Supporting Information

Electrochemical Heterodifunctionalization of α-CF₃ Alkenes to Access α-Trifluoromethyl-β-sulfonyl Tertiary Alcohols

Zhi-Peng Ye,^{a†} Jie Gao,^{a†} Xin-Yu Duan,^a Jian-Ping Guan,^a Fang Liu,^a Kai Chen,^a Jun-An Xiao,^b Hao-Yue Xiang,^{*,a,b} and Hua Yang^{*,a}

1.	General Experimental Informations	<i>S</i> 2
2.	Preparation of Sulfonyl Hydrazines and Trifluoromethyl Alkenes	
		<i>S3</i>
3.	Detailed Optimization of Reaction Conditions	<i>S5</i>
4.	Cyclic Voltammetry Studies	S7
5.	Trapping Experiment	S 8
6.	Labelling Experiment by Adding H ₂ ¹⁸ O	S9
7.	The unsuccessful substrate scope and main by-product	<i>S10</i>
8.	Characterization data of compounds 3a-3p , 3aa-3an The	<i>S11</i>
9.	Copies of NMR Spectra	S21
10.	X-ray crystallographic data of compound 3a	S83

1. General Experimental Informations

Unless otherwise noted, all the reagents were purchased from commercial suppliers and used without further purification. ¹H NMR spectra were recorded at 400 MHz. The chemical shifts were recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard. Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t =triplet, q = quartet, m = multiplet), coupling constants (Hz), integration. ¹³C NMR data were collected at 100 MHz with complete proton decoupling. ¹⁹F NMR data were collected at 376 MHz with complete proton decoupling. Infrared spectra (IR) were measured by FT-IR apparatus. High resolution mass spectroscopy (HRMS) was recorded on Bruker Compact QTOF-MS with an electrospray ionization (ESI) interface (Bruker co. Bremen, Germany) and Agilent1260HpLC-6545Q-TOFLC-MS. The instrument for electrolysis is DC power supply (Hong Sheng DPS-305CF, made in China). Melting point of all compounds were measured by micro melting point apparatus (WRX-4). Cyclic Voltammetry (CV) experiments were recorded on a CHI650D electrochemical workstation. Column chromatography was carried out on silica gel (200-300 mesh).

2. Preparation of Sulfonyl Hydrazines and Trifluoromethyl Alkenes

2.1 General procedure for the preparation of sulfonyl hydrazines 2a-2p

$$\begin{array}{c} O \\ R - S - CI \\ O \\ \end{array} \xrightarrow{NH_2NH_2 \cdot H_2O} \qquad O \\ \hline THF \qquad R - S - NHNH_2 \\ O \\ \end{array}$$

Sulfonyl hydrazides 2 were prepared according to reported synthetic procedures.¹ The hydrazine monohydrate (60.0 mmol) was added dropwise into the solution of sulfonyl chloride (20.0 mmol) in THF (100 mL) under argonatmosphere at 0 °C. Subsequently, the mixture was further stirred at 0 °C for 30 minutes. After the completion of the reaction, the solvent was removed by evaporation, and the residue was extracted with dichloromethane (3 x 20 mL), and the combined organic layer was dried over Na₂SO₄. Concentration in vacuum followed by silica gel column purification with petroleum ether/ethyl acetate eluent gave the desired product.

2.2 General procedure for the preparation of trifluoromethyl alkenes 1a-1o

Trifluoromethyl alkenes **1** were prepared according to reported synthetic procedures.² To a two-necked flask equipped with stir bar, arylboronic acid (1.0 equiv., 10 mmol) and Pd(PPh₃)₂Cl₂ (3 mol%, 0.3 mmol, 210.6 mg) were added into aqueous K₂CO₃ (2.0 M, 20 mL) and THF (30.0 mL). The vessel was evacuated and filled with argon atmosphere (three times). Then, 2-bromo-3,3,3-trifluoropropene (2.0 equiv., 20.0 mmol, 2.1 mL) was added and the solution was stirred at 60 $^{\circ}$ C for 12 hours. The reaction mixture was extracted with dichloromethane and the combined organic layer was dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography to afford the corresponding trifluoromethyl alkenes (PE/EA=100:1).

2.3 General procedure for the synthesis of compound 3a-3p and 3aa-3an

(Using the synthesis of 3a as an example). An undivided cell was equipped with a graphite rod (d: 6 mm) and a platinum plate (1 × 1 cm) and connected to a DC regulated power supply. To the cell was added trifluoromethyl alkene 1a (0.3 mmol), sulfonyl hydrazides 2a (3.6 mmol), KI (1.2mmol) and 5.0 mL solvent (CH₃CN:H₂O=6:1). The mixture was electrolyzed using constant voltage conditions (4.0V) at room temperature under magnetic stirring. When TLC analysis indicated that the electrolysis was complete (witnessed by the disappearance of the 2a), the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel using a mixture of petroleum ether/EtOAc (v:v = 24:1) as eluent to afford the desired pure product **3a**. The pictures of reaction set-up were shown in Figure S1.

Figure S1. Instrument for electrolysis

2.4 Scale-up reaction

An undivided cell was equipped with a graphite plate $(2 \times 2 \text{ cm})$ and a platinum plate $(2 \times 2 \text{ cm})$ and connected to a DC regulated power supply. To the cell was added trifluoromethyl alkene **1a** (3.0 mmol), sulfonyl hydrazides **2a** (36.0 mmol), KI (12.0 mmol) and 50.0 mL solvent (CH₃CN:H₂O = 6:1) were added. The mixture was electrolyzed using constant voltage conditions 4.0V ($I = 40 \sim 60 \text{ mA}$) at room temperature under magnetic stirring. When TLC analysis indicated that the electrolysis was complete (witnessed by the disappearance of the **2a**), the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel using a mixture of petroleum ether/EtOAc (v:v = 24:1) as eluent to afford the desired pure product **3a** in 63% yield.

3. Detailed Optimization of Reaction Conditions

3.1 Solvent screening^a

Entry	Solvent	Yield 3a ^b	Entry	Solvent	Yield 3a ^b
		(%)		2	(%)
1	CH ₃ CN/H ₂ O(9:1)	90%	9	1,4-dioxane/H ₂ O(6:1)	40%
2^{c}	CH ₃ CN/H ₂ O(9:1)	73%	10	DCM/H ₂ O(6:1)	ND
3	CH ₃ CN/H ₂ O(6:1)	94%	11	MeOH/H ₂ O(6:1)	25%
4	CH ₃ CN/H ₂ O(4:1)	83%	12	THF/H ₂ O(6:1)	trace
5	CH ₃ CN/H ₂ O(2:1)	89%	13	PhCH ₃ /H ₂ O(6:1)	NR
б	CH ₃ CN/H ₂ O(1:1)	78%	14	DMF/H ₂ O(6:1)	trace
7	H ₂ O	0%	15	DMSO/H ₂ O(6:1)	trace
8	CH ₃ CN	59%			

^aReaction conditions: C anode (d: 6 mm), Pt cathode (10 mm×10 mm×0. 2 mm), constant potential = 4.0 V ($I = 20 \sim 30 \text{ mA}$), **1a** (0.3 mmol, 1.0 equiv), **2a** (3.6 mmol, 12.0 equiv), KI (1.2 mmol, 4.0 equiv), solvent 5.0 mL, room temperature, 36 h. ^b Isolated yields. ^c**2a** (1.8 mmol, 6.0 equiv),

Entry	+/-	Yield $3a^b$ (%)	Entry	+/-	Yield $3a^b(\%)$
1	C-Ni	60%	7^e	C-Pt	86%
2	C-Fe	72%	8^{f}	C-Pt	85%
3	Pt-Pt	39%	9 ^g	C-Pt	54%
4	C-C	81%	10^{h}	C-Pt	30%
5 ^{<i>c</i>}	C-Pt	70%	11^i	C-Pt	0%
6^d	C-Pt	87%	-	-	-

