Electronic Supplementary Information

For

Carbolong Chemistry: Nucleophilic Aromatic Substitution of a Triflate Functionalized Iridapentalene

Jinhua Li, Zhengyu Lu, Yuhui Hua, Dafa Chen* and Haiping Xia*

Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.

E-mail: chendf@sustech.edu.cn; xiahp@sustech.edu.cn

Contents

1. General information	
2. Synthesis and characterization	
3. NMR spectra	
4. HRMS spectra	
5. Crystallographic details	
6. Theoretical calculations	S36
7. The UV-vis absorption spectra of iridacycles 1-5	
8. References	S38
9. Cartesian coordinates	

1. General information

All syntheses were performed under an N₂ atmosphere using standard Schlenk techniques, unless otherwise stated. Diethyl ether was distilled from sodium/benzophenone and dichloromethane from calcium hydride under N₂ prior to use. The starting material triflate irida-carbolong complex 1 was synthesized according to previously published procedures.^[S1] Other reagents were used as received from commercial sources without further purification. Column chromatography was performed on silica gel (200-300 mesh or 500-800 mesh) in air. NMR spectroscopic experiments were performed on Bruker AVIII-400 (¹H, 400.1, ¹³C, 100.6, ³¹P, 162.0 MHz) spectrometer or a Bruker Ascend III 600 (¹H, 600.1, ¹³C, 150.9, ³¹P, 242.9 MHz) spectrometer at room temperature. The ¹H NMR and ¹³C NMR chemical shifts (δ) are reported relative to tetramethylsilane, and the ³¹P NMR chemical shifts are relative to 85% H₃PO₄. The absolute values of the coupling constants are given in hertz (Hz). Multiplicities are abbreviated as singlet (s), doublet (d), triplet (t), multiplet (m), and broad (br). *Notes:* The resonances of the *ipso-*, *ortho-* and *meta-*Ph carbon atoms of the PPh₃ ligands in the ¹³C NMR spectra are experimentally observed as apparent triplets because of virtual coupling to the two P atoms coordinated to iridium.^[S2] High-resolution mass spectrometry (HRMS) experiments were performed on a Thermo Scientific Q Exactive instrument. Absorption spectra were recorded on an Agilent Cary 5000 UV-Vis spectrophotometer.

2. Synthesis and characterization

To a mixture of 1(120 mg, 0.09 mmol) in dichloromethane (3 mL) was added MeOH (0.1 mL) in sealed tube. The reaction mixture was stirred at 60 °C for 16 h to give a red solution. Then the solution was evaporated under vacuum to a volume of approximately 1 mL. Addition of ethyl ether (10 mL) produced a red precipitate, which was collected by ethyl ether (2 × 10 mL) and dried under

vacuum to give 2a as a red solid. Yield: 96 mg, 88%.

¹H NMR (600.1 MHz, CD₂Cl₂): $\delta = 11.10$ (s, 1H, C7*H*), 9.97 (s, 1H, C1*H*), 7.86 (d, *J*(PH) = 3.1 Hz, 1H, C3*H*), 7.61-7.17 (30H, Ph), 3.72 (s, 6H, COOC*H*₃), 3.33 (s, 3H, OC*H*₃), 3.02 (br, 2H, C9*H*), 2.39 ppm (br, 2H, C11*H*); ³¹P{¹H} NMR (242.9 MHz, CD₂Cl₂): $\delta = -0.55$ ppm (s, Ir*P*Ph₃); ¹³C{¹H} NMR (150.9 MHz, CD₂Cl₂, plus ¹³C-dept 135, ¹H-¹³C HSQC and ¹H-¹³C HMBC): $\delta = 184.5$ (s, C6), 183.1 (s, *J*(PC) = 8.7 Hz, C7), 180.2 (s, C2), 174.1 (t, *J*(PC) = 8.6 Hz, C8), 173.7 (br, C5), 172.9 (t, *J*(PC) = 5.4 Hz, C4), 171.6 (s, *C*OOMe), 157.9 (t, *J*(PC) = 10.6 Hz, C1), 151.1 (s, C3), 134.6-126.9 (Ph), 126.9 (q, *J*(FC) = 60.1 Hz, *J*(FC) = 46.1 Hz, SO₃CF₃), 64.9 (s, C10), 56.4 (s, OCH₃), 53.5 (s, COOCH₃), 38.8 (s, C11), 38.2 ppm (s, C9); HRMS (ESI): m/z calcd for [C₅₂H₄₆IrO₆P₂]⁺, 1021.2393, [C₅₂H₄₆IrO₆P₂]⁺; found, 1021.2394.

Synthesis and characterization of irida-carbolong complex 2b:

To a mixture of 1 (65 mg, 0.05 mmol) in dichloromethane (2 mL) was added EtOH (0.1 mL) in sealed tube. The reaction mixture was stirred at 60 °C for 16 h to give a red solution. Then the solution was evaporated under vacuum to a volume of approximately 1 mL. Addition of diethylether (10 mL) produced a red precipitate, which was collected by diethylether (2 × 10 mL) and dried under vacuum to give **2b** as a red solid. Yield: 45 mg, 86%.

¹H NMR (600.1 MHz, CD₂Cl₂): $\delta = 10.98$ (s, 1H, C7*H*), 9.94 (s, 1H, C1*H*), 7.78 (br, 1H, C3*H*), 7.55-7.14 (30H, Ph), 3.68 (s, 6H, COOC*H*₃), 3.46 (q, *J*(HH) = 6.9 Hz, *J*(HH) = 6.6 Hz, 2H, C*H*₂CH₃), 2.98 (br, 2H, C9*H*), 2.35 (br, 2H, C11*H*), 1.07 ppm (t, *J*(HH) = 6.2 Hz, 3H, CH₂C*H*₃); ³¹P{¹H} NMR (242.9 MHz, CD₂Cl₂): $\delta = -0.51$ ppm (s, Ir*P*Ph₃); ¹³C{¹H} NMR (150.9 MHz, CD₂Cl₂, plus ¹³C-dept 135, ¹H-¹³C HSQC and ¹H-¹³C HMBC): $\delta = 184.2$ (s, C6), 182.0 (s, *J*(PC) = 8.9 Hz, C7), 179.9 (s, C2), 174.2 (t, *J*(PC) = 10.6 Hz, C4), 173.5 (t, *J*(PC) = 3.7 Hz, C5), 173.1 (t, *J*(PC) = 5.2 Hz, C8), 171.6 (s, COOMe), 159.2 (t, *J*(PC) = 10.4 Hz, C1), 151.3 (s, C3), 134.6-126.8 (Ph), 121.1 (q, *J*(FC) = 323 Hz, *J*(FC) = 320 Hz, SO₃CF₃), 64.9 (s, C10), 64.8 (s, CH₂CH₃), 56.4 (s, OCH₃), 53.5 (s, COOCH₃), 38.7 (s, C11), 38.2 (s, C9), 30.0 ppm (s, CH₂CH₃); HRMS (ESI): m/z calcd for $[C_{53}H_{48}IrO_6P_2]^+$, 1035.2550, $[C_{53}H_{48}IrO_6P_2]^+$; found, 1035.2532.

Synthesis and characterization of irida-carbolong complex 2c:

To a mixture of **1** (300 mg, 0.23 mmol) and *p*-toluenethiol (145 mg, 1.15 mmol) in sealed tube was added dichloromethane (8 mL). The reaction mixture was stirred at 60 $^{\circ}$ C for 16 h to give a violet solution. Then the solution was evaporated under vacuum to a volume of approximately 2 mL. The residue was purified by column chromatography (SiO₂, 200-300 mesh, elute: dichloromethane/Acetone = 15/1) to give **2c** as a violet solid, which was washed by hexane (2 × 10 mL). Yield: 230 mg, 78%.

