.5 5‘.0 4‘.5 4‘.0 3‘ 5 :; 0 2‘ 5 2‘.0 1‘ 5 1‘.0 0‘ 5 (;.0
5 [ppm]
Figure $30: *H NMR-spectrum of 10-(4-bromobutyl)-10H-phenothiazine (5) in CDCls (400 MHz).
Voo o 1 T
I
I
I I
I [ A ‘\ Aok n L
1‘70 1‘60 1‘50 1‘40 1‘30 1‘20 1‘10 1‘00 ‘ ‘ 7‘0 éD 5‘0 4‘00 3‘0 Z‘Cl 1‘0 ‘D

90 80
5 [ppm]

Figure S31: 13C NMR-spectrum of 10-(4-bromobutyl)-10H-phenothiazine (5) in CDCls (101 MHz).
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Figure $32: 'H NMR-spectrum of PA-C4-PT in CDCls (500 MHz).
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Figure $33: 13C NMR-spectrum of -C4-PT in CDCls (126 MHz).
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Figure S34: H,H-COSY spectrum of PA-C4-PT in CDCls3 (500, 126 MHz).
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Figure S35: HSQC spectrum of PA-C4-PT in CDCls (500, 126 MHz). Blue: CH2 groups, red: CH or CHs groups.
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Figure S36: HMBC spectrum of PA-C4-PT in CDCls (500, 126 MHz).
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4 Cyclic Voltammograms
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Figure S37: Cyclic voltammogram of PA-PhPT (1 mM in CH2Cl2, 0.1 M n-BusNPFe, scan rate 0.1 V/s, WE = Pt).
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Figure S38: Cyclic voltammogram of PA-C4-PhPT (1 mM in CH2Clz, 0.1 M n-BusNPFs, scan rate 0.1 V/s, WE = Pt).
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Figure S39: Cyclic voltammogram of PA-C4-PT (1 mM in CH2Cl2, 0.1 M n-BuaNPFs, scan rate 0.1 V/s, WE = Pt).
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Figure S40: Cyclic voltammogram of PhPT (1 mM in CH2Clz, 0.1 M n-BuaNPFs, scan rate 0.1 V/s, WE = GC).
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5 Absorption and Emission Spectra
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Figure S41: UV/Vis absorption (solid line) and emission spectrum (dashed line) of PA-PhPT in CH2Cl solution with
epsilon values.
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Figure S42: UV/Vis absorption (solid line) and emission spectrum (dashed line) of PA-C4-PhPT in CH2Cl> solution
with epsilon values.
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Figure S43: UV/Vis absorption (solid line) and emission spectrum (dashed line) of PA-C4-PT in CH2Cl, solution
with epsilon values.
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Figure S44: UV/Vis absorption (solid line) and emission spectrum (dashed line) of MePT in CH.Cl, solution with
epsilon values.
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Figure S45: UV/Vis absorption (solid line) and emission spectrum (dashed line) of PhPT in CH2Cl, solution with
epsilon values.
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Figure S46: 2D-Plot of emission spectra for different excitation wavelengths of 1 in MeCN.
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6 Excited State Reduction Potentials

The reduction potentials of the excited states were calculated from the oxidation potential in
the ground state E10/’§ and the energy of the first excited singlet state ES,B' meaning the energy

of the transition from So(v = 0) to Si(v = 0).

* _ 0 S
E1/2 - El/)é o EO,B (1)

The energy of the excited state can be estimated by the intersection of the absorption
maximum and the emission maximum after converting from wavelength axis to energy

scale.[10]

ES1 Epps[eV] + Egm[eV] (2)
0,0 — 2

Table S1: Calculation of the excited state reduction potentials of the different phenothiazine derivatives.

Ei;, [ Eija/

Elo/); / AAbs / AEm / EEm / EO,O/

Compound Enps / eV Vvs. Vs
v nm nm evel eV

Fc/Fct  SCE[®]
PA-PhPT 0.26 295 4.20 451 2.75 3.48 -3.22 -2.84
PA-C4-PhPT 0.24 295 4.20 452 2.74 3.47 -3.23 -2.85
PA-C4-PT 0.29 296 4.19 450 2.76 3.47 -3.18 -2.80
MePTIcl 0.31 310 4.00 450 2.76 3.38 -3.07 -2.69
PhPT 0.38 321 3.86 446 2.78 3.32 -2.94 -2.56

