Supporting Information for:

Cavity-promotion by pillar[5]arenes expedites organic photoredox-catalysed reductive dehalogenations

Maximilian Schmidt ${ }^{a}$ and Birgit Esser ${ }^{\text {a,b,c }}$
a Institute for Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
${ }^{\text {b }}$ Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany
c Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany

Contents

1 Materials and Methods S3
2 Synthetic Manipulations S6
2.1 Decamethoxypillar[5]arene (1) S6
2.2 Hydroxynonamethoxypillar[5]arene (2) S7
2.3 Nonamethoxypillar[5]arene triflate (S1) S8
2.4 10-(4-Chlorophenyl)-10H-phenothiazine (S2) S9
2.5 10-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-10H-phenothiazine (3) S10
2.6 Pillar[5]arene PA-PhPT S11
2.7 1-(4-Bromobutoxy)-4-bromobenzene (S3) S12
2.8 10-(4-(4-Bromobutoxy)phenyl)-10H-phenothiazine (4) S13
2.9 Pillar[5]arene PA-C4-PhPT S14
2.10 10-(4-Bromobutyl)-10H-phenothiazine (5) S15
2.11 Pillar[5]arene PA-C4-PT S16
2.12 General Procedure for Reductive Dehalogenation S17
3 NMR Spectra S18
4 Cyclic Voltammograms S37
5 Absorption and Emission Spectra S39
6 Excited State Reduction Potentials S42
7 Determination of Photon Flux/irradiance of the Nail Dryer Lamp S43
8 Kinetic Profiles S46
9 Fluorescence Quenching and Stern-Volmer Plots S47
10 DFT calculations S55
10.1 Direction of Complexation of Bromopentannitrile in PA-PhPT S55
10.2 Calculated structures S55
10.3 Cartesian Coordinates of the Calculated Structures S56
11 References S60

1 Materials and Methods

Chemicals and reagents were purchased from Acros-Organics, Alfa-Aesar, ChemPur or Sigma ALDRICH and used directly without further purification unless specified otherwise. Moisture- or oxygen-sensitive reactions were carried out in dried glassware-heated under vacuum-using standard Schlenk techniques in a dry argon atmosphere (Argon 5.0 from Sauerstoffwerke Friedrichshafen). Anhydrous toluene was obtained from an M. Braun solvent purification system (MB-SPS-800) and stored over activated molecular sieves ($3 \AA$) for several days Anhydrous 1,4-dioxane and DMF were purchased from ACROS-ORGANICS (extra dry, < 50 ppm $\mathrm{H}_{2} \mathrm{O}$, AcroSealTM) and further stored over activated molecular sieves ($3 \AA$ A). Other anhydrous solvents were obtained by drying over activated molecular sieves (3 Å) for several days. ${ }^{[1]}$ Cyclohexane for column chromatography was purchased in technical grade and purified by distillation under reduced pressure. Other solvents were purchased and used in analytical grade.

Thin layer chromatography was carried out using silica gel-coated aluminum plates with a fluorescence indicator (MERCK $60 \mathrm{~F}_{254}$). The visualization of spots was achieved using UV-light ($\lambda_{\max }=254$ and 366 nm) or Seebach staining reagent (5.0 g molybdatophosphoric acid, 2.0 g $\mathrm{CeSO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}, 20 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4}$ conc., $150 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$). In some cases, the thin layer chromatography plates were deactivated with triethylamine $\left(\mathrm{NEt}_{3}\right)$ before they were used.

Flash column chromatography was carried out using silica gel 60 (grain size $40-63 \mu \mathrm{~m}$) from Machery-nagel or aluminum oxide basic 90 from Machery-nagel. Desactivated silica gel. In specially denoted cases the silica gel was deactivated with triethylamine (NEt_{3}). Therefore, silica gel was suspended in NEt_{3} and cyclohexane (v/v: $1 / 1$) for 1 solvent was removed under reduced pressure.

Nuclear magnetic resonance (NMR) spectra were recorded at 300 K using BrUKER Avance II [400.1 MHz $\left({ }^{1} \mathrm{H}\right), 101.6 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$] and Bruker Avance III HD [500.3 MHz $\left({ }^{1} \mathrm{H}\right), 125.8 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$] spectrometers. Chemical shifts are reported in parts per million (ppm, δ scale) relative to the signal of tetramethylsilane ($\delta=0.00 \mathrm{ppm}) .{ }^{1} \mathrm{H} N M R$ spectra are referenced to tetramethylsilane as an internal standard or the residual solvent signal of CDCl_{3} ($\delta=7.26 \mathrm{ppm}$). ${ }^{13} \mathrm{C}$ NMR spectra are referenced to tetramethylsilane as an internal standard or the solvent signal of $\mathrm{CDCl}_{3}(\delta=77.16 \mathrm{ppm}) .{ }^{[2]}{ }^{19} \mathrm{~F}$ spectra are referenced to
tetramethylsilane following the IUPAC recommendations. ${ }^{[3]}$ Coupling constants J are given in Hertz [Hz].

The analysis followed first order, and the multiplets were abbreviated using the following codes: singlet (s), broad singlet (br), doublet (d), triplet (t), quartet (q), multiplet (m) and combinations thereof, such as doublet of doublets (dd).

High Resolution Mass Spectrometry (HRMS) were measured on a Thermo Fischer Scientific Inc. Exactive via electro spray ionization (ESI) or atmospheric pressure chemical ionization (APCI) with an orbitrap analyzer.

Cyclic voltammograms (CVs) were measured in solution and inside a glovebox using a Metrohm Autolab PGSTAT 128N. As working electrode, a glassy carbon or platinum disc electrode (2 mm diameters) was used. A platinum rod served as counter electrode, and as reference electrode a $\mathrm{Ag} / \mathrm{AgNO}_{3}$ electrode containing a silver wire immersed in an inner chamber filled with $0.1 \mathrm{M} \mathrm{AgNO}_{3}$ containing $0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in the outer chamber were used. For the internal reference, the ferrocene/ferrocenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) redox couple was used.

UV/Vis absorption spectra were measured on a Shimadzu UV-1800 using Quartz (Suprasil) cuvettes (10 mm path length) from Hellma Analytics.

Fluorescence spectra were recorded on a JASCO FP-8300 and were measured in Quartz (Suprasil) cuvettes (10 mm path length) from Hellma Analytics at $25^{\circ} \mathrm{C}$. Unless otherwise noted, the respective absorption maxima with the longest wavelength of the compound was used for excitation.

The Light source for the reductive dehalogenations was a commercially available nail dryer lamp, which contains four UV-A bulbs ($9 \mathrm{~W}, 365 \mathrm{~nm}$), purchased from Mylee Beauty (https://www.justbeauty.co.uk) and used as shown below (Figure S1). Reaction vessels were placed in front of the UV-A bulbs under vigorous stirring while cooling with compressed air (see Figure S1).

Figure S1: Representative reaction set-up in front (left) and side view (right) with the reaction vessels placed in front of the nail dryer lamp.

2 Synthetic Manipulations

PhPT and MePT were synthesized according to literature procedures. ${ }^{[4,5]}$

2.1 Decamethoxypillar[5]arene (1)

1

The synthesis was carried out following a modified procedure by Boinski et al. ${ }^{[6]}$ 1,4-Dimethoxybenzene ($700 \mathrm{mg}, 5.06 \mathrm{mmol}$) and paraformaldehyde ($152 \mathrm{mg}, 5.06 \mathrm{mmol}$, 1 eq.) were dissolved in 1,2-dichloroethane (50 mL) and trifluoroacetic acid ($2.5 \mathrm{~mL}, 5 \mathrm{vol} \%$) was added. The mixture was refluxed for 3 h . After cooling to rt the mixture was poured into $\mathrm{MeOH}(100 \mathrm{~mL})$ and the precipitate was filtered. To obtain more product, the filtrate was concentrated and poured into MeOH again. The brown solid was purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$: 100/1) to afford dimethoxypillar[5]arene (1, $507 \mathrm{mg}, 0.68 \mathrm{mmol}, 67 \%)$ as a white solid.
$\boldsymbol{R}_{\mathrm{f}} 0.50\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}: 100 / 1\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.74(\mathrm{~s}, 10 \mathrm{H}), 3.77(\mathrm{~s}, 10 \mathrm{H}), 3.62$ ($\mathrm{s}, 30 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.1,128.5,114.4,56.0,29.9 ;$ HRMS ($\mathrm{ESI}{ }^{+}$): m / z calcd. for $\mathrm{C}_{45} \mathrm{H}_{51} \mathrm{O}_{10} 751.3477[\mathrm{M}+\mathrm{H}]^{+}$, found 751.3453 .

