Electronic Supplementary Information for:

Electrochemical Reduction of Sulfones for Radical Fluoroalkylation of Alkenes

Xin Zhou, Chuanfa Ni, Ling Deng and Jinbo Hu*

Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032 (China)

*E-mail: jinbohu@sioc.ac.cn

Contents

1. General Information ..2

2. Preparation of Fluorinated Sulfones and Alkenes ...2

3. Development of Reaction Conditions...14

4. Radical Fluoroalkylation of alkenes with Fluorinated Sulfones ..18

5. Mechanistic Investigation..42

6 Full List of Reference 16..47

7. References ..47

8. NMR Spectra of Compounds...49
1. General Information

Unless otherwise mentioned, all manipulations were conducted with a standard sealed tube under argon. All solvents and reagents were purchased from commercial sources and used as received. All the melting points were uncorrected. \(^1\)H NMR spectra were recorded at 400 MHz. \(^{13}\)C NMR spectra were recorded at 101 MHz. \(^{19}\)F NMR spectra were recorded at 376 MHz. \(^1\)H NMR chemical shifts were determined relative to internal (CH\(_3\))\(_4\)Si (TMS) at \(\delta\) 0.00 ppm. \(^{13}\)C NMR chemical shifts were determined relative to the signal of the solvent: CDCl\(_3\) \(\delta\) 77.16 ppm. \(^{19}\)F NMR chemical shifts were determined relative to external CFCl\(_3\) at \(\delta\) 0.00 ppm. Data for \(^1\)H, \(^{13}\)C, and \(^{19}\)F NMR were recorded as follows: chemical shift (\(\delta\), ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, br = broad). Mass spectra were obtained on a mass spectrometer. High-resolution mass data were recorded on a high-resolution mass spectrometer in the EI or ESI mode.

2. Preparation of Fluorinated Sulfones and Alkenes

2.1 Preparation of fluorinated sulfones

Fluoroalkyl sulfones 1a\(^{[1]}\), 1b\(^{[2]}\), 1c\(^{[2]}\) and 1d\(^{[2]}\) were prepared according to reported methods. Their analytical data are in agreement with those reported in the literature.

2.1.1 Preparation of fluorinated sulfone 1a

Experimental Procedures:

To a flask was charged water (600 mL) and KOH (99.0 g, 1.5 mol). KOH was added slowly to avoid serious exothermic problem. When the mixture was cooled down to room temperature, dimethoxyethane (DME) (300 mL) and Et\(_3\)N (13.9 mL, 0.1 mol) were charged and the mixture was stirred vigorously for a while, then 2-mercaptop benzothiazole (83.6 g, 0.5 mol) was added in portions within 10 minutes. HCF\(_2\)Cl gas was bubbled into the above solution for approximately 3 hours until the reaction mixture got cool. Then the mixture was stirred for additional an hour. After that, the mixture was allowed to separate into layers, and the lower organic phase was
collected and the residue was extract with petroleum ether (50 mL × 3). The organic phases were combined, dried, filtered, and evaporated under reduced pressure. The residue was washed with aqueous NaOH solution (1 mol/L), and dried with anhydrous Na₂SO₄ to afford the crude product, which was directly used for next step without further purification.

To a three-necked 2-L flask containing the above-obtained crude product, was equipped with a mechanical stirrer, and charged with CCl₄ (400 mL), MeCN (400 mL), and hot water (800 mL). Then NaIO₄ (213.9 g, 1.0 mol) and RuCl₃·xH₂O (50.0 mg) were added to the solution. The reaction mixture was stirred for 3 hours until cooling down, and filtered. The filtrate was extracted with dichloromethane (DCM) (100 mL ×3), and the white residue was washed with DCM until no more substance could be dissolved in DCM. The organic phases were combined, washed with aqueous Na₂SO₃, dried, filtered, and evaporated under reduced pressure. The crude product was recrystallized in CHCl₃ to afford 1a as white solids (72.8 g, 58%).

1H NMR (400 MHz, CDCl₃) δ 8.48 – 8.15 (m, 1H), 8.13 – 8.00 (m, 1H), 7.78 – 7.54 (m, 2H), 6.58 (t, $J = 53.1$ Hz, 1H).

19F NMR (376 MHz, CDCl₃) δ -121.43 (d, $J = 53.1$ Hz).

2.1.2 Preparation of fluorinated sulfones 1b, 1c and 1d

Typical Procedures:

![Steps 1&2](image)

Steps 1&2: 2-Mercaptobenzothiazole (16.7 g, 0.1 mol) was dissolved in a round-bottomed flask with MeCN (150 mL), then Et₃N (20.2 g, 0.2 mol) was charged and ethyl bromide (EtBr) was added dropwise. The reaction mixture was stirred at room temperature for 12 hours. After the completion of the reaction, the mixture was condensed under reduced pressure to about 50 mL, and filtered. The filtration was collected, and diluted with dichloromethane (50 mL) and water (100 mL). Then NaIO₄
(53.3 g, 0.25 mol) and RuCl₃·xH₂O (10 mg) were added in one portion. The reaction was completed within 12 hours at room temperature. After the addition of water (200 mL), the mixture was extracted with dichloromethane (50 mL × 3). The organic layers were combined and dried over anhydrous Na₂SO₄. The removal of the solvent under reduced pressure afforded S1b as a white solid (12.7 g, 56% yield in two steps).

Step 3: Sulfone S1b (2.27 g, 10.0 mmol) and NFSI (9.45 g, 30.0 mmol) were added to a dried Schlenk flask. The flask was evacuated and backfilled with argon for 3 times. Then THF (50 mL) was charged and the mixture was cooled to −78 °C. LiHMDS (23.0 mL, 1.0 M in THF, 23.0 mmol) was added dropwise in 15 min. Then the reaction mixture was warmed to room temperature. After the completion of the reaction, the mixture was treated with saturated aq. NH₄Cl (50 mL). The mixture was extracted with Et₂O (50 mL × 2). After the removal of the solvent under reduced pressure, the residue was purified by flash column chromatography on silica gel with petroleum ether/EtOAc (10:1, v/v) as the eluent to provide sulfone 1b as a white solid (1.27 g, 48%).

![1b](image)

Step 3 was performed on 10 mmol scale. 1.27 g, 48% yield.

^1H NMR (400 MHz, CDCl₃) δ 8.33 – 8.26 (m, 1H), 8.07 – 8.01 (m, 1H), 7.61 – 7.68 (m, 2H), 2.16 (t, J = 18.4 Hz, 3H). ^19F NMR (376 MHz, CDCl₃) δ -94.82 (q, J = 18.4 Hz).

![1c](image)

Step 3 was performed on 20 mmol scale. 2.64 g, 46% yield.
1H NMR (400 MHz, CDCl$_3$) δ 8.39 – 8.23 (m, 1H), 8.13 – 7.92 (m, 1H), 7.77 – 7.55 (m, 2H), 1.80 (ttt, $J = 13.6, 8.2, 5.4$ Hz, 1H), 0.93 (tdt, $J = 8.4, 2.5, 1.2$ Hz, 4H).

19F NMR (376 MHz, CDCl$_3$) δ -104.07 (d, $J = 13.6$ Hz).

13C NMR (101 MHz, CDCl$_3$) δ 159.68, 152.97, 138.14, 128.73, 127.97, 126.18, 124.32 (t, $J = 287.9$), 122.25, 9.88 (t, $J = 23.6$ Hz), 2.46 (t, $J = 3.4$ Hz).

MS (EI, m/z): 289.0 (M$^+$), 204.4, 186.1, 134.0, 91.1, 71.1, 51.1, 39.1.

HRMS (EI, m/z): calcd. for C$_{11}$H$_9$O$_2$NF$_2$S$_2$ (M$^+$) 289.0037, found 289.0041.

Step 3 was performed on 20 mmol scale. 5.30 g, 65% yield.

1H NMR (400 MHz, CDCl$_3$) δ 8.41 – 8.22 (m, 1H), 8.11 – 7.97 (m, 1H), 7.77 – 7.57 (m, 2H), 3.99 (t, $J = 6.5$ Hz, 2H), 2.82 – 2.54 (m, 2H), 0.85 (s, 9H), 0.04 (s, 6H).

19F NMR (376 MHz, CDCl$_3$) δ -100.46 (t, $J = 18.4$ Hz).

13C NMR (101 MHz, CDCl$_3$) δ 158.94, 153.01, 138.21, 128.80, 128.01, 126.28, 122.25, 124.67 (t, $J = 290.9$ Hz), 55.85 (t, $J = 4.1$ Hz), 33.27 (t, $J = 18.6$ Hz), 25.72, 18.12, -5.56.

MS (FTMS, m/z): 408.1 (M+H$^+$).

HRMS (DART, m/z): Calcd. for C$_{16}$H$_{24}$O$_3$NF$_2$S$_2$Si (M+H$^+$) 408.0929, found 408.0926.

IR (KBr): 3071, 3034, 2953, 2926, 2891, 1856, 1482, 1458, 1406, 1385, 1360, 1342, 1319, 1258, 1239, 1169, 1141, 111, 1064, 1024, 996, 955, 837, 851, 815, 797, 762, 666, 567, 518 cm$^{-1}$.

2.2 Preparation of alkenes

2.2.1 Preparation of acrylates and acrylamides

Acrylates 2a, 2c-2g and 2al and acrylamides 2k, 2m-2o, 2q and 2r were prepared according to reported procedures.9
Typical Procedures:

Acryloyl chloride (1.82 g, 20 mmol) was added to a stirred suspension of potassium carbonate (2.76 g, 20 mmol) in distilled water (5 mL) and acetone (20 mL) at 0 °C under an atmosphere of nitrogen, and then aniline (0.93 g, 10 mmol) was added dropwise into the mixture. The suspension was stirred at 0 °C, and the completion of the reaction was monitored by TLC. After filtration, the mixture was concentrated under reduced pressure and extracted with EtOAc (20 mL × 3). The organic layers were combined, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel with EtOAc/hexanes (1:20, v/v) to give product 2a as a colorless liquid (2.66 g, 74% yield).

![2a](image)

Performed on 20 mmol scale. 2.66 g, 74% yield.

¹H NMR (CDCl₃, 400 MHz): δ 7.07 (s, 2H), 7.06 (d, J = 2.5 Hz, 2H), 6.33 (s, 1H), 5.75 (s, 1H), 2.04 (s, 3H).[¹⁰]

![2c](image)

Performed on 17 mmol scale. 0.63 g, 37% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.39 (m, 2H), 7.39 – 7.30 (m, 3H), 6.35 (d, J = 1.2 Hz, 1H), 5.88 (d, J = 1.3 Hz, 1H), 3.80 (s, 3H).[¹¹]

![2d](image)

Performed on 10 mmol scale. 1.95 g, 96% yield.
Prepared following the procedures reported by Tan, Choon-Hong et al.[6] 1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.40 (m, 2H), 7.37 – 7.28 (m, 3H), 6.24 (t, J = 1.3 Hz, 1H), 5.81 (dd, J = 1.4, 0.7 Hz, 1H), 1.52 (s, 9H).[6]

\begin{center}
\includegraphics[width=0.2\textwidth]{2e}
\end{center}

Performed on 20 mmol scale. 3.25 g, 82\% yield.

1H NMR (400 MHz, CDCl\textsubscript{3}) δ 8.43 (d, J = 2.1 Hz, 1H), 8.10 – 8.01 (m, 1H), 7.89 (ddd, J = 18.7, 13.5, 7.9 Hz, 3H), 7.61 – 7.48 (m, 2H), 7.30 (ddd, J = 17.1, 10.5, 2.8 Hz, 1H), 6.50 (dd, J = 17.1, 1.7 Hz, 1H), 5.95 (ddd, J = 10.5, 3.9, 1.8 Hz, 1H).[9]

\begin{center}
\includegraphics[width=0.2\textwidth]{2f}
\end{center}

Performed on 10 mmol scale. 1.61 g, 79\% yield.

1H NMR (400 MHz, CDCl\textsubscript{3}) δ 8.19 (s, 1H), 7.43 (dd, J = 8.8, 1.7 Hz, 2H), 6.99 (dd, J = 9.2, 2.7 Hz, 2H), 6.57 (dt, J = 17.3, 1.5 Hz, 1H), 6.29 (ddd, J = 17.3, 10.4, 1.6 Hz, 1H), 6.00 (dt, J = 10.4, 1.4 Hz, 1H), 2.07 (d, J = 3.7 Hz, 3H).

\begin{center}
\includegraphics[width=0.2\textwidth]{2g}
\end{center}

Performed on 10 mmol scale. 2.17 g, 81\% yield.

1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.51 – 7.34 (m, 2H), 7.15 – 6.95 (m, 2H), 6.35 (dd, J = 17.3, 1.4 Hz, 1H), 6.14 – 6.00 (m, 1H), 5.79 (dd, J = 10.4, 1.4 Hz, 1H), 4.32 (t, J = 6.9 Hz, 2H), 2.90 (t, J = 6.9 Hz, 2H).
Performed on 33.3 mmol scale. 2.42 g, 45% yield.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.55 (d, \(J = 7.6\) Hz, 2H), 7.31 (t, \(J = 8.0\) Hz, 2H), 7.10 (t, \(J = 7.4\) Hz, 1H), 5.77 (s, 1H), 5.43 (s, 1H), 2.04 (dd, \(J = 1.6, 0.9\) Hz, 3H).

Performed on 10 mmol scale. 1.2 g, 33% yield.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.25 (dd, \(J = 8.3, 1.5\) Hz, 1H), 7.86 (s, 1H), 7.74 (dd, \(J = 8.0, 1.5\) Hz, 1H), 7.38 – 7.18 (m, 6H), 6.82 (td, \(J = 7.7, 1.6\) Hz, 1H), 6.03 (s, 1H), 5.43 (s, 1H), 3.79 (s, 2H).\(^{[12]}\)

Performed on 10 mmol scale. 1.75 g, 92% yield.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 11.94 (s, 1H), 8.80 (d, \(J = 8.5\) Hz, 1H), 7.86 (d, \(J = 9.4\) Hz, 1H), 7.51 (t, \(J = 7.9\) Hz, 1H), 7.08 (t, \(J = 7.7\) Hz, 1H), 6.38 (d, \(J = 15.8\) Hz, 1H), 6.26 (dd, \(J = 17.1, 10.1\) Hz, 1H), 5.75 (d, \(J = 8.9\) Hz, 1H), 2.62 (s, 3H).\(^{[9]}\)
Performed on 5 mmol scale. 1.07 g, 80% yield.