[a] Calculated by E = % (h=6.626 - 10734 Js; c = 299792458 m s7%). [b] Using Ef/XZ(Fc/Fc‘“) =
0.38 V vs. SCE.['1] [c] Oxidation potential taken from literature.l!
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7 Determination of Photon Flux/irradiance of the Nail Dryer Lamp

The photon flux of the nail dryer lamp was determined by ferrioxalate actinometry. The
ferrioxalate complex is a versatile actimeter with an active range from 250 to 500 nm.[?! |n
solution the [Fe"(C,04)3]>~ complex absorbs a photon and decomposes to [Fe''C,04),]> and
CO,. The amount of formed Fe' can be determined by the characteristic absorption at 510 nm

of its 1,10-phenanthroline complex (ferriin).

h
2 [Fel(C,0,)57 — 2[Fe!(C,04),0 + 2C0O; + C,0.%

phen

Fe'(phen),

A 0.15 ™ ferrioxalate solution was prepared by dissolving Ks[Fe"'(C204)3] - 3 H2O (1.47 g,
3.00 mmol) in aqg. H2S04 (0.2 M, 20 mL).2 A buffered 0.15 m phenanthroline solution was
prepared by dissolving 1,10-phenanthroline (1.35 g, 7.5 mmol) and sodium acetate (3.08 g,
37.5 mmol) in aq. H2S04 (0.2 M, 20 mL). To a vial with a septum-cap equipped with a magnetic
stir bar was added 1 mL of the ferrioxalate solution. The vial was placed in front of the nail
dryer lamp. After irradiation for 5 s, 3 mL of the aq. H2SO4 (0.2 M) and 4.0 mL of the buffered
phenanthroline solution were added to the vial. The solution was allowed to rest for 1 h. Then
100 pL of the solution were diluted with 2.0 mL of the ag. H2SO4 (0.2 M) and an absorption
spectrum was measured. A non-irradiated sample and other samples with different irradiation

times (up to 25 s) were also measured.

@ Due to the light sensitivity of ferrioxalate in solution the experiment should be performed under exclusion of
light, once the solution is prepared.
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Figure S47: Different samples of the ferrioxalate actinometry after resting time. Irradiation time from left to right:
0.00, 5.43, 10.51, 15.43, 20.45, 25.45 s.

The molar equivalents of the Fe?* formed can be calculated using Lambert-Beer’s law:

Veuv - Vvial,tot -AA (3)

3. .
10 Vvial,sample ! €510 nm

Nge2t =

Veuv(2.1 mL) is the volume in the cuvette, Vyiq tor (8 ML), is the final volume in the vial after
complexation with phenanthroline, Vyia) sampie (0-1 mL) is the aliquot taken from the solution
after complexation for the determination via absorption spectroscopy, [ (1 cm) is the path
length of the cuvette, AA is the difference in absorbance between the irradiated and non-
irradiated solutions, and €510 m (11100 L mol™ cm™) is the molar absorptivity of Fe''(phen)?*

at 510 nm.

Table S2: Calculation of the amount of Fe?* formed for the different irradiation times.

# 1 2 3 4 5 6
tie /s 0.00 5.43 10.51 15.43 20.45 25.45
Asionm / a.u. 0.0176 0.0507 0.0846 0.1352 0.1748 0.2218
AAsionm/ a.u. 0 0.0331 0.0670 0.1176 0.1572 0.2042
Nrez- / 1076 mol 0 1.25 2.53 4.45 5.95 7.73
8 -
i u
7 -
6 -
S 51
g |
< - uation =a+bx
2 4 L Ei)l nyFe2+ (r:ol)
=~ Weight No Weighting
& 3 7 Intercept -3.14E-7 £ 2.02E-7
[ Slope 3.08E-7 + 1.30E-8
< 2 - Residual Sum of Squares 3.04E-13
Pearson's r 0.996
l R-Square (COD) 0.993
14 Adj. R-Square 0.991
O T T T T T T v ] v 1
0 5 10 15 20 25

irradiation time / s

Figure S48: Moles of Fe?* of the different samples vs. irradiation time. Red line shows the linear fit for
determination of the photon flux.
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With the determined slope the photon radiant flux ®p, per irradiated volume can be

calculated as:

anez+
Npe2+  — dt 3.08-1077 (4)

Dpp, = = = = 2.74- 107 einstein-s?
PP 7% t-f  @-f  1.146-0.999 einsteins

d
% (3.08 - 10°® mols-1) is the slope of the linear fit, ® (1.146 for a 0.15 ™ solution at
363.8 nm) is the quantum vyield for the ferrioxalate actinometer, t is the irradiated time, and
f is the fraction of light absorbed at A =365nm (f = 1 — 10™4). The absorbance of the

ferrioxalate solution at 365 nm is 3.845, indicating f = 0.999.

