Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Photoredox/Nickel dual-Catalyzed Regioselective Alkylation of

Propargylic Carbonates for Trisubstituted Allenes

Zhao-Zhao Zhou,*^{ab} Xian-Rong Song,^c Sha Du,^c Ke-Jian Xia,^a Wan-Fa Tian,^c Qiang Xiao*^c and Yong-Min Liang*^b

^a College of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330000, P.R. China. ^b State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China ^c Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P.R. China.

E-mail: zhouzz@lzu.edu.cn, liangym@lzu.edu.cn

Table of Contents

- S1. General Information and Materials
- S2. General Procedure for the Photoredox/Nickel dual-Catalyzed Regioselective Alkylation for Trisubstituted Allenes
- S3. Preparation of Starting Materials
- S4. Optimization of Reaction Conditions
- S5. Mechanism Characterization
- S6. References
- S7. Characterization Data of Products 1aa-1pa
- S8. Characterization Data of Products 2aa-2oa, 3aa/3ab
- S9. ¹H NMR and ¹³C NMR Spectra of the Products 1aa-1pa
- S10. ¹H NMR and ¹³C NMR Spectra of the Products 2aa-2oa, 3aa/3ab

1. General Information and Materials:

For product purification by flash column chromatography, silica gel (200~300 mesh) and *n*-pentane were used. ¹H NMR spectra were recorded on 400 MHz in CDCl₃, ¹³C NMR spectra were recorded on 100 MHz in CDCl₃, ¹⁹F NMR spectra were recorded on 376 MHz in CDCl₃ using TMS as internal standard. Melting points were determined on a microscopic apparatus and were uncorrected. All products were further characterized by HRMS (high resolution mass spectra). Copies of their ¹H NMR and ¹³C NMR spectra were provided. The starting materials were purchased from Sigma-Aldrich, Acros, TCI, Admas or J&K Chemicals and used without further purification.

Kessil brand 440 (\pm 15) nm LED was used in a reaction box equipped cooling fan to keep reaction temperature between 15 °C and 25 °C.

Photoredox devices with Kessil LED lights 440 (± 15) nm

2. General Procedure for the photoredox/palladium dual-catalyzed propargylic benzylation reaction:

In a 5.0 mL snap vial with Teflon cover and magnetic stirring bar the internal propargylic carbonates **1aa-1ra**, **2aa-2oa** (0.2 mmol), alkyl 1,4-dihydropyridines derivatives **1b** (0.3 mmol, 1.5 equiv), NiCl₂·DME (0.01 mmol, 5 mol %), dtbbpy (0.015 mmol, 7.5 mol %), Ir(ppy)₃ (0.004 mmol, 2 mol %) were filled. After degassing with argon by syringe needle for 5 minutes and dissolving with 2.0 mL DMF, the reaction mixture was stirred for 10 minutes to become clear. Then, 2,6-lutidine (0.24 mmol, 1.2 equiv) was added and the vial was irradiated in reactor with cooling device using a 440 (\pm 15) nm LED (50 W). The reaction progress was monitored by TLC and GC-MS analysis. After full conversion (generally 24 hours), the reaction mixture was transferred into a separating funnel and 10 mL of distilled water and 2 mL of brine were added. Then the resulting mixture was extracted with EtOAc (10 mL *2) and saturated CuSO₄ solution to clean up 2,6-lutidine and final combined organic layer were dried over MgSO₄, filtered and concentrated in vacuum. Purification of the crude product was achieved by flash column chromatography using *n*-pentane as eluents on silica gel.