1H NMR (400 MHz, CDCl$_3$) δ 8.48 (t, $J = 7.4$ Hz, 1H), 8.03 (s, 1H), 7.60 – 7.46 (m, 2H), 7.40 (dd, $J = 5.1$, 1.9 Hz, 3H), 7.20 (dd, $J = 8.6$, 3.0 Hz, 1H), 7.07 (ddd, $J = 9.2$, 8.1, 3.0 Hz, 1H), 6.43 (dd, $J = 16.9$, 1.1 Hz, 1H), 6.27 (dd, $J = 16.9$, 10.2 Hz, 1H), 5.80 (dd, $J = 10.2$, 1.1 Hz, 1H).[9]

Performed on 10 mmol scale. 1.98 g, 79% yield.

1H NMR (400 MHz, CDCl$_3$) δ 7.19 (s, 5H), 6.85 (dd, $J = 56.2$, 7.8 Hz, 4H), 5.36 (d, $J = 56.3$ Hz, 2H), 3.36 (s, 3H), 2.24 (s, 3H).[9]

Performed on 10 mmol scale. 1.23 g, 55% yield.

1H NMR (400 MHz, CDCl$_3$) δ 7.36 (t, $J = 7.6$ Hz, 4H), 7.30 – 7.14 (m, 6H), 6.46 (dd, $J = 16.8$, 1.9 Hz, 1H), 6.19 (dd, $J = 16.8$, 10.2 Hz, 1H), 5.62 (dd, $J = 10.3$, 2.0 Hz, 1H).[9]
Performed on 1.27 mmol scale. 0.17 g, 40% yield.

1H NMR (400 MHz, CDCl$_3$) δ 6.48 (d, $J = 17.3$ Hz, 1H), 6.15 (dd, $J = 17.3$, 10.3 Hz, 1H), 5.85 (t, $J = 10.5$ Hz, 2H), 5.44 (s, 1H), 2.59 (s, 1H), 2.44 – 2.29 (m, 1H), 2.00 (dd, $J = 14.3$, 4.0 Hz, 1H), 1.94 – 1.81 (m, 1H), 1.81 – 1.66 (m, 2H), 1.61 (dd, $J = 13.6$, 3.3 Hz, 1H), 1.41 (d, $J = 2.8$ Hz, 5H), 1.35 – 1.21 (m, 2H), 1.02 (d, $J = 12.6$ Hz, 1H), 0.94 (dd, $J = 6.0$, 2.8 Hz, 3H), 0.83 (dd, $J = 7.1$, 2.8 Hz, 3H).

2.2.2 Preparation of alkene 2j and 2i

Typical Procedures:

Into a flask containing 3,4,5-trimethoxybenzaldehyde (1.96 g, 10 mmol), saturated NH$_4$Cl aqueous solution (50 mL) and THF (10 mL) was added methyl-3-(bromomethyl)-2-oxobut-3-enoate (1.79 g, 10 mmol). Then Zinc dust (780 mg, 12 mmol) was added in portions. After the completion of the reaction, water (50 mL) was poured into the flask and the aqueous layer was extracted with Et$_2$O (20 mL × 3), the organic layers were combined, dried, and evaporated under reduced pressure to afford 2ts. Then, compound 2ts was dissolved in dry dichloromethane (DCM) (20 mL). After the addition of Et$_3$N (1.01 g, 10 mmol), acetyl chloride (550 mg, 7.0 mmol) was added dropwise with a syringe in 10 minutes. The reaction mixture was maintained at room temperature for another 10 hours, and quenched with water (20 mL). The organic phase
was collected and the solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel with EtOAc/hexanes (1:1, v/v) as eluent to give the corresponding product 2j as a colorless liquid (1.32 g, 39% for two steps).[13, 14]

![2j]

1H NMR (400 MHz, CDCl$_3$) δ 6.53 (d, J = 1.6 Hz, 2H), 6.18 (t, J = 1.6 Hz, 1H), 5.86 (ddd, J = 8.8, 4.9, 1.5 Hz, 1H), 5.56 (q, J = 1.2 Hz, 1H), 3.84 (d, J = 1.8 Hz, 6H), 3.76 (dd, J = 25.8, 1.8 Hz, 6H), 2.86 – 2.69 (m, 2H), 2.02 (d, J = 1.8 Hz, 3H).[14]

![2i]

Performed on 5 mmol scale. 0.42 g, 27% yield for two steps.

1H NMR (400 MHz, CDCl$_3$) δ 7.30 – 7.20 (m, 5H), 6.19 (d, J = 1.4 Hz, 1H), 5.91 (dd, J = 8.0, 5.7 Hz, 1H), 5.51 (d, J = 1.3 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 2.87 – 2.57 (m, 2H), 2.02 (d, J = 0.6 Hz, 3H), 1.29 (td, J = 7.1, 0.6 Hz, 3H).[14]

2.2.3 Preparation of alkene 2ac
Experimental Procedures:

4-Phenylphenol (1.70 g, 10 mmol) and K$_2$CO$_3$ (2.76 g, 20 mmol) were added into a flask and dissolved by DMF (20 mL). Then ethyl 3-(bromomethyl)-2-oxobut-3-enoate (1.93 g, 10 mmol) was added dropwise via syringe and stirred at room temperature for 12 hours. After the reaction was completed, water (50 mL) was added and the mixture was extracted with Et$_2$O (50 mL × 3), the organic layers were collected and washed with saturated brine, dried over anhydrous Na$_2$SO$_4$. After filtration, the solvent was removed under reduced pressure, and the residue (crude 2ys, white solid, 2.52 g, 81%) was directly used for next step without further purification.

Into the dry DCM (20 mL) solution of crude 2ys (2.52 g, 8 mmol) was added TfOH (2.67 g, 16 mmol) dropwise at room temperature. Then the reaction was stirred for 24 hours and monitored by TLC. When the reaction was completed, water (100 mL) was added into the reaction mixture, and the mixture was extracted with Et$_2$O (50 mL × 3). The organic layers were combined and sequentially washed with saturated aq. NaHCO$_3$ and brine, dried over anhydrous Na$_2$SO$_4$, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel with EtOAc/hexanes (1:20, v/v) as eluent to give the corresponding product 2ac as a white solid (638 mg, 32%).$^{[4]}$
\[\text{H NMR (400 MHz, CDCl}_3) \delta 7.58 - 7.49 (m, 2H), 7.49 - 7.39 (m, 3H), 7.39 - 7.29 (m, 2H), 7.11 (d, } J = 8.4 \text{ Hz, 1H), 6.43 (td, } J = 2.0, 0.9 \text{ Hz, 1H), 5.79 (td, } J = 2.1, 1.0 \text{ Hz, 1H), 3.84 (dq, } J = 2.2, 1.1 \text{ Hz, 2H).} \]^4

2.2.4 Preparation of other alkenes (2u, 2v, 2y and 2aq)

Alkenes 2u,\(^{[15]}\) 2v,\(^{[16]}\) 2y\(^{[17]}\) and 2aq\(^{[5]}\) were prepared according to reported procedures.

\[\text{H NMR (400 MHz, CDCl}_3) \delta 8.43 (d, } J = 2.1 \text{ Hz, 1H), 8.10 - 8.01 (m, 1H), 7.89 (ddd, } J = 18.7, 13.5, 7.9 \text{ Hz, 3H), 7.61 - 7.48 (m, 2H), 7.30 (ddd, } J = 17.1, 10.5, 2.8 \text{ Hz, 1H), 6.50 (dd, } J = 17.1, 1.7 \text{ Hz, 1H), 5.95 (ddd, } J = 10.5, 3.9, 1.8 \text{ Hz, 1H).} \]

Prepared follow the procedure by Merck & Co., Inc. US4366170, 1982.\(^{16}\)

\[\text{H NMR (400 MHz, CDCl}_3) \delta 7.62 - 7.57 (m, 2H), 7.41 (dd, } J = 5.4, 2.0 \text{ Hz, 3H), 6.32 (s, 1H), 6.09 (s, 1H).} \]

\[\text{H NMR (400 MHz, CDCl}_3) \delta 7.71 (ddt, } J = 16.3, 7.5, 0.9 \text{ Hz, 4H), 7.37 (td, } J = 7.5, 1.1 \text{ Hz, 2H), 7.30 (td, } J = 7.5, 1.1 \text{ Hz, 2H), 6.07 (s, 2H).} \]^17
\[\text{H NMR (400 MHz, CDCl}_3 \text{)} \delta 7.38 (\text{t, } J = 1.9 \text{ Hz, 1H}), 7.32 (\text{d, } J = 1.9 \text{ Hz, 2H}), 6.03 (\text{q, } J = 1.4 \text{ Hz, 1H}), 5.80 (\text{q, } J = 1.7 \text{ Hz, 1H}). \]

\[\text{19F NMR (376 MHz, CDCl}_3 \text{)} \delta -64.99 (\text{s, 1F}). \]

3. Development of Reaction Conditions

At the beginning, we investigated the reaction between five kinds of sulfones and six kinds of alkenes (Scheme S1), and the results are given in Table S1.
Scheme S1 Structure of initially investigated sulfones, alkenes, and detected fluoroalkylation products
Table S1 Screening of the combination of different sulfone and alkene

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Sulfone</th>
<th>Alkene</th>
<th>Solvent</th>
<th>Additives</th>
<th>Current (mA)</th>
<th>Product (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a</td>
<td>2x</td>
<td>MeCN</td>
<td>Et$_3$N, H$_2$O, TBAOAc</td>
<td>5</td>
<td>3x, 25</td>
</tr>
<tr>
<td>2</td>
<td>1e</td>
<td>2x</td>
<td>MeCN</td>
<td>TBAOAc</td>
<td>10</td>
<td>S3b, trace</td>
</tr>
<tr>
<td>3</td>
<td>1a</td>
<td>2z</td>
<td>MeCN</td>
<td>NaHCO$_3$, TBAOAc, K$_2$CO$_3$, TBAOAc</td>
<td>5</td>
<td>3z, trace</td>
</tr>
<tr>
<td>4</td>
<td>1a</td>
<td>2k</td>
<td>MeCN</td>
<td>TBAOAc</td>
<td>5</td>
<td>3k, 4</td>
</tr>
<tr>
<td>5</td>
<td>1a</td>
<td>2k</td>
<td>MeCN</td>
<td>TBAOAc</td>
<td>5</td>
<td>3k, 42</td>
</tr>
<tr>
<td>6</td>
<td>1a</td>
<td>2k-Ac</td>
<td>MeCN</td>
<td>TBAOAc</td>
<td>5</td>
<td>3k, 39</td>
</tr>
<tr>
<td>7</td>
<td>1a</td>
<td>2k</td>
<td>THF</td>
<td>TBAOAc</td>
<td>5</td>
<td>3k, 0</td>
</tr>
<tr>
<td>8</td>
<td>1a</td>
<td>2k</td>
<td>DMF</td>
<td>TBAOAc</td>
<td>5</td>
<td>3k, trace</td>
</tr>
<tr>
<td>9</td>
<td>1a</td>
<td>2k</td>
<td>DMSO</td>
<td>TBAOAc</td>
<td>5</td>
<td>3k, trace</td>
</tr>
<tr>
<td>10</td>
<td>1a</td>
<td>2k-Ac</td>
<td>MeCN</td>
<td>TBAOAc</td>
<td>5</td>
<td>3k, 27</td>
</tr>
</tbody>
</table>

Conditions: the anode and cathode are both graphite, constant current.
Table S2 Optimization of difluoromethylation reaction with sulfone 1a

![Reaction Diagram]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Additive/Conditions</th>
<th>Current (mA)</th>
<th>3k (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HMDS</td>
<td>5</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5</td>
<td>41</td>
</tr>
<tr>
<td>3</td>
<td>tBuOH</td>
<td>5</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>PhCH₂OH</td>
<td>5</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>Et₃N</td>
<td>5</td>
<td>61</td>
</tr>
<tr>
<td>6</td>
<td>–15 °C</td>
<td>5</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>(TMS)₃SiH</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>H₂O (0.1 mL), Et₃N (0.2 mL)</td>
<td>5</td>
<td>59</td>
</tr>
<tr>
<td>9</td>
<td>H₂O (0.1 mL), Et₃N (0.032 mL)</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>H₂O (0.1 mL), Et₃N (0.064 mL)</td>
<td>5</td>
<td>39</td>
</tr>
<tr>
<td>11</td>
<td>H₂O (0.5 mL), Et₃N (0.1 mL)</td>
<td>5</td>
<td>63</td>
</tr>
<tr>
<td>12</td>
<td>H₂O (0.5 mL), Et₃N (0.2 mL)</td>
<td>5</td>
<td>79</td>
</tr>
<tr>
<td>13</td>
<td>H₂O (0.5 mL), Et₃N (0.3 mL)</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>H₂O (0.5 mL), Et₃N (0.4 mL)</td>
<td>5</td>
<td>63</td>
</tr>
<tr>
<td>15</td>
<td>H₂O (0.5 mL), Et₃N (0.5 mL)</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>16</td>
<td>H₂O (0.5 mL), Et₃N (0.15 mL)</td>
<td>5</td>
<td>52</td>
</tr>
<tr>
<td>17</td>
<td>H₂O (0.5 mL), Et₃N (0.25 mL)</td>
<td>5</td>
<td>36</td>
</tr>
<tr>
<td>18</td>
<td>DIPEA (6 equiv)</td>
<td>5</td>
<td>33</td>
</tr>
<tr>
<td>19</td>
<td>DBU (4 equiv)</td>
<td>5</td>
<td>48</td>
</tr>
<tr>
<td>20</td>
<td>H₂O (0.5 mL), DMAP (6 equiv)</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>21</td>
<td>H₂O (0.5 mL), DABCO (6 equiv)</td>
<td>5</td>
<td>29</td>
</tr>
<tr>
<td>22</td>
<td>H₂O (0.5 mL), Et₃N (0.2 mL), 100 °C</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>23</td>
<td>H₂O (0.5 mL), piperidine (6 equiv)</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>24</td>
<td>H₂O (0.5 mL), TMEDA (6 equiv)</td>
<td>5</td>
<td>53</td>
</tr>
<tr>
<td>25</td>
<td>H₂O (0.5 mL), AcOK (6 equiv)</td>
<td>5</td>
<td>42</td>
</tr>
<tr>
<td>26</td>
<td>H₂O (0.5 mL), AcOH (6 equiv)</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>H₂O (0.5 mL), n-Bu₃N (6 equiv)</td>
<td>5</td>
<td>67</td>
</tr>
</tbody>
</table>

Conditions: the anode and cathode are both graphite, constant current, and MeCN as the solvent.
Summary of results:

The combination of difluoromethyl sulfone and electron-deficient alkene could smoothly undergo the desired fluoroalkylation reaction (Table S1). Interestingly, the reaction of N-acetyl-N-phenylamide 2k-Ac afforded the deacetylation product 3k. Thus, 2k-Ac and 2k worked equally in this electroreductive fluoroalkylation reaction (Table S2). However, the reaction of sulfone S1a/S1b with the alkenes in Scheme S1 failed to give the desired fluoroalkylation/alkylation products (Scheme S2).