Assuming monochromatic light, the irradiance E can be calculated with Planck’s relation:

E_(DE_h'CDPh'v_h'C'CDPh

= = —2 5
i 1 T 14.3 mW cm (5)

h (6.626 - 10734 Js) is the Planck constant; ¢ (299792458 m s™%) is the speed of light; A (6.28 cm?)

is the irradiated area; A (365 nm) is the wavelength of the light source.

Table S3: Irradiance/light intensity of different in photoredox catalysis used light sources.
E/ E /mWmlI? LightIntensity/  photon flux

Type mW cm=2 HW e JEm2st Determined by
Nail dryer lamp 14.3 35.9 0.0027
Commercially available Photoreactors
Penn PhD
10013 Calorimetry
Photoreactor M2
PhotoRedOx Box 80-180(14llb! Ferrioxalate actinometry
Used in Phenothiazine catalysis
37.419 -
dehalogenation 1.8 21167 )
reaction
2 8W bulbs 2.8618 -
LED-setup 1.2209 LED specification sheet
LED-setup 5.65[20 -
LED-setup 2.2121 -

[a] Depending on the lamp used in the setup.
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8 Kinetic Profiles

To determine the kinetic profiles for the dehalogenation of 7 with cavity-free PhPT and cavity-
linked PA-PhPT, reactions were performed as described in chapter 2.11, but on a 400 pum-
scale. After 0, 0.5, 1, 2, 5, 8.5, 24, 48 h of irradiation time small samples were taken and the

conversion was analyzed by 'H NMR-spectroscopy using 1,2,4,5-tetramethylbenzene as

internal standard.

Table S4: Conversion of 7 in the photoredox-catalyzed dehalogenation with PhPT and PA-PhPT as PRC after
different irradiation times.

Conversion® for / %

# t/h
PhPT PA-PhPT

0 0.0 0 0
1 0.5 1 1
2 1.0 1 3
3 2.0 2 4
5 5.0 7 6
6 8.5 12 17
7 24.0 15 19
8 48.0 20 31

[a] Determined by *H NMR spectroscopy using 1,2,4,5-tetramethylbenzene as internal standard.
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Figure S49: Temporal course of the conversion of 7 with PhPT and PA-PhPT as PRC.

S46



9 Fluorescence Quenching and Stern-Volmer Plots

In a typical experiment a stock solution of the respective PRC in degassed acetonitrile (20-
70 um) was prepared in an argon-filled glovebox, filled into a screw-capped 10 mm quartz
cuvette and was used to measure the initial fluorescence spectra after excitation at 365 nm.
The remaining stock solution was used to dissolve the respective quencher. Aliquots of this
solution were added to the cuvette, and fluorescence spectra were measured. To ensure the

exclusion of oxygen, an argon line was placed into the photometer.

The quenching was analyzed by plotting the fluorescence intensity F/Fo at 446 nm vs. the
guencher concentration according to the STERN-VOLMER-relation, and the STERN-VOLMER

quenching constant was determined by a linear fit:[?%

F

F—OZKSV'[Q]+1 (6)

F is the fluorescence intensity of the sample with the respective quencher concentration, F,
is the fluorescence intensity with no quencher, Kgy is the Stern-Volmer-constant and [Q] is

the concentration of the quencher.

Table S5: Stern-Volmer quenching constants for the PRCs PhPT, PA-PhPT and PA-C4-PhPT and different
substrates.