2.2 Hydroxynonamethoxypillar[5]arene (2)

2
The synthesis was carried out following a modified procedure by HAN et al. ${ }^{[7]}$ Dimethoxypillar[5]arene ($1,1.00 \mathrm{~g}, 1.33 \mathrm{mmol}$) was dissolved in anh. $\mathrm{CHCl}_{3}(40 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$. $\mathrm{BBr}_{3}\left(0.51 \mathrm{~mL}, 1.33 \mathrm{~g}, 5.33 \mathrm{mmol}, 4 \mathrm{eq}\right.$.) in $\mathrm{CHCl}_{3}(2 \mathrm{~mL})$ was slowly added via syringe. The mixture was kept below $-8{ }^{\circ} \mathrm{C}$ for 2.5 h . Then $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ was added. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 70 \mathrm{~mL})$. The combined organic layers were washed with brine (50 mL). The solvent was removed under reduced pressure, and the brown residue was purified by column chromatography (silica gel, cyclohexane/EtOAc: 10/1 to 3/1) to afford 2 ($399 \mathrm{mg}, 0.541 \mathrm{mmol}, 41 \%$) as a slightly red solid. $\boldsymbol{R}_{\mathrm{f}} 0.24$ (cyclohexane/EtOAc: 3/1); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, spectrum contains residues of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ bound by the pillarene at 4.79 ppm$)$: $\delta 6.87(\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 2 \mathrm{H}), 6.69$ $(\mathrm{s}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 2 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 3.79\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.78$ $\left(3 \times \mathrm{s}, \mathrm{CH}_{2}, 6 \mathrm{H}\right), 3.75\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.73\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.73\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.69\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.62$ $\left(\mathrm{s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.60\left(\mathrm{~s}, \mathrm{OCH}_{3}, 6 \mathrm{H}\right), 3.59\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.56\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.50\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right)$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, spectrum contains residues of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ complexed in the pillarene at $53.18 \mathrm{ppm})^{\mathrm{a}}$ ($151.95,151.19,151.07,151.05,151.03,151.01,150.90,148.70,147.64,130.10$, 129.43, 128.79, 128.48, 128.42, 128.37, 128.22, 127.81, 126.91, 125.08, 118.98, 114.67, 114.59, 114.41, 114.18, 113.95, 113.07, 113.00, 56.44, 56.20, 56.14, 56.07, 55.97, 55.92, $31.03,30.18,30.02,29.70,28.95 ;$ HRMS (ESI ${ }^{+}$): m / z calcd. for $\mathrm{C}_{44} \mathrm{H}_{49} \mathrm{O}_{10} \mathrm{~N} 737.3314[\mathrm{M}+\mathrm{H}]^{+}$, found 737.3320.

[^0]
2.3 Nonamethoxypillar[5]arene triflate (S1)

S1
The synthesis was carried out following a modified procedure by HAN et al. ${ }^{[7]}$ Monohydroxypillar[5]arene ($250 \mathrm{mg}, 339 \mu \mathrm{~mol}$) and anh. pyridine ($50 \mu \mathrm{~L}, 54 \mathrm{mg}, 535 \mu \mathrm{~mol}$, 1.8 eq.) were dissolved in anh. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$. $\mathrm{Tf}_{2} \mathrm{O}(90 \mu \mathrm{~mL}, 143 \mathrm{mg}, 619 \mu \mathrm{~mol}, 1.6 \mathrm{eq}$.) was slowly added. The resulting purple-brown mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and at rt for 2.5 h . The solvent was removed under reduced pressure, and the residue was purified by column chromatography (silica gel, cyclohexane/EtOAc: 3/1) to afford $\mathbf{S 1}(271 \mathrm{mg}, 312 \mu \mathrm{~mol}, 92 \%)$ as a brown solid.
$\boldsymbol{R}_{\mathrm{f}} 0.30$ (cyclohexane/EtOAc: 3/1); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.11$ ($\mathrm{s}, 1 \mathrm{H}$), 6.82 ($\mathrm{s}, 1 \mathrm{H}$), 6.78 $(\mathrm{s}, 1 \mathrm{H}), 6.763(\mathrm{~s}, 1 \mathrm{H}), 6.759(\mathrm{~s}, 2 \mathrm{H}), 6.755(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}$, $2 \mathrm{H}), 3.78(\mathrm{~s}, 4 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H})$, $3.64(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.1,151.10$, 151.06, 151.04, 150.96, 150.9, 150.75, 150.72, 141.2, 132.4, 129.8, 129.3, 128.9, 128.4, 128.3, $127.2,126.9,123.2,118.9\left(q,{ }^{1} J_{C-F}=322.4 \mathrm{~Hz}\right), 114.39,114.37,114.34,114.26,114.18,114.16$, $113.9,113.8,113.7,56.1,55.99,55.96,55.89,55.87,55.7,55.6,55.5,30.8,29.8,29.73,29.65$, 29.6; ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-74.0$; HRMS (ESI ${ }^{+}$): m / z calcd. for $\mathrm{C}_{45} \mathrm{H}_{51} \mathrm{O}_{12} \mathrm{NF}_{3} \mathrm{~S}$ $886.3079\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, found 886.3065 .

2.4 10-(4-Chlorophenyl)-10H-phenothiazine (S2)

S2
Phenothiazine ($500 \mathrm{mg}, 2.51 \mathrm{mmol}$), 1-bromo-4-chlorobenzene ($481 \mathrm{mg}, 2.51 \mathrm{mmol}, 1.0 \mathrm{eq}$.), $\mathrm{KO}^{t} \mathrm{Bu}$ ($338 \mathrm{mg}, 3.01 \mathrm{mmol}, 1.2 \mathrm{eq}$.), $\mathrm{Pd}(\mathrm{OAc})_{2}(15.5 \mathrm{mg}, 75.0 \mu \mathrm{~mol}, 3 \mathrm{~mol} \%$) and SPhos ($30.9 \mathrm{mg}, 75.0 \mathrm{mmol}, 3 \mathrm{~mol} \%$) were dissolved in anh. and degassed toluene (10 mL) and stirred at $100^{\circ} \mathrm{C}$ for 16 h . After cooling to rt the mixture was filtered through a pad of Celite ${ }^{\circledR}$ and rinsed with EtOAc. The solvent was removed under reduced pressure, and the residue was purified by column chromatography (silica gel, cyclohexane) to afford $\mathbf{S 2}$ ($565 \mathrm{mg}, 1.83 \mathrm{mmol}, 73 \%$) as a white solid.
$\boldsymbol{R}_{\mathrm{f}} 0.08$ (cyclohexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H})$, 7.05-7.02 (m, 2H), 6.90-6.81 (m, 4H), 6.23 (dd, J = 8.1, 1.4 Hz, 2H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.05,139.97,133.88,131.93,131.12,127.08,127.05,123.00,121.16,116.55 ;$ HRMS (ESI ${ }^{+}$): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{NClS}^{+} 309.0373[\mathrm{M}]^{+}$, found 309.0378 .

2.5 10-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-10Hphenothiazine (3)

3

The synthesis was carried out following a modified procedure by Hou et al. ${ }^{[8]}$ Phenothiazine $\mathbf{S 2}$ ($500 \mathrm{mg}, 1.61 \mathrm{mmol}$), $\mathrm{Pd}_{2} \mathrm{dba}_{3}(7.40 \mathrm{mg}, 8.00 \mu \mathrm{~mol}, 0.5 \mathrm{~mol} \%$.), XPhos ($15.6 \mathrm{mg}, 32.0 \mu \mathrm{~mol}$, $2.0 \mathrm{~mol} \%$), bis(pinacolato)diboron ($492 \mathrm{mg}, 1.94 \mathrm{mmol}, 1.2 \mathrm{eq}$.) and KOAc (475 mg , $4.84 \mathrm{mmol}, 3.0$ eq.) were dissolved in anh. and degassed 1,4-dioxane (16 mL) and stirred at $100^{\circ} \mathrm{C}$ for 16 h . After cooling to rt the reaction mixture was filtered through a pad of Celite ${ }^{\circledR}$ and rinsed with EtOAc. The solvent was removed under reduced pressure and the residue was purified by recrystallisation from iPrOH to obtain 3 ($580 \mathrm{mg}, 1.45 \mathrm{mmol}, 90 \%$) as colorless crystals.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.01-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{dd}, \mathrm{J}=7.3,1.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.88-6.80(\mathrm{~m}, 4 \mathrm{H}), 6.29$ (dd, J = 7.9, $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.28,144.04,137.26,128.95,127.01,126.98,122.90,121.57,117.20,84.22,67.26$, 25.08 ${ }^{\text {a }}$; HRMS (ESI ${ }^{+}$): m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{NBS} 401.1615$ [M] ${ }^{+}$, found 401.1618 .

[^1]
2.6 Pillar[5]arene PA-PhPT

PA-PhPT

Pillarene triflate $\mathbf{S 1}$ ($209.5 \mathrm{mg}, 241.0 \mathrm{mmol}$), boronic ester $\mathbf{3}$ ($120.0 \mathrm{mg}, 299.0 \mu \mathrm{~mol}, 1.2$ eq.), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(22.2 \mathrm{mg}, 24.2 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$, XPhos ($19.8 \mathrm{mg}, 48.2 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) and $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($520 \mathrm{mg}, 2.45 \mathrm{mmol}, 10.2$ eq.) were dissolved in a mixture of degassed toluene (15 mL) and degassed $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})$. The resulting mixture was stirred at $100^{\circ} \mathrm{C}$ for 16 h . After cooling to $\mathrm{rt}, \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and the aq. layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was purified by column chromatography (silica gel deactivated with NEt_{3}, cyclohexane/EtOAc: $10 / 1$ to $3 / 1$) to afford PA-PhPT (232 mg , $234 \mu \mathrm{~mol}, 97 \%)$ as a light-yellow solid.
$\boldsymbol{R}_{\mathrm{f}} 0.16$ (cyclohexane/EtOAc: 3/1); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.37$ (m, 2H), 7.18 (s, 1H), 7.04 (dd, J = 7.5, 1.7 Hz, 2H), 6.89 (ddd, J = 8.2, 7.8, 1.6 Hz, 2H), 6.86 (s, 1H), 6.83 (ddd, $J=7.6,7.5,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), $6.81(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 2 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.69$ $(\mathrm{s}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=8.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}$, $2 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 6 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H})$, $3.60(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{\mathrm{a}} \delta$ 156.94, 151.43, 151.18, 151.11, 151.02, 150.87, 150.54, 144.49, 142.65, 139.30, 138.21, 132.85, 132.46, 132.34, 130.26, 128.71, 128.62, 128.60, 128.54, 128.04, 127.88, 127.55, 127.01, 126.95, 122.70, $120.62,116.35,114.74,114.72,114.46,114.41,114.23,114.04,113.50,112.76,56.10,56.07$, 56.03, 55.97, 55.96, 55.95, 55.89, 55.84, 55.10, 32.51, 30.51, 30.17, 29.92, 29.77; HRMS (ESI ${ }^{+}$): m / z calcd. for $\mathrm{C}_{62} \mathrm{H}_{60} \mathrm{O}_{9} \mathrm{NS} 994.3983[\mathrm{M}+\mathrm{H}]^{+}$, found 994.3970.