4. Radical Fluoroalkylation of alkenes with Fluorinated Sulfones
Typical Procedures:

Alkene 1a (0.5 mmol, 1.0 equiv), sulfone 2a (1.0 mmol, 2.0 equiv), TBAOAc (1.0 mmol, 301.5 mg, 2.0 equiv), CH_3CN (10 mL) and water (0.5 mL) were added to a three-necked flask equipped with two graphite electrodes. Argon was allowed to pass through the solution for 10 min, then Et_3N (0.2 mL, 2.8 equiv.) was added. Then the electrolysis was conducted with 5 mA constant current for 10 hours. After the completion of the reaction as monitored by ^19F NMR, the solvent was removed carefully under reduced pressure and the residue was purified by column chromatography on silica gel with petroleum ether/EtOAc (10:1, v/v) as eluent to provide 3a as a colorless liquid (86 mg, 74%).

4,4-Difluoro-2-methyl-N-phenylbutanamide (3a):

\[
\begin{align*}
\text{O} & \quad \text{Me} \\
\text{CF}_2H & \quad \text{F}
\end{align*}
\]

Colorless liquid (86 mg, 74%).

^1H NMR (400 MHz, CDCl_3): \(\delta\) 7.49 (d, \(J = 7.9\) Hz, 2H), 7.30 (t, \(J = 7.7\) Hz, 2H), 7.10 (t, \(J = 7.5\) Hz, 1H), 6.07 – 5.71 (tt, 1H), 2.61 (h, \(J = 6.9\) Hz, 1H), 2.36 (ddddd, \(J = 33.8, 14.9, 8.9, 3.6\) Hz, 1H), 1.91 (qt, \(J = 15.6, 5.3\) Hz, 1H), 1.29 (d, \(J = 7.0\) Hz, 3H).

^19F NMR (376 MHz, CDCl_3): \(\delta\) -113.83 – -119.37 (m, 2F).

^13C NMR (101 MHz, CDCl_3): \(\delta\) 173.1, 137.6, 129.0, 124.6, 120.1, 116.1 (t, \(J = 239.4\)), 37.8 (t, \(J = 21.3\) Hz), 37.23 - 35.27 (t,\(J = 6.1\)Hz), 18.6.

MS (El, \(m/z\)): 213.0 (M\(^+\)).

HRMS (El, \(m/z\)): calcd. for C_{11}H_{13}F_{2}NO (M\(^+\)) 213.0965, found 213.0969.
IR (KBr): 3122, 3083, 2984, 2942, 2887, 1758, 1599, 1504, 1463, 1435, 1406, 1382, 1286, 1236, 1188, 1116, 1027, 881, 821, 769, 532, 515 cm\(^{-1}\)

Benzyl 4,4-difluoro-2-methylbutanoate (3b):

![Benzyl 4,4-difluoro-2-methylbutanoate (3b)](image)

Colorless liquid (81.7 mg, 72%).

\[^1\text{H}\text{ NMR}\] (400 MHz, CDCl\(_3\)) \(\delta 7.42 - 7.29 \text{ (m, 5H)}\), 5.87 (tdd, \(J = 56.6, 5.2, 4.1 \text{ Hz, 1H}\)), 5.13 (d, \(J = 1.3 \text{ Hz, 2H}\)), 2.82 - 2.68 (m, 1H), 2.30 (dttdd, \(J = 26.5, 14.3, 8.4, 4.1 \text{ Hz, 1H}\)), 1.91 (dddd, \(J = 23.1, 14.7, 10.9, 5.4 \text{ Hz, 1H}\)), 1.26 (d, \(J = 7.2 \text{ Hz, 3H}\)).

\[^{19}\text{F NMR}\] (376 MHz, CDCl\(_3\)) \(\delta -115.05 \text{ (dddd, } J = 284.9, 56.2, 17.6, 13.9 \text{ Hz), -117.13 (dddd, } J = 285.1, 56.9, 21.5, 14.8 \text{ Hz).}\)

\[^{13}\text{C NMR}\] (101 MHz, CDCl\(_3\)) \(\delta 174.9, 135.7, 128.6, 128.3, 128.1, 116.0 \text{ (t, } J = 239.0 \text{ Hz), 66.7, 37.5 (t, } J = 21.6 \text{ Hz), 34.0 (t, } J = 5.5 \text{ Hz, 17.5).}\)

MS (EI, \(m/z\)): 228.1 (M\(^+\)), 121.1, 108.1, 91.1.

HRMS (EI, \(m/z\)): calcd. for C\(_{12}\)H\(_{14}\)O\(_2\)F\(_2\) (M\(^+\)) 228.0956, found 228.0960.

Methyl 4,4-difluoro-2-phenylbutanoate (3c):

![Methyl 4,4-difluoro-2-phenylbutanoate (3c)](image)

Colorless liquid (53 mg, 50%).

\[^1\text{H NMR}\] (400 MHz, CDCl\(_3\)) \(\delta 7.43 - 7.22 \text{ (m, 5H)}\), 5.72 (tt, \(J = 56.5, 4.7 \text{ Hz, 1H}\)), 3.90 - 3.72 (m, 1H), 3.67 (s, 3H), 2.80 - 2.54 (m, 1H), 2.39 - 2.15 (m, 1H).

\[^{19}\text{F NMR}\] (376 MHz, CDCl\(_3\)) \(\delta -116.19 - -118.37 \text{ (m, 2F).}\)

\[^{13}\text{C NMR}\] (101 MHz, CDCl\(_3\)) \(\delta 173.0, 137.3, 129.1, 127.9, 127.7, 115.8 \text{ (t, } J = 239.4 \text{Hz), 52.5, 45.3 (t, } J = 6.1 \text{Hz), 37.5 (t, } J = 22.1 \text{ Hz).}\)

MS (EI, \(m/z\)): 275.1 (M\(^+\)), 155.1, 109.1.

HRMS (EI, \(m/z\)): Calcd. for C\(_{11}\)H\(_{12}\)F\(_2\)O\(_2\) (M\(^+\)) 214.0805, found 214.0801.

IR (film): 2954, 2916, 2849, 1735, 1654, 1491, 1469, 1376, 1363, 1186, 1081, 1025, 968, 823, 718 cm\(^{-1}\)
tert-Butyl 4,4-difluoro-2-phenylbutanoate (3d):

![Chemical structure](image)

Colorless liquid (70.6 mg, 55%).

1H NMR (400 MHz, CDCl$_3$) δ 7.38 – 7.20 (m, 5H), 5.71 (tdd, $J = 56.6, 5.1, 4.3$ Hz, 1H), 3.68 (t, $J = 7.7$ Hz, 1H), 2.53–2.68 (m, 1H), 2.33 – 2.09 (m, 1H), 1.36 (s, 9H).

19F NMR (376 MHz, CDCl$_3$) δ -116.40 (dddd, $J = 284.8, 56.6, 20.7, 13.7$ Hz, 1F), -117.58 (dddd, $J = 284.8, 56.6, 18.0, 13.2$ Hz, 1F).

13C NMR (101 MHz, CDCl$_3$) δ 171.6, 138.0, 128.9, 127.6, 127.6, 116.0 (t, $J = 238.9$ Hz), 81.4, 46.5 (t, $J = 5.8$ Hz), 37.5 (t, $J = 21.8$ Hz), 27.8.

Naphthalen-2-yl 4,4-difluorobutanoate (3e):

![Chemical structure](image)

White solid (91 mg, 73%). M.p.: 52.9 – 53.6 °C.

1H NMR (400 MHz, CDCl$_3$): δ 7.91 – 7.74 (m, 3H), 7.55 (d, $J = 2.3$ Hz, 1H), 7.53 – 7.38 (m, 2H), 7.28 – 7.15 (m, 1H), 6.03 (tt, $J = 56.5, 4.1$ Hz, 1H), 2.83 (t, $J = 7.4$ Hz, 2H), 2.32 (tt, $J = 17.5, 7.4, 4.1$ Hz, 2H).

19F NMR (376 MHz, CDCl$_3$): δ -117.52 (dt, $J = 56.5, 17.4$ Hz, 2F).

13C NMR (101 MHz, CDCl$_3$): δ 170.8, 148.1, 133.7, 131.5, 129.5, 127.8, 127.7, 126.7, 125.9, 120.9, 118.5, 116.0 (t, $J = 239.2$ Hz), 29.3 (t, $J = 22.1$ Hz), 27.0 (t, $J = 6.1$ Hz).

MS (EI, m/z): 250 (9.6, M$^+$), 144 (100), 115 (23.19).

HRMS (EI, m/z): calcd. for C$_{14}$H$_{12}$F$_2$O$_2$ (M$^+$) 250.0805, found 250.0798.

IR (KBr): 3062, 2974, 2941, 1754, 1628, 1509, 1463, 1441, 1423, 1386, 1355, 1276, 1243, 1211, 1170, 1149, 1122, 1081, 1070, 1037, 964, 914, 895, 817, 763, 483 cm$^{-1}$

4-Acetamidophenyl 4,4-difluorobutanoate (3f):
White solid (82 mg, 64%). M.p.: 97.4–97.7 °C.

1H NMR (400 MHz, CDCl₃) δ 7.52 – 7.44 (m, 2H), 7.29 (s, 1H), 7.09 – 6.97 (m, 2H), 5.98 (tt, J = 56.5, 4.1 Hz, 1H), 2.75 (t, J = 7.4 Hz, 2H), 2.26 (tt, J = 17.4, 7.3, 4.1 Hz, 2H), 2.15 (s, 3H).

19F NMR (376 MHz, CDCl₃) δ -117.71 (dt, J = 56.4, 17.5 Hz, 2F).

13C NMR (101 MHz, CDCl₃) δ 170.8, 168.3, 146.6, 135.8, 121.8, 120.9, 115.9 (t, J = 239.3 Hz), 29.3 (t, J = 22.3 Hz), 26.9 (t, J = 6.0 Hz), 24.5.

MS (EI, m/z): 257.1 (M⁺), 151.1, 109.1.

HRMS (EI, m/z): Calcd. for C₁₂H₁₃NF₂O₃ (M⁺) 257.0858, found 257.0853.

IR (KBr): 3362, 3134, 3051, 2981, 1748, 1665, 1552, 1507, 1405, 1310, 1278, 1238, 1203, 1170, 1120, 1075, 1053, 952, 848, 719, 539, 522 cm⁻¹

4-Bromophenethyl 4,4-difluorobutanoate (3g):

Colorless liquid (95 mg, 63%).

1H NMR (400 MHz, CDCl₃): δ 7.40 (d, J = 8.3 Hz, 2H), 7.09 – 7.02 (m, 2H), 5.86 (tt, J = 56.6, 4.2 Hz, 1H), 4.26 (t, J = 6.9 Hz, 2H), 2.86 (t, J = 6.9 Hz, 2H), 2.45 (t, J = 7.4 Hz, 2H), 2.10 (tt, J = 17.3, 7.4, 4.2 Hz, 2H).

19F NMR (376 MHz, CDCl₃): δ -117.60 (dt, J = 56.6, 17.4 Hz, 2F).

13C NMR (101 MHz, CDCl₃): δ 171.8, 153.9, 136.6, 131.6, 130.6, 116.0 (t, J = 239.1 Hz), 64.9, 34.4, 29.2 (t, J = 22.2 Hz), 26.7 (t, J = 6.0 Hz).

MS (EI, m/z): 182.0, 184.0, 169, 171, 107.

HRMS (EI, m/z): Calcd. for C₁₂H₁₃BrF₂O₂ (M⁺) 306.0062, found 306.0069.

IR (KBr): 2959, 1735, 1489, 1441, 1422, 1405, 1356, 1275, 1175, 1119, 1072, 1012, 948, 814, 528 cm⁻¹
(1S,3R,4S)-3,7,7-Trimethylbicyclo[2.2.1]heptan-2-yl 4,4-difluorobutanoate (3h):

Colorless liquid (101 mg, 95%).

1H NMR (400 MHz, CDCl$_3$) δ 5.89 (tt, $J = 56.7, 4.3$ Hz, 1H), 4.67 (dd, $J = 7.8, 3.4$ Hz, 1H), 2.50 – 2.41 (m, 2H), 2.13 (tt, $J = 17.5, 7.5, 4.3$ Hz, 2H), 1.83 – 1.63 (m, 5H), 1.60 – 1.42 (m, 2H), 1.26 – 1.01 (m, 3H), 0.95 (s, 3H), 0.81 (s, 3H).

19F NMR (376 MHz, CDCl$_3$) δ -117.54 (dt, $J = 56.6, 17.4$ Hz, 2F).

13C NMR (101 MHz, CDCl$_3$) δ 171.4, 116.2 (t, $J = 240.4$ Hz), 81.6, 48.7, 46.9, 45.0, 38.7, 33.7, 29.4 (t, $J = 22.1$ Hz), 27.2 (t, $J = 6.0$ Hz), 27.0, 20.1, 19.9, 11.4. MS (TOF-EI, m/z): 260.2 (M$^+$), 136.1, 121.1, 107.0, 95.1.

HRMS (EI, m/z): Calcd. for C$_{14}$H$_{22}$F$_2$O$_2$ (M$^+$) 260.1582, found 260.1584.

IR (KBr): 2956, 2880, 1732, 1505, 1455, 1391, 1312, 1260, 1180, 1118, 1074, 972, 955, 861, 841, 804 cm$^{-1}$

Ethyl 4-acetoxy-4-(4-chlorophenyl)-2-(2,2-difluoroethyl)butanoate (3i):

Colorless liquid (164 mg, 94%).

1H NMR (400 MHz, CDCl$_3$) δ 7.33 – 7.27 (m, 2H), 7.27 – 7.20 (m, 3H), 6.04 – 5.59 (m, 2H), 4.44 – 3.86 (m, 2H), 2.89 – 2.46 (m, 1H), 2.41 – 1.83 (m, 7H), 1.26 (td, $J = 7.1, 2.2$ Hz, 3H).