¹H NMR (600.1 MHz, CD₂Cl₂): $\delta = 11.19$ (s, 1H, C7*H*), 10.36 (s, 1H, C1*H*), 7.75 (br, 1H, C3*H*), 7.75-6.82 (34H, Ph), 3.69 (s, 3H, COOC*H*₃), 3.68 (s, 3H, COOC*H*₃), 3.03 (br, 2H, C9*H*), 2.49 (br, 3H, C22*H*), 2.27 ppm (br, 2H, C11*H*); ³¹P{¹H} NMR (242.9 MHz, CD₂Cl₂): $\delta = -0.76$ ppm (s, Ir*P*Ph₃); ¹³C{¹H} NMR (150.9 MHz, CD₂Cl₂, plus ¹³C-dept 135, ¹H-¹³C HSQC and ¹H-¹³C HMBC): $\delta = 190.5$ (t, *J*(PC) = 9.2 Hz, C7), 185.9 (s, C6), 180.4 (t, *J*(PC) = 10.1 Hz, C1), 177.8 (t, *J*(PC) = 5.2 Hz, C8), 175.4 (br, C5), 173.7 (t, *J*(PC) = 9.2 Hz, C4), 171.5 (s, COOMe), 164.1 (s, C2), 160.8 (br, C3), 140.3-126.9 (Ph), 121.4 (q, *J*(FC) = 319.4 Hz, *J*(FC) = 323.6 Hz, *C*F₃SO₃), 64.6 (s, C10), 53.5 (s, COOCH₃), 38.7 (s, C9), 38.3 (s, C11), 21.5 ppm (s, C22); HRMS (ESI): m/z calcd for [C₅₈H₅₀IrSO₅P₂]⁺,1113.2478, [C₅₈H₅₀IrSO₅P₂]⁺; found, 1113.2471.

To a mixture of 1 (210 mg, 0.16 mmol) and diphenylamine (135 mg, 0.80 mmol) in sealed tube

was added dichloromethane (8 mL). The reaction mixture was stirred at 60 $^{\circ}$ C for 24 h to give a green solution. Then the solution was evaporated under vacuum to a volume of approximately 2 mL. The residue was purified by column chromatography (SiO₂, 500-800 mesh, elute: dichloromethane/Acetone = 15/1) to give **3a** as blue solid. Yield: 108 mg, 51%.

¹H NMR (400.1 MHz, CD₂Cl₂): $\delta = 10.62$ (s, 1H, C7*H*), 10.24 (s, 1H, C1*H*), 8.11 (d, *J*(PH) = 3.42 Hz, 1H, C3*H*), 7.55-6.41 (40H, Ph), 3.68 (s, 6H, COOC*H*₃), 2.89 (br, 2H, C9*H*), 2.29 ppm (br, 2H, C11*H*); ³¹P{¹H} NMR (161.9 MHz, CD₂Cl₂): $\delta = -2.27$ ppm (s, Ir*P*Ph₃); ¹³C {¹H} NMR (100.6 MHz, CD₂Cl₂, plus ¹³C-dept 135, ¹H-¹³C HSQC and ¹H-¹³C HMBC): $\delta = 181.9$ (s, C6), 176.9 (t, *J*(PC) = 9.7 Hz, C7), 174.4 (t, *J*(PC) = 10.2 Hz, C5), 174.2 (t, *J*(PC) = 3.6 Hz, C4), 173.7 (t, *J*(PC) = 5.5 Hz, C8), 172.1 (t, *J*(PC) = 2.3 Hz, C2), 171.6 (s, COOMe), 169.4 (t, *J*(PC) = 9.9 Hz, C1), 151.7 (br, C3), 146.1-125.9 (Ph), 119.6 (q, *J*(FC) = 321.3 Hz, *C*F₃SO₃), 64.6 (s, C10), 53.4 (s, COOCH₃), 38.6 (s, C9), 38.1 ppm (s, C11); HRMS (ESI): m/z calcd for [C₆₃H₅₃IrNO₅P₂]⁺; found, 1158.3007.

Synthesis and characterization of irida-carbolong complex 3b:

To a dichloromethane (8 mL) solution of **1** (200 mg, 0.16 mmol) was added dibenzylamine (150 mg, 0.80 mmol). The reaction mixture was stirred at RT for 15 min to give a blue solution. Then the solution was evaporated under vacuum to a volume of approximately 2 mL. The residue was purified by column chromatography (SiO₂, 500-800 mesh, elute: dichloromethane/Acetone = 18/1) to give **3b** as a blue solid. Yield: 126 mg, 61%.

¹H NMR (600.1 MHz, CD₂Cl₂): $\delta = 10.41$ (s, 1H, C7*H*), 10.08 (s, 1H, C1*H*), 7.60 (br, 1H, C3*H*), 7.49-6.99 (40H, Ph), 4.25 (s, 4H, C16*H*), 3.62 (s, 6H, COOC*H*₃), 2.79 (br, 2H, C11*H*), 2.02 ppm (br, 2H, C11*H*); ³¹P{¹H} NMR (242.9 MHz, CD₂Cl₂): $\delta = -1.27$ ppm (s, Ir*P*Ph₃); ¹³C{¹H} NMR (150.9 MHz, CD₂Cl₂, plus ¹³C-dept 135, ¹H-¹³C HSQC and ¹H-¹³C HMBC): $\delta = 177.9$ (s, C6), 174.9 (t, *J*(PC) = 5.6 Hz, C8), 174.8 (t, *J*(PC) = 9.4 Hz, C4), 173.6 (br, C5), 173.4 (br, C2), 171.7 (s, COOMe), 170.5 (t, J(PC) = 8.8 Hz, C7), 165.7 (t, J(PC) = 10.8 Hz, C1), 146.7 (s, C3), 140.6-126.6 (Ph), 121.43 (q, J(FC) = 319.6 Hz, CF_3SO_3), 64.6 (s, C10), 56.9 (s, C16), 53.4 (s, COOCH₃), 38.3 (s, C11), 38.0 ppm (s, C9); HRMS (ESI): m/z calcd for $[C_{65}H_{57}IrNO_5P_2]^+$,1186.3336, $[C_{65}H_{57}IrNO_5P_2]^+$; found, 1186.3341.

Synthesis and characterization of irida-carbolong complex 3c:

To a dichloromethane (6 mL) solution of **1** (200 mg, 0.16 mmol) was added diisopropylamine (112 μ L, 0.80 mmol). The reaction was stirred at RT for 15 min to give a green solution. Then the solution was evaporated under vacuum to a volume of approximately 2 mL. The residue was purified by column chromatography (SiO₂, 500-800 mesh, elute: dichloromethane/Acetone = 15/1) to give **3c** as a green solid. Yield: 121 mg, 63%.

¹H NMR (600.1 MHz, CD₂Cl₂): $\delta = 10.23$ (s, 1H, C1*H*), 10.14 (s, 1H, C7*H*), 7.76 (br, 1H, C3*H*), 7.47-7.12 (30H, Ph), 3.67 (s, 6H, COOC*H*₃), 3.44 (m, 2H, C16*H*), 2.93 (br, 2H, C11*H*), 2.23 (br, 2H, C9*H*), 0.89 ppm (d, 12H, *J*(HH) = 6.77 Hz); ³¹P{¹H} NMR (242.9 MHz, CD₂Cl₂): $\delta = -1.22$ ppm (s, Ir*P*Ph₃); ¹³C{¹H} NMR (150.9 MHz, CD₂Cl₂, plus ¹³C-dept 135, ¹H-¹³C HSQC and ¹H-¹³C HMBC): $\delta = 176.5$ (s, C6), 175.7 (t, *J*(PC) = 8.9 Hz, C8), 174.7 (t, *J*(PC) = 5.4 Hz, C4), 172.9 (s, C2), 172.5 (t, *J*(PC) = 3.4 Hz, C5), 171.9 (s, COOMe), 167.9 (t, *J*(PC) = 11.6 Hz, C1), 165.8 (t, *J*(PC) = 9.2 Hz, C7), 148.3 (br, C3), 134.3-127.49 (Ph), 121.5 (q, *J*(FC) = 319.9 Hz, *C*F₃SO₃), 64.8 (s, C10), 53.3 (s, COOCH₃), 48.0 (s, C16), 38.3 (s, C11), 37.8 (s, C9), 20.90 ppm (s, C17); HRMS (ESI): m/z calcd for [C₅₇H₅₇IrNO₅P₂]⁺, 1090.3336, [C₅₇H₅₇IrNO₅P₂]⁺; found, 1090.3341. **Synthesis and characterization of irida-carbolong complex 4a:**

To a mixture of **1** (300 mg, 0.23 mmol) and indole (136 mg, 1.15 mmol) in sealed tube was added dichloromethane (10 mL). The reaction mixture was stirred at 60 $^{\circ}$ C for 6 h to give a violet solution. Then the solution was evaporated under vacuum to a volume of approximately 2 mL. The residue was purified by column chromatography (SiO₂, 500-800 mesh, elute: dichloromethane/Acetone = 15/1) to give **4a** as a blue solid. Yield: 160 mg, 56%.