[^2]
2.7 1-(4-Bromobutoxy)-4-bromobenzene (S3)

S3

The synthesis was carried out following a modified procedure by LI et al. ${ }^{[9]} 4$-Bromophenol ($400 \mathrm{mg}, 2.32 \mathrm{mmol}$) and 1,4-dibromobutane ($1.7 \mathrm{~mL}, 3.1 \mathrm{~g}, \mathrm{mmol}, 6.2 \mathrm{eq}$.) were dissolved in acetone (240 mL). $\mathrm{K}_{2} \mathrm{CO}_{3}(2.00 \mathrm{~g}, 14.5 \mathrm{mmol}, 6.3$ eq.) was added and the mixture was stirred at $70^{\circ} \mathrm{C}$ for 16 h . Remaining $\mathrm{K}_{2} \mathrm{CO}_{3}$ and KBr were separated by filtration and the solvent was removed under reduced pressure. The remaining oil was purified by distillation at 10 mbar to recover the excess of 1,4 -dibromobutane (bp: $65^{\circ} \mathrm{C}$) and at $5.5 \cdot 10^{-2} \mathrm{mbar}\left(\mathrm{bp}: 120^{\circ} \mathrm{C}\right.$) to obtain S3 ($2.00 \mathrm{~g}, 7.72 \mathrm{mmol}, 96 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-7.34(\mathrm{~m}, 2 \mathrm{H}), 6.78-6.74(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.48$ (t, J = 6.6 Hz, 2H), 2.09-2.02 (m, 2H), 1.95-1.87 (m, 2H); ${ }^{13}$ C NMR (101 MHz, CDCl3): $\delta 158.2$, 132.4, 116.5, 113.1, 67.3, 33.4, 29.6, 28.0; HRMS (APCI ${ }^{+}$): m / z calcd. for $\mathrm{C}_{8} \mathrm{H}_{16}{ }^{79} \mathrm{Br}_{2} \mathrm{O} 303.9006$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, found 303.9004.
2.8 10-(4-(4-Bromobutoxy)phenyl)-10H-phenothiazine (4)

Phenothiazine ($1.58 \mathrm{~g}, 7.94 \mathrm{mmol}$), aryl bromide $\mathbf{S 3}$ ($2.50 \mathrm{~g}, 8.11 \mathrm{mmol}, 1.02 \mathrm{eq}$.$) , \mathrm{Pd}(\mathrm{OAc})_{2}$ ($18.9 \mathrm{mg}, 84 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), $\mathrm{SPhos}\left(33.4 \mathrm{mg}, 81.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%\right.$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(5.28 \mathrm{~g}$, $16.2 \mathrm{mmol}, 2.0$ eq.) were dissolved in a mixture of anh. and degassed 1,4 -dioxane (20 mL) and anh. and degassed toluene (20 ml) and stirred at $100^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was filtered through a pad of Celite ${ }^{\circledR}$ and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The solvent was removed under reduced pressure and the residue was purified by column chromatography (silica gel deactivated with NEt_{3}, cyclohexane/EtOAc: 50/1) to afford 4 ($1.20 \mathrm{~g}, 3.45 \mathrm{mmol}, 43 \%$) as a light beige solid.
$\boldsymbol{R}_{\mathrm{f}} 0.34$ (cyclohexane/EtOAc: $50 / 1$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.07$ ($\mathrm{m}, 2 \mathrm{H}$) , 6.98 (dd, $J=7.4,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.82$ (ddd, $J=8.2,7.9,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.78$ (ddd, $J=7.4,7.3$, $1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.18(\mathrm{dd}, J=8.1,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.12$ $(\mathrm{tt}, J=7.2,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{tt}, J=7.2,5.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.7,144.8$, 133.5, 132.4, 126.9, 126.8, 122.4, 119.8, 116.5, 115.8, 67.3, 33.5, 29.6, 28.1; HRMS (ESI ${ }^{+}$): m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{ONBrS}^{+} 425.0443$ [M] ${ }^{+}$, found 425.0446 .

2.9 Pillar[5]arene PA-C4-PhPT

PA-C4-PhPT

Phenothiazine 4 ($70 \mathrm{mg}, 136 \mu \mathrm{~mol} \mathrm{mmol}, 1.2$ eq.) and NaH (60% in mineral oil, 11 mg , $280 \mu \mathrm{~mol}, 2.0 \mathrm{eq}$.$) were dissolved in anh. DMF (2 \mathrm{~mL}$) at $0^{\circ} \mathrm{C}$. After the solution was stirred at $0^{\circ} \mathrm{C}$ for 1 h , hydroxypillarene $\mathbf{2}$ ($100.0 \mathrm{mg}, 136 \mu \mathrm{~mol}$) was added, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and at rt for $16 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added and the aq. layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was purified by column chromatography ($\mathrm{SiO}_{2} / \mathrm{NEt}_{3}$, cyclohexane/EtOAc: 5/1). PA-C4-PhPT ($135 \mathrm{mg}, 133 \mu \mathrm{~mol}, 97 \%$) was obtained as a colorless solid.
$\boldsymbol{R}_{\mathrm{f}} 0.28$ (cyclohexane/EtOAc: $5 / 1$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.08$ (m, 2H), 6.99 (dd, J = 7.4, 1.7 Hz, 2H), 6.83 (ddd, J = 7.5, 7.2, 1.7 Hz, 2H), 6.78-6.76 (m, 8H), $6.75(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.734(\mathrm{~s}, 1 \mathrm{H}), 6.732(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{dd}, \mathrm{J}=8.1,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{t}$, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 3.641(\mathrm{~s}, 3 \mathrm{H}), 3.636$ $(\mathrm{s}, 12 \mathrm{H}), 3.634(\mathrm{~s}, 3 \mathrm{H}), 3.628(\mathrm{~s}, 3 \mathrm{H}), 3.623(\mathrm{~s}, 6 \mathrm{H}), 2.08-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.96(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{\text {a }} \delta 158.84,151.06,151.02,151.00,150.98,150.95,150.13,144.80$, 133.39, 132.42, 128.52, 128.45, 128.41, 128.35, 128.31, 126.94, 126.76, 122.38, 119.82, 116.46, 115.76, 115.19, 114.39, 114.37, 114.34, 114.27, 114.25, 68.17, 67.98, 56.05, 56.00, 55.97, $55.93,55.89,30.00,29.96,29.86,29.83,29.72,26.60,26.50 ;$ HRMS (ESI ${ }^{+}$: m / z calcd. for $\mathrm{C}_{66} \mathrm{H}_{71} \mathrm{O}_{11} \mathrm{~N}_{2} \mathrm{~S} 1099.4773\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, found 1099.4773.

[^3]10-(4-Bromobutyl)-10H-phenothiazine (5)

5

1,4-Dibromobutane ($0.88 \mathrm{~mL}, 1.62 \mathrm{~g}, 7.46 \mathrm{mmol}, 2.9 \mathrm{eq}$) and NaH (60% in mineral oil, 150 mg , $3.75 \mathrm{mmol}, 1.5 \mathrm{eq}$.) were suspended in anh. DMF (10 mL). A solution of phenothiazine ($500 \mathrm{mg}, 2.51 \mathrm{mmol}$) in DMF (2.5 mL) was added over 2.5 h with a syringe pump. After addition the mixture was stirred at rt for $16 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added, and the resulting precipitate was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The aq. layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(4 \times 30 \mathrm{~mL})$, brine $(30 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by column chromatography ($\mathrm{SiO}_{2} / \mathrm{NEt}_{3}$, cyclohexane/EtOAc: $1 / 0$ to $100 / 1$). 5 (531 mg , $1.60 \mathrm{mmol}, 63 \%$) was obtained as a colorless oil.
$\boldsymbol{R}_{\mathrm{f}} 0.27$ (cyclohexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, spectra contains EtOAc): $\delta 7.17-7.13(\mathrm{~m}, 4 \mathrm{H})$, 6.94-6.86 (m, 4H), 3.90 (br, 2H), 3.39 (t, J = 6.3 Hz, 2H), 2.00-1.94 (m, 4H); ${ }^{13}$ C NMR (101 MHz , CDCl_{3}): $\delta 127.7,127.4,125.7,122.8,115.8,46.5,33.5,30.1,25.5$; HRMS (ESI ${ }^{+}$): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{16}{ }^{79} \mathrm{BrNS} 330.0181[\mathrm{M}]^{+}$, found 330.0182 .