Catalyst (PRC) Quencher (Substrate) Ksy /M7t
PhPT 1 0.07+0.17
6 1.40+0.22
7 1.98 £0.09
PA-PhPT 6 242 +2.28
7 2.29+0.19
PA-C4-PhPT 6 2.49 £ 0.97
7 2.21+0.22
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Figure S50: Emission spectra of PhPT in acetonitrile with different concentrations of 1.
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Figure S51: Stern-Volmer plot and linear fit for the fluorescence quenching of PhPT by 1.
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Figure S52: Emission spectra of PhPT in acetonitrile with different concentrations of 6.
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Figure S53: Stern-Volmer plot and linear fit for the fluorescence quenching of PhPT by 6.
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Figure S54: Emission spectra of PhPT in acetonitrile with different concentrations of 7.
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Figure S55: Stern-Volmer plot and linear fit for the fluorescence quenching of PhPT by 7.
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Figure S56: Emission spectra of PA-PhPT in acetonitrile with different concentrations of 6.
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Figure S57: Stern-Volmer plot and linear fit for the fluorescence quenching of PA-PhPT by 6.
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Figure S58: Emission spectra of PA-PhPT in acetonitrile with different concentrations of 7.
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Figure S59: Stern-Volmer plot and linear fit for the fluorescence quenching of PA-PhPT by 7.
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Figure S60: Emission spectra of PA-C4-PhPT in acetonitrile with different concentrations of 6.
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Figure S61: Stern-Volmer plot for the fluorescence quenching of PA-C4-PhPT by 6.
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Figure S62: Emission spectra of PA-CAPhPT in acetonitrile with different concentrations of 7.
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Figure S63: Stern-Volmer plot for the fluorescence quenching of PA-C4PhPT by 7.
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10 DFT calculations

DFT calculations were performed with the TURBOMOLE v7.5.0 program package.!?3! The

resolution-of-identity?*! (RI) approximation for the Coulomb integrals was used in all DFT

calculations. Further, the D3 dispersion correction schemel?>26 with the Becke-Johnson

damping function was applied.l?”-?81 Using TURBOMOLE, the geometries of all molecules were

optimized without symmetry restrictions with the PBEh-3¢?°! composite scheme followed by

harmonic vibrational frequency analyses to confirm minima as stationary points.

10.1 Direction of Complexation of Bromopentannitrile in PA-PhPT

Table S6: Electronic Energies (Eo), zero-point vibrational energies (ZPE) of the two different complexes of

bromopentannitrile in PA-PhPT calculated using PBEh-3c.

Nitrile and PT on

the same side

Bromide and PT on

the same side

Eo / Hartree —6343.4005
Ezpe / Hartee 1.2433
Etotal / Hartree —-6342.1572

Etotal / kcal —-3979764.8

AE (vs. Nitrile and PT on

the same side) / kcal

—-6343.3923
1.2435
—6342.1488
—3979759.5

-5.3

10.2 Calculated structures
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Figure S64: Calculated structures of bromopentanitrile in PA-PhPT with bromine and PT on the same side (left)

and nitrile and PT on the same side (right) using PBEh-3c.

10.3 Cartesian Coordinates of the Calculated Structures

The Cartesian coordinates are listed in angstrom.

Table S7: Coordinates of the calculated structure of bromopentanitrile in PA-PhPT (bromide and PT on the same
side) (PBEh-3c/def2-mSVP).

X
3.5283806
2.8711743
2.3574634
2.5403008

3.219291
3.7129957
2.9399284
3.3859197
2.8433391
1.8740047

1.410549

1.966812
-1.0542451
-1.7591006
-3.0074205
-3.5918935
-2.8936333
-1.6455371
-4.6312188
-4.4120545
-4.4419872
-4.6523876
-4.8227143
-4.835448
-0.6898673
0.1180717
-0.4671935
-1.8300347
-2.6418572
-2.0460701
4.3879465
0.3162054
-4.9389365
-4.1136044
1.6028762

Y
-0.1222057
0.7636726
0.3642753
-0.9627111
-1.8422675
-1.4486068
-2.6691219
-3.2127183
-4.4295127
-5.0558358
-4.5011293
-3.2928625

-4.624427
-5.0306902
-4.4867078
-3.5320813
-3.1337736
-3.6857349
-1.2376555
0.0888926
0.4343113
-0.5513834
-1.8880786
-2.2234719
0.4087399
1.3746058
2.2696408
2.1444436
1.1863526
0.3113915
-2.4582324
-5.1806622
-2.9448788
1.1058037
1.3594737

z
-0.6555823
-1.5032692
-2.7304256

-3.121728
-2.2855136
-1.0471725

1.8974674
0.6984114
0.2836638

1.0591746
2.2454777

2.670226
2.7241301

1.5890203

1.3186959
2.1438918
3.2835138

3.560281
-1.6065499
-1.2624488
0.0893284

1.0492361
0.7042815
-0.6500185
-3.8785416
-3.2804528
-2.3841627
-2.1000115
-2.6785361
-3.5978743
-0.1459756
3.0346509