19F NMR (376 MHz, CDCl$_3$) δ -114.99 (dddt, $J = 285.7, 56.6, 25.9, 15.7$ Hz, 1F), -115.96 - -117.57 (m, 1F).

13C NMR (101 MHz, CDCl$_3$) δ 173.8, 169.9, 138.5, 134.0, 128.8, 127.7, 115.7, 72.8, 61.2, 38.8, 36.5, 36.2, 21.0, 14.1.

MS (EI, m/z): 348.1 (M$^+$), 305.1, 259.1, 215.1, 139.0.

HRMS (EI, m/z): Calcd. for C$_{16}$H$_{19}$F$_2$O$_4$Cl (M$^+$) 348.0934, found 348.0932.

IR (KBr): 2982, 2938, 1736, 1598, 1492, 1438, 1372, 1235, 1180, 1122, 1091, 1059, 1014, 946, 921, 827, 763, 734 cm$^{-1}$
Methyl 4-acetoxy-2-(2,2-difluoroethyl)-4-(3,4,5-trimethoxyphenyl)butanoate (3j):

Pale yellow liquid (149 mg, 76%).

1H NMR (400 MHz, CDCl$_3$) δ 6.50 (s, 2H), 6.07 – 5.57 (m, 2H), 3.87 – 3.77 (m, 9H), 3.70 (d, $J = 1.9$ Hz, 3H), 2.81 – 2.53 (m, 1H), 2.41 – 1.81 (m, 7H).

19F NMR (376 MHz, CDCl$_3$) δ -114.52 – -116.43 (m, 1F), -116.47 – -117.66 (m, 1F).

13C NMR (101 MHz, CDCl$_3$) δ 174.4 (d, $J = 5.5$ Hz), 170.0 (d, $J = 7.5$ Hz), 153.4, 137.8 (d, $J = 7.0$ Hz), 135.3 (d, $J = 20.1$ Hz), 115.7 (td, $J = 239.7$, 2.0 Hz), 103.4 (d, $J = 18.4$ Hz), 73.7 (d, $J = 29.5$ Hz), 60.8, 56.2, 52.2, 38.7 (d, $J = 33.3$ Hz), 36.6 (t, $J = 5.3$ Hz), 36.0 (t, $J = 5.1$ Hz), 21.1 (d, $J = 2.7$ Hz).

MS (EI, m/z): 390.2 (M$^+$), 315.2, 197.1, 169.1.

HRMS (EI, m/z): Calcd. for C$_{18}$H$_{24}$F$_{2}$O$_{7}$ (M$^+$) 390.1485, found 390.1484.

IR (KBr): 2950, 2842, 1739, 1593, 1508, 1463, 1425, 1373, 1330, 1236, 1153, 1127, 1049, 1049, 1009, 834 cm$^{-1}$

4-Fluorophenyl 4,4-difluoro-2-methylbutanoate (3k):

Colorless solid (451 mg, 71%). M.p.: 72.0 – 72.4 °C.

1H NMR (400 MHz, CDCl$_3$): δ 7.12 – 6.96 (m, 4H), 5.98 (tttd, $J = 56.4$, 4.5, 1.2 Hz, 1H), 3.05 – 2.86 (m, 1H), 2.50 – 2.29 (m, 1H), 2.12 – 1.92 (m, 1H), 1.39 (dd, $J = 7.2$, 1.1 Hz, 3H).

19F NMR (376 MHz, CDCl$_3$): δ -115.05 – -115.81 (m, 1F), -116.51 – -117.27 (m, 1F).

13C NMR (101 MHz, CDCl$_3$) δ 173.1, 137.6, 129.0, 124.6, 120.1, 116.1 (t, $J = 238.9$ Hz), 37.8 (t, $J = 21.3$ Hz), 36.52 – 36.02 (m), 18.6.

MS (EI, m/z): 232.1 (M$^+$), 121.1, 112.1, 93.1, 73.2.

HRMS (EI, m/z): Calcd. for C$_{11}$H$_{11}$F$_{3}$O$_{2}$ (M$^+$) 232.0711, found 232.0718.
IR (film): 3304, 3139, 3062, 2975, 2935, 1665, 1599, 1543, 1500, 1442, 1309, 1250, 1188, 1120, 1090, 1025, 754, 693 cm⁻¹

2-Benzyl-4,4-difluoro-N-phenylbutanamide (3l):

![Chemical Structure](image)

White solid (1.12 g, 78%). M.p.: 99.4–101.1 °C.

\(^1\)H NMR (400 MHz, CDCl₃) δ 7.35 – 7.13 (m, 9H), 7.08 (m, 2H), 5.89 (dd, J = 56.6, 5.6, 3.1 Hz, 1H), 3.00 (dd, J = 13.4, 9.4 Hz, 1H), 2.85 (dd, J = 13.4, 5.9 Hz, 1H), 2.78 – 2.68 (m, 1H), 2.47 (dtdd, J = 22.9, 14.7, 9.9, 3.1 Hz, 1H), 2.11 – 1.90 (m, 1H).

\(^1\)F NMR (376 MHz, CDCl₃) δ -115.18 (ddt, J = 284.1, 56.0, 14.7 Hz, 1F), -116.64 – -117.86 (m, 1F).

\(^13\)C NMR (101 MHz, CDCl₃) δ 171.5, 138.4, 137.1, 128.9, 128.9, 128.8, 127.0, 124.7, 120.4, 116.0, 44.4, 39.6, 36.5 (t, J = 22.3 Hz).

MS (ESI, m/z): 290.1 (M + H⁺).

HRMS (ESI, m/z): Calcd. for C_{17}H_{18}ONF₂ (M + H⁺) 290.1351, found 290.1349.

IR (film): 3295, 3063, 3029, 2931, 1659, 1599, 1543, 1543, 1497, 1444, 1383, 1364, 1313, 1254, 1190, 1120, 1080, 1044, 754, 697 cm⁻¹

2-Benzyl-4,4-difluoro-N-(2-iodophenyl)butanamide (3m):

![Chemical Structure](image)

White solid (181 mg, 87%). M.p.: 101.9–103.1 °C.

\(^1\)H NMR (400 MHz, CDCl₃) δ 8.02 (dd, J = 8.3, 1.6 Hz, 1H), 7.70 (dd, J = 8.0, 1.5 Hz, 1H), 7.33 – 7.26 (m, 3H), 7.24 – 7.14 (m, 4H), 6.82 (td, J = 7.7, 1.6 Hz, 1H), 5.92 (dddd, J = 56.8, 55.9, 5.7, 3.2 Hz, 1H), 3.07 (dd, J = 13.4, 8.9 Hz, 1H), 2.88 (dd, J = 13.4, 6.1 Hz, 1H), 2.84 – 2.73 (m, 1H), 2.46 (dtdd, J = 22.6, 14.5, 9.8, 3.2 Hz, 1H), 2.05 (dtdd, J = 16.5, 14.6, 5.7, 4.0 Hz, 1H).
\textbf{19F NMR} (376 MHz, CDCl$_3$) δ -115.21 (ddt, $J = 284.6$, 56.1, 14.7 Hz, 1F), -116.96 (ddddd, $J = 284.7$, 57.0, 22.6, 16.5 Hz, 1F).

\textbf{13C NMR} (101 MHz, CDCl$_3$) δ 171.6, 138.8, 138.0, 137.6, 129.1, 128.9, 128.9, 126.4, 122.6, 115.9 (t, $J = 239.6$), 90.5, 44.7 (m), 39.6, 36.4 (t, $J = 21.5$ Hz).

\textbf{MS} (El, m/z): 415.1 (M$^+$), 350.1, 288.1, 219.1, 91.1.

\textbf{HRMS} (FI, m/z): Calcd. for C$_{17}$H$_{16}$ONF$_2$I (M$^+$) 415.0239, found 415.0238.

\textbf{IR} (KBr): 3282, 3023, 2853, 1663, 1576, 1528, 1495, 1464, 1434, 1401, 1377, 1287, 1241, 1219, 1190, 1123, 1097, 1083, 1027, 1017, 766, 754, 736, 699 cm$^{-1}$

\textbf{N-(2-Acetylphenyl)-4,4-difluorobutanamide (3n)}:

\begin{center}
\includegraphics[width=0.2\textwidth]{n-2-acetylphenyl-4,4-difluorobutanamide.png}
\end{center}

Pale yellow solid (63 mg, 53%). M.p.: 35.2–36.3 °C.

\textbf{1H NMR} (400 MHz, CDCl$_3$): δ 11.80 (s, 1H), 8.69 (dd, $J = 8.4$, 1.2 Hz, 1H), 7.89 (dd, $J = 8.0$, 1.6 Hz, 1H), 7.54 (ddd, $J = 8.7$, 7.2, 1.6 Hz, 1H), 7.17 – 7.06 (m, 1H), 5.97 (tt, $J = 56.8$, 4.3 Hz, 1H), 2.65 (s, 3H), 2.62 (t, $J = 7.4$ Hz, 2H), 2.34 – 2.16 (m, 2H).

\textbf{19F NMR} (376 MHz, CDCl$_3$): δ -117.32 (dt, $J = 56.9$, 17.5 Hz, 2F).

\textbf{13C NMR} (101 MHz, CDCl$_3$): δ 202.9, 170.2, 140.7, 135.2, 131.7, 122.6, 121.8, 120.7, 116.3 (t, $J = 239.0$ Hz), 30.5 (t, $J = 5.7$ Hz), 29.5 (t, $J = 22.1$ Hz), 28.6.

\textbf{MS} (ESI, m/z): 242.0 (M + H$^+$), 263.9 (M + Na$^+$).

\textbf{HRMS} (ESI, m/z): Calcd. for C$_{12}$H$_{13}$O$_2$NF$_2$ (M + H$^+$) 242.0987, found 242.0987.

\textbf{IR} (film): 3220, 2974, 1697, 1654, 1606, 1586, 1526, 1451, 1360, 1298, 1249, 1165, 1117, 1062, 951, 758, 606 cm$^{-1}$

\textbf{4,4-Difluoro-N-(4-fluoro-2-(phenylethynyl)phenyl)butanamide (3o)}:

\begin{center}
\includegraphics[width=0.2\textwidth]{4,4-difluoro-n-4-fluoro-2-phenylethynylphenyl-butanamide.png}
\end{center}

White solid (42 mg, 53%). M.p.: 141.8–142.9 °C.
\(^{1}\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.33 (dd, \(J = 9.1, 5.2\) Hz, 1H), 7.87 (s, 1H), 7.56 –7.48 (m, 2H), 7.40 (dd, \(J = 5.1, 2.0\) Hz, 3H), 7.19 (dd, \(J = 8.6, 3.0\) Hz, 1H), 7.10 –7.00 (m, 1H), 6.00 (tt, \(J = 56.7, 4.1\) Hz, 1H), 2.61 (t, \(J = 7.3\) Hz, 2H), 2.28 (ddtd, \(J = 18.0, 14.5, 7.3, 4.2\) Hz, 2H).

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -117.58 (dt, \(J = 56.6, 17.4\) Hz, 2F), -118.21 (td, \(J = 8.2, 5.2\) Hz, 1F).

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 168.9, 158.3 (d, \(J = 244.0\) Hz), 158.3 (d, \(J = 2.7\) Hz), 134.9 (d, \(J = 2.7\) Hz), 129.4, 128.7, 121.7, 121.2 (d, \(J = 8.2\) Hz), 118.0 (d, \(J = 24.3\) Hz), 116.7 (d, \(J = 22.0\) Hz), 116.2 (t, \(J = 239.0\) Hz), 113.7, 97.4, 83.1 (d, \(J = 3.1\) Hz), 29.88 - 29.63 (m), 29.5 (t, \(J = 22.0\) Hz).

MS (EI, \(m/z\)): 317.1 (M\(^+\)), 211.1, 183.1, 107.0.

HRMS (EI, \(m/z\)): Calcd. for C\(_{18}\)H\(_{14}\)F\(_3\)NO (M\(^+\)) 317.1022, found 317.1024.

IR (KBr): 3300, 3049, 2987, 1659, 1612, 1532, 1443, 1421, 1378, 1294, 1260, 1198, 1124, 1089, 1064, 1044, 950, 913, 871, 753, 687, 656, 474 cm\(^{-1}\)

\(N\)-(tert-Butyl)-4,4-difluorobutanamide (3p):

\[\text{Me} \quad \text{H} \quad \text{CF}_2\text{H} \]

White solid (1.21 g, 68%, 10 mmol scales). M.p.: 61.7–63.6 \(^{\circ}\)C.

\(^{1}\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 6.14 – 5.65 (m, 1H), 5.56 (s, 1H), 2.22 (t, \(J = 7.5\) Hz, 2H), 2.18 – 1.99 (m, 2H), 1.28 (s, 9H).

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -117.34 (dt, \(J = 57.1, 17.6\) Hz, 2F).

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 170.2, 116.6 (t, \(J = 238.7\) Hz), 51.3, 29.7 (t, \(J = 21.8\) Hz), 29.3 (t, \(J = 4.9\) Hz), 28.7.

MS (ESI, \(m/z\)): 180.1 (M+H\(^+\)).

HRMS (ESI, \(m/z\)): Calcd. for C\(_8\)H\(_{16}\)F\(_2\)ON (M+H\(^+\)) 180.1194, found 180.1194.

IR (film): 3308, 2967, 1641, 1549, 1478, 1453, 1425, 1392, 1363, 1273, 1224, 1121.

4,4-Difluoro-N-methyl-2-phenyl-N-(p-tolyl)butanamide (3q):

\[\text{Me} \quad \text{Ph} \quad \text{CF}_2\text{H} \]
Colorless liquid (75 mg, 50%). M.p.: 51.1–52.1 °C.

1H NMR (400 MHz, CDCl$_3$) δ 7.19 (p, $J = 3.9$, 3.5 Hz, 3H), 7.12 (d, $J = 7.9$ Hz, 2H), 7.00 – 6.92 (m, 2H), 6.79 (s, 2H), 5.68 (tt, $J = 56.9$, 4.7 Hz, 1H), 3.72 (dd, $J = 9.1$, 6.1 Hz, 1H), 3.19 (s, 3H), 2.76 – 2.56 (m, 1H), 2.37 (s, 3H), 2.17 – 1.98 (m, 1H).