2.10 Pillar[5]arene PA-C4-PT

PA-C4-PT

10-(4-Bromobutyl)-10H-phenothiazine (5, $136 \mathrm{mg}, 407 \mu \mathrm{~mol}, 1.5 \mathrm{eq}$.$) and \mathrm{NaH}$ (60% in mineral oil, $22 \mathrm{mg}, 550 \mu \mathrm{~mol}, 2.0$ eq.) were dissolved in anh. DMF (3.5 mL) at $0^{\circ} \mathrm{C}$. After the solution had been stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , hydroxypillarene $2(200.0 \mathrm{mg}, 271 \mu \mathrm{~mol})$ was added and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and at rt for $16 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added and the aq. layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2} / \mathrm{NEt}_{3}\right.$, cyclohexane/EtOAc: 5/1). PA-C4-PT ($230 \mathrm{mg}, 232 \mu \mathrm{~mol}, 84 \%$) was obtained as a colorless solid.
$\boldsymbol{R}_{\mathrm{f}} 0.27$ (cyclohexane/EtOAc: 5/1); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.15-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.91-6.87$ $(\mathrm{m}, 4 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.734(\mathrm{~s}, 1 \mathrm{H}), 6.732(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}$, $2 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 3.76$ $(\mathrm{s}, 4 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.63(3 \times \mathrm{s}, 9 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.613(\mathrm{~s}, 3 \mathrm{H}), 3.605(\mathrm{~s}, 3 \mathrm{H}), 3.595$ $(\mathrm{s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.88(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right)^{\text {a }} \delta 151.04,151.01,150.98,150.95,150.94,150.91,150.08,145.37,128.50,128.46$, $128.43,128.40,128.36,128.33,128.28,127.67,127.38,125.38,122.65,115.59,115.11$, $114.39,114.37,114.33,114.31,114.25,114.20,114.14,67.98,55.96,55.93,55.86,47.04$, 30.03, 29.96, 29.82, 29.58, 27.28, 27.07, 23.82; HRMS (ESI ${ }^{+}$): m / z calcd. for $\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{O}_{10} \mathrm{NS}$ $990.4245[\mathrm{M}+\mathrm{H}]^{+}$, found 990.4244, $\mathrm{C}_{60} \mathrm{H}_{67} \mathrm{O}_{10} \mathrm{~N}_{2} \mathrm{~S} 1007.4511\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, found 1007.4509.

[^4]
2.11 General Procedure for Reductive Dehalogenation

The respective bromide 6 or $\mathbf{7}(200 \mu \mathrm{~mol})$ was dissolved in anh. acetonitrile (2.5 mL) in a 10 mL reaction tube equipped with a septum cap and a magnetic stir bar. The respective photoredox catalyst ($10.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$), N, N-diisopropylethylamine (5.0 eq .) and formic acid (5.0 eq .) were added. The reaction mixture was degassed with three freeze-pump-thaw cycles. The tube was backfilled with argon and vigorously stirred in front of a nail dryer lamp (365 nm) for 48 hours (see Figure S1). The reaction was cooled with compressed air. After the irradiation 0.3 mL of the reaction mixture were diluted with 0.3 mL of $\mathrm{MeCN}-d_{3}$ and the conversion was determined by the ratio of starting material to product in the ${ }^{1} \mathrm{H}$ NMR spectra. In some cases, $\mathrm{Na}_{2} \mathrm{SO}_{3}$ was added to reduce phenothiazine radical cations. Each reaction was performed three times, and the conversions were averaged.

3 NMR Spectra

Figure $\mathrm{S} 2:{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$.

Figure $\mathrm{S} 3:{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ in $\mathrm{CDCl}_{3}(101 \mathrm{MHz})$.

Figure S4: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{CDCl}_{3}\left(500 \mathrm{MHz}\right.$, spectrum contains residues of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ bound by the pillarene at 4.789 ppm).

Figure S 5 : ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{CDCl}_{3}\left(126 \mathrm{MHz}\right.$, spectrum contains residues of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ bound by the pillarene at 53.18 ppm$)$.

Figure $\mathrm{S} 6: \mathrm{H}, \mathrm{H}-\mathrm{COSY}$ spectrum of $\mathbf{2}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S7: HSQC spectrum of $\mathbf{2}$ in $\mathrm{CDCl}_{3}(500 / 126 \mathrm{MHz})$. Blue: CH_{2} groups, red: CH or CH_{3} groups.

Figure S8: HMBC spectrum of $\mathbf{2}$ in $\mathrm{CDCl}_{3}(500 / 126 \mathrm{MHz})$.

Figure $\mathrm{S} 9:{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{S 1}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure $\mathrm{S} 10:{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{S} \mathbf{1}$ in $\mathrm{CDCl}_{3}(126 \mathrm{MHz})$.

Figure $\mathrm{S} 11:{ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{S} \mathbf{1}$ in $\mathrm{CDCl}_{3}(471 \mathrm{MHz}$).

Figure S12: ${ }^{1} \mathrm{H}$ NMR spectrum of 10 -(4-chlorophenyl)-10H-phenothiazine (S2) in $\mathrm{CDCl}_{3}(400 \mathrm{MHz}$).

Figure S13: ${ }^{13}$ C NMR spectrum of 10-(4-chlorophenyl)-10H-phenothiazine (S2) in CDCl_{3} (101 MHz).

Figure S14: ${ }^{1} \mathrm{H}$ NMR spectrum of 10-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-10H-phenothiazine (3) in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$.

Figure S15: ${ }^{13} \mathrm{C}$ NMR spectrum of 10-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-10H-phenothiazine (3) in $\mathrm{CDCl}_{3}(101 \mathrm{MHz})$.

Figure $\mathrm{S} 16:{ }^{1} \mathrm{H}$ NMR spectrum of PA-PhPT in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S17: ${ }^{13} \mathrm{C}$ NMR spectrum of PA-PhPT in $\mathrm{CDCl}_{3}(126 \mathrm{MHz})$.

Figure S 18 : $\mathrm{H}, \mathrm{H}-\mathrm{COSY}$ spectrum of PA-PhPT in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S19: HSQC spectrum of PA-PhPT in $\mathrm{CDCl}_{3}(500,126 \mathrm{MHz})$. Blue: CH_{2} groups, red: CH or CH_{3} groups.

Figure S20: HMBC spectrum of PA-PhPT in $\mathrm{CDCl}_{3}(500,126 \mathrm{MHz})$.

Figure S21：${ }^{1} \mathrm{H}$ NMR spectrum of 1－（4－bromobutoxy）－4－bromobenzene（S3）in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$ ．

Figure S22：${ }^{13} \mathrm{C}$ NMR－spectrum of 1－（4－bromobutoxy）－4－bromobenzene（S3）in $\mathrm{CDCl}_{3}(101 \mathrm{MHz}$ ）．

Figure S23: ${ }^{1} \mathrm{H}$ NMR-spectrum of 10-(4-(4-bromobutoxy)phenyl)-10H-phenothiazine (4) in $\mathrm{CDCl}_{3}(500 \mathrm{MHz}$).

Figure S24: ${ }^{13} \mathrm{C}$ NMR-spectrum of 10-(4-(4-bromobutoxy)phenyl)-10H-phenothiazine (4) in $\mathrm{CDCl}_{3}(126 \mathrm{MHz})$.

Figure S25: ${ }^{1} \mathrm{H}$ NMR-spectrum of PA-C4-PhPT in $\mathrm{CDCl}_{3}(500 \mathrm{MHz}$).

Figure S26: ${ }^{13} \mathrm{C}$ NMR-spectrum of PA-C4-PhPT in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S27: H,H-COSY spectrum of PA-C4-PhPT in $\mathrm{CDCl}_{3}(500,126 \mathrm{MHz})$.

Figure S28: HSQC spectrum of PA-C4-PhPT in $\mathrm{CDCl}_{3}(500,126 \mathrm{MHz})$. Blue: CH_{2} groups, red: CH or CH_{3} groups.

Figure S29: HMBC spectrum of PA-C4-PhPT in $\mathrm{CDCl}_{3}(500,126 \mathrm{MHz})$.

Figure S30: ${ }^{1} \mathrm{H}$ NMR-spectrum of 10-(4-bromobutyl)-10H-phenothiazine (5) in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$.

Figure S31: ${ }^{13} \mathrm{C}$ NMR-spectrum of 10 -(4-bromobutyl)-10H-phenothiazine (5) in $\mathrm{CDCl}_{3}(101 \mathrm{MHz}$).

Figure S32: ${ }^{1} \mathrm{H}$ NMR-spectrum of PA-C4-PT in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S33: ${ }^{13} \mathrm{C}$ NMR-spectrum of -C4-PT in $\mathrm{CDCl}_{3}(126 \mathrm{MHz})$.

Figure S34: H,H-COSY spectrum of PA-C4-PT in $\mathrm{CDCl}_{3}(500,126 \mathrm{MHz})$.

Figure S35: HSQC spectrum of PA-C4-PT in $\mathrm{CDCl}_{3}(500,126 \mathrm{MHz})$. Blue: CH_{2} groups, red: CH or CH_{3} groups.

Figure S36: HMBC spectrum of PA-C4-PT in $\mathrm{CDCl}_{3}(500,126 \mathrm{MHz})$.

4 Cyclic Voltammograms

Figure S37: Cyclic voltammogram of PA-PhPT (1 mM in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$, scan rate $0.1 \mathrm{~V} / \mathrm{s}$, WE $=\mathrm{Pt}$).

$$
\begin{aligned}
& \begin{array}{llllllllllllllllll}
-0.2 & -0.1 & 0.0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1.0 & 1.1 & 1.2 & 1.3
\end{array} \\
& \text { Potential vs. Fc/Fc }{ }^{+} \text {/ V }
\end{aligned}
$$

Figure S38: Cyclic voltammogram of PA-C4-PhPT (1 mM in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.1 \mathrm{M} n$ - $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$, scan rate $0.1 \mathrm{~V} / \mathrm{s}, \mathrm{WE}=\mathrm{Pt}$).

Figure S39: Cyclic voltammogram of PA-C4-PT (1 mM in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$, scan rate $0.1 \mathrm{~V} / \mathrm{s}$, WE $=\mathrm{Pt}$).

Figure S40: Cyclic voltammogram of PhPT (1 mM in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.1 \mathrm{M} n$ - $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$, scan rate $0.1 \mathrm{~V} / \mathrm{s}, \mathrm{WE}=\mathrm{GC}$).

5 Absorption and Emission Spectra

Figure S41: UV/Vis absorption (solid line) and emission spectrum (dashed line) of PA-PhPT in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution with epsilon values.

Figure S42: UV/Vis absorption (solid line) and emission spectrum (dashed line) of PA-C4-PhPT in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution with epsilon values.