3.2 Electrodes screening and control experiments^a

^aReaction conditions: C anode (d: 6 mm), Pt cathode (10 mm×10 mm×0. 2 mm), constant potential = 4.0 V ($I = 20 \sim 30$ mA), **1a** (0.3 mmol, 1.0 equiv), **2a** (3.6 mmol, 12.0 equiv), KI (1.2 mmol, 4.0 equiv), solvent 5.0 mL (CH₃CN:H₂O = 6:1), room temperature, 36 h. ^b Isolated yields. ^cUnder argon atmosphere. ^dUnder oxygen atmosphere. ^e potential = 2.0 v. ^f potential = 6.0 v. ^g0.15 mmol of **1a** was used. ^h0.6 mmol

3.3 Electrolyte screening

Entry	Electrolyte	Yield $3a^b$ (%)
1	NaBr	65%
2	LiClO ₄	38%
3	$n\mathrm{Bu}_4\mathrm{BF}_4$	62%
4	<i>n</i> Bu ₄ NPF ₆	58%
5	NaI	67%
6	-	68%
$7^{\rm c}$	KI	91%
8^d	KI	90%
9 ^e	KI	68%
$10^{\rm f}$	KI	85%
11 ^g	KI	72%
12 ^h	KI	73%
13 ⁱ	KI	65%
14^{j}	KI	68%
15 ^k	KI	70%

^aReaction conditions: C anode (d: 6 mm), Pt cathode (10 mm×10 mm×0. 2 mm), constant potential = 4.0 V ($I = 20 \sim 30$ mA), **1a** (0.3 mmol, 1.0 equiv), **2a** (3.6 mmol, 12.0 equiv), electrolyte (1.2 mmol, 4.0 equiv), solvent 5.0 mL (CH₃CN:H₂O = 6:1), room temperature, 36 h. ^b Isolated yields. ^c 2.0 equiv of KI was used. ^d 8.0 equiv of KI was used. ^e controlled current = 10 mA, ^f controlled current = 25 mA, ^g controlled current = 50 mA. ^h catalyst (Cp₂Fe 5 mol%), ⁱ catalyst (NHPI-OH 5 mol%), ^j 50 °C, ^k 80 °C

4. Cyclic Voltammetry Studies³

FigureS2.Cyclic voltammograms in an electrolyte solution of nBu_4NBP_6 (0.1 M) in MeCN/H₂O (6:1) using a glassy carbon disk working electrode (diameter, 3 mm), Pt disk and Ag/AgCl as counter and reference electrode at 100 mV/s scan rate: (A) **1a** (10 mM); (B) **2a** (120 mM); (C) KI (40 mM);

5. Trapping Experiment

An undivided cell was equipped with a graphite rod (d: 6 mm) and a platinum plate (1×1 cm) and connected to a DC regulated power supply. To the cell was added trifluoromethyl alkene **1a** (0.3 mmol), sulfonyl hydrazides **2a** (3.6 mmol), KI (1.2 mmol), TEMPO (12.0 equiv) and 5.0 mL solvent (CH₃CN:H₂O = 6:1) were added. The mixture was electrolyzed using constant voltage conditions (4.0 V) at room temperature under magnetic stirring.In order to ensure whether the involved radicals were trapped by TEMPO, ESI-MS analysis of the crude reaction mixture was performed (Figure S3). The resulting mass spectrum clearly shows a peak corresponding to the coupled product between TEMPO radical and the corresponding radical derived from 1a (HRMS (ESI): $C_{15}H_{23}NNaO_3S^+$ [M+Na]⁺ Calcd 320.1291, Found 320.1278).

Figure S3. Crude ESI-MS of the TEMPO-trapping experiment described above.

6. Labelling Experiment by Adding H₂¹⁸O or D₂O

An undivided cell was equipped with a graphite rod (d: 6 mm) and a platinum plate (1×1 cm) and connected to a DC regulated power supply. To the cell was added trifluoromethyl alkene **1a** (0.3 mmol), sulfonyl hydrazides **2a** (3.6 mmol), KI (1.2 mmol) and 5.0 mL solvent (CH₃CN:H₂¹⁸O = 6:1) or (CH₃CN:D₂O = 6:1) were added. The mixture was electrolyzed using constant voltage conditions (4.0 V) at room temperature under magnetic stirring.ESI-MS analysis of the crude reaction mixture was performed (Figure S4). The resulting mass spectrum clearly shows two peaks corresponding to the product **3a** (HRMS (ESI): C₂₁H₁₇F₃NaO₃S⁺ [M+Na]⁺ Calcd 429.0743, Found 429.0727)and ¹⁸O-labelled product (HRMS (ESI): C₂₁H₁₇F₃NaO₂¹⁸OS⁺ [M+Na]⁺ Calcd 431.0785, Found 431.0756).

Figure S4. Crude HRMS of the H_2^{18} O-labellingexperiment described above.

Figure S5. ¹H NMR of the D₂O-labellingexperiment described above.

7. Analyzing the reaction mixture by HRMS

Figure S6. Crude HRMS of the reaction mixture at the end of the reaction

Reference

- 1.X. Q. Kong, et al., Asian J. Org. Chem., 2020, 9, 1760-1764.
- 2.P. J. Xia, et al., Angew. Chem. Int. Ed., 2020, 59, 6706-6710.
- 3. Z. Y. Mo, et al., Adv. Synth. Catal., 2020, 362, 2160-2167.

8. Characterization data of compounds 3a-3p, 3aa-3an.

3a, 114.5 mg, (Petroleum ether/EtOAc = 24:1 - 12:1), yellow solid, yield 94%;

m.p. 152 − 153°C;

IR (neat) v 3445, 2930, 1324, 1309, 1252, 1178, 833, 785 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 7.52 – 7.41 (m, 7H), 7.40 – 7.32 (m, 3H), 7.29 (d, *J* = 8.3 Hz, 2H), 7.24 (d, *J* = 7.8 Hz, 2H), 5.43 (s, 1H), 4.16 (d, *J* = 15.0 Hz, 1H), 3.94 (d, *J* = 15.0 Hz, 1H) ppm; ¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -80.57 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.9, 140.0, 139.1, 133.7, 132.5, 129.2, 129.0, 127.9, 127.8, 127.2, 127.0, 126.9,123.8 (q, ${}^{1}J_{C-F} = 285.5$ Hz), 75.4 (q, ${}^{2}J_{C-F} = 29.9$ Hz), 58.7 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₁H₁₇F₃NaO₃S⁺ 429.0743; Found 429.0727.

3b, 88.2 mg, (Petroleum ether/EtOAc = 24:1 - 12:1), yellow solid, yield 70%;

m.p. 140 − 142 °C;

IR (neat) *v* 3465, 2929, 1324, 1285, 1250, 1148, 832, 788 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 7.48 – 7.42 (m, 4H), 7.38 – 7.32 (m, 4H), 7.32 – 7.25 (m, 3H), 7.19 (d, J = 7.5 Hz, 1H), 6.93 (t, J = 7.8 Hz, 1H), 5.45 (s, 1H), 4.19 (d, J = 15.0 Hz, 1H), 3.91 (d, J = 15.0 Hz, 1H), 2.66 (s, 3H) ppm;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -80.48 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.9, 140.0, 137.3, 137.2, 133.8, 132.5, 129.9, 128.9, 127.8, 127.0, 126.9, 126.8, 126.7, 123.8 (q, ${}^{3}J_{C-F} = 285.4$ Hz), 75.6 (q, ${}^{2}J_{C-F} = 29.8$ Hz), 57.5, 20.3 ppm; HRMS (ESI) m/z: [M+K]⁺ Calcd forC₂₂H₁₉F₃KO₃S⁺459.0639; Found 459.0655.

3c, 74.1 mg, (Petroleum ether/EtOAc = 24:1 - 12:1), yellow solid, yield 51%;

m.p. 117 − 119 °C;

IR (neat) *v* 3471, 2930, 1326, 1288, 1251, 1184, 834, 762 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 7.57 – 7.51(m, 4H), 7.49 – 7.41 (m, 4H), 7.40 – 7.33 (m, 4H), 7.14 (t, *J* = 7.8 Hz, 1H), 5.24 (s, 1H), 4.17 (d, *J* = 15.1 Hz, 1H), 3.95 (d, *J* = 15.1 Hz, 1H) ppm; ¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -80.65 ppm; .