¹H NMR (400.1 MHz, CD₂Cl₂): $\delta = 11.66$ (s, 1H, C1*H*), 10.84 (s, 1H, C7*H*), 9.71(br, 1H, N*H*), 8.39 (d, *J*(PH) = 2.53 Hz, 1H, C3*H*), 7.52-6.85 (34H, Ph), 6.70 (d, *J*(HH) = 2.48 Hz, 1H, C17*H*), 3.71 (s, 6H, COOC*H*₃), 3.05 (br, 2H, C9*H*), 2.41 ppm (br, 2H, C11*H*); ³¹P{¹H} NMR (161.9 MHz, CD₂Cl₂): $\delta = -0.29$ ppm (s, Ir*P*Ph₃); ¹³C{¹H} NMR (100.6 MHz, CD₂Cl₂, plus ¹³C-dept 135, ¹H-¹³C HSQC and ¹H-¹³C HMBC): $\delta = 190.4$ (t, *J*(PC) = 11.4 Hz, C1), 185.1 (s, C6), 182.4 (t, *J*(PC) = 9.0 Hz, C7), 179.2 (t, *J*(PC) = 6.1 Hz, C8), 174.9 (t, *J*(PC) = 10.0 Hz, C5), 174.3 (t, *J*(PC) = 3.0 Hz, C4), 171.7 (s, COOMe), 167.7 (t, *J*(PC) = 3.8 Hz, C2), 163.0 (br, C3), 136.8-127.3 (Ph), 125.3 (d, *J*(PC) = 4.5 Hz, C17), 122.9-115.5 (Ph and CF₃SO₃), 112.5 (C16), 64.7 (s, C10), 53.3 (s, COOCH₃), 38.6 (s, C11), 38.5 ppm (s, C9); HRMS (ESI): m/z calcd for [C₅₉H₄₉IrNO₅P₂]⁺, 1106.2710, [C₅₉H₄₉IrNO₅P₂]⁺; found, 1106.2691.

Synthesis and characterization of irida-carbolong complex 4b:

To a solution of **1** (200 mg, 0.16 mmol) in dichloromethane (6 mL) in sealed tube was added 4-bromo-1H-indole (100 μ L, 0.80 mmol). The reaction mixture was stirred at 60 °C for 36 h to give a violet solution. Then the solution was evaporated under vacuum to a volume of approximately 2 mL. The residue was purified by column chromatography (SiO₂, 500-800 mesh, elute: dichloromethane/Acetone = 15/1) to give **4b** as a violet solid. Yield: 93 mg, 45%.

¹H NMR (600.1 MHz, CD₂Cl₂): $\delta = 11.43$ (s, 1H, C1*H*), 10.86 (s, 1H, C7*H*), 10.30 (br, 1H, N*H*), 8.84 (s, 1H, C3*H*), 7.47-7.16 (33H, Ph), 6.14 (s, 1H, C17*H*), 3.71 (s, 6H, COOC*H*₃), 2.95 (br, 2H, C9*H*), 2.54 ppm (br, 2H, C11*H*); ³¹P{¹H} NMR (242.9 MHz, CD₂Cl₂): $\delta = -1.07$ ppm (s, Ir*P*Ph₃); ¹³C{¹H} NMR (150.9 MHz, CD₂Cl₂, plus ¹³C-dept 135, ¹H-¹³C HSQC and ¹H-¹³C HMBC): δ = 194.9 (t, *J*(PC) = 8.9 Hz, C1), 186.2 (s, C6), 182.1 (t, *J*(PC) = 10.4 Hz, C7), 175.3 (t, *J*(PC) = 5.3 Hz, C8), 174.9 (t, *J*(PC) = 3.1 Hz, C5), 174.8 (t, *J*(PC) = 10.5 Hz, C4), 171.5 (s, COOMe), 167.9 (s, C3), 165.9 (s, C2), 138.6-122.4 (Ph and *C*F₃SO₃ plus 129.1 (C17)), 116.6 (C16), 64.5 (s, C10), 53.5 (s, COOCH₃), 38.9 (s, C11), 38.1 ppm (s, C9); HRMS (ESI): m/z calcd for [C₅₉H₄₈BrIrNO₅P₂]⁺; found, 1184.1790.

Synthesis and characterization of irida-carbolong complex 5:

To a mixture of **1** (323 mg, 0.25 mmol) and 8-hydroxyquinoline (180 mg, 1.25 mmol) was added dichloromethane (10 mL). The reaction mixture was stirred at room temperature for 1 h to give a violet solution. Then the solution was evaporated under vacuum to a volume of approximately 2 mL. The residue was purified by column chromatography (SiO₂, 200-300 mesh, elute: dichloromethane/Acetone = 10/1) to give **5** as a bluish green solid. Yield: 130 mg, 40%.

¹H NMR (600.1 MHz, CD₂Cl₂): $\delta = 8.56$ (d, *J*(HH) = 8.6 Hz, 1H, quinoline-*H*), 8.26 (d, *J*(HH) = 6.7 Hz, 1H, quinoline-*H*), 7.75 (t, *J*(HH) = 7.7 Hz, 1H, quinoline-*H*), 7.65 (t, *J*(HH) = 7.7 Hz, 1H, quinoline-*H*), 7.57 (t, *J*(HH) = 7.7 Hz, 1H, quinoline-*H*), 7.57 (t, *J*(HH) = 7.7 Hz, 1H, quinoline-*H*), 7.52-7.19 (m, 30H, Ph*H*), 7.14 (t, *J*(HH) = 7.7 Hz, 1H, quinoline-*H*), 6.99 (br, 1H, C7*H*), 6.59 (s, 1H, C3*H*), 5.98 (d, *J*(PH) = 4.3 Hz, 1H, C1*H*), 3.66 (s, 3H, COOC*H*₃), 3.64 (s, 3H, COOC*H*₃), 2.83 (d, *J*(HH) = 17.7 Hz, 1H, C9*H*), 2.40 (d, *J*(HH) = 16.7 Hz, 1H, C11*H*), 2.23 (d, *J*(HH) = 17.7 Hz, 1H, C9*H*), 2.83 (d, *J*(HH) = 16.7 Hz, 1H, C11*H*); ³¹P{¹H} NMR (242.9 MHz, CD₂Cl₂): $\delta = 5.04$ ppm (d, *J*(PP) = 321.37 Hz, Ir*P*Ph₃), 2.93 ppm (d, *J*(PP) = 321.37 Hz, Ir*P*Ph₃); ¹³C{¹H} NMR (150.9 MHz, CD₂Cl₂, plus ¹³C-dept 135, ¹H-¹³C HSQC and ¹H-¹³C HMBC): $\delta = 178.8$ (t, *J*(PC) = 9.9 Hz, C8), 172.5(s, COOMe), 172.4 (s, COOMe), 163.7 (s, C6), 159.3 (s, C5), 150.9 (s, quinoline-*C*), 149.6 (t, *J*(PC) = 9.4 Hz, C4), 145.3 (t, *J*(PC) = 8.3 Hz, C7), 142.9 (s, quinoline-*C*), 139.6 (s, C2),137.6-118.5 (m, quinoline-*C* and Ph and 134.8 (s, C3) and CF₃SO₃), 66.5 (t, *J*(PC) = 5.8 Hz, C1), 64.5 (s, C10), 53.0 (s, COOCH₃), 52.9 (s, COOCH₃), 37.8 (s,

C11), 35.3 ppm (s, C9); HRMS (ESI): m/z calcd for $[C_{60}H_{49}IrNO_6P_2]^+$, 1134.2659, $[C_{60}H_{49}IrNO_6P_2]^+$; found, 1134.2657.