19F NMR (376 MHz, CDCl$_3$) δ -116.07 (ddddd, $J = 284.2$, 56.6, 20.0, 12.7 Hz, 1F), -118.00 (ddddd, $J = 284.2$, 57.2, 21.6, 12.8 Hz, 1F).

13C NMR (101 MHz, CDCl$_3$) δ 171.6, 140.4, 138.5, 138.1, 130.2, 128.6, 127.9, 127.6, 127.3, 115.1 (t, $J = 239.0$ Hz), 43.0, 38.8 (t, $J = 21.3$ Hz), 37.9, 21.1.

MS (EI, m/z): 303.1 (M$^+$), 148.1, 121.1, 109.1, 91.1.

HRMS (EI, m/z): Calcd. for C$_{18}$H$_{19}$FNO$_2$ (M$^+$) 303.1429, found 303.1424.

IR (film): 3030, 2936, 1656, 1514, 1494, 1455, 1431, 1118, 1064, 1031, 826, 741, 723, 700 cm$^{-1}$

4,4-Difluoro-N,N-diphenylbutanamide (3r):

\[
\text{Ph} \quad \begin{array}{c} \text{CF}_2\text{H} \\
\text{N}\end{array} \quad \text{Ph}
\]

White solid (99 mg, 72%). M.p.: 73.7–75.2 °C.

1H NMR (400 MHz, CDCl$_3$): δ 7.57 – 7.07 (m, $J = 15.2$, 12.8 Hz, 10H), 5.95 (tt, $J = 57.0$, 4.0 Hz, 1H), 2.42 (t, $J = 7.0$ Hz, 2H), 2.20 (dddt, $J = 24.3$, 17.7, 11.1, 5.4 Hz, 2H).

19F NMR (376 MHz, CDCl$_3$): δ -117.20 (dt, $J = 57.0$, 17.6 Hz, 2F).

13C NMR (101 MHz, CDCl$_3$): δ 171.1, 142.5, 129.7, 128.4, 116.7 (t, $J = 238.7$ Hz), 29.8 (t, $J = 21.9$ Hz), 28.1 (t, $J = 5.8$ Hz).

MS (EI, m/z): 275.1 (M$^+$), 169.2.

HRMS (EI, m/z): Calcd. for C$_{16}$H$_{15}$F$_2$NO (M$^+$) 275.1122, found 275.1120.

IR (film): 3062, 2921, 2850, 1673, 1593, 1492, 1451, 1381, 1323, 1287, 1118, 1059, 946, 757, 702 cm$^{-1}$

4,4-Difluoro-1-phenylbutan-1-one (3s):

\[
\text{Ph} \quad \begin{array}{c} \text{CF}_2\text{H} \\
\end{array} \quad \text{O}
\]

Pale yellow liquid (69 mg, 75%).
1H NMR (400 MHz, CDCl$_3$): δ 8.00 – 7.91 (m, 2H), 7.63 – 7.53 (m, 1H), 7.46 (dd, J = 8.4, 7.0 Hz, 2H), 6.00 (tt, J = 56.9, 4.2 Hz, 1H), 3.17 (t, J = 7.2 Hz, 2H), 2.29 (ttt, J = 18.1, 7.2, 4.2 Hz, 2H).

19F NMR (376 MHz, CDCl$_3$): δ -117.11 (dt, J = 56.9, 17.9 Hz, 2F).

13C NMR (101 MHz, CDCl$_3$): δ 197.8, 136.4, 133.4, 128.7, 128.0, 116.5 (t, J = 238.7 Hz), 30.8 (t, J = 5.2 Hz), 28.4 (t, J = 21.8 Hz).

MS (EI, m/z): 184.1 (M$^+$), 105.1, 77.1, 51.1, 18.1.

HRMS (EI, m/z): Calcd. for C$_{10}$H$_{10}$F$_2$O (M$^+$) 184.0700, found 184.0694.

IR (film): 3056, 2991, 2948, 1689, 1597, 1581, 1449, 1405, 1371, 1322, 1282, 1256, 1212, 1181, 1121, 1075, 1002, 972, 917, 746, 690 cm$^{-1}$

4,4-Difluoro-1-(4-fluorophenyl)butan-1-one (3t):

![Chemical structure of 4,4-Difluoro-1-(4-fluorophenyl)butan-1-one](image)

Colorless liquid (38 mg, 37%).

1H NMR (400 MHz, CDCl$_3$) δ 7.98 (dd, J = 8.7, 5.4 Hz, 2H), 7.13 (t, J = 8.6 Hz, 2H), 6.00 (tt, J = 56.9, 4.1 Hz, 1H), 3.14 (t, J = 7.2 Hz, 2H), 2.28 (tt, J = 18.1, 7.2, 4.2 Hz, 2H).

19F NMR (376 MHz, CDCl$_3$) δ -104.66 (ddd, J = 13.8, 8.5, 5.4 Hz, 1F), -117.23 (dt, J = 57.0, 18.0 Hz, 1F).

13C NMR (101 MHz, CDCl$_3$) δ 196.2, 165.9 (d, J = 255.2 Hz), 132.8 (d, J = 3.1 Hz), 130.7 (d, J = 9.5 Hz), 116.4 (t, J = 238.7 Hz), 115.8 (d, J = 21.9 Hz), 30.7 (t, J = 5.3 Hz), 28.3 (t, J = 22.0 Hz).

MS (EI, m/z): 202.1 (M$^+$), 123.1, 95.1, 75.1, 51.1.

HRMS (FI, m/z): Calcd. for C$_{10}$H$_9$ONF$_3$ (M$^+$) 202.0600, found 202.0598.

IR (KBr): 3392, 3182, 2953, 1919, 1847, 1694, 1644, 1598, 1506, 1467, 1417, 1235, 1157, 1116, 1061, 843, 816, 646 cm$^{-1}$

4,4-Difluoro-1-(naphthalen-2-yl)butan-1-one (3u):

29
Yellow solid (55 mg, 47%). M.p.: 54.8–56.3 °C.

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.46 (d, \(J = 1.7\) Hz, 1H), 8.01 (dd, \(J = 8.6, 1.8\) Hz, 1H), 7.95 (dd, \(J = 8.1, 1.4\) Hz, 1H), 7.91 – 7.83 (m, 2H), 7.57 (dddd, \(J = 20.1, 8.1, 6.9, 1.4\) Hz, 2H), 6.12 (dt, \(J = 56.9, 4.2\) Hz, 1H), 3.30 (t, \(J = 7.2\) Hz, 2H), 2.35 (ttd, \(J = 18.1, 7.2, 4.2\) Hz, 2H).

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)): \(\delta\) -116.99 (dt, \(J = 56.9, 17.8\) Hz, 2F).

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta\) 197.7, 135.7, 133.7, 132.5, 129.8, 129.6, 128.7, 128.6, 127.8, 126.9, 123.6, 116.6 (t, \(J = 238.7\) Hz), 30.9 (t, \(J = 5.2\) Hz), 28.5 (t, \(J = 22.0\) Hz).

MS (EI, \(m/z\)): 234.1 (M\(^+\)), 155.1, 127.1, 51.1, 18.1.

HRMS (EI, \(m/z\)): Calcd. for C\(_{14}\)H\(_{12}\)F\(_2\)O (M\(^+\)) 234.0856, found 234.0858.

IR (film): 3060, 2920, 1683, 1627, 1469, 1437, 1404, 1373, 1279, 1211, 1186, 1123, 1077, 1053, 944, 896, 862, 819, 748, 476 cm\(^{-1}\)

4,4-Difluoro-2-phenylbutanenitrile (4v):

\[\text{N} \equiv \text{Ph} \]
\[\text{CF}_2\text{H} \]

Colorless liquid (42 mg, 47%).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.45 – 7.31 (m, 5H), 5.87 (tdd, \(J = 55.6, 5.2, 4.1\) Hz, 1H), 4.00 (dd, \(J = 9.0, 6.5\) Hz, 1H), 2.60 – 2.26 (m, 2H).

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)): \(\delta\) -117.84 – -118.14 (m, 2F).

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta\) 133.8, 129.6, 128.9, 127.2, 119.3, 114.4 (t, \(J = 240.6\) Hz), 39.6 (t, \(J = 22.9\) Hz), 31.4 (t, \(J = 6.4\) Hz).

MS (EI, \(m/z\)): 181.1 (M\(^+\)), 116.1.

HRMS (EI, \(m/z\)): Calcd. for C\(_{10}\)H\(_9\)F\(_2\)N (M\(^+\)) 181.0698, found 181.0694.

IR (film): 3066, 3034, 2987, 2245, 1600, 1495, 1435, 1408, 1382, 1368, 1243, 1209, 1185, 1122, 1058, 952, 919, 756, 699, 555 cm\(^{-1}\)

((3,3-Difluoropropyl)sulfonyl)benzene (3w):
Slight yellow solid (72 mg, 65%). M.p.: 51.9–53.6 °C.

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 7.93 – 7.87\) (m, 2H), \(7.71 – 7.64\) (m, 1H), \(7.60 – 7.53\) (m, 2H), 5.96 (tt, \(J = 56.5\) Hz, 3.9 Hz, 1H), 3.27 – 3.15 (m, 2H), 2.40 – 2.13 (m, 2H).

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)): \(\delta -117.44\) (dt, \(J = 55.8, 17.0\) Hz, 2F).

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta 138.4, 134.2, 129.6, 128.0, 114.7\) (t, \(J = 240.5\) Hz), 49.2 (t, \(J = 5.4\) Hz), 27.8 (t, \(J = 23.1\) Hz).

MS (EI, \(m/z\)): 220.1, 141.0, 77.1, 51.1. (M\(^+\)).

HRMS (EI, \(m/z\)): Calcd. for C\(_9\)H\(_{10}\)F\(_2\)O\(_2\)S (M\(^+\)) 220.0370, found 220.0369.

IR (film): 3065, 2987, 2942, 1683, 1447, 1407, 1309, 1171, 1148, 1127, 1086, 1069, 1046, 938, 745, 689, 585, 534 cm\(^{-1}\)

2-(3,3-Difluoropropyl)naphthalene (4x):

Colorless solid (26 mg, 25%). M.p.: 31.0–32.8 °C.

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 7.86 – 7.75\) (m, 3H), \(7.64\) (d, \(J = 1.7\) Hz, 1H), 7.46 (tt, \(J = 7.0, 5.2\) Hz, 2H), 7.33 (dd, \(J = 8.5, 1.8\) Hz, 1H), 5.84 (tt, \(J = 56.7, 4.5\) Hz, 1H), 3.01 – 2.89 (m, 2H), 2.33 – 2.14 (m, 2H).

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)): \(\delta -114.35\) (dt, \(J = 56.6, 17.7\) Hz, 2F).

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta 137.4, 133.6, 132.2, 128.4, 127.7, 127.5, 126.8, 126.6, 126.2, 125.5, 116.7\) (t, \(J = 239.1\) Hz), 35.6 (t, \(J = 21.1\) Hz), 28.6 (t, \(J = 6.0\) Hz).

MS (EI, \(m/z\)): 206 (50.57, M\(^+\)), 141 (100), 115 (19.02).

HRMS (EI, \(m/z\)): Calcd. for C\(_{13}\)H\(_{12}\)F\(_2\) (M\(^+\)) 206.0907, found 206.0904.

IR (film): 3054, 2970, 2933, 2857, 1600, 1508, 1450, 1437, 1403, 1381, 1271, 1179, 1120, 1056, 959, 925, 896, 818, 797, 746, 476 cm\(^{-1}\)

9-(2,2-Difluoroethyl)-9H-fluorene (3y):
White solid (63 mg, 55%). M.p. >200 °C (decomposed).

1H NMR (400 MHz, CDCl₃) δ 7.78 (dd, J = 7.5, 1.2 Hz, 2H), 7.54 (d, J = 7.4 Hz, 2H), 7.45 – 7.30 (m, 4H), 5.97 (tt, J = 56.5, 4.8 Hz, 1H), 4.15 (t, J = 6.6 Hz, 1H), 2.45 (tdd, J = 16.9, 6.5, 4.7 Hz, 2H).

19F NMR (376 MHz, CDCl₃) δ -114.07 (dt, J = 56.5, 17.0 Hz, 2F).

13C NMR (101 MHz, CDCl₃) δ 140.9, 130.3, 128.1, 127.6, 127.3, 124.6, 120.5, 120.1, 116.3 (t, J = 243.4 Hz), 42.1 (t, J = 5.8 Hz), 37.8 (t, J = 21.3 Hz).

MS (EI, m/z): 230.1 (M⁺), 178.1, 165.1.

HRMS (EI, m/z): Calcd. for C₁₅H₁₂F₂ (M⁺) 230.0902, found 230.0901.

IR (KBr): 3066, 3040, 2929, 1735, 1608,, 1487, 1478, 1449, 1263, 1155, 1120, 1101, 1058, 1027, 1007, 896, 756, 739 cm⁻¹

4-Fluorophenyl 4,4-difluoro-2-methylpentanoate (3ab):

[Chemical structure image]

Colorless liquid, (83 mg, 68%).

1H NMR (400 MHz, CDCl₃) δ 7.10 – 6.97 (m, 4H), 3.01 (dqd, J = 9.1, 7.2, 4.3 Hz, 1H), 2.61 – 2.40 (m, 1H), 2.09 – 1.87 (m, 1H), 1.65 (t, J = 18.5 Hz, 4H), 1.37 (d, J = 7.1 Hz, 3H).

19F NMR (376 MHz, CDCl₃) δ -90.45 – -91.15 (m, 1F), -116.91 – -117.22 (m,1F).

13C NMR (101 MHz, CDCl₃) δ 174.5, 161.5, 159.1, 146.5, 123.3 (t, J = 239.4 Hz), 122.8 (d, J = 8.5 Hz), 116.2, 116.0, 41.5 (t, J = 25.2 Hz), 34.4 (t, J = 3.6 Hz), 24.0 (t, J = 27.6 Hz), 18.4.

MS (EI, m/z): 246.1 (M⁺), 135.1, 112.1, 87.1, 65.1.

HRMS (EI, m/z): Calcd. for C₁₂H₁₃F₃O₂ (M⁺) 246.0862, found 246.0864.