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.1, 140.7, 139.8, 136.8, 132.1, 131.1, 130.6, 128.9, 127.9, 127.2, 127.1, 126.9, 126.3, 123.7 (q, ${}^{1}J_{C-F} = 285.6$ Hz), 123.1, 75.2 (q, ${}^{2}J_{C-F} = 30.0$ Hz), 58.7 ppm; **HRMS** (ESI) m/z: [M+Na]⁺ Calcd forC₂₁H₁₆BrF₃NaO₃S⁺506.9848; Found 506.9861.

3d, 114.2 mg, (Petroleum ether/EtOAc = 24:1 – 12:1), white solid, yield 79%;

m.p. 193 − 194 °C;

IR (neat) *v* 3466, 2928, 1324, 1247, 1149, 1109, 834, 720 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 7.47 – 7.43 (m, 2H), 7.40 – 7.35 (m, 5H), 7.35 – 7.25 (m, 11H), 5.44 (s, 1H), 4.20 (d, *J* = 15.1 Hz, 1H), 3.96 (d, *J* = 15.1 Hz, 1H) ppm; ¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -80.75 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃) *δ* 146.8, 141.9, 139.7, 138.6, 137.3, 132.4, 129.1, 128.9, 128.8, 128.2, 127.8, 127.6, 127.3, 127.3, 127.1, 126.7, 123.8 (q, ${}^{1}J_{C-F} = 285.5$ Hz), 75.3 (q, ${}^{2}J_{C-F} = 29.9$ Hz), 58.7 ppm;

HRMS (ESI) m/z: [M+Na]⁺ Calcd forC₂₇H₂₁F₃NaO₃S⁺505.1056; Found 505.1078.

3e, 94.5 mg, (Petroleum ether/EtOAc = 24:1 - 12:1), white solid, yield 75%;

m.p. 153 − 155 °C;

IR (neat) *v* 3383, 2924, 1313, 1301, 1253, 1148, 832, 735 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 7.53 – 7.41 (m, 4H), 7.41 – 7.28 (m, 7H), 7.02 (d, *J* = 8.0 Hz, 2H),

5.47 (s, 1H), 4.12 (d, *J* = 15.0 Hz, 1H), 3.90 (d, *J* = 15.0 Hz, 1H), 2.23 (s, 3H) ppm;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) *δ* -80.62 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.1, 141.8, 139.9, 136.1, 132.5, 129.7, 128.9, 127.9, 127.8, 127.3, 127.0, 126.7, 123.8 (q, ${}^{3}J_{C-F} = 285.5$ Hz), 75.3 (q, ${}^{2}J_{C-F} = 30.0$ Hz), 58.5, 21.5 ppm; HRMS (ESI) m/z: [M+K]⁺ Calcd forC₂₂H₁₉F₃KO₃S⁺459.0639; Found 459.0667.

3f, 99.2 mg, (Petroleum ether/EtOAc = 24:1 - 12:1), yellow solid, yield 72%;

m.p. 174 − 175 °C;

IR (neat) *v* 3466, 2930, 1323, 1251, 1152, 1106, 827, 735 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 7.55 – 7.49 (m, 2H), 7.43 (t, J =

7.6 Hz, 2H), 7.39 – 7.29 (m, 7H), 7.25 – 7.20 (m, 2H), 5.48 (s, 1H), 4.14 (d, *J* = 15.0 Hz, 1H), 3.92 (d, *J* = 15.0 Hz, 1H), 1.08 (s, 9H) ppm;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -80.62 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 158.2, 141.8, 139.8, 136.1, 132.6, 128.9, 127.9, 127.5, 127.3, 127.0, 126.6, 126.1, 123.8 (q, ${}^{1}J_{C-F} = 285.4$ Hz), 75.4 (q, ${}^{2}J_{C-F} = 29.9$ Hz), 58.6, 35.0, 30.7 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd forC₂₅H₂₅F₃NaO₃S⁺485.1369; Found 485.1378.

¹**H** NMR (400 MHz, CDCl₃) δ 7.52 – 7.50(m, 2H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.40 – 7.28 (m, 7H), 6.63 (d, *J* = 8.9 Hz, 2H), 5.48 (s, 1H), 4.11 (d, *J* = 15.0 Hz, 1H), 3.90 (d, *J* = 15.0 Hz, 1H), 3.56 (s, 3H) ppm;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) *δ* -80.70 ppm;.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.9, 141.7, 139.9, 132.6, 130.3, 130.0, 129.0, 127.9, 127.3, 126.9, 126.7, 123.8 (q, ${}^{1}J_{C-F}$ = 285.4 Hz), 114.3, 75.3 (q, ${}^{2}J_{C-F}$ = 29.8 Hz), 58.5, 55.5 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₁₉F₃NaO₄S⁺ 459.0848; Found 459.0856.

3h, 116.2 mg, (Petroleum ether/EtOAc = 24:1 - 12:1), white solid, yield: 80%;

m.p. 151 − 152 °C;

IR (neat) *v* 3470, 2924, 1322, 1289, 1250, 1153, 829, 738 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 – 7.53 (m, 2H), 7.48 – 7.44

(m, 2H), 7.41 - 7.32 (m, 7H), 7.29 - 7.25 (m, 2H), 5.30 (s, 1H), 4.15 (d, J = 15.1 Hz, 1H), 3.94 (d, J = 15.1 Hz, 1H) ppm;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -80.61 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.3, 139.7, 138.0, 132.4, 132.2, 129.4, 129.3, 129.0, 128.0, 127.2, 127.2, 126.9, 123.7 (q, ${}^{1}J_{C-F} = 285.6$ Hz), 75.2 (q, ${}^{2}J_{C-F} = 30.0$ Hz), 58.8 ppm;

HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{21}H_{16}BrF_3NaO_3S^+$ 506.9848; Found 506.9859.

3i, 110.9 mg, (Petroleum ether/EtOAc = 24:1 - 12:1), pale yellow solid, yield 84%;

m.p. 156 − 157 °C;

IR (neat) *v* 3457, 2924, 1324, 1250, 1223, 1149, 831, 824 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 – 7.50 (m, 2H), 7.49 – 7.41

(m, 2H), 7.41 – 7.24 (m, 7H), 7.24 – 7.15 (m, 2H), 4.74 (s, 1H), 4.15 (d, *J* = 15.1 Hz, 1H), 3.94 (d, *J* = 15.1 Hz, 1H) ppm;.

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) *δ* -80.61 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.3, 140.7, 139.7, 137.4, 132.2, 129.4, 129.3, 129.0, 128.0, 127.2, 127.1, 126.9, 123.7 (q, ${}^{1}J_{C-F} = 285.5$ Hz), 75.2 (q, ${}^{2}J_{C-F} = 30.1$ Hz), 58.8 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₁H₁₆ClF₃NaO₃S⁺ 463.0353; Found 463.0345.

3j, 108.1 mg, (Petroleum ether/EtOAc = 24:1 – 12:1), yellow solid, yield 85%; **m.p.** 156 – 158°C; **IR** (neat) *v* 3508, 2929, 1326, 1289, 1250, 1226, 858, 836 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.52 – 7.44 (m, 6H), 7.41 – 7.32 (m, 5H), 6.93 (t, *J* = 8.5 Hz, 2H), 5.32 (s, 1H), 4.14 (d, *J* = 15.1 Hz, 1H), 3.94 (d, *J* = 15.1 Hz, 1H) ppm;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) *δ* -80.65, -101.98 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.8 (d, ${}^{1}J_{C-F}$ = 257.9 Hz), 142.2, 139.8, 135.1 (d, ${}^{4}J_{C-F}$ = 3.3 Hz), 132.3, 130.8 (d, ${}^{3}J_{C-F}$ = 9.9 Hz), 129.0, 128.0, 127.2, 127.0, 127.0, 123.7 (q, ${}^{1}J_{C-F}$ = 285.7 Hz), 116.5 (d, ${}^{3}J_{C-F}$ = 22.9 Hz), 75.3 (q, ${}^{2}J_{C-F}$ = 30.0 Hz), 58.8 ppm;

HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{21}H_{16}F_4NaO_3S^+447.0648$; Found 447.0635.