3. NMR spectra

Figure S1 The ¹H NMR (600.1 MHz, CD₂Cl₂) spectrum for complex 2a.

Figure S2 The ${}^{31}P{}^{1}H$ NMR (242.9 MHz, CD₂Cl₂) spectrum for complex 2a.

Figure S3 The ${}^{13}C{}^{1}H$ NMR (150.9 MHz, CD₂Cl₂) spectrum for complex 2a.

Figure S4 The ¹H NMR (600.1 MHz, CD₂Cl₂) spectrum for compound 2b.

Figure S5 The ${}^{31}P{}^{1}H$ NMR (242.9 MHz, CD₂Cl₂) spectrum for compound 2b.

Figure S6 The ${}^{13}C{}^{1}H$ NMR (150.9 MHz, CD₂Cl₂) spectrum for compound 2b.

Figure S7 The ¹H NMR (600.1 MHz, CD_2Cl_2) spectrum for compound 2c.

Figure S8 The ${}^{31}P{}^{1}H$ NMR (242.9 MHz, CD₂Cl₂) spectrum for compound **2c**.

Figure S9 The ${}^{13}C{}^{1}H$ NMR (150.9 MHz, CD₂Cl₂) spectrum for compound 2c.

Figure S10 The ¹H NMR (400.1 MHz, CD₂Cl₂) spectrum for compound 3a.

Figure S11 The ${}^{31}P{}^{1}H$ NMR (161.9 MHz, CD₂Cl₂) spectrum for compound 3a.

Figure S12 The ${}^{13}C{}^{1}H$ NMR (100.6 MHz, CD₂Cl₂) spectrum for compound 3a.

Figure S13 The ¹H NMR (600.1 MHz, CD₂Cl₂) spectrum for compound 3b.

Figure S14 The ${}^{31}P{}^{1}H$ NMR (242.9 MHz, CD₂Cl₂) spectrum for compound 3b.

Figure S15 The ${}^{13}C{}^{1}H$ NMR (150.9 MHz, CD₂Cl₂) spectrum for compound 3b.

Figure S16 The ¹H NMR (600.1 MHz, CD_2Cl_2) spectrum for compound 3c.

Figure S17 The ${}^{31}P{}^{1}H$ NMR (242.9 MHz, CD₂Cl₂) spectrum for compound 3c.

Figure S18 The ${}^{13}C{}^{1}H$ NMR (150.9 MHz, CD₂Cl₂) spectrum for compound **3c**.

Figure S19 The ¹H NMR (400.1 MHz, CD₂Cl₂) spectrum for compound 4a.

Figure S20 The ${}^{31}P{}^{1}H$ NMR (161.9 MHz, CD₂Cl₂) spectrum for compound 4a.

Figure S21 The ${}^{13}C{}^{1}H$ NMR (100.6 MHz, CD₂Cl₂) spectrum for compound 4a.

Figure S22 The ¹H NMR (600.1 MHz, CD₂Cl₂) spectrum for compound 4b.

Figure S23 The ${}^{31}P{}^{1}H$ NMR (242.9 MHz, CD₂Cl₂) spectrum for compound 4b.

Figure S24 The ${}^{13}C{}^{1}H$ NMR (150.9 MHz, CD₂Cl₂) spectrum for compound 4b.

Figure S25 The ¹H NMR (600.1 MHz, CD₂Cl₂) spectrum for complex **5**.

Figure S26 The ${}^{31}P{}^{1}H$ NMR (242.9 MHz, CD₂Cl₂) spectrum for complex 5.

Figure S27 The ${}^{13}C{}^{1}H$ NMR (150.9 MHz, CD₂Cl₂) spectrum for complex 5.

4. HRMS spectra

Figure S28 Positive ion ESI-MS spectrum of $[2a-OTf]^+ [C_{52}H_{46}IrO_6P_2]^+$ measured in methanol.

Figure S29 Positive ion ESI-MS spectrum of $[2b-OTf]^+$ $[C_{53}H_{48}IrO_6P_2]^+$ measured in methanol.

Figure S30 Positive ion ESI-MS spectrum of $[2c-OTf]^+ [C_{58}H_{50}IrSO_5P_2]^+$ measured in methanol.

Figure S31 Positive ion ESI-MS spectrum of $[3a-OTf]^+ [C_{63}H_{53}IrNO_5P_2]^+$ measured in methanol.

Figure S32 Positive ion ESI-MS spectrum of $[3b-OTf]^+$ $[C_{65}H_{57}IrNO_5P_2]^+$ measured in methanol.

Figure S33 Positive ion ESI-MS spectrum of $[3c-OTf]^+ [C_{57}H_{57}IrNO_5P_2]^+$ measured in methanol.

Figure S34 Positive ion ESI-MS spectrum of $[4a-OTf]^+ [C_{59}H_{49}IrNO_5P_2]^+$ measured in methanol.

Figure S35 Positive ion ESI-MS spectrum of $[4b-OTf]^+ [C_{59}H_{48}BrIrNO_5P_2]^+$ measured in methanol.

Figure S36 Positive ion ESI-MS spectrum of $[5-OTf]^+$ $[C_{60}H_{49}IrNO_6P_2]^+$ measured in methanol.

5. Crystallographic details

Crystallographic details. Single-crystal X-ray diffraction data were collected on an Bruker PHOTON 100 area detector with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) for **2b** and 4a, and CuK α ($\lambda = 1.54184$) for 2c, 3a, 3b, 4b and 5. All the Data were corrected for absorption effects using the multi-scan technique. Using Olex2, ^[S3] the structures were solved with the ShelXT^[S4] structure solution program using Charge Flipping and refined with the ShelXL^[S5] refinement package using Least Squares minimization. Non-H atoms were refined anisotropically unless otherwise stated. Hydrogen atoms were introduced at their geometric positions and refined as riding atoms unless otherwise stated. The diffuse electron densities resulting from the residual solvent molecules in complexes 3a, 3b, 4a and 5 were removed from the data set by using the SQUEEZE routine of PLATON. The crystals suitable for X-ray diffraction were grown from the CH₂Cl₂ solution layered with n-hexane for complexes 2b, 2c, 3a, 3b, 4a and 5; and layered with petroleum ether for 4b. CCDC-2090490 (2b), CCDC-2090498 (2c), CCDC-2090504 (3a), CCDC-2090503 (3b), CCDC-2090505 (4a), CCDC-2090509 (4b) and CCDC-2090952 (5) contain the supplementary crystallographic data for this paper, and the data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures. For further details on the crystal data, data collection, and refinements, see Tables S1-S4.

	2b · CH ₂ Cl ₂	$2\mathbf{c}\cdot \mathrm{CH}_2\mathrm{Cl}_2$
Formula	$C_{55}H_{50}Cl_2F_3IrO_9P_2S$	$C_{60}H_{52}Cl_2F_3IrO_8P_2S2$
Mr	1269.05	1347.17
Crystal system	monoclinic	triclinic
Space group	P21/c	<i>P</i> -1
<i>a</i> [Å]	11.6181(2)	11.8748(9)
<i>b</i> [Å]	14.4247(3)	15.7834(11)
<i>c</i> [Å]	31.3601(8)	16.8217(11)

Table S1 Crystal data and structure refinement for 2b CH₂Cl₂ and 2c CH₂Cl₂.