1.7784255
-2.3403856
-3.5838212

OO 000000 unOOZ200000000000000O0OO0OO0OODO0OOD0O0

2.0402311
2.0210608
4.0080137
3.8334719
1.5057522
2.2105844
3.2922903
2.7176469
-3.479883
-2.8225098
-1.1654626
-1.8737393
-4.2231529
-4.2190924
-5.0586228
-4.9525281
-2.8595325
-2.3067823
0.2709195
0.3633504
0.9806987
1.5206074
1.4442401
0.8221816
2.1325508
3.4562174
4.1901054
3.5191564
1.8330339
1.2941536
4.0830384
5.3916179
6.095496
5.4818739
1.0314701
-0.3348537

-1.3214825
-2.6822462
0.2256195
1.5469662
-2.7879823
-1.7267717
-4.9301851
-6.1129669
-2.1873114
-1.7813875
-5.962898
-6.4641904
1.7403927
2.1354812
-3.5237497
-3.921093
-0.5863055
-1.537153
3.3683851
3.4105261
4.4719866
5.5167776
5.4817884
4.4189993
6.636934
6.5065393
7.6402827
9.2361133
8.8871188
7.6495983
5.2655357
5.160059
6.2840643
7.5244182
9.8820288
9.6897034

-4.3303627
-4.6715658
0.56422
0.9996748
3.8404979
4.434479
-0.8964976
-1.3835918
4.0638507
5.2350829
0.8057829
-0.2999285
0.3864564
1.7317695
-0.9606216
-2.3047225
-4.1872409
-5.0634239
-1.7195087
-0.3291622
0.3124363
-0.4291789
-1.8131856
-2.4497964
0.2005003
0.6467458
1.0081899
0.70623
1.0607718
0.696888
0.7385869
1.1850116
1.5796862
1.4966106
1.5974637
1.7292478
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Table S8: Coordinates of the calculated structure of bromopentannitrile in PA-PhPT (nitrile and PT on the same

-0.8835983
-0.0805713
-0.1586235
-1.1964984
-1.3014946
-0.0339358
0.1700149
-0.7169926
-1.3892403
2.7190142
3.3708806
3.3665793
1.4392991
-3.5577772
-1.089598
-4.6178326
-4.6624906
-0.224902
-2.2796331
5.1022994
4.9643444
0.5086945
0.3375328
-5.595943
-5.4102141
-4.6849721
-4.455656
2.0343934
1.7516646
1.5161789
3.0269671
1.468476
4.2767827
2.777152
4.3419184
1.735332
2.1608142
3.2613329

8.4823347
7.4664185
0.8955843
-0.5864284
-0.4588552
-0.8186864
-2.3270784
-2.9344556
-3.4226538
1.7952877
-2.8731582
-1.7248281
-5.9941558
-4.7911303
-3.3791106
-1.4894152
-0.3046631
-0.2794841
2.8427104
-1.9586886
-3.1524962
-5.0750548
-6.2505696
-3.7483344
-2.5110986
0.851623
2.0927343
2.3456082
1.138074
-2.7545218
-3.0998095
-3.2827428
1.6123135
1.8263609
2.2625926
-1.5373883
-0.8090833
-1.9813612

side) (PBEh-3c/def2-mSVP).

el elelNe!

X
3.4890757
2.9666556
2.6793408
2.9218865

Y
-0.1362554

0.7570488
0.3755372
-0.9470056

1.3345533
0.83812
2.7790831
1.9680701
0.4681655
-0.2859279
-0.4244552
-1.4035947
-2.2010456
-1.2118395
-2.5762644
2.2070426
0.7459711
0.4408478
4.4357653
-2.6564935
2.1035886
-4.5694573
-1.4036598
0.5079619
-0.7568413
4.1029224
2.8222796
1.4436428
2.6592365
-3.234286
-2.0301061
-3.4162856
-4.641192
-5.6329451
-4.7815233
-3.9410615
1.9912984
1.0719777
0.3448074
5.3948421
3.843284
4.6063408

z
-0.0697696
-0.998747
-2.3038466
-2.6760902

C
C
C
C
C

3.1946095
1.638596
2.8928352
-3.4661944
-1.8543627
-2.6659777
-1.2354266
-2.0869136
-2.812975
-4.0463455
-3.4186529
-5.174043
-5.1161651
-3.9623818
-5.7142633
-3.1322259
-1.5708874
-1.849396
-0.0536499
1.0365456
1.8583728
0.738292
3.5534696
5.8559862
7.1114424
6.0144927
1.4837899
-0.9585118
-1.9489394
-0.5393119
-0.6996521
-2.1748291
-2.1152197
-1.6307709
-0.0530886
0.8444761
1.1901171
0.0338034