3k, 108.1 mg, (Petroleum ether/EtOAc = 24:1 - 12:1), pale yellow solid, yield 76%;

m.p. 139 − 140 °C;

IR (neat) *v* 3496, 2930, 1322, 1250, 1155, 1123, 831, 774 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 7.58 (d, J = 8.3 Hz, 2H), 7.53 –

7.44 (m, 6H), 7.43 – 7.38 (m, 1H), 7.33 (s, 4H), 5.24 (s, 1H), 4.19 (d, *J* = 15.2 Hz, 1H), 3.99 (d, *J* = 15.2 Hz, 1H) ppm;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) *δ* -63.33, -80.44 ppm;

¹³**C NMR** (100 MHz, CDCl₃) δ 142.4, 142.3, 139.4, 135.4 (q, ${}^{2}J_{C-F} = 33.2$ Hz), 132.2, 129.0, 128.5, 128.0, 127.2, 126.9, 126.8, 126.2 (q, ${}^{3}J_{C-F} = 3.7$ Hz), 123.7 (q, ${}^{1}J_{C-F} = 285.5$ Hz), 122.8 (q, ${}^{1}J_{C-F} = 273.4$ Hz), 75.2 (q, ${}^{2}J_{C-F} = 30.1$ Hz), 59.0 ppm;

HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{22}H_{16}F_6NaO_3S^+497.0617$; Found 497.0614.

3l, 104.0 mg, (Petroleum ether/EtOAc = 24:1 - 12:1), yellow solid, yield 76%;

m.p. 151 − 153 °C;

IR (neat) *v* 3490, 3064, 2928, 1315, 1152, 1120, 835, 762 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 8.58 (d, J = 8.6 Hz, 1H), 7.91 – 7.85 (m, 2H), 7.77 (m, 1H), 7.66 – 7.57 (m, 2H), 7.47 – 7.35 (m, 5H), 7.10 – 6.98 (m, 5H), 5.47 (s, 1H), 4.44 (d, J = 15.0 Hz, 1H), 4.05 (d, J = 15.0 Hz, 1H) ppm;.

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -80.59 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.5, 139.9, 135.2, 133.9, 133.4, 132.2, 131.0, 129.6, 129.4, 128.9, 128.1, 127.8, 127.2, 126.9, 126.7, 126.4, 124.3, 123.8 (q, ${}^{1}J_{C-F}$ = 285.4 Hz), 123.0, 75.4 (q, ${}^{2}J_{C-F}$ = 29.9 Hz), 57.4 ppm;

HRMS (ESI) m/z: $[M+K]^+$ Calcd for $C_{25}H_{19}F_3KO_3S^+495.0639$; Found 495.0640.

3m, 89.1 mg, (Petroleum ether/EtOAc = 24:1 - 12:1), yellow solid, yield 65%;

m.p. 141 − 142 °C;

IR (neat) *v* 3478, 2929, 1315, 1248, 1152, 1121, 800, 734 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 8.57 (d, J = 8.6 Hz, 1H), 7.92 – 7.83 (m, 2H), 7.79 – 7.74(m, 1H), 7.65 – 7.56 (m, 2H), 7.49 – 7.25 (m, 5H), 7.07 – 6.99 (m, 4H), 4.44 (d, J = 15.0 Hz, 1H), 4.06 (d, J = 15.0 Hz, 1H) ppm;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) *δ* -80.59 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.5, 139.9, 135.2, 133.9, 133.4, 132.2, 131.0, 129.6, 129.4, 128.9, 127.8, 127.2, 126.9, 126.7, 126.4, 124.3, 123.8 (q, ${}^{1}J_{C-F}$ = 285.1 Hz), 123.1, 75.5 (q, ${}^{2}J_{C-F}$ = 29.8 Hz), 57.4 ppm;

HRMS (ESI) m/z: [M+Na]⁺ Calcd forC₂₄H₁₈F₃NNaO₃S⁺480.0852; Found 480.0877.

3n, 106.7 mg, (Petroleum ether/EtOAc = 24:1 - 12:1), yellow solid, yield 78%;

IR (neat) v 3454, 3057, 2935, 1321, 1289, 1252, 1141, 810 cm⁻¹;

m.p. 110 − 112°C;

¹**H** NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 1.9 Hz, 1H), 7.78 (t, J = 8.7 Hz, 2H), 7.63 (d, J = 8.4 Hz, 1H), 7.58 – 7.51 (m, 2H), 7.39 (m, 1H), 7.32 (m, 5H), 7.13 – 7.02 (m, 4H), 5.49 (s, 1H), 4.24 (d, J = 15.1 Hz, 1H), 3.99 (d, J = 15.1 Hz, 1H) ppm;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) *δ* -80.75 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.8, 139.4, 135.6, 135.0, 132.2, 131.7, 130.4, 129.6, 129.6, 129.4, 128.5, 127.9, 127.7, 127.7, 127.1, 126.9, 126.5, 123.7 (q, ${}^{1}J_{C-F}$ = 285.6 Hz), 121.7, 75.4 (q, ${}^{2}J_{C-F}$ = 29.9 Hz), 58.3 ppm;

HRMS (ESI) m/z: [M+Na]⁺ Calcd forC₂₅H₁₉F₃NaO₃S⁺479.0899; Found 479.0882.

3o, 80.3 mg, (Petroleum ether/EtOAc = 24:1 − 12:1), yellow solid, yield 65%; **m.p.** 135 − 137°C;

IR (neat) v 3475, 2932, 1326, 1300, 1250, 1147, 852, 732 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) *δ* 7.57 – 7.51 (m, 3H), 7.48 – 7.38 (m, 7H), 7.13 (dd, *J* = 3.8, 1.4 Hz, 1H), 6.80 (dd, *J* = 4.9, 3.8 Hz, 1H), 5.28 (s, 1H), 4.24 (d, *J* = 15.0 Hz, 1H), 4.02 (d, *J* = 15.0 Hz, 1H) ppm;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -80.54 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.0, 140.0, 139.9, 135.2, 135.1, 132.5, 129.0, 127.9, 127.9, 127.1, 127.0, 127.0, 123.7 (q, ${}^{1}J_{C-F} = 285.6$ Hz), 75.5 (q, ${}^{2}J_{C-F} = 30.0$ Hz), 59.9 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd forC₁₉H₁₅F₃NaO₃S₂⁺⁴35.0307; Found 435.0309.

3p, 51.3 mg, (Petroleum ether/EtOAc = 24:1 − 12:1), white solid, yield 46%; **m.p.** 112 − 113 °C; **IR** (neat) v 3465, 2992, 1305, 1251, 1226, 1192, 1125, 764 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 – 7.66 (m, 4H), 7.65 – 7.59 (m, 2H), 7.48 – 7.42 (m, 2H), 7.41 – 7.32 (m, 1H), 5.42 (s, 1H), 3.93 (d, J = 14.7 Hz, 1H), 3.68 (d, J = 14.8 Hz, 1H), 2.72 (p, J = 6.8 Hz, 1H), 1.32(d, *J* = 6.8 Hz, 3H),1.29 (d, *J* = 6.8 Hz, 3H) ppm;.

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -80.00 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.5, 139.9, 133.9, 128.9, 127.9, 127.3, 127.2, 127.0, 123.9 $(q, {}^{1}J_{C-F} = 285.7 \text{ Hz}), 75.5 (q, {}^{2}J_{C-F} = 30.0 \text{ Hz}), 55.7, 52.1, 15.4, 14.3 \text{ ppm};$

HRMS (ESI) m/z: $[M+K]^+$ Calcd for $C_{18}H_{19}F_3KO_3S^+411.0639$; Found 411.0654.