α[°]	90	66.142(3)
β [°]	92.4740(10)	82.914(3)
γ [°]	90	83.728(3)
V[Å ³]	5250.7(2)	2855.2(4)
Z	4	2
$ ho_{ m calcd} [m gcm^{-3}]$	1.605	1.567
$\mu [\mathrm{mm}^{-1}]$	2.812	7.140
F(000)	2544.0	1352.0
Crystal size [mm ³]	$0.18 \times 0.16 \times 0.10$	0.12×0.08×0.08
θ range [°]	2.138 to 27.54	2.883 to 66.752
Reflns collected	51247	107793
Independent reflns	12069	10075
Observed reflns $[I \ge 2\sigma]$	9757	8931
Data/restraints/params	12069/0/661	10075/0/706
GOF on F^2	1.040	1.031
$R_1/wR_2[I \ge 2\sigma(I)]$	0.0337 /0.0621	0.0288/0.0735
R_1/wR_2 (all data)	0.0508 /0.0691	0.0299/0.0742
Largest peak/hole [e Å ⁻³]	0.81/-0.90	1.19/-1.47

Table S2 Crystal data and structure refinement for 3a and 3b.

	3 a	3b
Formula	C ₆₄ H ₅₃ F ₃ IrNO ₈ P ₂ S	C ₆₆ H ₅₇ F ₃ IrNO ₈ P ₂ S
Mr	1307.27	1335.32
Crystal system	monoclinic	triclinic
Space group	$P2_1/n$	<i>P</i> -1

a [Å]	12.2983(6)	11.7694(5)
<i>b</i> [Å]	21.2345(11)	14.4795(6)
c [Å]	23.5769(13)	17.2788(7)
α[°]	90	99.712(2)
β [°]	95.003(3)	91.494(2)
γ [°]	90	95.634(2)
V[Å ³]	6133.6(3)	2885.6(2)
Z	4	2
$ ho_{ m calcd} [m gcm^{-3}]$	1.416	1.537
$\mu [\mathrm{mm}^{-1}]$	5.544	5.905
F(000)	2632.0	1348.0
Crystal size [mm ³]	$0.16 \times 0.08 \times 0.02$	0.26×0.20×0.08
θ range [°]	2.805 to 64.998	2.597 to 60.000
Reflns collected	39901	30934
Independent reflns	10373	8522
Observed reflns $[I \ge 2\sigma]$	9879	9280
Data/restraints/params	10373/219/779	8522/0/741
GOF on F^2	1.079	1.093
$R_1/wR_2[I \ge 2\sigma(I)]$	0.0525 /0.1468	0.0470/0.1233
R_1/wR_2 (all data)	0.0641 /0.1537	0.0475/0.1258
Largest peak/hole [e Å ⁻³]	2.27/-1.01	3.79/-1.22

Table S3 Crystal data and structure refinement for $4a \ CH_2Cl_2$ and $4b \ CH_2Cl_2$.

	4a · CH ₂ Cl ₂	4b · CH ₂ Cl ₂
Formula	$C_{61}H_{51}Cl_2F_3IrNO_8P_2S$	C ₆₁ H ₅₀ BrCl ₂ F ₃ IrNO ₈ P ₂ S

Mr	1356.12	1419.03
Crystal system	triclinic	triclinic
Space group	<i>P</i> -1	<i>P</i> -1
<i>a</i> [Å]	13.3075(4)	12.2728(2)
<i>b</i> [Å]	14.2370(5)	12.9648(2)
c [Å]	14.8738(5)	19.7289(3)
α[°]	87.5740(10)	92.9280(10)
β [°]	78.5770(10)	96.0420(10)
γ [°]	86.1780(10)	109.1390(10)
V[Å ³]	2754.79(16)	2936.90(8)
Z	2	2
$\rho_{ m calcd} [m gcm^{-3}]$	1.635	1.605
μ [mm ⁻¹]	2.687	7.425
F(000)	1360.0	1412.0
Crystal size [mm ³]	$0.18 \times 0.10 \times 0.06$	0.18×0.02×0.02
θ range [°]	2.284 to 27.573	2.261 to 59.999
Reflns collected	70599	31292
Independent reflns	12678	8612
Observed reflns $[I \ge 2\sigma]$	9836	9827
Data/restraints/params	12678/36/714	8612/84/723
GOF on F^2	1.051	1.084
$R_1/wR_2[I \ge 2\sigma(I)]$	0.0510 /0.1258	0.0357/0.0887
R_1/wR_2 (all data)	0.0647 /0.1387	0.0387/0.0901
Largest peak/hole [e Å ⁻³]	2.98/-2.63	1.46/-1.53

	$5 \cdot CH_2Cl_2$
Formula	$C_{123}H_{100}Cl_2F_6Ir_2N_2O_{18}P_4S_2$
Mr	2651.34
Crystal system	triclinic
Space group	P-1
<i>a</i> [Å]	10.7506 (2)
<i>b</i> [Å]	22.5712(5)
<i>c</i> [Å]	23.8255(5)
α [°]	87.6250(10)
β [°]	77.2860(10)
γ [°]	81.9300(10)
V[Å ³]	5583.4(2)
Z	2
$ ho_{ m calcd} [m gcm^{-3}]$	1.577
$\mu [\mathrm{mm}^{-1}]$	6.543
F(000)	2660.0
Crystal size [mm ³]	$0.24 \times 0.16 \times 0.08$
θ range [°]	1.977 to 59.999
Reflns collected	203539
Independent reflns	16569
Observed reflns $[I \ge 2\sigma]$	9689
Data/restraints/params	16569/0/1436
GOF on F^2	1.167
$R_1/wR_2[I \ge 2\sigma(I)]$	0.0467 /0.1117

Table S4 Crystal data and structure refinement for $5 CH_2Cl_2$.

R_1/wR_2 (all data)	0.0494 /0.1124
Largest peak/hole [e $Å^{-3}$]	3.00/-2.01

Figure S37. X-ray molecular structure for the cation of complex **2b** (ellipsoids are at the 50% probability level, the solvent and hydrogen atoms of phenyl groups are omitted for clarity). Selected bond distances (Å) and angles (deg): Ir1–C1 2.081(3), Ir1–C4 2.059(3), Ir1–C7 2.056(4), Ir1–C8 1.930(3), C1–C2 1.380 (5), C2–C3 1.418 (5), C3–C4 1.370 (5), C4–C5 1.399 (5), C5–C6 1.405 (5), C6–C7 1.384(5), C5–C9 1.500(4), C6–C11 1.508(5), C9–C10 1.555(5), C10–C11 1.565(5), C2–O1 1.366(4), C16–O1 1.427(4), C16–C17 1.493(6); C1–Ir1–C7 158.04(13), C1–Ir1–C4 78.39(13), C4–Ir1–C7 79.66(14), Ir1–C1–C2 113.6(2), C1–C2–C3 117.2(3), C2–C3–C4 114.4(3), C3–C4–C5 129.9(3), C4–C5–C6 115.8(3), C5–C6–C7 116.6(3), C6–C7–Ir1 114.0(3).

Figure S38. X-ray molecular structure for the cation of complex 2c (ellipsoids are at the 50% $_{S32}$

probability level, the solvent and hydrogen atoms of phenyl groups are omitted for clarity). Selected bond distances (Å) and angles (deg): Ir1–C1 2.055(3), Ir1–C4 2.057(3), Ir1–C7 2.059(3), Ir1–C8 1.932(3), C1–C2 1.384 (4), C2–C3 1.413 (4), C3–C4 1.380 (4), C4–C5 1.391 (4), C5–C6 1.397 (4), C6–C7 1.389(4), C5–C9 1.506(4), C6–C11 1.507(4), C9–C10 1.559(4), C10–C11 1.559(4), C2–S1 1.774(3), C16–S1 1.775(3); C1–Ir1–C7 158.06(12), C1–Ir1–C4 78.67(12), C4–Ir1–C7 79.44(12), Ir1–C1–C2 114.6(2), C1–C2–C3 116.4(3), C2–C3–C4 114.7(3), C3–C4–C5 130.4(3), C4–C5–C6 116.1(3), C5–C6–C7 116.6(3), C6–C7–Ir1 113.8(2).