Figure S43: UV/Vis absorption (solid line) and emission spectrum (dashed line) of PA-C4-PT in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution with epsilon values.

Figure S44: UV/Vis absorption (solid line) and emission spectrum (dashed line) of MePT in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution with epsilon values.

Figure S45: UV/Vis absorption (solid line) and emission spectrum (dashed line) of PhPT in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution with epsilon values.

Figure S46: 2D-Plot of emission spectra for different excitation wavelengths of $\mathbf{1}$ in MeCN.

6 Excited State Reduction Potentials

The reduction potentials of the excited states were calculated from the oxidation potential in the ground state $E_{1 / 2}^{0 \mathrm{x}}$ and the energy of the first excited singlet state $E_{0,0}^{\mathrm{S}_{1}}$, meaning the energy of the transition from $\mathrm{S}_{0}(v=0)$ to $\mathrm{S}_{1}(v=0)$.

$$
\begin{equation*}
E_{1 / 2}^{*}=E_{1 / 2}^{0 \mathrm{x}}-E_{0,0}^{\mathrm{S}_{1}} \tag{1}
\end{equation*}
$$

The energy of the excited state can be estimated by the intersection of the absorption maximum and the emission maximum after converting from wavelength axis to energy scale. ${ }^{[10]}$

$$
\begin{equation*}
E_{0,0}^{\mathrm{S}_{1}}=\frac{E_{\mathrm{Abs}}[\mathrm{eV}]+E_{\mathrm{Em}}[\mathrm{eV}]}{2} \tag{2}
\end{equation*}
$$

Table S1: Calculation of the excited state reduction potentials of the different phenothiazine derivatives.

Compound	$\begin{gathered} E_{1 / 2}^{0 \mathrm{x}} / \\ \mathrm{V} \end{gathered}$	$\begin{gathered} \lambda_{\text {Abs }} / \\ \mathrm{nm} \end{gathered}$	$E_{\text {Abs }} / \mathrm{eV}^{[a]}$	$\begin{gathered} \lambda_{\mathrm{Em}} / \\ \mathrm{nm} \end{gathered}$	$\begin{aligned} & E_{E m} / \\ & \mathrm{eV}^{[a]} \end{aligned}$	$\begin{gathered} E_{0,0} / \\ \mathrm{eV} \end{gathered}$	$\begin{gathered} E_{1 / 2}^{*} / \\ \mathrm{V} \text { vs. } \\ \mathrm{Fc} / \mathrm{Fc}^{+} \end{gathered}$	$\begin{aligned} & E_{1 / 2}^{*} / \\ & \text { V vs. } \\ & \text { SCE }^{[b]} \end{aligned}$
PA-PhPT	0.26	295	4.20	451	2.75	3.48	-3.22	-2.84
PA-C4-PhPT	0.24	295	4.20	452	2.74	3.47	-3.23	-2.85
PA-C4-PT	0.29	296	4.19	450	2.76	3.47	-3.18	-2.80
MePT ${ }^{[c]}$	0.31	310	4.00	450	2.76	3.38	-3.07	-2.69
PhPT	0.38	321	3.86	446	2.78	3.32	-2.94	-2.56

[a] Calculated by $E=\frac{\mathrm{hc}}{\lambda}\left(\mathrm{h}=6.626 \cdot 10^{-34} \mathrm{Js} ; \mathrm{c}=299792458 \mathrm{~m} \mathrm{~s}^{-1}\right)$. [b] Using $E_{1 / 2}^{0 \mathrm{x}}\left(\mathrm{Fc} / \mathrm{Fc}^{+}\right)=$ 0.38 V vs. SCE. ${ }^{[11]}$ [c] Oxidation potential taken from literature. ${ }^{[5]}$

7 Determination of Photon Flux/irradiance of the Nail Dryer Lamp

The photon flux of the nail dryer lamp was determined by ferrioxalate actinometry. The ferrioxalate complex is a versatile actimeter with an active range from 250 to $500 \mathrm{~nm} .{ }^{[12]} \mathrm{In}$ solution the $\left[\mathrm{Fe}^{\prime \prime \prime}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{2-}$ complex absorbs a photon and decomposes to $\left.\left[\mathrm{Fe}^{\mathrm{II}} \mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]^{2-}$ and CO_{2}. The amount of formed $\mathrm{Fe}^{\prime \prime}$ can be determined by the characteristic absorption at 510 nm of its 1,10-phenanthroline complex (ferriin).

A 0.15 m ferrioxalate solution was prepared by dissolving $\mathrm{K}_{3}\left[\mathrm{Fe}^{111}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}(1.47 \mathrm{~g}$, $3.00 \mathrm{mmol})$ in aq. $\mathrm{H}_{2} \mathrm{SO}_{4}(0.2 \mathrm{M}, 20 \mathrm{~mL}) .{ }^{\text {a }}$ A buffered 0.15 M phenanthroline solution was prepared by dissolving 1,10-phenanthroline ($1.35 \mathrm{~g}, 7.5 \mathrm{mmol}$) and sodium acetate (3.08 g , $37.5 \mathrm{mmol})$ in aq. $\mathrm{H}_{2} \mathrm{SO}_{4}(0.2 \mathrm{M}, 20 \mathrm{~mL})$. To a vial with a septum-cap equipped with a magnetic stir bar was added 1 mL of the ferrioxalate solution. The vial was placed in front of the nail dryer lamp. After irradiation for $5 \mathrm{~s}, 3 \mathrm{~mL}$ of the aq. $\mathrm{H}_{2} \mathrm{SO}_{4}(0.2 \mathrm{~m})$ and 4.0 mL of the buffered phenanthroline solution were added to the vial. The solution was allowed to rest for 1 h . Then $100 \mu \mathrm{~L}$ of the solution were diluted with 2.0 mL of the aq. $\mathrm{H}_{2} \mathrm{SO}_{4}(0.2 \mathrm{M})$ and an absorption spectrum was measured. A non-irradiated sample and other samples with different irradiation times (up to 25 s) were also measured.

[^5]Figure S47: Different samples of the ferrioxalate actinometry after resting time. Irradiation time from left to right: $0.00,5.43,10.51,15.43,20.45,25.45 \mathrm{~s}$.
The molar equivalents of the Fe^{2+} formed can be calculated using Lambert-Beer's law:

$$
\begin{equation*}
n_{\mathrm{Fe}^{2+}}=\frac{V_{\mathrm{cuv}} \cdot V_{\text {vial,tot }} \cdot \Delta A}{10^{3} \cdot V_{\mathrm{vial}, \text { sample }} \cdot l \cdot \varepsilon_{510 \mathrm{~nm}}} \tag{3}
\end{equation*}
$$

$V_{\text {cuv }}(2.1 \mathrm{~mL})$ is the volume in the cuvette, $V_{\text {vial, tot }}(8 \mathrm{~mL})$, is the final volume in the vial after complexation with phenanthroline, $V_{\text {vial,sample }}(0.1 \mathrm{~mL})$ is the aliquot taken from the solution after complexation for the determination via absorption spectroscopy, $l(1 \mathrm{~cm})$ is the path length of the cuvette, ΔA is the difference in absorbance between the irradiated and nonirradiated solutions, and $\varepsilon_{510 \mathrm{~nm}}\left(11100 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$ is the molar absorptivity of Fe" $(\mathrm{phen})^{2+}$ at 510 nm .

Table S2: Calculation of the amount of Fe^{2+} formed for the different irradiation times.

$\#$	1	2	3	4	5	6
$t_{\text {irr }} / \mathrm{s}$	0.00	5.43	10.51	15.43	20.45	25.45
$A_{510 \mathrm{~nm}} /$ a.u.	0.0176	0.0507	0.0846	0.1352	0.1748	0.2218
$\Delta A_{510 \mathrm{~nm}} /$ a.u.	0	0.0331	0.0670	0.1176	0.1572	0.2042
$n_{\mathrm{Fe}^{2+}} / 10^{-6} \mathrm{~mol}$	0	1.25	2.53	4.45	5.95	7.73

Figure S48: Moles of Fe^{2+} of the different samples vs. irradiation time. Red line shows the linear fit for determination of the photon flux.

With the determined slope the photon radiant flux Φ_{Ph} per irradiated volume can be calculated as:

$$
\begin{equation*}
\Phi_{\mathrm{Ph}}=\frac{n_{F e^{2+}}}{\Phi \cdot t \cdot f}=\frac{\frac{d n_{F e^{2+}}}{d t}}{\Phi \cdot f}=\frac{3.08 \cdot 10^{-7}}{1.146 \cdot 0.999}=2.74 \cdot 10^{-7} \text { einstein } \cdot \mathrm{s}^{-1} \tag{4}
\end{equation*}
$$

$\frac{d n_{\mathrm{Fe}^{2+}}}{d t}\left(3.08 \cdot 10^{-6}\right.$ mols-1) is the slope of the linear fit, $\Phi(1.146$ for a 0.15 M solution at 363.8 nm) is the quantum yield for the ferrioxalate actinometer, t is the irradiated time, and f is the fraction of light absorbed at $\lambda=365 \mathrm{~nm}\left(f=1-10^{-A}\right)$. The absorbance of the ferrioxalate solution at 365 nm is 3.845 , indicating $f=0.999$.

Assuming monochromatic light, the irradiance E can be calculated with Planck's relation:

$$
\begin{equation*}
E=\frac{\Phi_{\mathrm{E}}}{A}=\frac{\mathrm{h} \cdot \Phi_{\mathrm{Ph}} \cdot v}{A}=\frac{\mathrm{h} \cdot \mathrm{c} \cdot \Phi_{\mathrm{Ph}}}{A \cdot \lambda}=14.3 \mathrm{~mW} \mathrm{~cm}^{-2} \tag{5}
\end{equation*}
$$

$\mathrm{h}\left(6.626 \cdot 10^{-34} \mathrm{Js}\right)$ is the Planck constant; $\mathrm{c}\left(299792458 \mathrm{~m} \mathrm{~s}^{-1}\right)$ is the speed of light; $A\left(6.28 \mathrm{~cm}^{2}\right)$ is the irradiated area; $\lambda(365 \mathrm{~nm})$ is the wavelength of the light source.