3aa, 61.4 mg, (from 1a, 51.6 mg), (Petroleum ether/EtOAc = 24:1 -12:1), yellow solid, yield 62%;

m.p. 104 − 106°C;

IR (neat) v 3448, 2989, 1321, 1274, 1235, 1146, 791, 753 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 7.53 – 7.46(m, 3H), 7.34 – 7.28 (m, 4H), 7.23 (t, J = 7.3 Hz, 1H), 7.14 (t, *J* = 7.6 Hz, 2H), 5.36 (s, 1H), 4.10 (d, *J* = 15.0 Hz, 1H), 3.90 (d, *J* = 15.0 Hz, 1H) ppm; ¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -80.63 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 139.2, 133.9, 133.6, 129.2, 129.1, 128.3, 127.7, 126.7, 123.7 (q, ${}^{1}J_{C-F} = 285.5$ Hz), 75.5 (q, ${}^{2}J_{C-F} = 29.9$ Hz), 58.5 ppm;

HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{15}H_{13}F_3NaO_3S^+$ 353.0430; Found 353.0460.

3ab, 21.6 mg, (from **1b**, 60.6 mg), (Petroleum ether/EtOAc = 24:1 -**12:1**), white solid, yield 20%; **m.p.** 97 – 98 °C;

IR (neat) v 3467, 2931, 1305, 1288, 1258, 1183, 863, 788 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 (dd, J = 7.9, 1.8Hz, 1H), 7.49 – 7.42 (m, 3H), 7.34 – 7.27 (m, 2H), 7.24 - 7.19 (m, 1H), 7.02 (td, J = 7.6, 1.1 Hz, 1H), 6.37 (dd, J = 8.3, 1.1 Hz, 1H), 5.64 (s, 1H), 4.97 (d, *J* = 14.7 Hz, 1H), 3.78 (d, *J* = 14.7 Hz, 1H), 3.42 (s, 3H) ppm; ¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -80.29 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 156.5, 138.9, 136.6, 133.5, 131.2, 129.9, 129.4, 128.5, 128.1, 127.6, 123.9 (q, ${}^{1}J_{CF} = 286.8$ Hz), 121.0, 111.2, 75.0 (q, ${}^{2}J_{CF} = 30.8$ Hz), 56.8, 54.8 ppm; . **HRMS** (ESI) m/z: $[M+Na]^+$ Calcd for $C_{16}H_{15}F_3NaO_4S^+$ 383.0535; Found 383.0559.

3ac, 75.6 mg, (from 1c, 60.6 mg), (Petroleum ether/EtOAc = 24:1 – 12:1), yellow solid, yield 70%; **m.p.** 91 − 93 °C; **IR** (neat) v 3398, 2929, 1306, 1256, 1211, 1175, 789, 717 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 7.55 – 7.44(m, 3H), 7.35 – 7.28 (m, 2H), 7.04 (t, J = 8.0 Hz, 1H), 6.89 - 6.82 (m, 2H), 6.75 (dd, J = 7.8, 3.0 Hz, 1H), 5.38 (s, 1H), 4.08 (d, J = 15.0 Hz, 1H), 3.89 (d, *J* = 15.0 Hz, 1H), 3.68 (s, 3H) ppm;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -80.48 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.4, 139.1, 135.1, 133.8, 129.3, 129.1, 127.7, 123.7 (q, ${}^{1}J_{C-F} = 285.5 \text{ Hz}$, 119.0, 114.5, 112.8, 75.4 (q, ${}^{2}J_{C-F} = 29.9 \text{ Hz}$), 58.5, 55.1 ppm;

HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{16}H_{15}F_3NaO_4S^+$ 383.0535; Found 383.0565.

3ad, 94.6 mg, (from **1d**, 61.8 mg), (Petroleum ether/EtOAc = 24:1 – 12:1), white solid, yield 41%; **m.p.** 128 − 129 °C;

IR (neat) v 3421, 2941, 1303, 1276, 1251, 1198, 883, 716 cm⁻¹;

¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.48 (m, 3H), 7.39 – 7.30(m, 2H), 7.28 (s, 1H), 7.26 – 7.16 (m, 2H), 7.11 (t, J = 7.9 Hz, 1H), 5.41 (s, 1H), 4.04 (d, J = 15.0 Hz, 1H), 3.88 (d, J = 15.0 Hz, 1H) ppm;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -80.62 ppm;

¹³C NMR (100 MHz, CDCl₃) δ 138.8, 135.7, 134.5, 134.3, 129.5, 129.4, 129.2, 127.7, 127.3, 125.0, 124.0 (q, ${}^{1}J_{C-F} = 258.1$ Hz), 75.1 (q, ${}^{2}J_{C-F} = 30.1$ Hz), 58.0 ppm;

HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{15}H_{12}ClF_3NaO_3S^+$ 387.0040; Found 383.0036.

3ae, 70.2 mg, (from **1e**, 55.8 mg), (Petroleum ether/EtOAc = 24:1 -12:1), yellow solid, yield 68%;

m.p. 106 − 108 °C;

IR (neat) v 3469, 2981, 1323, 1284, 1177, 1150, 860, 812 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 7.57 – 7.43 (m, 3H), 7.34 – 7.27 (m, 2H), 7.18 (d, J = 8.0 Hz, 2H), 6.92 (d, J = 8.1 Hz, 2H), 5.30 (s, 1H), 4.09 (d, J = 15.0 Hz, 1H), 3.88 (d, J = 14.9 Hz, 1H), 2.27 (s, 3H) ppm;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -80.74 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 139.3, 139.0, 133.6, 130.6, 129.0, 128.9, 127.7, 126.6, 123.8 $(q, {}^{1}J_{C-F} = 285.4 \text{ Hz}), 75.4 (q, {}^{2}J_{C-F} = 29.9 \text{ Hz}), 58.7, 21.0 \text{ ppm};$

HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{16}H_{15}F_3NaO_3S^+$ 367.0586; Found 367.0568.

3af, 90.3 mg, (from **1f**, 68.4 mg), (Petroleum ether/EtOAc = 24:1 -12:1), yellow solid, yield 78%;

m.p. 109 − 111 °C;

IR (neat) v 3414, 2930, 1450, 1310, 1254, 1218, 826, 787 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 7.57 – 7.49 (m, 3H), 7.38 – 7.33 (m, 2H), 7.28 – 7.18 (m, 3H), 7.11 (t, *J* = 7.9 Hz, 1H), 5.44 (s, 1H), 4.05 (d, *J* = 15.0 Hz, 1H), 3.88 (d, *J* = 15.0 Hz, 1H) ppm;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -80.80 ppm;.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 151.9, 139.2, 133.7, 130.4, 129.0, 127.8, 126.4, 125.2, 121.1 (q, ${}^{1}J_{C-F} = 249.4$ Hz), 75.3 (q, ${}^{2}J_{C-F} = 29.8$ Hz), 58.4, 34.5, 31.2 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₂₁F₃NaO₃S⁺ 409.1056; Found 409.1082.

3ag, 89.6 mg, (from **1g**, 60.6 mg), (Petroleum ether/EtOAc = 24:1 − 12:1), white solid, yield 83%; **m.p.** 79 − 81 °C;

IR (neat) *v* 3471, 2982, 1324, 1253, 1150, 1083, 825, 745 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 7.54 – 7.46 (m, 3H), 7.38 – 7.29 (m, 2H), 7.21 (d, *J* = 8.6 Hz, 2H), 6.64 (d, *J* = 8.9 Hz, 2H), 5.31 (s, 1H), 4.08 (d, *J* = 15.0 Hz, 1H), 3.87 (d, *J* = 15.0 Hz, 1H), 3.76 (s, 3H) ppm;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -81.01 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.1, 139.4, 133.8, 129.1, 128.1, 127.7, 125.4, 123.7 (q, ${}^{1}J_{C-F} = 285.3 \text{ Hz}$), 113.6, 75.3 (q, ${}^{2}J_{C-F} = 29.9 \text{ Hz}$), 58.6, 55.3 ppm;

HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{16}H_{15}F_3NaO_4S^+$ 383.0535; Found 383.0506.