3.449389
3.7441466
2.7121761
3.1807263
2.5715645

-6.3198887
-6.0136344
-6.9659705
-1.0462245
-1.3116335
-2.611067
-7.2173572
-5.6903544
-6.9424222
3.2096852
1.6564982
1.9338477
-4.9972112
-3.7084941
-3.4506709
-2.162373
-2.1718908
-1.0701566
2.6019681
4.4940894
6.3016737
4.4176213
4.3725513
4.1834037
6.2031707
8.4193614
10.8201388
10.4772424
8.3142641
6.5334551
-1.5014003
-0.5384956
-1.1224857
0.5451063
-0.367219
-0.410207
-2.5344897
-2.8472707

-1.839038
-1.4557167
-2.6076028

-3.150983
-4.3078466

-2.3396505
-1.5444937
-0.7201793
5.7138999
5.0296276
5.9320509
-0.7586764
-1.0419926
-0.0033559
1.7399237
2.3057963
2.2277323
-2.3208611
-2.7165168
-2.9352926
-5.3974517
-4.5642425
-5.9412971
0.2576246
1.3943514
-2.3852597
-3.5294017
0.4415756
1.2290825
1.940607
1.7918583
1.8926775
2.1291146
1.4190735
0.5450652
2.2877616
2.4392464
0.1570176
0.2000218
-1.2758975
0.215989
-0.7437356
0.5265826

-1.7495181
-0.4473707
2.4814608
1.2925207
0.8038578



1.5103124
1.0308171
1.6505894
-1.4555504
-2.1616834
-3.3277905
-3.8083693
-3.0994649
-1.9422382
-4.3203251
-4.0899953
-4.177046
-4.5121316
-4.7330803
-4.622237
-0.07803
0.6137424
-0.1161465
-1.5074525
-2.2055852
-1.4625191
4.2906019
-0.1697893
-5.0539767
-3.7051598
2.1253206
2.6319439
2.7920994
3.7802051
3.5524991
1.164055
1.722135
3.0666315
2.5693671
-3.608164
-2.9173562
-1.6489668
-2.3899333
-3.9278597
-3.6967359
-4.8199213
-4.7679656
-2.1649717
-1.4703922
0.4954104
0.3539026
0.8412718

-4.8736393
-4.3192891
-3.1719153
-4.3661285
-5.0110251
-4.4386338
-3.2232774
-2.5768799
-3.1542057
-1.1420627
0.1969494
0.6097554
-0.3074324
-1.6483298
-2.0669904
0.4987131
1.432182
2.3228706
2.2231791
1.2785579
0.4145559
-2.4646344
-4.92844
-2.6163076
1.1621725
1.3938686
-1.2890975
-2.6277232
0.1968598
1.5165606
-2.6633814
-1.4757039
-4.8192302
-6.0494256
-1.405655
-0.7106216
-6.1823355
-6.9227666
1.9168028
2.3067234
-3.3886834
-3.8421513
-0.4890354
-1.3696258
3.3867103
3.3608731
4.3950917

1.5013528
2.682914
3.1791225
2.8066081
1.7920372
1.2933011
1.7624431
2.7775551
3.2840765
-2.2708055
-1.9802178
-0.6506556
0.336815
0.0496002
-1.2768199
-4.0371364
-3.2673636
-2.4808204
-2.4677587
-3.1977939
-4.0103999
0.5344111
3.3649949
1.1633911
-3.0766403
-3.2734041
-3.9570268
-4.347909
1.2100926
1.6292595
4.3372705
4.8396577
-0.3503621
-0.8083056
3.227378
4.2347096
1.3348702
0.4009645
-0.3954418
0.9343361
-1.5193279
-2.8463988
-4.7312673
-5.5781064
-1.6497228
-0.2624363
0.5207507
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1.4792929
1.6398687
1.1505016
1.9540477
3.1868713
3.8268217
3.182694
1.4686879
1.023807
3.8144354
5.0319289
5.6372396
5.0212232
0.5684199
-0.7964983
-1.2466565
-0.3512118
-0.8029017
-0.9996636
-0.7166632
-0.9156828
0.0540328
0.008456
-0.0408699
2.7708814
3.644402
3.1951957
1.0196365
-3.890488
-1.3824282
-4.2397433
-4.5975556
0.5013455
-2.0690754
4.9605438
4.8911519
-0.1315169
-0.1451149
-5.6232415
-5.6976104
-4.1253245
-4.1398432
2.5298093
2.4782459
2.4818238
2.1684603
3.8333045