IR (KBr): 3082, 2981, 2942, 2884, 1760, 1599, 1504, 1459, 1394, 1281, 1238, 1187, 1139, 1083, 1059, 1013, 933, 883, 821, 800, 767, 518 cm⁻¹

3-(2,2-Difluoropropyl)-6-phenylchroman-2-one (3ac):

[Chemical structure image]
White solid (65 mg, 43%). M.p.: 101.1–102.6 °C.

\[^1H \text{ NMR} \ (400 \text{ MHz, } \text{CDCl}_3) \delta 7.57 – 7.51 \ (m, \ 2H), 7.49 – 7.39 \ (m, \ 4H), 7.37 – 7.30 \ (m, \ 1H), 7.10 \ (d, \ J = 8.4 \ Hz, \ 1H), 3.30 \ (dd, \ J = 15.1, \ 5.5 \ Hz, \ 1H), 3.15 – 2.71 \ (m, \ 3H), 2.08 \ (ddt, \ J = 23.7, \ 15.6, \ 7.8 \ Hz, \ 1H), 1.69 \ (t, \ J = 18.5 \ Hz, \ 3H). \]

\[^19F \text{ NMR} \ (376 \text{ MHz, } \text{CDCl}_3) \delta -87.83 – -88.99 \ (m, \ 1F), -92.83 – -94.00 \ (m, \ 1F). \]

\[^13C \text{ NMR} \ (101 \text{ MHz, } \text{CDCl}_3) \delta 170.1, 150.9, 140.0, 128.9, 127.5, 127.2, 127.0, 126.8, 124.9 \ (t, \ J = 283.6 \ Hz), 122.9, 117.0, 37.6 \ (t, \ J = 25.1 \ Hz), 34.7, 30.3, 24.2 \ (t, \ J = 27.4 \ Hz). \]

MS (EI, m/z): 302.1 (M\(^+\)), 274.1, 239.1, 207.1, 182.1, 165.1, 153.1.

HRMS (EI, m/z): Calcd. for C\(_{18}\)H\(_{16}\)F\(_2\)O\(_2\) (M\(^+\)) 302.1113, found 302.1107.

IR (KBr): 3036, 3002, 2935, 1768, 1507, 1482, 1454, 1416, 1393, 1335, 1303, 1236, 1164, 1126, 873, 839, 811, 772, 743, 713 cm\(^{-1}\)

2-Benzyl-4,4-difluoro-N-(2-iodophenyl)pentanamide (3ad):

White solid (181.1 mg, 87%). M.p.: 88.2–89.3 °C.

\[^1H \text{ NMR} \ (400 \text{ MHz, } \text{CDCl}_3) \delta 8.18 – 7.96 \ (m, \ 1H), 7.77 – 7.64 \ (m, \ 1H), 7.33 – 7.15 \ (m, \ 7H), 6.80 \ (td, \ J = 7.9, \ 1.3 \ Hz, \ 1H), 3.05 \ (td, \ J = 11.2, \ 3.8 \ Hz, \ 1H), 2.92 – 2.79 \ (m, \ 2H), 2.70 – 2.47 \ (m, \ 1H), 2.04 \ (dddd, \ J = 24.4, \ 15.0, \ 9.6, \ 2.7 \ Hz, \ 1H), 1.61 \ (t, \ J = 18.5 \ Hz, \ 3H). \]

\[^19F \text{ NMR} \ (376 \text{ MHz, } \text{CDCl}_3) \delta -89.48 – -90.59 \ (m, \ 1F), -90.90 – -91.88 \ (m, \ 1F). \]

\[^13C \text{ NMR} \ (101 \text{ MHz, } \text{CDCl}_3) \delta 172.5, 138.7, 138.3, 137.9, 129.1, 129.0, 128.8, 127.0, 126.2, 123.4 \ (t, \ J = 238.9 \ Hz), 122.4, 90.2, 45.0, 40.2 \ (t, \ J = 25.0 \ Hz), 39.9, 24.2 \ (t, \ J = 27.5 \ Hz). \]

MS (EI, m/z): 429.1 (M\(^+\)), 350.1, 302.1, 219.0, 91.1.

HRMS (EI, m/z): Calcd. for C\(_{18}\)H\(_{18}\)ONF\(_2\)I (M\(^+\)) 429.0396, found 429.0403.
IR (KBr): 3285, 3176, 3022, 2928, 1659, 1604, 1573, 1521, 1470, 1455, 1393, 1358, 1303, 1381, 1238, 1190, 1176, 1159, 1135, 1144, 1042, 1030, 1016, 962, 918, 758, 737, 718, 700 cm$^{-1}$

4,4-Difluoro-2-phenylpentanenitrile (3ae):

![Chemical Structure]

Colorless liquid, (55 mg, 56%).

1H NMR (400 MHz, CDCl$_3$) δ 7.43 – 7.29 (m, 5H), 4.07 (dd, J = 9.9, 4.4 Hz, 1H), 2.59 (ddt, J = 20.5, 14.9, 10.6 Hz, 1H), 2.31 (dddd, J = 19.8, 14.6, 10.0, 4.4 Hz, 1H), 1.68 (t, J = 18.6 Hz, 3H).

19F NMR (376 MHz, CDCl$_3$) δ -90.20 (dtd, J = 243.3, 18.8, 10.0 Hz, 1F), -91.14 – -92.28 (m, 1F).

13C NMR (101 MHz, CDCl$_3$) δ 129.4, 128.6, 127.3, 121.9 (t, J = 240.2 Hz), 120.1, 43.9 (t, J = 26.3 Hz), 31.2 (t, J = 4.0 Hz), 23.8 (t, J = 27.0 Hz).

HRMS (EI, m/z): Calcd. for C$_{11}$H$_{11}$NF$_2$ (M$^+$) 195.0854, found 195.0853.

IR (KBr): 2922, 2851, 1096, 792, 616, 474 cm$^{-1}$

((3,3-Difluorobutyl)sulfonyl)benzene (3f):

![Chemical Structure]

White solid (85 mg, 73%). M.p.: 53.5–54.8 °C.

1H NMR (400 MHz, CDCl$_3$) δ 7.93 – 7.87 (m, 2H), 7.71 – 7.63 (m, 1H), 7.58 (dd, J = 8.5, 7.0 Hz, 2H), 3.33 – 3.22 (m, 2H), 2.35 – 2.19 (m, 2H), 1.61 (t, J = 18.3 Hz, 3H).

19F NMR (376 MHz, CDCl$_3$) δ -92.53 (dtd, J = 34.4, 18.4, 15.7 Hz, 2F).

13C NMR (101 MHz, CDCl$_3$) δ 138.6, 134.1, 129.5, 128.0, 122.2 (t, J = 239.5 Hz), 49.9 (t, J = 4.2 Hz), 31.3 (t, J = 26.5 Hz), 23.8 (t, J = 27.2 Hz).

MS (EI, m/z): 234.0 (M$^+$), 141.0, 77.1, 65.1, 51.1.

HRMS (EI, m/z): Calcd. for C$_{18}$H$_{24}$F$_2$O$_7$ (M$^+$) 234.0521, found 234.0517.

IR (KBr): 3065, 3019, 2954, 1468, 1447, 1404, 1322, 1308, 1251, 1220, 1185, 1150, 1087, 1023, 949, 927, 766, 740, 689, 543 cm$^{-1}$
Naphthalen-2-yl 4-cyclopropyl-4,4-difluorobutanoate (3ag):

\[
\text{\includegraphics[width=1cm]{naphthalen2yl_diagram.png}}
\]

White solid (61.3 mg, 42%). M.p.: 40.1–41.9 °C.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.88 – 7.76 (m, 3H), 7.56 – 7.53 (m, 1H), 7.52 – 7.42 (m, 2H), 7.21 (dd, \(J = 8.8, 2.3 \text{ Hz}, 1\)H), 2.87 (dd, \(J = 8.4, 7.0 \text{ Hz}, 2\)H), 2.44 (dddd, \(J = 16.4, 15.7, 8.4, 7.0 \text{ Hz}, 2\)H), 1.36 – 1.18 (m, 1H), 0.74 – 0.67 (m, 2H), 0.67 – 0.55 (m, 2H).

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta \) -104.40 (td, \(J = 16.2, 12.4 \text{ Hz}, 2\)F).

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 171.2, 148.2, 133.7, 131.5, 129.5, 127.8, 127.7, 126.6, 125.8, 123.0 (t, \(J = 240.0 \text{ Hz}, 1\)H), 121.0, 118.5, 32.9 (t, \(J = 27.8 \text{ Hz}, 2\)H), 27.8 (t, \(J = 4.3 \text{ Hz}, 2\)H), 15.8 (t, \(J = 29.3 \text{ Hz}, 1\)H), 1.3 (t, \(J = 4.3 \text{ Hz}, 2\)H).

MS (EI, \(m/z\)): 290.1 (M\(^+\)), 144.1, 115.1.

HRMS (FI, \(m/z\)): Calcd. for C\(_{17}\)H\(_{16}\)O\(_2\)F\(_2\) (M\(^+\)) 290.1113, found 290.1109.

IR (KBr): 3059, 3020, 2953, 2931, 1750, 1627, 1511, 1464, 1441, 1425, 1405, 1386, 1355, 1317, 1266, 1242, 1211, 1165, 1141, 1082, 1059, 1041, 1026, 962, 942, 925, 816, 799, 782, 633, 622, 503 cm\(^{-1}\).

2-Benzyl-4-cyclopropyl-4,4-difluoro-N-(2-iodophenyl)butanamide (3ah):

White solid, (174.2 mg, 81%). M.p. 62.2-63.7 °C

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 8.13 – 7.97 (m, 1H), 7.68 (dd, \(J = 7.9, 1.3 \text{ Hz}, 1\)H), 7.36 – 7.05 (m, 7H), 6.79 (td, \(J = 7.9, 1.5 \text{ Hz}, 1\)H), 3.05 (td, \(J = 11.4, 3.8 \text{ Hz}, 1\)H), 2.94 – 2.81 (m, 2H), 2.67 (ddt, \(J = 24.4, 14.9, 9.5 \text{ Hz}, 1\)H), 2.12 (dddd, \(J = 25.8, 15.0, 8.6, 2.7 \text{ Hz}, 1\)H), 1.29 – 1.12 (m, 1H), 0.64 (ddt, \(J = 5.0, 3.9, 2.0 \text{ Hz}, 2\)H), 0.60 – 0.48 (m, 2H).

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta \) -101.23 (dddd, \(J = 240.9, 24.9, 11.3, 8.6 \text{ Hz}, 1\)F), -103.49 (dddd, \(J = 240.6, 23.8, 13.2, 10.0 \text{ Hz}, 1\)F).

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 172.5, 138.7, 138.4, 137.9, 129.1, 129.0, 128.8, 126.9, 126.1, 123.2 (t, \(J = 240.2 \text{ Hz}, 1\)H), 122.3, 90.1, 45.0, 40.0, 39.8 (t, \(J = 26.6 \text{ Hz}, 2\)H), 16.3 (t, \(J = 29.3 \text{ Hz}, 2\)H).

MS (EI, \(m/z\)): 455.1 (M\(^+\)), 344.1, 308.2, 222.1, 91.1.
HRMS (FI, m/z): Calcd. for C_{20}H_{20}ONF_{2}I (M^+) 455.0552, found 455.0559.
IR (KBr): 3383, 3265, 3086, 3061, 2933, 1662, 1603, 1583, 1518, 1466, 1455, 1433, 1287, 1237, 1168, 1087, 1057, 1016, 966, 920, 892, 752, 700 cm⁻¹

((3-Cyclopropyl-3-difluoropropyl)sulfonyl)enzene (3ai):

White solid (81 mg, 62%). M.p.: 50.0–51.2 °C.

\(^1^H\) NMR (400 MHz, CDCl₃) δ 7.94 – 7.82 (m, 2H), 7.72 – 7.61 (m, 1H), 7.58 (dd, J = 8.5, 7.0 Hz, 2H), 3.33 – 3.24 (m, 2H), 2.43 – 2.27 (m, 2H), 1.27 – 1.07 (m, 1H), 0.64 – 0.51 (m, 4H).

\(^1^H\) NMR (376 MHz, CDCl₃) δ -103.92 (td, J = 15.6, 12.2 Hz, 2F).

\(^1^H\) NMR (101 MHz, CDCl₃) δ 138.7, 129.5, 128.0, 122.0 (t, J = 242.4 Hz), 49.9 (t, J = 3.6 Hz), 31.0 (t, J = 28.3 Hz), 15.8 (t, J = 28.9 Hz), 1.4 (t, J = 4.3 Hz).

MS (EI, m/z): 260.1 (M⁺), 169.0, 141.0, 125.0, 99.1, 77.1, 51.1.
HRMS (EI, m/z): Calcd. for C_{12}H_{14}F₂O₂S (M⁺) 260.0677, found 260.0684.
IR (KBr): 3061, 2991, 2977, 2940, 1481, 1448, 1440, 1420, 1394, 1381, 1311, 1264, 1239, 1194, 1170, 1150, 1088, 1045, 1025, 942, 932, 891, 822, 746, 687, 598, 546, 532

Benzyl 6-((tert-butyldimethylsilyl)oxy)-4,4-difluoro-2-methylhexanoate (3aj):

Colorless liquid (119.1 mg, 57%).

\(^1^H\) NMR (400 MHz, CDCl₃) δ 7.42 – 7.26 (m, 5H), 5.11 (d, J = 1.7 Hz, 2H), 3.76 (t, J = 6.5 Hz, 2H), 2.94 – 2.75 (m, 1H), 2.54 – 2.39 (m, 1H), 2.13 - 2.01 (m, 2H), 2.01 – 1.84 (m, 1H), 1.24 (d, J = 7.1 Hz, 3H), 0.87 (s, 9H), 0.04 (s, 6H).

\(^1^H\) NMR (376 MHz, CDCl₃) δ -95.34 – -96.22 (m, 1F), -96.22 – -97.10 (m, 1F).

\(^1^H\) NMR (101 MHz, CDCl₃) δ 175.7, 136.0, 128.5, 128.2, 128.1, 123.8 (t, J = 241.2 Hz), 66.5, 57.2 (t, J = 6.7 Hz), 40.4 (t, J = 24.4 Hz), 40.0 (t, J = 24.5 Hz), 34.1 (t, J = 3.6 Hz), 25.8, 18.4, 18.2, -5.5.

MS (EI, m/z): 415.1 (M⁺), 386.2, 309.2, 279.1, 191.2, 91.1.
HRMS (EI, m/z): Calcd. for C_{20}H_{32}O_{3}F_{2}Si (M⁺) 386.2083, found 386.2088.
IR (KBr): 3067, 2955, 2931, 2885, 2857, 1739, 1498, 1463, 1430, 1388, 1257, 1167, 1103, 1005, 981, 911, 881, 837, 812, 777, 697 cm⁻¹

(3S,5aS,8R,8aS,11R,12S)-3,8,11-Trimethyloctahydro-5aH,7H-3,12-methano[1,2,5]trioxepino[3,4-J]isochromen-7-yl 4,4-difluorobutanoate (3am):

Colorless solid (146 mg, 75%). M.p.: 87.5–88.4 °C.