3ah, 46.5 mg, (from **1h**, 75.0 mg), (Petroleum ether/EtOAc = 24:1 – 12:1), white solid, yield 38%;

m.p. 113 − 115°C;

IR (neat) *v* 3454, 2919, 1322, 1292, 1251, 1150, 819, 745 cm⁻¹;

¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.57 (m, 1H), 7.50 – 7.46 (m, 2H), 7.39 – 7.34 (m, 2H), 7.27 – 7.23 (m, 2H), 7.18 (d, *J* = 8.5 Hz, 2H), 4.05 (d, *J* = 15.0 Hz, 1H), 3.87 (d, *J* = 15.0 Hz, 1H) ppm; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -80.76 ppm;

¹³C NMR (100 MHz, CDCl₃) δ 139.0, 134.0, 132.8, 131.4, 129.3, 128.5, 127.7, 123.8, 123.4 (q, ${}^{1}J_{C-F} = 285.4$ Hz), 75.2 (q, ${}^{2}J_{C-F} = 30.1$ Hz), 58.3 ppm;

HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{15}H_{12}BrF_3NaO_3S^+$ 430.9535; Found 430.9512.

3ai, 56.8 mg, (from **1i**, 61.8 mg), (Petroleum ether/EtOAc = 24:1 – 12:1), white solid, yield 52%;

m.p. 79 − 81 °C

IR (neat) *v* 3458, 2921, 1251, 1195, 1123, 827, 820 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 7.62 – 7.45(m, 3H), 7.40 – 7.31 (m, 2H), 7.30 – 7.17(m, 2H), 7.10 (t, *J* = 7.9 Hz, 2H), 5.37 (s, 1H), 4.05 (d, *J* = 15.0 Hz, 1H), 3.88 (d, *J* = 15.0 Hz, 1H) ppm; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -80.78 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 139.0, 135.5, 134.0, 132.2, 129.3, 128.4, 128.3, 127.7, 123.5 (q, ${}^{1}J_{C-F} = 285.5$ Hz), 75.2 (q, ${}^{2}J_{C-F} = 30.1$ Hz), 58.4 ppm;

HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₅H₁₂ClF₃NaO₃S⁺ 387.0040; Found 387.0066.

3aj, 15.7 mg, (from **1j**, 57.0 mg), (Petroleum ether/EtOAc = 24:1 – 12:1), yellow solid, yield 15%;

m.p. 109 − 111°C;

IR (neat) *v* 3482, 2921, 1321, 1311, 1255, 1148, 829, 817 cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 7.59 – 7.55 (m, 1H), 7.53 – 7.46 (m, 2H), 7.40 – 7.34 (m, 2H), 7.31 (dd, J = 8.7, 5.2 Hz, 2H), 6.99 – 6.51 (m, 2H), 5.38 (s, 1H), 4.07 (d, J = 15.0 Hz, 1H), 3.88 (d, J = 15.0 Hz, 1H) ppm;.

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -80.94, -112.52 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.1 (d, ¹*J*_{*C-F*} = 249.5 Hz), 139.2, 134.1, 129.2, 128.8 (d, ³*J*_{*C-F*} = 9.5 Hz), 127.7, 123.6 (q, ¹*J*_{*C-F*} = 285.7 Hz), 115.2 (d, ³*J*_{*C-F*} = 21.8 Hz), 75.2 (q, ²*J*_{*C-F*} = 30.1 Hz), 58.4 ppm;.

HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{15}H_{12}F_4NaO_3S^+$ 371.0335; Found 371.0346.

3ak, 55.9 mg, (from **1k**, 69.0 mg), (Petroleum ether/EtOAc = 24:1 - 12:1), pale yellow solid, yield 48%; **m.p.** 161 - 162 °C; **IR** (neat) v 3408, 2985, 1317, 1282, 1260, 866, 831 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (d, J = 8.2 Hz, 2H), 7.65 – 7.36 (m, 5H), 7.31 (t, J = 7.7 Hz, 2H), 5.44 (s, 1H), 4.11 (d, J = 15.0 Hz, 1H), 3.93 (d, J = 3.3 Hz, 4H) ppm;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -80.38 ppm;.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.2, 138.9, 138.5, 134.2, 130.9, 129.3, 129.2, 127.7, 126.9, 123.5 (q, ${}^{1}J_{C-F} = 285.7$ Hz), 75.5 (q, ${}^{2}J_{C-F} = 30.0$ Hz), 58.2, 52.3 ppm;

HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{17}H_{15}F_3NaO_5S^+$ 411.0484; Found 411.0472.

3al, 95.4 mg, (from **1l**, 64.8 mg), (Petroleum ether/EtOAc = 24:1 – 12:1), yellow solid, yield 85%;

m.p. 109 − 111°C;

IR (neat) v 3465, 2940, 1320, 1251, 1167, 1142, 888, 864 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 7.63 – 7.50 (m, 3H), 7.44 – 7.33 (m, 2H), 6.85 (dd, J = 8.2, 2.0 Hz,1H), 6.69 (dd, J = 2.2, 1.1 Hz, 1H), 6.57 (d, J = 8.2 Hz, 1H), 5.92(d, J = 1.4 Hz, 1H), 5.87 (d, J = 1.4 Hz, 1H), 4.04 (d, J = 15.0 Hz, 1H), 3.85 (d, J = 15.0 Hz, 1H) ppm;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) *δ* -80.87 ppm;.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 148.3, 147.6, 139.2, 133.9, 129.1, 127.8, 127.2, 123.6 (q, ${}^{1}J_{C-F} = 285.5 \text{ Hz}$), 120.9, 107.8, 107.4, 101.5, 75.3 (q, ${}^{2}J_{C-F} = 30.0 \text{ Hz}$), 58.5 ppm;

HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{16}H_{13}F_3NaO_5S^+$ 397.0328; Found 397.0354.

3am,94.6 mg, (from **1m**, 66.6 mg), (Petroleum ether/EtOAc = 24:1 − 12:1), yellow solid, yield 83%; **m.p.** 154 − 156 °C;

IR (neat) v 3406, 2932, 1302, 1225, 1188, 1148, 890, 860 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.74(d, J = 7.8Hz, 1H), 7.69 (d, J = 7.8 Hz, 1H), 7.54 – 7.44 (m, 3H), 7.37 – 7.33 (m, 2H), 7.28 (d, J = 9.1 Hz, 1H), 7.23 – 7.17 (m, 1H), 6.99 (t, J = 7.9 Hz, 2H), 5.49 (s, 1H), 4.22 (d, J = 15.0 Hz, 1H), 3.97 (d, J = 15.0 Hz, 1H) ppm;.

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) *δ* -81.28 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 138.9, 133.7, 133.2, 132.5, 130.8, 128.8, 128.5, 128.0, 127.6, 127.3, 127.2, 127.1, 126.5, 123.8 (q, ${}^{1}J_{C-F}$ = 285.6 Hz), 123.3, 75.6 (q, ${}^{2}J_{C-F}$ = 30.0 Hz) , 58.6 ppm; **HRMS** (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₅F₃NaO₃S⁺ 403.0586; Found 403.0557.

3an, 78.6 mg, (from **1n**, 53.4 mg), (Petroleum ether/EtOAc = 24:1 – 12:1), yellow solid, yield 78%;

m.p. 109 − 111°C;

IR (neat) *v* 3465, 2927, 1310, 1251, 1145, 1081, 894, 870 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 7.59 – 7.52 (m, 3H), 7.42 – 7.35 (m, 3H), 7.00 (dd, *J* = 5.1, 3.1 Hz, 1H), 6.66 – 6.64(m, 1H), 5.45 (s, 1H), 3.96 (d, *J* = 14.9 Hz, 1H), 3.85 (d, *J* = 14.9 Hz, 1H) ppm; ¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -81.29 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 139.2, 135.7, 133.9, 129.2, 127.6, 126.4, 125.4, 125.4, 123.4 (q, ${}^{1}J_{C-F} = 285.2$ Hz), 74.5 (q, ${}^{2}J_{C-F} = 30.8$ Hz), 58.8 ppm;

HRMS (ESI) m/z: [M+K]⁺ Calcd for C₁₃H₁₁F₃KO₃S₂⁺ 374.9733; Found 374.9751.