Table S3: Irradiance/light intensity of different in photoredox catalysis used light sources.

Type	$\begin{gathered} E / \\ \mathrm{mW} \mathrm{~cm} \end{gathered}$	$E / \mathrm{mW} \mathrm{ml}^{-1}$	Light Intensity / $\mu \mathrm{W} \mathrm{cm}^{-2}$	photon flux $/ \mathrm{Em}^{-2} \mathrm{~s}^{-1}$	Determined by
Nail dryer lamp	14.3	35.9		0.0027	
Commercially available Photoreactors					
Penn PhD Photoreactor M2	$100{ }^{[13]}$				Calorimetry
PhotoRedOx Box		80-180 ${ }^{[14][\text { b] }}$			Ferrioxalate actinometry
Used in Phenothiazine catalysis					
		$37.4^{[15]}$			-
dehalogenation reaction			$1.8-2.2{ }^{[16,17]}$		-
28 W bulbs		$2.86{ }^{[18]}$			-
LED-setup				$1.22^{[19]}$	LED specification sheet
LED-setup		$5.65{ }^{[20]}$			-
LED-setup		$2.2{ }^{[21]}$			-

[a] Depending on the lamp used in the setup.

8 Kinetic Profiles

To determine the kinetic profiles for the dehalogenation of $\mathbf{7}$ with cavity-free PhPT and cavitylinked PA-PhPT, reactions were performed as described in chapter 2.11, but on a $400 \mu \mathrm{M}$ scale. After $0,0.5,1,2,5,8.5,24,48 \mathrm{~h}$ of irradiation time small samples were taken and the conversion was analyzed by ${ }^{1} \mathrm{H}$ NMR-spectroscopy using 1,2,4,5-tetramethylbenzene as internal standard.

Table S4: Conversion of $\mathbf{7}$ in the photoredox-catalyzed dehalogenation with PhPT and PA-PhPT as PRC after different irradiation times.

$\#$	t / h	Conversion $^{[\mathrm{ld]}}$ for / \%	
PhPT	PA-PhPT		
0	0.0	0	0
1	0.5	1	1
2	1.0	1	3
3	2.0	2	4
5	5.0	7	6
6	8.5	12	17
7	24.0	15	19
8	48.0	20	31

[a] Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,2,4,5-tetramethylbenzene as internal standard.

Figure S49: Temporal course of the conversion of $\mathbf{7}$ with PhPT and PA-PhPT as PRC.

9 Fluorescence Quenching and Stern-Volmer Plots

In a typical experiment a stock solution of the respective PRC in degassed acetonitrile (20$70 \mu \mathrm{~m}$) was prepared in an argon-filled glovebox, filled into a screw-capped 10 mm quartz cuvette and was used to measure the initial fluorescence spectra after excitation at 365 nm . The remaining stock solution was used to dissolve the respective quencher. Aliquots of this solution were added to the cuvette, and fluorescence spectra were measured. To ensure the exclusion of oxygen, an argon line was placed into the photometer.

The quenching was analyzed by plotting the fluorescence intensity F / F_{0} at 446 nm vs. the quencher concentration according to the Stern-Volmer-relation, and the Stern-Volmer quenching constant was determined by a linear fit: ${ }^{[22]}$

$$
\begin{equation*}
\frac{F}{F_{0}}=K_{\mathrm{SV}} \cdot[\mathrm{Q}]+1 \tag{6}
\end{equation*}
$$

F is the fluorescence intensity of the sample with the respective quencher concentration, F_{0} is the fluorescence intensity with no quencher, K_{SV} is the Stern-Volmer-constant and [Q] is the concentration of the quencher.

Table S5: Stern-Volmer quenching constants for the PRCs PhPT, PA-PhPT and PA-C4-PhPT and different substrates.

Catalyst (PRC)	Quencher (Substrate)	$K_{\text {sv }} / \mathrm{M}^{-1}$
PhPT	$\mathbf{1}$	0.07 ± 0.17
	$\mathbf{6}$	1.40 ± 0.22
	$\mathbf{7}$	1.98 ± 0.09
PA-PhPT	$\mathbf{6}$	2.42 ± 2.28
	$\mathbf{7}$	2.29 ± 0.19
PA-C4-PhPT	$\mathbf{6}$	2.49 ± 0.97
	$\mathbf{7}$	2.21 ± 0.22

Figure S50: Emission spectra of PhPT in acetonitrile with different concentrations of $\mathbf{1}$.

Figure S51: Stern-Volmer plot and linear fit for the fluorescence quenching of PhPT by 1.

Figure S52: Emission spectra of PhPT in acetonitrile with different concentrations of 6.

Figure S53: Stern-Volmer plot and linear fit for the fluorescence quenching of PhPT by 6.

Figure S54: Emission spectra of PhPT in acetonitrile with different concentrations of 7.

Figure S55: Stern-Volmer plot and linear fit for the fluorescence quenching of PhPT by 7.

Figure S56: Emission spectra of PA-PhPT in acetonitrile with different concentrations of 6.

Figure S57: Stern-Volmer plot and linear fit for the fluorescence quenching of PA-PhPT by 6.

Figure S58: Emission spectra of PA-PhPT in acetonitrile with different concentrations of 7.

Figure S59: Stern-Volmer plot and linear fit for the fluorescence quenching of PA-PhPT by 7.

Figure S60: Emission spectra of PA-C4-PhPT in acetonitrile with different concentrations of 6.

Figure S61: Stern-Volmer plot for the fluorescence quenching of PA-C4-PhPT by 6.

Figure S62: Emission spectra of PA-C4PhPT in acetonitrile with different concentrations of 7.

Figure S63: Stern-Volmer plot for the fluorescence quenching of PA-C4PhPT by 7.

10 DFT calculations

DFT calculations were performed with the TURBOMOLE v7.5.0 program package. ${ }^{[23]}$ The resolution-of-identity ${ }^{[24]}$ (RI) approximation for the Coulomb integrals was used in all DFT calculations. Further, the D3 dispersion correction scheme ${ }^{[25,26]}$ with the Becke-Johnson damping function was applied. ${ }^{[27,28]}$ Using TURBOMOLE, the geometries of all molecules were optimized without symmetry restrictions with the PBEh-3c ${ }^{[29]}$ composite scheme followed by harmonic vibrational frequency analyses to confirm minima as stationary points.

10.1 Direction of Complexation of Bromopentannitrile in PA-PhPT

Table S6: Electronic Energies (E_{0}), zero-point vibrational energies (ZPE) of the two different complexes of bromopentannitrile in PA-PhPT calculated using PBEh-3c.

	Nitrile and PT on the same side	Bromide and PT on the same side
$E_{0} /$ Hartree	-6343.4005	-6343.3923
$E_{\text {ZPE }} /$ Hartee	1.2433	1.2435
$E_{\text {total }} /$ Hartree	-6342.1572	-6342.1488
$E_{\text {total }} / \mathrm{kcal}$	-3979764.8	-3979759.5
$\Delta E(v s$. Nitrile and PT on	0	-5.3
the same side) $/ \mathrm{kcal}$		

10.2 Calculated structures

Figure S64: Calculated structures of bromopentanitrile in PA-PhPT with bromine and PT on the same side (left) and nitrile and PT on the same side (right) using PBEh-3c.

10.3 Cartesian Coordinates of the Calculated Structures

The Cartesian coordinates are listed in angstrom.

Table S7: Coordinates of the calculated structure of bromopentanitrile in PA-PhPT (bromide and PT on the same side) (PBEh-3c/def2-mSVP).

	X	y	z	0	2.0402311	-1.3214825	-4.3303627
C	3.5283806	-0.1222057	-0.6555823	C	2.0210608	-2.6822462	-4.6715658
C	2.8711743	0.7636726	-1.5032692	0	4.0080137	0.2256195	0.56422
C	2.3574634	0.3642753	-2.7304256	C	3.8334719	1.5469662	0.9996748
C	2.5403008	-0.9627111	-3.121728	0	1.5057522	-2.7879823	3.8404979
C	3.219291	-1.8422675	-2.2855136	C	2.2105844	-1.7267717	4.434479
C	3.7129957	-1.4486068	-1.0471725	0	3.2922903	-4.9301851	-0.8964976
C	2.9399284	-2.6691219	1.8974674	C	2.7176469	-6.1129669	-1.3835918
C	3.3859197	-3.2127183	0.6984114	0	-3.479883	-2.1873114	4.0638507
C	2.8433391	-4.4295127	0.2836638	C	-2.8225098	-1.7813875	5.2350829
C	1.8740047	-5.0558358	1.0591746	0	-1.1654626	-5.962898	0.8057829
C	1.410549	-4.5011293	2.2454777	C	-1.8737393	-6.4641904	-0.2999285
C	1.966812	-3.2928625	2.670226	0	-4.2231529	1.7403927	0.3864564
C	-1.0542451	-4.624427	2.7241301	C	-4.2190924	2.1354812	1.7317695
C	-1.7591006	-5.0306902	1.5890203	0	-5.0586228	-3.5237497	-0.9606216
C	-3.0074205	-4.4867078	1.3186959	C	-4.9525281	-3.921093	-2.3047225
C	-3.5918935	-3.5320813	2.1438918	0	-2.8595325	-0.5863055	-4.1872409
C	-2.8936333	-3.1337736	3.2835138	C	-2.3067823	-1.537153	-5.0634239
C	-1.6455371	-3.6857349	3.560281	C	0.2709195	3.3683851	-1.7195087
C	-4.6312188	-1.2376555	-1.6065499	C	0.3633504	3.4105261	-0.3291622
C	-4.4120545	0.0888926	-1.2624488	C	0.9806987	4.4719866	0.3124363
C	-4.4419872	0.4343113	0.0893284	C	1.5206074	5.5167776	-0.4291789
C	-4.6523876	-0.5513834	1.0492361	C	1.4442401	5.4817884	-1.8131856
C	-4.8227143	-1.8880786	0.7042815	C	0.8221816	4.4189993	-2.4497964
C	-4.835448	-2.2234719	-0.6500185	N	2.1325508	6.636934	0.2005003
C	-0.6898673	0.4087399	-3.8785416	C	3.4562174	6.5065393	0.6467458
C	0.1180717	1.3746058	-3.2804528	C	4.1901054	7.6402827	1.0081899
C	-0.4671935	2.2696408	-2.3841627	S	3.5191564	9.2361133	0.70623
C	-1.8300347	2.1444436	-2.1000115	C	1.8330339	8.8871188	1.0607718
C	-2.6418572	1.1863526	-2.6785361	C	1.2941536	7.6495983	0.696888
C	-2.0460701	0.3113915	-3.5978743	C	4.0830384	5.2655357	0.7385869
C	4.3879465	-2.4582324	-0.1459756	C	5.3916179	5.160059	1.1850116
C	0.3162054	-5.1806622	3.0346509	C	6.095496	6.2840643	1.5796862
C	-4.9389365	-2.9448788	1.7784255	C	5.4818739	7.5244182	1.4966106
C	-4.1136044	1.1058037	-2.3403856	C	1.0314701	9.8820288	1.5974637
C	1.6028762	1.3594737	-3.5838212	C	-0.3348537	9.6897034	1.7292478