¹H NMR (400 MHz, CDCl₃): δ 6.07 – 5.72 (m, 2H), 5.41 (s, 1H), 2.55 (p, J = 10.0, 9.4 Hz, 3H), 2.34 (td, J = 14.0, 3.8 Hz, 1H), 2.16 (ddt, J = 23.5, 17.8, 7.8 Hz, 2H), 2.00 (dt, J = 14.8, 3.6 Hz, 1H), 1.86 (ddt, J = 13.7, 6.5, 3.6 Hz, 1H), 1.72 (ddd, J = 22.0, 13.4, 3.4 Hz, 2H), 1.60 (dd, J = 13.6, 4.5 Hz, 1H), 1.53 – 1.19 (m, 7H), 1.06 – 0.87 (m, 4H), 0.82 (d, J = 7.1 Hz, 3H).

¹⁹F NMR (376 MHz, CDCl₃): δ -117.62 (dtd, J = 56.6, 17.3, 7.6 Hz, 2F).

¹³C NMR (101 MHz, CDCl₃): δ 170.9, 116.0 (t, J = 239.1 Hz), 104.5, 92.3, 91.5, 80.1, 51.5, 45.2, 37.3, 36.2, 34.1, 31.7, 29.1 (t, J = 22.3 Hz), 26.9 (t, J = 6.0 Hz), 25.9, 24.6, 22.0, 20.2, 12.1.

MS (FTMS, m/z): 408.2 (M+NH₄⁺), 267.2.

HRMS (DART, m/z): Calcd. for C₁₉H₃₂O₆NF₂ (M+NH₄⁺) 408.2192, found 408.2190.

IR (film): 3376, 2934, 2873, 1747, 1715, 1444, 1405, 1378, 1280, 1251, 1227, 1175, 1123, 1017, 945, 876, 847, 825 cm⁻¹

1-(3-(4-Amino-3-(4-phenoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)piperidin-1-yl)-4,4-difluorobutan-1-one (3am):

Pale yellow liquid (0.25 mmol scales, 62 mg, 50%).
\(^{1}\text{H NMR}\) (400 MHz, CDCl\(_3\)) \(\delta\) 8.31 (d, \(J = 12.1\) Hz, 1H), 7.75 – 7.56 (m, 2H), 7.40 – 7.31 (m, 2H), 7.19 – 6.99 (m, 5H), 5.94 (tdt, \(J = 57.0, 13.6, 4.3\) Hz, 2H), 4.86 – 4.35 (m, 2H), 4.13 – 3.78 (m, 1H), 3.49 (ddd, \(J = 159.5, 13.0, 10.6\) Hz, 1H), 3.20 – 3.06 (m, 1H), 2.82 (td, \(J = 13.5, 12.7, 3.1\) Hz, 1H), 2.62 – 1.86 (m, 8H), 1.75 – 1.58 (m, 1H).

\(^{19}\text{F NMR}\) (376 MHz, CDCl\(_3\)) \(\delta\) -117.06 – -117.61 (m, 2F).

\(^{13}\text{C NMR}\) (101 MHz, CDCl\(_3\)) \(\delta\) 169.6, 158.7, 158.0, 156.3, 155.5, 154.1, 144.2, 130.0 (d, \(J = 1.9\) Hz), 129.9, 124.1, 119.6, 119.1, 116.7 (t, \(J = 238.7\) Hz), 98.6, 53.3, 52.4, 49.6, 45.4, 42.0, 30.1, 29.9, 29.5 (t, \(J = 21.7\) Hz), 25.6 (d, \(J = 6.3\) Hz), 25.0, 23.9.

MS (ESI, \(m/z\)): 493.2 (M+H\(^{+}\)).

HRMS (ESI, \(m/z\)): Calcd. for C\(_{26}\)H\(_{27}\)F\(_2\)N\(_6\)O\(_2\) (M+H\(^{+}\)) 493.2158, found 493.2156.

IR (film): 3478, 3306, 3055, 2945, 2861, 1644, 1586, 1520, 1488, 1371, 1236, 1167, 1116, 1053, 185, 940, 869, 755, 734, 694 cm\(^{-1}\)

\(N\)-(2-((2-(Dimethylamino)ethyl)(methyl)amino)-4-methoxy-5-((4-(1-methyl-1H-indol-3-yl)pyrimidin-2-yl)amino)phenyl)-4,4-difluorobutanamide (3a):

Slight yellow solid, (2.0 mmol scales, 496.5 mg, 45%). M.p. 175.1-176.6 ºC

\(^{1}\text{H NMR}\) (400 MHz, CDCl\(_3\)) \(\delta\) 10.12 (s, 1H), 9.64 (s, 1H), 8.90 (s, 1H), 8.37 (dd, \(J = 5.3, 1.2\) Hz, 1H), 8.08 (d, \(J = 7.5\) Hz, 1H), 7.70 (s, 1H), 7.42 – 7.36 (m, 1H), 7.32 – 7.21 (m, 2H), 7.21 – 7.14 (m, 1H), 6.76 (s, 1H), 6.23 – 5.81 (m, 1H), 4.02 – 3.93 (m, 3H), 3.86 (d, \(J = 1.2\) Hz, 3H), 2.90 (s, 2H), 2.74 – 2.65 (m, 3H), 2.65 – 2.53 (m, 2H), 2.39 – 2.20 (m, 10H).

\(^{19}\text{F NMR}\) (376 MHz, CDCl\(_3\)) \(\delta\) -117.08 (dt, \(J = 57.0, 17.3\) Hz, 2F).

\(^{13}\text{C NMR}\) (101 MHz, CDCl\(_3\)) \(\delta\) 168.4, 162.1, 159.6, 157.9, 144.0 (d, \(J = 33.6\) Hz), 138.2 (d, \(J = 4.8\) Hz), 134.71 - 133.68 (m), 129.5, 127.7, 126.0 (d, \(J = 2.7\) Hz), 121.9, 120.9 (d, \(J = 8.1\) Hz), 120.3 (d, \(J = 15.0\) Hz), 116.8 (t, \(J = 238.8\) Hz), 113.7, 110.0, 109.6
(d, J = 15.6 Hz), 107.9 (d, J = 11.6 Hz), 104.6 (d, J = 12.6 Hz), 57.3 (d, J = 3.9 Hz),
56.3, 56.1 (d, J = 3.5 Hz), 45.6 (d, J = 18.1 Hz), 45.3, 44.0 (d, J = 10.7 Hz), 33.1, 30.7,
30.0 (t, J = 21.8 Hz), 29.4 (d, J = 5.5 Hz).

MS (ES-API, m/z): 552.2 (M+H+).

HRMS (ESI, m/z): Calcd. for C_{29}H_{36}O_2N_7F_2 (M+H+) 552.2893, found 552.2893.

IR (film): 3419, 2938, 2823, 1673, 1580, 1514, 1404, 1261, 1201, 1103, 1060, 1032,
808, 742 cm^{-1}

(6R,8R,9S,10R,13S,14S)-6-(2-Cyclopropyl-2,2-difluoroethyl)-10,13-dimethyl-
7,8,9,10,11,12,13,14,15,16-decahydro-3H-cyclopenta[a]phenanthrene-3,17(6H)-
dione (3ao):

![Chemical Structure Image]

Yellow oil, (82.2 mg, 42%).

1H NMR (400 MHz, CDCl3) δ 6.99 (d, J = 10.1 Hz, 1H), 5.89 (dd, J = 10.1, 1.0 Hz,
1H), 3.51 – 3.33 (m, 1H), 3.15 (dt, J = 17.8, 3.2 Hz, 1H), 2.82 – 2.51 (m, 2H), 2.51 –
2.39 (m, 1H), 2.36 – 2.18 (m, 1H), 2.08 (dt, J = 18.9, 9.0 Hz, 1H), 2.01 – 1.73 (m, 5H),
1.68 – 1.48 (m, 2H), 1.38 – 1.19 (m, 6H), 1.19 – 1.02 (m, 1H), 0.90 (m, 4H), 0.59 (dq,
J = 5.0, 2.9, 1.7 Hz, 2H), 0.57 – 0.44 (m, 2H).

19F NMR (376 MHz, CDCl3) δ -97.40 – -102.14 (m, 2F).

13C NMR (101 MHz, CDCl3) δ 220.1, 197.5, 155.9, 134.4, 126.4, 124.5 (t, J = 3.0 Hz),
123.3 (t, J = 242.2 Hz), 51.5, 47.4, 45.7, 41.11 - 40.73 (m), 40.7, 36.8, 35.7, 31.3, 31.0,
21.7, 20.4, 19.6, 15.8 (t, J = 29.2 Hz), 13.6, 1.5 (t, J = 4.5 Hz), 1.3 (t, J = 4.3 Hz).

MS (ES-API, m/z): 411.1 (M+Na+).

HRMS (ESI, m/z): Calcd. for C_{24}H_{30}O_2F_2Na (M+Na+) 411.2106, found 411.2103.

IR (film): 3463, 2944, 1737, 1659, 1614, 1454, 1454, 1403, 1375, 1264, 1149, 1057,
1013, 927, 897, 735 cm^{-1}
2-(2,3-Dichloro-4-(2-ethyl-4,4-difluorobutanoyl)phenoxy)acetic acid (3ap):

Yellow solid, (99.4 mg, 51%) M.p. 101.3-102.6 °C

^1H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 8.6 Hz, 1H), 6.79 (d, J = 8.6 Hz, 1H), 6.10 – 5.70 (m, 1H), 4.79 (s, 2H), 3.47 (tq, J = 10.4, 6.1, 5.3 Hz, 1H), 2.57 – 2.30 (m, 1H), 2.03 – 1.85 (m, 1H), 1.75 (tq, J = 14.1, 7.1 Hz, 1H), 1.54 (tp, J = 14.2, 7.0 Hz, 1H), 0.88 (t, J = 7.5 Hz, 3H).

^19F NMR (376 MHz, CDCl₃) δ -114.27 (ddt, J = 283.2, 56.4, 15.5 Hz, 1F), -115.94 – -117.26 (m, 1F).

^13C NMR (101 MHz, CDCl₃) δ 202.9, 172.2, 155.9, 133.9, 132.0, 127.5, 124.2, 116.1 (t, J = 239.1 Hz), 110.7, 65.6, 45.5 (dd, J = 5.8, 3.7 Hz), 33.9 (t, J = 21.5 Hz), 24.9, 10.9.

MS (ES-API, m/z): 355.0 (M+H⁺).

HRMS (ESI, m/z): Calcd. for C₁₄H₁₁O₄F₄Cl₂ (M+H⁺) 355.0310, found 355.0307.

IR (film): 3120, 2970, 2933, 1740, 1695, 1611, 1583, 1468, 1434, 1385, 1299, 1228, 1121, 1077, 1019, 813, 691, 626 cm⁻¹

1,3-Dichloro-5-(4-cyclopropyl-1,1,4,4-tetrafluorobut-1-en-2-yl)benzene (4a):

1,3-Dichloro-5-(3,3,3-trifluoroprop-1-en-2-yl)benzene (2aq) was used as the alkene substrate. Colorless liquid (119.6 mg, 76%).

^1H NMR (400 MHz, CDCl₃) δ, 7.27 (t, J = 1.9 Hz, 1H), 7.24 – 7.22 (m, 2H), 2.99 (tt, J = 14.6, 2.2 Hz, 2H), 1.21 – 1.00 (m, 1H), 0.66 – 0.57 (m, 2H), 0.56 – 0.47 (m, 2H).
19F NMR (376 MHz, CDCl₃) δ, -84.82 – -84.97 (m, 1F), -85.49 (d, J = 27.5 Hz, 1F), -101.04 (qd, J = 14.3, 5.1 Hz, 2F).

13C NMR (101 MHz, CDCl₃) δ 155.5 (dd, J = 293.9, 292.4 Hz), 136.5 (t, J = 4.0 Hz), 135.0, 127.7, 126.8 (t, J = 3.5 Hz), 124.75 - 119.56 (m), 85.92 - 84.30 (m), 36.3 (td, J = 29.6, 2.0 Hz), 15.7 (t, J = 28.7 Hz), 1.4 (t, J = 4.3 Hz).

MS (EI, m/z): 312.1 (M⁺), 270.0, 91.1.

HRMS (FI, m/z): Calcd. for C₁₃H₁₀Cl₂F₄ (M⁺) 312.0090, found 312.0093.

IR (KBr): 3080, 2955, 2930, 2885, 2858, 1736, 1589, 1561, 1472, 1463, 1437, 1413, 1388, 1362, 1347, 1315, 1257, 1136, 1108, 1033, 1007, 858, 837, 806, 779 cm⁻¹

** tert-Butyl-((5-(3,5-dichlorophenyl)-3,3,6,6-tetrafluorohex-5-en-1-yl)oxy)dimethylsilane (4b):**

![chemical structure]

1,3-Dichloro-5-(3,3,3-trifluoroprop-1-en-2-yl)benzene (2aq) was used as the alkene substrate. Colorless liquid (123.3 mg, 57%).

1H NMR (400 MHz, CDCl₃) δ 7.27 (t, J = 1.9 Hz, 1H), 7.20 (dd, J = 1.9, 1.0 Hz, 2H), 3.77 (t, J = 6.3 Hz, 2H), 2.98 (tt, J = 16.7, 2.1 Hz, 2H), 2.06 (tt, J = 15.6, 6.3 Hz, 2H), 0.88 (s, 9H), 0.05 (s, 6H).

19F NMR (376 MHz, CDCl₃) δ -85.09 (dtd, J = 27.7, 6.0, 2.8 Hz, 1F), -85.40 (d, J = 27.9 Hz, 1F), -95.27 (pd, J = 16.1, 6.2 Hz, 2F).

13C NMR (101 MHz, CDCl₃) δ 155.4 (t, J = 293.0 Hz), 136.7 (t, J = 3.8 Hz), 135.0, 127.7, 126.9 (t, J = 3.4 Hz), 122.9 (t, J = 243.6 Hz), 85.46 - 84.80 (m), 57.1 (t, J = 6.6 Hz), 39.7 (t, J = 24.2 Hz), 35.8 (td, J = 26.0, 1.7 Hz), 25.8, 18.2, -5.6.