Figure S39. X-ray molecular structure for the cation of complex **3a** (ellipsoids are at the 50% probability level, the hydrogen atoms of phenyl groups are omitted for clarity). Selected bond distances (Å) and angles (deg): Ir1–C1 2.048(6), Ir1–C4 2.065(5), Ir1–C7 2.098(6), Ir1–C8 1.931(6), C1–C2 1.396(9), C2–C3 1.443(9), C3–C4 1.371(8), C4–C5 1.392(8), C5–C6 1.421(9), C6–C7 1.374(9), C5–C9 1.498(8), C6–C11 1.509(9), C9–C10 1.578(9), C10–C11 1.555(10), C2–N1 1.399(8); C1–Ir1–C7 156.9(2), C1–Ir1–C4 77.8(2), C4–Ir1–C7 79.1(2), Ir1–C1–C2 116.9(4), C1–C2–C3 113.6(5), C2–C3–C4 115.0(5), C3–C4–C5 128.5(5), C4–C5–C6 115.0(5), C5–C6–C7 117.8(5), C6–C7–Ir1 113.1(4).

Figure S40. X-ray molecular structure for the cation of complex **3b** (ellipsoids are at the 50% probability level, the hydrogen atoms of phenyl groups are omitted for clarity). Selected bond distances (Å) and angles (deg): Ir1–C1 2.048(4), Ir1–C4 2.075(4), Ir1–C7 2.065(5), Ir1–C8 1.975(5), C1–C2 1.411(6), C2–C3 1.415(6), C3–C4 1.375(7), C4–C5 1.392(7), C5–C6 1.398(6), C6–C7 1.377(7), C5–C9 1.509(6), C6–C11 1.509(6), C9–C10 1.558(6), C10–C11 1.553(6), C2–N1 1.374(6), C16–N1 1.467(6), C17–N1 1.463(6); C1–Ir1–C7 157.78(19), C1–Ir1–C4 77.98(18), C4–Ir1–C7 79.97(19), Ir1–C1–C2 116.0(3), C1–C2–C3 114.3(4), C2–C3–C4 115.6(4), C3–C4–C5 131.6(4), C4–C5–C6 116.8(4), C5–C6–C7 117.5(4), C6–C7–Ir1 113.1(3).

Figure S41. X-ray molecular structure for the cation of complex **4a** (ellipsoids are at the 50% probability level, the solvent and hydrogen atoms of phenyl groups in PPh_3 and indole are omitted for

clarity). Selected bond distances (Å) and angles (deg): Ir1–C1 2.074(5), Ir1–C4 2.064(5), Ir1–C7 2.068(6), Ir1–C8 1.947(6), C1–C2 1.399 (8), C2–C3 1.415(8), C3–C4 1.384(8), C4–C5 1.374(8), C5–C6 1.412(9), C6–C7 1.383(9), C5–C9 1.514(9), C6–C11 1.525(9), C9–C10 1.562(11), C10–C11 1.552(11), C2–C16 1.460(8), C16–C17 1.367(9), C17–N1 1.371(9); C1–Ir1–C7 155.8(3), C1–Ir1–C4 77.2(2), C4–Ir1–C7 78.7(2), Ir1–C1–C2 116.7(4), C1–C2–C3 113.7(5), C2–C3–C4 115.8(5), C3–C4–C5 128.5(6), C4–C5–C6 115.9(6), C5–C6–C7 116.1(5), C6–C7–Ir1 114.4(4).

Figure S42. X-ray molecular structure for the cation of complex **4b** (ellipsoids are at the 50% probability level, the solvent and hydrogen atoms of phenyl groups in PPh₃ and indole are omitted for clarity). Selected bond distances (Å) and angles (deg): Ir1–C1 2.063(5), Ir1–C4 2.077(4), Ir1–C7 2.072(5), Ir1–C8 1.923(5), C1–C2 1.389 (7), C2–C3 1.409 (7), C3–C4 1.367 (7), C4–C5 1.393 (7), C5–C6 1.404 (7), C6–C7 1.373(7), C5–C9 1.496(7), C6–C11 1.487(7), C9–C10 1.555(8), C10–C11 1.551(8), C2–C16 1.484(7), C16–C17 1.378(8), C17–N1 1.364(7); C1–Ir1–C7 156.12(18), C1–Ir1–C4 77.12(18), C4–Ir1–C7 79.00(18), Ir1–C1–C2 116.8(3), C1–C2–C3 113.6(4), C2–C3–C4 116.7(4), C3–C4–C5 130.7(4), C4–C5–C6 116.2(4), C5–C6–C7 116.8(4), C6–C7–Ir1 114.3(3).

Figure S43. X-ray molecular structure for the cation of complex **5** (ellipsoids are at the 50% probability level, the solvent and hydrogen atoms of phenyl groups in PPh₃ and quinoline moieties are omitted for clarity). Selected bond distances (Å) and angles (deg): Ir1–C1 2.178(6), Ir1–C4 2.075(7), Ir1–C7 2.144(6), Ir1–C8 1.907(7), C1–C2 1.499(9), C2–C3 1.341(9), C3–C4 1.436(9, C4–C5 1.355(9), C5–C6 1.442(9), C6–C7 1.365(10), C5–C9 1.496(9), C6–C11 1.513(10), C9–C10 1.547(9), C10–C11 1.566(9), C1–O1 1.469(7), C16–O1 1.356(8), C2–N1 1.435(8); C1–Ir1–C7 158.3(2), C1–Ir1–C4 80.4(5), C4–Ir1–C7 78.1(2), Ir1–C1–C2 106.8(4), C1–C2–C3 122.0(6), C2–C3–C4 115.1(6), C3–C4–C5 128.4(6), C4–C5–C6 116.3(6), C5–C6–C7 116.8(6), C6–C7–Ir1 113.0(4).

6. Theoretical calculations

Computational details. All optimizations were performed with the Gaussian 09 software package.^[S6] All structures were optimized by density functional theory (DFT) using the B3LYP functional.^[S7-S9] Frequency calculations were performed to confirm the calculated structures were minima on the potential energy surface. In the B3LYP calculations, for model complex **1'**, the effective core potentials (ECPs) of Hay and Wadt with a double- ζ valence basis set (LanL2DZ) were used to describe the Ir, P and S atoms, whereas the standard 6-311++G (d, p) basis set was used for all other atoms.^[S10] Polarization functions were added for Ir (ζ (f) = 0.938), P (ζ (d) = 0.340)^[S11] and S (ζ (d) =

0.421).^[S11] For model complexes **1-OTf** and **1-OTf'**, the an SDD basis set^[S12] to describe Ir atom, and the standard 6-31+G(d) basis set was used for all other atoms.^[S10] Single-point energies were computed on the optimized geometries with the B3LYP functional and the 6-311++G (d, p) basis set for organic atoms and SDD basis set for Os atom. The D3 dispersion correction and PCM (dichloromethane) were also applied to the single-point energy calculations. Nucleus-independent chemical shift (NICS) values were calculated at the B3LYP-GIAO/6-311++G(d, p) level. Anisotropy of the induced current density (AICD) calculations were carried out with the AICD program.^[S13,S14]

Figure S44. AICD isosurfaces of **1**' by π contribution. Current density vectors are plotted onto the AICD isosurface of 0.030 to indicate diatropic ring currents. The magnetic field vector is orthogonal with respect to the ring plane and points upward (clockwise currents are diatropic).

7. The UV-vis absorption spectra of iridacycles 1-5

As shown in Figure S45, the absorptions of corresponding nitrogen-containing substituted products **3** are more red-shifted than that of **2** and **4**, which are mainly attributed to the $n \rightarrow \pi^*$ electron transition from nitrogen atom to the π -conjugated skeleton. In addition, the introduction of a bromide atom in the indole skeleton would render the overlap of the π -conjugation, thus resulting in the blue-shifted absorption for **4b** in comparison with that of **4a**.

Figure 45. UV-vis absorption spectra of 1-5, measured in CH_2Cl_2 (2.0 × 10⁻⁴ M) at room temperature.

8. Reference

[S1] (a) J. Wang, J. Li, Y. Zhou, C. Yu, Y. Hua, Y. Yu, R. Li, X. Lin, R. Chen, H. Wu, H. Xia and H.-L. Wang, J. Am. Chem. Soc., 2021, 143, 7759; (b) J. Li, Q. Zhuo, K. Zhuo, D. Chen and H. Xia, Acta Chim Sinica, 2021, 79, 71.