3ao, 112.6 mg, (Petroleum ether/EtOAc = 17:3 - 12:1), yellow oil, yield 75%;

IR (neat) v 3258, 1596, 1309, 1243, 1147, 1090, 924, 719 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 7.72 – 7.63 (m, 2H), 7.50

– 7.37 (m, 4H), 7.27 – 7.20 (m, 4H), 7.14 (d, *J* = 2.0 Hz, 1H), 7.05 – 6.95 (m, 3H), 5.34 (s, 1H), 4.09 (d, *J* = 15.0 Hz, 1H), 3.84 (d, *J* = 15.0 Hz, 1H), 2.33 (s, 3H) ppm;

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -80.64 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 144.3, 138.8, 137.0, 135.6, 135.0, 134.2, 129.7, 129.2, 127.7, 127.3, 123.5 (q, ${}^{1}J_{C-F} = 285.8$ Hz), 123.3, 121.7, 119.6, 75.2 (q, ${}^{2}J_{C-F} = 29.9$ Hz), 58.1, 21.5 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₁H₁₈F₃NNaO₅S₂⁺ 508.0471; Found 508.0464.

9. Copies of NMR Spectra

¹H NMR (400 MHz, CDCl₃), ¹⁹F{¹H} NMR (376 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of product 3a

141.87 133.73 133.74 133.74 133.74 133.74 123.75 127.86

 1H NMR (400 MHz, CDCl₃), $^{19}F\{^1H\}$ NMR (376 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (100 MHz, CDCl₃)spectrum of product **3b**

7,503 7,482 7,482 7,482 7,485 7,495

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

-20.33

¹H NMR (400 MHz, CDCl₃), ¹⁹F{¹H} NMR (376 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃)spectrum of product 3c

7,575 7,551 7,552 7,551 7,552 7,551 7,552

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

$= \frac{142.13}{113.76}$ $= \frac{142.13}{133.76}$ $= \frac{133.05}{133.06}$ $= \frac{133.05}{133.06}$ $= \frac{133.05}{133.06}$ $= \frac{133.05}{133.06}$ $= \frac{132.34}{122.34}$ $= \frac{122.34}{122.34}$ $= \frac{122.34}{122.34}$ $= \frac{122.34}{122.34}$ $= \frac{122.34}{122.34}$ $= \frac{122.34}{122.34}$ $= \frac{122.34}{122.34}$

 1H NMR (400 MHz, CDCl_3), $^{19}F\{^1H\}$ NMR (376 MHz, CDCl_3) and $^{13}C\{^1H\}$ NMR (100 MHz,

CDCl₃)spectrum of product 3d

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

$- 84.00 \times 10^{-10} \times$

 1H NMR (400 MHz, CDCl₃), $^{19}F\{^1H\}$ NMR (376 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (100 MHz, CDCl₃)spectrum of product 3e

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

-21.50

¹H NMR (400 MHz, CDCl₃), ¹⁹F{¹H} NMR (376 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃)spectrum of product **3f**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1C fl (ppm) ¹H NMR (400 MHz, CDCl₃), ¹⁹F{¹H} NMR (376 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃)spectrum of product 3g

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

- 163.88 141.67 132.56 132.56 132.56 132.56 132.56 132.56 127.32 127.32 127.32 127.895 127.895 127.895 127.895 127.895 127.895 127.895 127.895 127.895 127.895 127.85 119.56 19

 1H NMR (400 MHz, CDCl₃), $^{19}F\{^1H\}$ NMR (376 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (100 MHz, CDCl₃)spectrum of product **3h**

7,7,555 7,7,531 7,531 7,531 7,531 7,531 7,531 7,531 7,535 7,525 7,482 7,782 7,782 7,782 7,782 7,782 7,782 7,782 7,782 7,782 7,772 7,782 7,772 7,

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

132.00 132.00 132.00 132.10 132.10 132.10 132.12 132.10 122.12 128.15 122.12 128.15 127.24 127.24 127.24 127.24 127.23 127.24 127.24 127.23 127.23 127.36 127.24 127.36 127.23 127.36 127.24 127.24 127.25 127.28 127.26 127.23 127.36 127.36 127.36 127.36 127.36 127.36 132.36 127.36 132.36 127.36 132.36 127.36 132.36 127.36 132.36 127.36 132.36 137.36 132.36 137.36 132.36 137.36 132.36 137.36 133.36 137.36 134.37 137.36 135.36

¹H NMR (400 MHz, CDCl₃), ¹⁹F{¹H} NMR (376 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃)spectrum of product 3i

7,536 7,753 7,753 7,754 7,754 7,754 7,754 7,754 7,744 7,745 7,7347 7,7347 7

$= \frac{142.28}{1137.40}$ $= \frac{142.28}{1137.40}$ $= \frac{140.75}{1137.40}$ $= \frac{1137.40}{1127.94}$ $= \frac{1227.94}{1127.94}$ $= \frac{1227.94}{1127.94}$ $= \frac{1227.94}{1127.94}$ $= \frac{1227.94}{1127.94}$ $= \frac{127.94}{1127.94}$ $= \frac{127.94}{1127.94}$ $= \frac{127.98}{1127.94}$ $= \frac{127.98}{1127.94}$ $= \frac{127.98}{1127.94}$ $= \frac{127.98}{1127.94}$ $= \frac{127.98}{1127.94}$

¹H NMR (400 MHz, CDCl₃), ¹⁹F{¹H} NMR (376 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃)spectrum of product 3j

- 167,06 - 164,50 142,222 142,222 135,06 135,06 135,08 133,08 133,08 133,08 133,08 133,08 133,08 133,08 133,08 127,08 127,09 127,00 127,09 116,57 127,09 116,57 116

¹H NMR (400 MHz, CDCl₃), ¹⁹F{¹H} NMR (376 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃)spectrum of product 3k

7.586 7.565	7.517	7.492	7.487 7.475	7.471	7.465	7.463	7.458	7.446	7.441	7.426	7.400	7.396	7.391	7.385	7.378	7.365	7.348	7.326	5.235	4.214	4.176	4.009	3.971
																5	\sim	1-	/				

142.44 135.91 135.58 135.58 135.58 135.58 134.92 134.92 134.92 134.92 134.92 134.92 135.58 134.92 135.57 125.72 12

S42

¹H NMR (400 MHz, CDCl₃), ¹⁹F{¹H} NMR (376 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃)spectrum of product **3**l

141.53 133.29 133.28 133.28 133.28 133.39 133.26 122.56 122.04 122.04 122.43 122.43 122.43 122.43 122.43 122.43 122.43 122.43 122.54 122.55 122.54 122.55 12

 1H NMR (400 MHz, CDCl_3), $^{19}F\{^1H\}$ NMR (376 MHz, CDCl_3) and $^{13}C\{^1H\}$ NMR (100 MHz, CDCl₃)spectrum of product **3m**

8,585 8,585 8,564 8,5566 8,556 8,556 8,556 8,556 8,556 8,556 8,556 8,556 8,556

-90 -100 -110 f1 (ppm)

 1H NMR (400 MHz, CDCl₃), $^{19}F\{^1H\}$ NMR (376 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (100 MHz, CDCl₃)spectrum of product **3n**

7.873 7.777 7.7757 7.7757 7.7586 7.7586 7.5618 7.5618 7.5618 7.5618 7.5575 7.5618 7.5575 7.5575 7.5575 7.5575 7.5575 7.5575 7.5575 7.5575 7.5575 7.5575 7.5374 7.5374 7.5375 7.7375 7.7375 7.7375 7.7375 7.7375 7.7375 7.7375 7.7375 7.7375 7.7375 7.7375 7.7375 7.7375 7.7375 7.7375 7.7375 7.7375 7.7306 7.7306 7.7306 7.7306 7.7306 7.7306 7.7306 7.7306 7.7306 7.7306 7.700757.70075