MS (FTMS, m/z): 431.1 (M+H⁺).

HRMS (DART, m/z): Calcd. for C₁₈H₂₅OCl₂F₃Si (M+H⁺) 431.0971, found 431.0979.

IR (KBr): 3096, 3022, 1733, 1589, 1561, 1436, 1413, 1343, 1315, 1254, 1202, 1169, 1155, 1136, 1119, 1085, 1060, 911, 860, 828, 803, 715 cm⁻¹

Benzyl 4,4-difluoro-2-methylbutanoate-2,4-d2 (3b-d2):
D$_2$O was used instead of H$_2$O. Colorless liquid (95.6 mg, 83%).

1H NMR (400 MHz, CDCl$_3$) δ 7.44 – 7.28 (m, 5H), 5.14 (s, 2H), 2.29 (dt, $J = 21.4$, 14.3 Hz, 1H), 1.90 (dt, $J = 17.6$, 14.7 Hz, 1H), 1.26 (s, 3H).

19F NMR (376 MHz, CDCl$_3$) δ -115.80 (dddt, $J = 285.5$, 17.6, 14.6, 8.5 Hz, 1F), -117.35 – -118.43 (m, 1F).

13C NMR (101 MHz, CDCl$_3$) δ 174.9, 135.8, 128.6, 128.3, 128.1, 118.47 - 112.73 (m), 66.6, 37.3 (t, $J = 21.7$ Hz), 34.09 - 33.02 (m), 17.4.

MS (ES-API, m/z): 253.0 (M+Na$^+$).

HRMS (ESI, m/z): Calcd. for C$_{12}$H$_{12}$2H$_2$O$_2$F$_2$Na (M+Na$^+$) 253.0980, found 253.0978.

IR (film): 3067, 3035, 2938, 1735, 1456, 1432, 1384, 1351, 1295, 1249, 1164, 1137, 1079, 1029, 980, 954, 749, 697 cm$^{-1}$

5. Mechanistic Investigation

5.1 Probing the pathway for the formation of fluoroalkyl radicals

A. Detection of fluorinated side products

\[\text{ArO} + \text{Me} + \text{2-BT} \rightarrow \text{C(+)/C(-), } j = 5 \text{ mA/cm}^2 \rightarrow \text{MeCN/H}_2\text{O} \text{ Et}_3\text{N, 25 }^\circ\text{C, 10 h} \rightarrow \text{3a, 90\% + side products (HCF}_2\text{SO}_2\text{M + HCF}_2\text{CF}_2\text{H + CF}_2\text{H}_2) }\]

B. Probing the reactivity of difluoromethanesulfinate salt

\[\text{ArO} + \text{Me} + \text{HCF}_2\text{SO}_2\text{Na} \rightarrow \text{C(+)/C(-), } j = 5 \text{ mA/cm}^2 \rightarrow \text{MeCN/H}_2\text{O} \text{ Et}_3\text{N, 25 }^\circ\text{C, 10 h} \rightarrow \text{3a, 0\% }\]

Scheme S3 Probing the pathway for the formation of fluoroalkyl radicals. The reaction of sulfone 1 with alkenes. reaction conditions: 1 (1.0 mmol), 2 (0.5 mmol), Tetrabutylammonium hexafluorophosphate (1.0 mmol), Et$_3$N (0.2 mL) water (0.5 mL) in CH$_3$CN (10 mL) were conducted with the 7 mA constant current for 10 hours.
Results and discussion:

19F NMR spectroscopy analysis of the reaction mixture after the completion of the reaction showed that in addition to the desired product, difluoromethanesulfinate was also formed (Scheme S3A). The use of HCF$_2$SO$_2$Na instead of sulfone 1a under our optimized conditions did not afford the desired product 3a (Scheme S3B). These results suggest that •R$_f$ radical is generated via SET reduction of the fluoroalkyl sulfone.

5.2 H-D Exchange Experiment

Experimental procedures:

2-BTSO$_2$CF$_2$H (1a) (10 mg) is dissolved in MeCN (5 mL) (Figure S1), then D$_2$O (0.5 mL) (Figure S2) and Et$_3$N (0.5 mL) (Figure S3) were added in sequence. The mixture was detected by 19F NMR spectroscopy.

Figure S1. 2-BTSO$_2$CF$_2$H in MeCN (5 mL)
Figure S2. 2-BTDO2CF2H in MeCN (5 mL)/D2O (0.5 mL)

Figure S3. 2-BTDO2CF2H in MeCN (5 mL)/D2O (0.5 mL)/Et3N (0.5 mL)
Results and discussion:

Et₃N can promote the H-D exchange of sulfone 1a and D₂O. The deuterodifluoromethylation product 3b-d₂ is proposed to be formed as follows (Scheme S4):

Scheme S4 Proposed pathway for the formation of deuterodifluoromethylation product 3b-d₂

5.3 Probing the involvement of carbanion

For experimental details, see section 4 in this ESI (for compound 4a and 4b).

Proposed reaction pathway (Scheme S5):

Scheme S5 Proposed pathway for the formation of defluorination product 4

5.4 Proposed mechanism

Based on the above experimental results and previous investigations, a plausible mechanism is proposed in Scheme S6. First, on the graphite cathode, SET reduction of the fluoroalkyl sulfone gives radical anion [2-BTSO₂-Rf]⁻, which undergoes Rf-SO₂
bond cleavage to form \(\cdot R_f \) radical and benzo[\(d\)]thiazole-2-sulfinate anion. The latter had been captured with benzyl bromide as a sulfone. Then \(\cdot R_f \) radical readily reacts with the alkene to form a new carbon-centered radical, which was further converted to a carbanion by accepting an electron from either the graphite cathode or the radical anion \([2\text{-BTSO}_2\text{-}R_f]^- \). Finally, the carbanion was protonated by the tertiary ammonium cation \(\text{Et}_3\text{NH}^+ \) to give the hydrofluoroalkylation product. On the graphite anode, oxidation of \(\text{Et}_3\text{N} \) through two SET process followed by hydrolysis of the iminium salt by water is the most possible reaction pathway, as is supported by the detection of \(\text{Et}_2\text{NH} \) via GC-MS analysis of the crude reaction mixture. \(\text{Et}_3\text{N} \) mainly serves as the sacrificial reductant at the anode. It is clear that in the absence of water, \(\text{Et}_3\text{N} \) is the major source of proton. However, when large excess amount of water is present, water will be the major source of proton, which can promote the protonation of the carbanion.

Scheme S5 Proposed mechanism for electroreductive radical fluoroalkylation of alkenes with sulfones

6 Full List of Reference 16

7. Reference

8. NMR Spectra of Compounds
$1c^1H$ NMR

(400 MHz, CDCl$_3$)
$1c\ ^{19}\text{F NMR}$

(376 MHz, CDCl$_3$)
$1c^{13}$C NMR
(101 MHz, CDCl$_3$)
$1d \ ^1H \text{ NMR}$

$(400 \text{ MHz, CDCl}_3)$
19F NMR
(376 MHz, CDCl$_3$)
1d 13C NMR
(101 MHz, CDCl$_3$)
3a 1H NMR

(400 MHz, CDCl\textsubscript{3})
19F NMR
(376 MHz, CDCl$_3$)
13C NMR

(101 MHz, CDCl$_3$)
3b 1H NMR
(400 MHz, CDCl$_3$)
$3c^{19}F$ NMR
(376 MHz, CDCl$_3$)
3c 13C NMR
(101 MHz, CDCl$_3$)

3c 1H NMR
(400 MHz, CDCl$_3$)
$3c^{19}F$ NMR
(376 MHz, CDCl$_3$)
$3c^{13}$C NMR
(101 MHz, CDCl$_3$)
3d 1H NMR (400 MHz, CDCl$_3$)
HF₂C

3d ¹⁹F NMR
(376 MHz, CDCl₃)
HF_2C

$\text{C}_6\text{H}_5\text{CO}_2\text{tBu}$

$3d$ ^{13}C NMR
(101 MHz, CDCl$_3$)
3e 1H NMR
(400 MHz, CDCl$_3$)
3e 19F NMR (376 MHz, CDCl₃)
$3e^{13}C$ NMR
(101 MHz, CDCl$_3$)
19F NMR

(376 MHz, CDCl$_3$)
$3f^{13}$C NMR
(101 MHz, CDCl$_3$)
$3g$ 1H NMR

(400 MHz, CDCl$_3$)
3g 19F NMR
(376 MHz, CDCl$_3$)
$3g^{13}C$ NMR

(101 MHz, CDCl$_3$)
3h 19F NMR
(376 MHz, CDCl$_3$)
3h 13C NMR
(101 MHz, CDCl$_3$)
$3\text{i} \, ^1\text{H NMR}$

(400MHz, CDCl$_3$)
$3i^{19F}$ NMR
(376 MHz, CDCl$_3$)
$3j$ 1H NMR
(400 MHz, CDCl$_3$)
3j 13C NMR

(101 MHz, CDCl₃)
3k 19F NMR
(376 MHz, CDCl$_3$)
$3k$ 13C NMR

$(101$ MHz, CDCl$_3$)$
3H NMR

(400 MHz, CDCl$_3$)
31^{19}F NMR
(376 MHz, CDCl$_3$)
3^t 13C NMR

(100 MHz, CDCl$_3$)
3m 19F NMR
(376 MHz, CDCl$_3$)
^{3}m 13C NMR

(101 MHz, CDCl$_3$)
3n 19F NMR
(376 MHz, CDCl$_3$)
$3n \, \text{^{13}C NMR}$

$(101 \, \text{MHz, CDCl}_3)$
13C NMR
(101 MHz, CDCl$_3$)
$^{19}\text{F NMR}$

(376 MHz, CDCl$_3$)
$3p^{13}$C NMR
(101 MHz, CDCl$_3$)
$3q \, ^1H\, NMR$

$(400\, MHz,\, CDCl_3)$
$3q^{19}\text{F NMR}$

(376 MHz, CDCl$_3$)
31 13C NMR
(101 MHz, CDCl$_3$)
3r 1H NMR

(400 MHz, CDCl$_3$)
$3r^{19} F$ NMR
(376 MHz, CDCl$_3$)
$^{3r}^{13}$C NMR

(101 MHz, CDCl$_3$)
3s 1H NMR
(400 MHz, CDCl$_3$)
3s 19F NMR
(376 MHz, CDCl$_3$)
$3s^{13}C$ NMR (101 MHz, CDCl$_3$)
3t 1H NMR

(400 MHz, CDCl$_3$)
$^{3t}^{19}F$ NMR
(376 MHz, CDCl$_3$)
$3t^{19}\text{F NMR}$

$(376 \text{ MHz, CDCl}_3)$
$3u$ 13C NMR

(101 MHz, CDCl$_3$)
$3\nu^{19}F$ NMR

(376 MHz, CDCl$_3$)
3^v 13C NMR
(101 MHz, CDCl$_3$)
Ph\[\bigg]\[\begin{array}{c}
\bigg]_2
\end{array}\]

3w ^{19}F NMR
(376 MHz, CDCl$_3$)
$3^w_{13}C$ NMR
(101 MHz, CDCl$_3$)
$3x^{19}$F NMR
(376 MHz, CDCl$_3$)
3H NMR

(101 MHz, CDCl$_3$)
3\text{y} 19F NMR
(376 MHz, CDCl\textsubscript{3})
$3y^{13}$C NMR (101 MHz, CDCl$_3$)
$\text{F-}C_{6}H_{5}O\text{NMe}$

CF_{2}Me

$\text{1H NMR (400 MHz, CDCl}_3\text{)}$

$\text{13C NMR (100 MHz, CDCl}_3\text{)}$

- 145.67
- 140.89
- 130.28
- 128.14
- 127.83
- 127.27
- 124.57
- 120.51
- 120.14
- 118.66
- 116.28
- 113.90
- 42.12
- 42.06
- 42.91
- 38.05
- 37.94
- 37.62
3ab 19F NMR
(376 MHz, CDCl$_3$)
3ab 13C NMR

(101 MHz, CDCl$_3$)
3ac 19F NMR
(376 MHz, CDCl$_3$)
3ad 1H NMR
(400 MHz, CDCl$_3$)
3ad 19F NMR
(376 MHz, CDCl$_3$)
3ae 1H NMR
(400 MHz, CDCl$_3$)
3ae 19F NMR
(376 MHz, CDCl$_3$)
$3ae^{13}C$ NMR
(101 MHz, CDCl$_3$)
3af 1H NMR
(400 MHz, CDCl$_3$)
3af 13C NMR
(101 MHz, CDCl$_3$)
$3^ag^{19}F$ NMR

$(376 \text{ MHz, CDCl}_3)$
$3a^g$ 13C NMR
(101 MHz, CDCl$_3$)
3ah 1H NMR
(400 MHz, CDCl$_3$)
1H NMR

(400 MHz, CDCl$_3$)

13C NMR

(101 MHz, CDCl$_3$)
$^{19}\text{F NMR}$

(376 MHz, CDCl$_3$)
13C NMR

(101 MHz, CDCl$_3$)
3aj 1H NMR
(400 MHz, CDCl\textsubscript{3})
$3\text{aj}^{19}\text{F NMR}$

$(376 \text{ MHz, CDCl}_3)$
3aj 13C NMR
(101 MHz, CDCl$_3$)
3a19F NMR

(376 MHz, CDCl\textsubscript{3})
$\text{3al}^{13}\text{C NMR}$

(101 MHz, CDCl_3)
3am 1H NMR
(400 MHz, CDCl$_3$)
3am 19F NMR
(376 MHz, CDCl$_3$)
3am 13C NMR
(101 MHz, CDCl$_3$)
3an. 19F NMR
(CDC$_3$, 376 MHz)
3an. 13C NMR
(CDC$_3$, 101 MHz)
3ao, 19F NMR
(CDC$_3$, 376 MHz)
3α, 13C NMR
(CDC$_3$, 101 MHz)
3ap, 1H NMR
(CDCl$_3$, 400 MHz)
3ap, 19F NMR
(CDC$_3$, 376 MHz)
3ap, 13C NMR
(CDCl$_3$, 101 MHz)
^{1}H NMR

(400 MHz, CDCl$_3$)
$4b$ 1H NMR

(400 MHz, CDCl$_3$)
4b 19F NMR
(376 MHz, CDCl$_3$)
13C NMR
(101 MHz, CDCl$_3$)
$3b-d_2$, 19F NMR
(CDCl$_3$, 376 MHz)
$3b-d_2, ^{13}C$ NMR
(CDCl$_3$, 101 MHz)