[S2] P. S. Beauchamp and R. Marquez, J. Chem. Eudc., 1997, 74, 1483.

[S3] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339.

[S4] G. M. Sheldrick, Acta Cryst., 2015, A71, 3

[S5] G. M. Sheldrick, Acta Cryst., 2015, C71, 3.

[S6] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,

A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.

Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J.

E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision

D.01 (Gaussian, Inc., 2009).

[S7] C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.

[S8] B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett., 1989, 157, 200-206.

[S9] A. D. Becke, J. Chem. Phys., 1993, 98, 5648.

[S10] P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299.

[S11] S. Huzinaga, Gaussian Basis Sets for Molecular Calculations, *Elsevier*, 1984.

[S12] C. Peng, P. Y. Ayala, H. B. Schlegel and M. J. Frisch, J. Comput. Chem., 1996, 17, 49.

[S13] R. Herges and D. Geuenich, J. Phys. Chem. A, 2001, 105, 3214.

[S14] D. Geuenich, K. Hess, F. Kohler and R. Herges, Chem. Rev., 2005, 105, 3758.

9. Cartesian coordinates

co [İr] OTf 1' $[Ir] = Ir(PH_3)_2$ X = C(COOMe)_2

E = -1650.45479955 a.u.

Ir	-0.40231000	1.72921000	-0.03606400
S	-3.94470400	-2.14214000	-0.43361100
0	-3.05388500	-1.48750800	0.86097300
0	-1.37342900	4.65738100	0.05374200
0	3.90472300	0.03833800	1.91217300
С	-2.13931400	0.73432300	0.49731500
Н	-3.12792300	1.12666300	0.72435300
0	6.20575700	-1.15349600	-0.92608600
F	-5.83898300	-0.54866200	0.54435400
F	-6.57604800	-2.31733200	-0.48216300
0	4.85320000	-1.98066800	1.61100600

F	-5.73026700	-2.49290000	1.51222700
0	-3.69202400	-3.58906400	-0.49784000
0	4.77186800	-2.66911700	-1.78354100
С	1.58160800	1.98504100	-0.58551700
Н	2.11430100	2.91580900	-0.77796800
С	-1.99356600	-0.63427400	0.52257500
0	-3.79887300	-1.24395500	-1.60268700
С	2.30002900	0.80466400	-0.64706900
С	0.24323500	-0.25509000	-0.07905200
С	-1.01448000	3.57799900	0.02020500
С	-0.72165100	-1.19655300	0.22876000
Н	-0.55842600	-2.27086100	0.25025000
С	3.76601000	0.51707500	-0.87657900
Н	4.42627100	1.22880500	-0.38297100
Н	4.00233700	0.52943000	-1.94577700
С	1.59997000	-0.40075500	-0.38927300
С	5.00300200	-1.71427900	-1.08664100
С	3.93878600	-0.93134100	-0.31279600
С	2.52317000	-1.57921300	-0.46538900
Н	2.46468600	-2.05984500	-1.44963900
Н	2.32209200	-2.35986800	0.27027500
С	4.24703500	-0.87217900	1.19111600
С	7.31118800	-1.78889800	-1.61557200
Н	8.18431700	-1.19135900	-1.36787000
Н	7.13180800	-1.78887600	-2.69044100
Н	7.42848300	-2.81336600	-1.26317300
С	5.15847900	-2.07149000	3.02478300
Н	5.81885800	-1.25487800	3.31482100
Н	5.65200200	-3.03143100	3.14814200
Н	4.23995700	-2.02979800	3.61006400
С	-5.66862400	-1.85170900	0.35965300
Р	0.35800500	1.71442000	2.22051800
Н	1.69024100	1.25410100	2.39075800
Н	0.36927300	2.94733400	2.92296900
Н	-0.37894500	0.89084200	3.11066300
Р	-1.03373500	1.40661600	-2.31005500
Н	-1.66464100	2.48545900	-2.98225100
Н	0.02400700	1.10008800	-3.20457300
Н	-1.94986900	0.34610400	-2.53068500

E = -4093.85672165 a.u.

lr	0.13699200	0.27328700	0.90860100
Р	0.95238500	-2.04564000	1.17447800
Р	-0.46805600	2.64766900	0.59975800
S	3.71164700	-0.10234600	-3.25686500
0	2.81641800	0.96647900	-2.43526200
0	1.01608100	0.88696600	3.82198700
0	-4.93736700	0.79689700	-2.65444900
С	1.91549100	0.68776400	-0.21468700
Н	2.88896700	0.99679500	0.16001900
0	-4.97583300	-3.32602700	-0.81742200
F	5.32708200	0.01326200	-1.14811200
F	6.29535600	-0.55224100	-3.01844400
0	-6.35824900	-0.53212400	-1.50375500
F	5.72824600	1.52425300	-2.66688000
0	3.81705500	0.35266700	-4.63619400
0	-4.76141100	-3.02517200	-3.04705800
С	-1.78939300	-0.26072500	1.27147300
Н	-2.36102900	-0.28877400	2.20224300
С	1.76396000	0.55000500	-1.53433300
0	3.34857100	-1.47595800	-2.92504100
С	-0.77886900	-4.09823200	0.31856700
Н	-1.16859100	-4.09415800	1.33126400
С	-0.57496600	4.09270900	-3.81572300
Н	-0.59504200	4.42551600	-4.84979600
С	0.52557000	4.00791500	-1.65836200
Н	1.36567100	4.28568000	-1.03047400
С	1.26280100	-3.94491600	3.22955200
Н	2.05490600	-4.35426400	2.61116500
С	-2.50541100	-0.62759300	0.08914500
С	-0.50364800	-0.12134400	-1.07360700
С	2.78900200	-2.21893100	1.11617500
С	0.55044700	-2.80285100	2.81608400
С	0.70501500	0.65674900	2.73673700
С	-1.60065100	2.88822300	-1.98001400
Н	-2.41972500	2.28174000	-1.60931300

С	0.26853300	-3.23745600	-0.04588400
С	0.50038200	4.43130900	-2.99049700
Н	1.32231400	5.02670500	-3.37796200
С	1.99603600	3.51291700	1.75111100
Н	2.39018700	2.53365400	1.51419700
С	-2.11295800	3.06344700	1.33574200
С	3.41649600	-3.30498200	0.48532900
Н	2.83664600	-4.03476500	-0.06797000
С	2.83516100	4.45145700	2.35965300
Н	3.86275800	4.18172700	2.58694100
С	-1.62617300	3.32218200	-3.30634200
Н	-2.46692400	3.05426600	-3.94007100
С	-1.77543000	-0.54665000	-1.17232500
С	1.02878000	6.05665900	2.37573200
Н	0.64357400	7.04328500	2.61784600
С	-2.41971100	2.56592800	2.61477700
Н	-1.72343000	1.91489300	3.13304400
С	5.57712800	-2.55979100	1.29428000
Н	6.65378200	-2.68968500	1.36089600
С	2.35473700	5.72455200	2.67344000
Н	3.00615600	6.45262000	3.14876100
С	0.66509400	3.83622000	1.44915000
С	0.75448700	-3.26704500	-1.36458600
Н	1.56582400	-2.61465000	-1.66957700
С	-4.64535500	-2.62701900	-1.90548100
С	4.80305500	-3.46883700	0.57074100
Н	5.27126500	-4.31310700	0.07228900
С	3.57722900	-1.30796100	1.84078700
Н	3.12241400	-0.46186200	2.34452300
С	-0.52624100	3.23489500	-1.14001800
С	0.96370800	-4.56678500	4.44240300
Η	1.52457600	-5.44696000	4.74431100
С	4.95877200	-1.47926800	1.93227700
Н	5.55079900	-0.76559100	2.49856400
С	-0.45837900	-2.30183400	3.65006800
Н	-1.01723100	-1.42010200	3.36592800
С	-0.75611300	-2.92390300	4.86714800
Η	-1.53890600	-2.51500300	5.49988000
С	-4.08306400	-1.23052900	-1.56821900
С	-3.61314500	2.91508500	3.24917600
Η	-3.82906700	2.52254700	4.23897300
С	0.21157400	-4.15483900	-2.29495000
Н	0.60517500	-4.17499400	-3.30749400