5.4790361
5.5077383
4.470841
6.5764085
6.4437455
7.5696712
9.168366
8.7811637
7.5543923
5.2082397
5.0998159
6.2141766
7.4490011
9.7398164
9.5238191
8.32855
7.3471057
-4.8886409
-3.6334009
-2.2166364
-1.2040823
-1.4199593
-0.3180555
0.5725539
1.7857411
-2.8669716
-1.7118835
-5.7659205
-4.9267722
-2.6668376
-1.4490893
0.0035546
-0.1824219
2.9198699
-1.9753398
-3.1983598
-4.7399701
-6.0104833
-2.0951151
-3.4142557
2.1477154
0.82864
2.3706402
1.1807701
-2.6858479
-3.3100514
-2.9588448

-0.0722519
-1.4490731
-2.2285847
0.7000431
1.3564914
1.8829229
1.5403883
1.5921909
1.090686
1.4998597
2.1545376
2.7081267
2.5753468
2.0290714
1.9215754
1.3893399
0.9914811
-2.8574123
-1.3452624
-1.7885059
-0.6662266
0.4980849
1.4429912
2.1724711
-0.7243291
-2.021747
2.8452139
1.1348791
0.508758
4.0701205
-3.3046297
1.3681227
-4.6434176
-1.8595377
1.2414692
-0.0030777
4.4376832
3.2403874
1.933673
0.7930094
-2.8749525
-4.0190242
-3.0094241
-4.283121
-5.3894011
-3.7605112
-4.2805803
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3.8520191
2.4983429
4.1547767
2.7825649
1.1810228
1.6061321
1.5103644
2.7058657
3.1375821
-3.4951932
-1.9132809
-2.843317
-1.8320213
-2.5074326
-3.382288
-2.9124038
-3.370235
-4.6011104
-5.5259668
-4.965211
-3.7848055
-2.2224556

1.5694651
1.7998326
2.2321405
-1.5895719
-1.2440252
-0.638687
-5.9997502
-6.8484995
-6.3009613
0.1883289
-0.4132963
-1.2911358
-7.838859
-6.3980726
-7.1891136
1.7080487
3.3445163
2.2515013
-3.3653344
-4.9118461
-3.6870013
-1.9823175

2.6740489
1.5574331
1.0593804
5.0865467
5.7548342
4.1450803
-1.0793417
-0.072563
-1.7015932
4.4404764
3.9195969
5.1599658
0.218051
-0.5525937
0.7787127
1.4090855
0.9016565
1.5487914
-3.4762621
-2.8178453
-3.3024743
-6.0706619
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-0.7936343
-0.8973943
-0.1384535
0.7190408
2.1325998
1.2524193
3.3596214
5.5014431
6.5798568
5.4790244
0.9457341
-1.4942047
-2.307493
-0.73512
-2.0214778
-0.3183125
-1.3975322
0.3009589
-0.7644678
-1.9437262
1.0814725
-0.1693719

-2.0293664
-0.8385158
2.5209221
4.363167
6.3562605
4.5168211
4.3227524
4.1280146
6.1303185
8.336723
10.6693017
10.2841316
8.1428723
6.4224611
-3.7447644
-3.9885499
-1.9514717
-2.1328538
-0.2088466
-1.2396474
-1.507565
-2.3358948

-5.0258088
-6.3442476
0.2114236
1.5968741
-1.9053315
-3.3057122
1.0816563
2.235564
3.2309997
2.9926444
2.4358665
2.2443202
1.2867935
0.5860688
-0.9848104
-0.5721623
-2.5969856
-2.1777583
-1.0875542
-0.3012213
0.1369027
1.0500109
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