-58.30

¹H NMR (400 MHz, CDCl₃), ¹⁹F{¹H} NMR (376 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃)spectrum of product **30**

141.95 140.01 135.91 135.28 135.08 135.08 135.08 135.08 135.08 128.97 128.97 128.90 127.09 127.09 127.09 127.03 126.97 126.97 126.97 126.97 126.97 126.97 126.97 126.97 126.97 126.97 126.97 126.97 126.97 126.97 127.98 127.99 127.98 127.98 127.99 127.98 127.98 127.99 127.98 127.98 127.99 127.98 127.99 127.98 127.99 12 75.93 75.63 75.04 - 59.91

190 180 170 160 150 140 130 120 110 100 90 80 70 f1 (ppm) 60 30 20 10 50 40

¹H NMR (400 MHz, CDCl₃), ¹⁹F{¹H} NMR (376 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃)spectrum of product **3p**

¹H NMR (400 MHz, CDCl₃), ¹⁹F{¹H} NMR (376 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃)spectrum of product **3aa**

-58.49

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1. f1 (ppm) ¹H NMR (400 MHz, CDCl₃), ¹⁹F{¹H} NMR (376 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃)spectrum of product **3ab**

7,805 7,781 7,781 7,748 7,748 7,449 7,449 7,449 7,449 7,427 7,427 7,427 7,429 7,449 7,285 7,282 7,282 7,299 7,209 7,200 7,209 7,200

¹H NMR (400 MHz, CDCl₃), ¹⁹F{¹H} NMR (376 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃)spectrum of product **3ac**

 1H NMR (400 MHz, CDCl₃), $^{19}F\{^1H\}$ NMR (376 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (100 MHz,

CDCl₃)spectrum of product **3ad**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm) ¹H NMR (400 MHz, CDCl₃), ¹⁹F{¹H} NMR (376 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃)spectrum of product **3ae**

¹H NMR (400 MHz, CDCl₃), ¹⁹F{¹H} NMR (376 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃)spectrum of product **3af**

7,576 7,556 7,5587 7,558 7,558 7,558 7,5587 7,5587 7,5587 7,55877 7,55877 7,55

¹H NMR (400 MHz, CDCl₃), ¹⁹F{¹H} NMR (376 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃)spectrum of product **3ag**

 1H NMR (400 MHz, CDCl_3), $^{19}F\{^1H\}$ NMR (376 MHz, CDCl_3) and $^{13}C\{^1H\}$ NMR (100 MHz,

CDCl₃)spectrum of product **3ah**

$\begin{array}{c} 138.96\\ 133.75\\ 131.27\\ 131.27\\ 123.38\\ 123.88\\ 123.88\\ 124.83\\ 127.56\\ 124.83\\ 127.56\\ 77.69\\ 77.79\\ 77.79\\ -58.32\end{array}$

¹H NMR (400 MHz, CDCl₃), ¹⁹F{¹H} NMR (376 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃)spectrum of product **3ai**

7.576 7.556 7.5586 7.5586 7.5587 7.5587 7.5519 7.5519 7.5519 7.5519 7.5519 7.5519 7.5519 7.5519 7.5519 7.5519 7.5519 7.5519 7.5517 7.55

¹H NMR (400 MHz, CDCl₃), ¹⁹F{¹H} NMR (376 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃)spectrum of product **3aj**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR (400 MHz, CDCl₃), ¹⁹F{¹H} NMR (376 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃)spectrum of product **3ak**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

 1H NMR (400 MHz, CDCl₃), $^{19}F\{^1H\}$ NMR (376 MHz, CDCl₃) and $^{13}C\{^1H\}$ NMR (100 MHz,

CDCl₃)spectrum of product **3al**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

~ [48.33 [13.87] [13.87] [13.87] [12.9.09 [12.9.09 [12.77] [12.77] [12.77] [12.88] [10.38

¹H NMR (400 MHz, CDCl₃), ¹⁹F{¹H} NMR (376 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃)spectrum of product **3am**

7,868 7,758 7,758 7,758 7,758 7,759 7,759 7,575 7,575 7,559 7,559 7,559 7,559 7,559 7,485 7,745 7,545 7,745

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -110 (ppm)

138.89 138.89 133.17 133.65 133.65 133.65 133.65 133.65 130.82 130.82 128.09 128.09 128.01 128.09 123.05 127.60 127.14 127.61 127.14 127.43 127.14 127.43 127.14 127.43 127.14 127.44 127.41 119.58 119.58 75.48 75.18 75.48 75.48 119.58

¹H NMR (400 MHz, CDCl₃), ¹⁹F{¹H} NMR (376 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃)spectrum of product **3an**

7,582 7,575 7,5587 7,558 7,558 7,5587 7,5587 7,5587 7,55877 7,55877 7,55877 7,

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR (400 MHz, CDCl₃), ¹⁹F{¹H} NMR (376 MHz, CDCl₃) and ¹³C{¹H} NMR (100 MHz, CDCl₃)spectrum of product **3ao**

$\begin{array}{c} 7.699\\ 7.7685\\ 7.678\\ 7.7685\\ 7.7685\\ 7.7685\\ 7.7485\\ 7.7485\\ 7.7485\\ 7.7466\\ 7.7486\\ 7.7486\\ 7.7486\\ 7.7486\\ 7.7486\\ 7.7486\\ 7.7486\\ 7.7486\\ 7.7486\\ 7.7486\\ 7.7486\\ 7.7486\\ 7.7486\\ 7.7486\\ 7.7186\\ 7$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

144.312 137.013 138.820 137.013 134.154 135.583 137.452 122.341 122.329 119.628 119.668 119.628 119.65

10. X-ray crystallographic data of compound 3a

X-Ray crystallographic analysis of 2-([1,1'-biphenyl]-4-yl)-1-trifluoromethyl-3-(phenylsulfonyl)pro-pan-2-ol 3**a** (CCDC 2090639) showing the thermal ellipsoids at 30% probability level.

Crystal of compound **3a** was prepared in a solvent mixture of DCM and *n*-hexane ($\sim v/v = 1/1$). Yellow solid of **3a** (~ 70 mg) was dissolved in DCM (~ 1 mL) until all material was dissolved in vial, then adding *n*-hexane dropwise (~ 1 mL). The vial not fully screwed down and the sample was carefully setting in room temperature. The crystal was obtained about 48h.

All the measurements were obtained on a BRUKER Single Crystal X-Ray Diffractometer, Germany (model of the instrument –AXS D8 Quest System).

Specification: D8 QUEST, Photon 100 CMOS Detector, Horizontal Goniometer, Fixed Chi stage, Goniometer head manual, Ceramic Tube KFF Mo-2K-90c, two pinhole collimator (0.3/17 mrad, 0.6/17 mrad), Head turned by 90^{0} , APEX2 w. SHELXTL S/W, Video microscope SCD, Cryostream-700plus extended range low Temperature.

Bond precision: C-C = 0.0030 A Wavelength=0.71073			gth=0.71073
Cell: a=	=5.9954(2) Lpha=100.6367(19)	b=10.0675(4) beta=95.0698(19)	c=16.2734(7) gamma=103.2609(19)
Temperature: 296 K			
Volume Space group Hall group Moiety formula Sum formula Mr Dx,g cm-3 Z Mu (mm-1) F000 h,k,lmax Nref Tmin,Tmax Tmin'	Calculated 930.81(6) P -1 -P 1 C21 H17 F3 03 S C21 H17 F3 03 S 406.41 1.450 2 0.223 420.0 420.51 7,13,21 4355 0.948,0.956 0.935	Report 930.81 P -1 -P 1 2(C21 H C42 H32 812.81 1.450 1 0.223 420.0 7,13,2 4236	ed (6) H17 F3 O3 S) 4 F6 O6 S2 1
Correction method= Not given			
Data completeness= 0.973		Theta(max) = 27.680	
R(reflections)= 0.0431(3689)		wR2(reflections)= 0.1215(4236)	
S = 1.047 Npar= 254			