С	-2.70846600	-0.96967300	-2.29054900
Н	-2.36438800	-1.87993200	-2.79220400
Н	-2.83022000	-0.20091500	-3.05864400
С	0.18887800	5.12125600	1.76913600
Н	-0.83754200	5.39862800	1.55253400
С	-1.32386500	-4.98094200	-0.61910400
Н	-2.12967200	-5.64615600	-0.32144200
С	-5.16334800	-0.19480300	-1.99527800
С	-0.04645700	-4.05791400	5.26614500
Н	-0.27364500	-4.53996800	6.21292900
С	-3.02214100	3.93412300	0.71367200
Н	-2.80522200	4.35711100	-0.26045900
С	-5.55204500	-4.63815900	-1.03901600
Н	-5.74565000	-5.03444000	-0.04336800
Н	-4.84414200	-5.26983300	-1.57903300
Н	-6.47996200	-4.54274700	-1.60671700
С	-4.52199100	3.76741600	2.61355400
Н	-5.45332600	4.03641600	3.10404400
С	-7.46519800	0.35821800	-1.80005100
Н	-7.26497700	1.34845700	-1.38571700
Н	-8.33018100	-0.09656100	-1.31998700
Н	-7.60847300	0.42256900	-2.88042900
С	5.38509800	0.25107000	-2.45945800
С	-4.22163100	4.27596900	1.34784300
Н	-4.91587700	4.94578000	0.84802800
С	-0.82977400	-5.01327600	-1.92548700
Н	-1.25009100	-5.70403000	-2.65127000
С	-3.80277800	-1.02051000	-0.09122500
Н	-4.55937100	-1.14318500	0.67537800
С	0.48257200	0.12398900	-2.18979400
Н	0.62615900	-0.77356700	-2.80953600
Н	0.12672600	0.90383200	-2.87923700

E = -4093.89854144 a.u.

Ir	0.23962700	0.33821200	0.91032500
Р	1.15808500	-1.90974900	1.30169300

Р	-0.64704200	2.60920500	0.55170100
S	3.44234600	-0.05679400	-3.49524100
0	2.58871800	1.02501900	-2.62411100
0	1.19523400	1.19748900	3.73267700
0	-4.43011000	0.66352500	-2.14446600
С	1.87327900	0.84602400	-0.30041800
Н	2.83785600	1.27428400	-0.03023100
0	-5.23048800	-3.61258100	-1.02656900
F	5.18751100	0.11575500	-1.50164500
F	6.03739100	-0.48538900	-3.41801500
0	-6.13957100	-0.69668400	-1.57801900
F	5.47738100	1.59464800	-3.07612200
0	3.43707300	0.38618600	-4.88026200
0	-4.61620900	-3.18145100	-3.15462200
С	-1.65991700	-0.40688200	1.34158700
Н	-2.16516200	-0.44780100	2.30837100
С	1.65020100	0.60137600	-1.63247900
0	3.10091800	-1.42083600	-3.11142300
С	-0.48188900	-4.14316800	0.76365400
Н	-0.77920800	-4.08509300	1.80550400
С	-0.74039100	4.02567600	-3.87931100
Н	-0.75875100	4.35305800	-4.91523400
С	0.23520000	4.12276700	-1.66282200
Н	0.97858100	4.54107700	-0.99300800
С	1.72396100	-3.62292700	3.45865800
Н	2.48361100	-4.04298400	2.80729800
С	-2.34692000	-0.91610800	0.24861600
С	-0.43160900	-0.23805700	-0.98851800
С	2.99198800	-2.00275300	1.10497200
С	0.92361300	-2.54998200	3.02283400
С	0.84800600	0.88133400	2.68036300
С	-1.65145500	2.66384000	-2.09145700
Н	-2.39076300	1.93992400	-1.76651800
С	0.42092600	0.01956200	-2.04466800
Н	0.19688100	-0.18164600	-3.09040800
С	0.45379000	-3.23685400	0.23904900
С	-3.68871900	-1.60354000	0.11924700
Н	-4.49171800	-1.10721800	0.67222100
Н	-3.63345800	-2.63059500	0.49437000
С	0.21428600	4.53833000	-2.99762100
Н	0.94415600	5.26577400	-3.34203900
С	1.72388700	3.79251400	1.59557400
Н	2.24381100	2.90379200	1.26018000

С	-2.34197300	2.85335200	1.23998700
С	3.63326900	-3.08997800	0.49038700
Н	3.05713000	-3.88598800	0.03235600
С	2.45683900	4.81376400	2.20637100
Н	3.52958000	4.69937400	2.33486800
С	-1.67458100	3.09107100	-3.42083200
Н	-2.42542500	2.68992600	-4.09601700
С	-1.70421400	-0.82769000	-1.00549800
С	0.43098500	6.10247400	2.47959400
Н	-0.08053800	6.99737100	2.82307500
С	-2.59688300	2.41080100	2.55063000
Н	-1.82595000	1.90037000	3.11927000
С	5.80116400	-2.17041200	1.06982700
Н	6.88565700	-2.23437800	1.05431200
С	1.81243500	5.97093000	2.65117900
Н	2.38116100	6.76323300	3.12994900
С	0.33657900	3.91374700	1.42020500
С	0.81829500	-3.33686700	-1.11602000
Н	1.53763700	-2.64982000	-1.54876300
С	-4.62855300	-2.88622000	-1.97230100
С	5.02997400	-3.16711800	0.46847000
Н	5.50928200	-4.01323400	-0.01619400
С	3.77723200	-1.00287000	1.70517500
Н	3.30906000	-0.15573400	2.19545600
С	-0.69827900	3.18196000	-1.19649600
С	1.55533800	-4.16095000	4.73515400
Н	2.18296900	-4.98849900	5.05402300
С	5.16985400	-1.08808400	1.69181800
Н	5.75939400	-0.30721500	2.16432000
С	-0.04224400	-2.03103600	3.89646200
Н	-0.67098900	-1.20414400	3.59357400
С	-0.20798800	-2.56913900	5.17706900
Н	-0.95917300	-2.14934100	5.84030700
С	-3.94867300	-1.62204800	-1.43436600
С	-3.83726600	2.63589600	3.14892600
Н	-4.01419800	2.29015700	4.16367200
С	0.27048000	-4.33780000	-1.92084100
Η	0.57167100	-4.41038700	-2.96227700
С	-2.54208600	-1.43315600	-2.09365900
Н	-2.12445100	-2.40650200	-2.38106200
Н	-2.58713300	-0.82548600	-3.00059600
С	-0.30324700	5.08360700	1.86810600
Н	-1.37430100	5.20616600	1.74679900

С	-1.03409000	-5.13865100	-0.04871100
Н	-1.75310100	-5.83557700	0.37311000
С	-4.84673900	-0.41871500	-1.77810400
С	0.58878700	-3.63504800	5.59942400
Н	0.46168400	-4.05164600	6.59477000
С	-3.35208500	3.53798800	0.54739400
Н	-3.17853500	3.91390600	-0.45430200
С	-5.93377100	-4.79784600	-1.47023500
Н	-6.35271100	-5.23583200	-0.56528500
Н	-5.23725600	-5.48885900	-1.94987100
Н	-6.72532100	-4.52051600	-2.16988000
С	-4.84539900	3.30368900	2.44471700
Н	-5.81305800	3.47519600	2.90811400
С	-7.08710700	0.37122500	-1.82435100
Н	-6.88303800	1.21191900	-1.15789900
Н	-8.06378600	-0.06194300	-1.61351100
Н	-7.02194800	0.69300600	-2.86588200
С	5.16279200	0.32502700	-2.81785100
С	-4.59809600	3.75492300	1.14662100
Н	-5.36989400	4.28376900	0.59418700
С	-0.65716500	-5.24104200	-1.39016700
Н	-1.08070100	-6.01944400	-2.01891600