C	-0.8835983	8.4823347	1.3345533	H	3.1946095	-6.3198887	-2.3396505
C	-0.0805713	7.4664185	0.83812	H	1.638596	-6.0136344	-1.5444937
Br	-0.1586235	0.8955843	2.7790831	H	2.8928352	-6.9659705	-0.7201793
C	-1.1964984	-0.5864284	1.9680701	H	-3.4661944	-1.0462245	5.7138999
C	-1.3014946	-0.4588552	0.4681655	H	-1.8543627	-1.3116335	5.0296276
C	-0.0339358	-0.8186864	-0.2859279	H	-2.6659777	-2.611067	5.9320509
C	0.1700149	-2.3270784	-0.4244552	H	-1.2354266	-7.2173572	-0.7586764
C	-0.7169926	-2.9344556	-1.4035947	H	-2.0869136	-5.6903544	-1.0419926
N	-1.3892403	-3.4226538	-2.2010456	H	-2.812975	-6.9424222	-0.0033559
H	2.7190142	1.7952877	-1.2118395	H	-4.0463455	3.2096852	1.7399237
H	3.3708806	-2.8731582	-2.5762644	H	-3.4186529	1.6564982	2.3057963
H	3.3665793	-1.7248281	2.2070426	H	-5.174043	1.9338477	2.2277323
H	1.4392991	-5.9941558	0.7459711	H	-5.1161651	-4.9972112	-2.3208611
H	-3.5577772	-4.7911303	0.4408478	H	-3.9623818	-3.7084941	-2.7165168
H	-1.089598	-3.3791106	4.4357653	H	-5.7142633	-3.4506709	-2.9352926
H	-4.6178326	-1.4894152	-2.6564935	H	-3.1322259	-2.162373	-5.3974517
H	-4.6624906	-0.3046631	2.1035886	H	-1.5708874	-2.1718908	-4.5642425
H	-0.224902	-0.2794841	-4.5694573	H	-1.849396	-1.0701566	-5.9412971
H	-2.2796331	2.8427104	-1.4036598	H	-0.0536499	2.6019681	0.2576246
H	5.1022994	-1.9586886	0.5079619	H	1.0365456	4.4940894	1.3943514
H	4.9643444	-3.1524962	-0.7568413	H	1.8583728	6.3016737	-2.3852597
H	0.5086945	-5.0750548	4.1029224	H	0.738292	4.4176213	-3.5294017
H	0.3375328	-6.2505696	2.8222796	H	3.5534696	4.3725513	0.4415756
H	-5.595943	-3.7483344	1.4436428	H	5.8559862	4.1834037	1.2290825
H	-5.4102141	-2.5110986	2.6592365	H	7.1114424	6.2031707	1.940607
H	-4.6849721	0.851623	-3.234286	H	6.0144927	8.4193614	1.7918583
H	-4.455656	2.0927343	-2.0301061	H	1.4837899	10.8201388	1.8926775
H	2.0343934	2.3456082	-3.4162856	H	-0.9585118	10.4772424	2.1291146
H	1.7516646	1.138074	-4.641192	H	-1.9489394	8.3142641	1.4190735
H	1.5161789	-2.7545218	-5.6329451	H	-0.5393119	6.5334551	0.5450652
H	3.0269671	-3.0998095	-4.7815233	H	-0.6996521	-1.5014003	2.2877616
H	1.468476	-3.2827428	-3.9410615	H	-2.1748291	-0.5384956	2.4392464
H	4.2767827	1.6123135	1.9912984	H	-2.1152197	-1.1224857	0.1570176
H	2.777152	1.8263609	1.0719777	H	-1.6307709	0.5451063	0.2000218
H	4.3419184	2.2625926	0.3448074	H	-0.0530886	-0.367219	-1.2758975
H	1.735332	-1.5373883	5.3948421	H	0.8444761	-0.410207	0.215989
H	2.1608142	-0.8090833	3.843284	H	1.1901171	-2.5344897	-0.7437356
H	3.2613329	-1.9813612	4.6063408	H	0.0338034	-2.8472707	0.5265826

Table S8: Coordinates of the calculated structure of bromopentannitrile in PA-PhPT (nitrile and PT on the same side) (PBEh-3c/def2-mSVP).

	x	y	z
C	3.4890757	-0.1362554	-0.0697696
C	2.9666556	0.7570488	-0.998747
C	2.6793408	0.3755372	-2.3038466
C	2.9218865	-0.9470056	-2.6760902

C $3.449389-1.839038-1.7495181$
C $3.7441466-1.4557167-0.4473707$
C 2.7121761 -2.6076028 2.4814608
C $3.1807263-3.1509831 .2925207$
$\begin{array}{llll}\text { C } & 2.5715645 & -4.3078466 & 0.8038578\end{array}$

		-4.8736393	
C	1.0308171		
C	1.6		
C			
C			
C	-3.3		
C	-3.808	-3	
C	-3		
C			
C	-4.		
C	-4.0899953	0.1969494	-1.9802178
C	-4.177046	0.6097554	-0.6506556
C	-4		
C	-4		
C	-4.6	-2	
C	-0.07803	0.4987131	
C	0.		
C	-0.1		
C	-1.5		
C	-2.		
C	-1		-4.0103999
C	4.	-2	
C	-0.1697	-4.92844	
C	-5.0539	-2	
C	-3	1.1621725	
C	2.	1.	
0		-1	
C	2.7920994	-2	-4.347909
0	3.7	0	1.2100926
C	3.	1.	1.6292595
	1.1	-2	4.3372705
C	1.7	-1	4.8396577
0	3.0	-4	-0.3503621
C	2.5	-6	-0
0	-3.	-1	3.227378
C	-2.9173562	-0	4.2347096
0	-1.6489	-6	1.
C	-2	-6	0.
0	-3.927859	1.	
C	-3.		
0	-4.8199	-3.3886	-1.
C	-4.7679	-3	-2.8463988
0	-2.164971	-0.4890	-4
C	-1.4703922	-1.3696258	-5
C	0.4954104	3.3867103	-1.6497228
C	0.3539026	3.3608731	-0.2624363
C	0.8412718	4.3950917	0.5

C $1.4792929 \quad 5.4790361-0.0722519$
C $1.6398687 \quad 5.5077383-1.4490731$
C $1.1505016 \quad 4.470841$-2.2285847
$\begin{array}{llll}\mathrm{N} & 1.9540477 & 6.5764085 & 0.7000431\end{array}$
C $3.1868713 \quad 6.4437455 \quad 1.3564914$
C $3.8268217 \quad 7.56967121 .8829229$
$\begin{array}{llll}\text { S } & 3.182694 & 9.168366 & 1.5403883\end{array}$
C $\quad 1.46868798 .78116371 .5921909$
C $1.023807 \quad 7.55439231 .090686$
C $\quad 3.8144354 \quad 5.20823971 .4998597$
C $\quad 5.0319289 \quad 5.0998159 \quad 2.1545376$
$\begin{array}{llll}C & 5.6372396 & 6.2141766 & 2.7081267\end{array}$
$\begin{array}{llll}\text { C } & 5.0212232 & 7.4490011 & 2.5753468\end{array}$
$\begin{array}{llll}\text { C } & 0.5684199 & 9.7398164 & 2.0290714\end{array}$
C $\quad-0.7964983 \quad 9.5238191 \quad 1.9215754$
C $\begin{array}{llll}-1.2466565 & 8.32855 & 1.3893399\end{array}$
$\begin{array}{lllll}\text { C } & -0.3512118 & 7.3471057 & 0.9914811\end{array}$
$\mathrm{Br}-0.8029017$-4.8886409 -2.8574123
C $-0.9996636-3.6334009-1.3452624$
C $\quad-0.7166632-2.2166364-1.7885059$
C $-0.9156828-1.2040823-0.6662266$
C 0.0540328 -1.4199593 0.4980849
C $\quad 0.008456-0.31805551 .4429912$
$\begin{array}{llll}\mathrm{N} & -0.0408699 & 0.5725539 & 2.1724711\end{array}$
H 2.77088141 .7857411 -0.7243291
$\begin{array}{llll}\text { H } & 3.644402 & -2.8669716 & -2.021747\end{array}$
H 3.1951957 -1.7118835 2.8452139
H 1.0196365 -5.7659205 1.1348791
$\begin{array}{llll}\text { H } & -3.890488 & -4.9267722 & 0.508758\end{array}$
H -1.3824282 -2.6668376 4.0701205
H $-4.2397433-1.4490893-3.3046297$
$\begin{array}{llll}\text { H } & -4.5975556 & 0.0035546 & 1.3681227\end{array}$
H $0.5013455-0.1824219-4.6434176$
H $\quad-2.0690754 \quad 2.9198699-1.8595377$
H 4.9605438 -1.9753398 1.2414692
H 4.8911519 -3.1983598 -0.0030777
H $\quad-0.1315169-4.73997014 .4376832$
H $\quad-0.1451149-6.0104833 \quad 3.2403874$
H -5.6232415 -2.0951151 1.933673
H $\quad-5.6976104$-3.4142557 0.7930094
H $\quad-4.1253245$ 2.1477154 -2.8749525
H $\quad-4.1398432 \quad 0.82864 \quad-4.0190242$
H 2.5298093 2.3706402 -3.0094241
H 2.47824591 .1807701 -4.283121
H 2.4818238 -2.6858479 -5.3894011
H 2.1684603 -3.3100514 -3.7605112
H 3.8333045 -2.9588448 -4.2805803

H	3.8520191	1.5694651	2.6740489
H	2.4983429	1.7998326	1.5574331
H	4.1547767	2.2321405	1.0593804
H	2.7825649	-1.5895719	5.0865467
H	1.1810228	-1.2440252	5.7548342
H	1.6061321	-0.638687	4.1450803
H	1.5103644	-5.9997502	-1.0793417
H	2.7058657	-6.8484995	-0.072563
H	3.1375821	-6.3009613	-1.7015932
H	-3.4951932	0.1883289	4.4404764
H	-1.9132809	-0.4132963	3.9195969
H	-2.843317	-1.2911358	5.1599658
H	-1.8320213	-7.838859	0.218051
H	-2.5074326	-6.3980726	-0.5525937
H	-3.382288	-7.1891136	0.7787127
H	-2.9124038	1.7080487	1.4090855
H	-3.370235	3.3445163	0.9016565
H	-4.6011104	2.2515013	1.5487914
H	-5.5259668	-3.3653344	-3.4762621
H	-4.965211	-4.9118461	-2.8178453
H	-3.7848055	-3.6870013	-3.3024743
H	-2.2224556	-1.9823175	-6.0706619

H	-0.7936343	-2.0293664	-5.0258088
H	-0.8973943	-0.8385158	-6.3442476
H	-0.1384535	2.5209221	0.2114236
H	0.7190408	4.363167	1.5968741
H	2.1325998	6.3562605	-1.9053315
H	1.2524193	4.5168211	-3.3057122
H	3.3596214	4.3227524	1.0816563
H	5.5014431	4.1280146	2.235564
H	6.5798568	6.1303185	3.2309997
H	5.4790244	8.336723	2.9926444
H	0.9457341	10.6693017	2.4358665
H	-1.4942047	10.2841316	2.2443202
H	-2.307493	8.1428723	1.2867935
H	-0.73512	6.4224611	0.5860688
H	-2.0214778	-3.7447644	-0.9848104
H	-0.3183125	-3.9885499	-0.5721623
H	-1.3975322	-1.9514717	-2.5969856
H	0.3009589	-2.1328538	-2.1777583
H	-0.7644678	-0.2088466	-1.0875542
H	-1.9437262	-1.2396474	-0.3012213
H	1.0814725	-1.507565	0.1369027
H	-0.1693719	-2.3358948	1.0500109

11 References

[1] D. Bradley, G. Williams, M. Lawton, J. Org. Chem 2010, 75, 8351.
[2] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176-2179.
[3] R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow, P. Granger, R. K. Harris, P. Granger, E. D. Becker, R. Goodfellow, S. M. Cabral de Menezes, R. Goodfellow, P. Granger, R. K. Harris, P. Granger, E. D. Becker, R. Goodfellow, Magn. Reson. Chem. 2002, 40, 489-505.
[4] E. H. Discekici, C. W. Pester, N. J. Treat, J. Lawrence, K. M. Mattson, B. Narupai, E. P. Toumayan, Y. Luo, A. J. McGrath, P. G. Clark, J. Read De Alaniz, C. J. Hawker, ACS Macro Lett. 2016, 5, 258-262.
[5] M. Kolek, F. Otteny, P. Schmidt, C. Mück-Lichtenfeld, C. Einholz, J. Becking, E. Schleicher, M. Winter, P. Bieker, B. Esser, Energy Environ. Sci. 2017, 10, 2334-2341.
[6] T. Boinski, A. Szumna, Tetrahedron 2012, 68, 9419-9422.
[7] J. Han, X. Hou, C. Ke, H. Zhang, N. L. Strutt, C. L. Stern, J. F. Stoddart, Org. Lett. 2015, 17, 3260-3263.
[8] X. Hou, X. F. Cheng, X. Xiao, J. H. He, Q. F. Xu, H. Li, N. J. Li, D. Y. Chen, J. M. Lu, Chem. An Asian J. 2017, 12, 2278-2283.
[9] Y. Li, G. Li, X. Wang, C. Lin, Y. Zhang, Y. Ju, Chem. - A Eur. J. 2008, 14, 10331-10339.
[10] N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075-10166.
[11] V. V Pavlishchuk, A. W. Addison, Inorganica Chim. Acta 2000, 298, 97-102.
[12] C. G. H. Atchard, Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1956, 235, 518-536.
[13] C. C. Le, M. K. Wismer, Z. C. Shi, R. Zhang, D. V. Conway, G. Li, P. Vachal, I. W. Davies, D. W. C. MacMillan, ACS Cent. Sci. 2017, 3, 647-653.
[14] HepatoChem, "Determining Photon Flux Using Actinometry," can be found under https://www.hepatochem.com/determine-photon-flux-using-actinometry/, n.d.
[15] F. D. Lu, D. Liu, L. Zhu, L. Q. Lu, Q. Yang, Q. Q. Zhou, Y. Wei, Y. Lan, W. J. Xiao, J. Am. Chem. Soc. 2019, 141, 6167-6172.
[16] E. H. Discekici, N. J. Treat, S. O. Poelma, K. M. Mattson, Z. M. Hudson, Y. Luo, C. J. Hawker, J. R. De Alaniz, Chem. Commun. 2015, 51, 11705-11708.
[17] S. Dadashi-Silab, X. Pan, K. Matyjaszewski, Chem. - A Eur. J. 2017, 23, 5972-5977.
[18] W. Huang, J. Zhai, X. Hu, J. Duan, Z. Fang, N. Zhu, K. Guo, Eur. Polym. J. 2020, 126, 109565.
[19] A. Steiner, J. D. Williams, J. A. Rincón, O. de Frutos, C. Mateos, C. O. Kappe, European J. Org. Chem. 2019, 2019, 5807-5811.
[20] J. Liu, X. P. Liu, H. Wu, Y. Wei, F. D. Lu, K. R. Guo, Y. Cheng, W. J. Xiao, Chem. Commun.

2020, 56, 11508-11511.
[21] T. H. Nguyen, L. T. T. Nguyen, V. Q. Nguyen, L. Ngoc Tan Phan, G. Zhang, T. Yokozawa, D. Thuy Thi Phung, H. Tran Nguyen, Polym. Chem. 2018, 9, 2484-2493.
[22] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, 2006.
[23] TURBOMOLE V7.3.1 2019, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, TURBOMOLE GmbH, Since 2007, 2007.
[24] K. Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs, Chem. Phys. Lett. 1995, 240, 283-290.
[25] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
[26] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.
[27] A. D. Becke, E. R. Johnson, J. Chem. Phys. 2005, 123, 154101.
[28] E. R. Johnson, A. D. Becke, J. Chem. Phys. 2006, 124, 174104.
[29] S. Grimme, J. G. Brandenburg, C. Bannwarth, A. Hansen, J. Chem. Phys. 2015, 143, DOI 10.1063/1.4927476.

[^0]: ${ }^{\text {a }}$ Signals of six C-atoms are missing due to overlap with the peaks at 151.01, 114.67, 114.18, 56.44, 55.9 (overlap of 3 C -atoms) ppm.

[^1]: ${ }^{\text {a }}$ One Signal is missing du to coupling to ${ }^{10} \mathrm{~B} /{ }^{11} \mathrm{~B}$.

[^2]: ${ }^{\text {a }}$ Signals of five C -atoms are missing due to the overlap with the peaks $151.02,128.71,128.54,114.23$ (overlap of 3 C -atoms).

[^3]: ${ }^{\text {a }}$ Signals of 17 C -atoms are missing due to overlap with the peaks at 151.06 (overlap of 3 C -atoms), 150.98 (overlap of 3 C -atoms), $128.45,128.41$ (overlap of 5 C -atoms), $114.39,114.37,114.34,114.25,56.00,55.97$ (overlap of 3 C -atoms), and 55.93 ppm .

[^4]: ${ }^{\text {a }}$ Signals of 14 C-atoms are missing due to the overlap with the peaks at $151.01,150.98,150.95,128.36,128.33$, $128.28,114.33,114.25,55.96$ (overlap of four C-atoms), 55.93 (overlap of three C-atoms), 55.86 and 29.82 ppm.

[^5]: ${ }^{\text {a }}$ Due to the light sensitivity of ferrioxalate in solution the experiment should be performed under exclusion of light, once the solution is prepared.