3. Preparation of Starting Materials:

All of propargylic carbonates and benzyl 1,4-dihydropyridine derivatives (DHP) were synthesized according to the previous literatures, and the NMR spectroscopy and GC-MS data were in full accordance with the data in the reported literatures.^{1,2,3}

4. Optimization of Reaction Conditions:

	OCO ₂ Me	NiCl ₂ •DME	E (5 mol%)	_	\sim	
	+ \	DHP L (7.5	mol%)	+		
Ar	Ph	í Ir(ppy) ₃ (2 6-lutidine	2 mol%) A DMF Ar	Ar´Ph	Ar	D
	Ar = p - OMe - Ph	440	nm	maior product		Pn
	Catalvat	Ligand	DC	additiva		
entries	Cataryst	Ligand	FC	additive	Solvent	vield (%)
	(5 mol %)	(7.5 mol %)	(2 mol %)	(1.2 equiv.)		<i>y</i> ¹⁰¹⁰ (<i>i</i> 0)
1	NiCl ₂ ·DME	dtbbpy	Ir(ppy) ₃	2,6-lutidine	THF	45
2	NiCl ₂ ·DME	dtbbpy	Ir(ppy) ₃	2,6-lutidine	Dioxane	9
3	NiCl ₂ ·DME	dtbbpy	Ir(ppy) ₃	2,6-lutidine	DCE	26
4	NiCl ₂ ·DME	dtbbpy	Ir(ppy) ₃	2,6-lutidine	Xylene	31
5	NiCl ₂ ·DME	dtbbpy	Ir(ppy) ₃	2,6-lutidine	CH ₃ CN	8
6	NiCl ₂ ·DME	dtbbpy	Ir(ppy) ₃	2,6-lutidine	DMF	86
7	NiCl ₂ ·DME	dtbbpy	Ir(ppy) ₃	2,6-lutidine	DMF	84^a
8	NiCl ₂ ·DME	dtbbpy	Ir(ppy) ₃	Cs ₂ CO ₃	DMF	54
9	NiCl ₂ ·DME	dtbbpy	Ir(ppy) ₃	-	DMF	74

b) Screening of solvents and the loading of ligand & additive:

^{*a*} With dtbbpy (10 mol %).

c) Screening of leaving group on propargylic derivatives:

	H ₃ CO	_G Ph +D	HP NiCl ₂ •DME dtbbpy (7.5 Ir(ppy) ₃ (2 2,6-lutidine, 440 r	(5 mol%) 5 mol%) mol %) DMF, Ar m H ₃ CO	Ph	
entries	Catalyst (5 mol %)	Ligand (7.5 mol %)	PC (2 mol %)	additive (1.2 equiv.)	LG	yield (%)
1	NiCl ₂ ·DME	dtbbpy	Ir(ppy) ₃	2,6-lutidine	OAc	42
2	NiCl ₂ ·DME	dtbbpy	Ir(ppy) ₃	2,6-lutidine	Cl	65
3	NiCl ₂ ·DME	dtbbpy	Ir(ppy) ₃	2,6-lutidine	OCO ₂ Ph	58

d) Screening of photocatalysis:

H ₃ CO		NiCl ₂ •DME (5 mol%) dtbbpy (7.5 mol%) PC (2 mol %) 2,6-lutidine, DMF, Ar 440 nm	Ph H ₃ CO		
ontrios	Catalyst	Ligand	PC	additive	viold(0/)
entries	(5 mol %)	(7.5mol %)	(2 mol %)	(1.2 equiv.)	yleid (76)
1	$NiCl_2 \cdot DME$	dtbbpy	Ru(bpy) ₃ Cl ₂	2,6-lutidine	trace
2	$NiCl_2 \cdot DME$	dtbbpy	4CzIPN	2,6-lutidine	15

e) Screening of nickel catalysis:

H ₃ CO ⁷	OCO ₂ Me	+ - DHP - 2	Ni (5 mol%) dtbbpy (7.5 mol%) Ir(ppy) ₃ (2 mol %) 2,6-lutidine, DMF , Ar 440 nm	H ₃ CO	Ph
ontriog	Catalyst	Ligand	PC	additive	\mathbf{v}_{i}
entries	(5 mol %)	(7.5 mol %)	(2 mol %)	(1.2 equiv.)	yleid (76)
1	NiBr ₂ ·DME	dtbbpy	Ir(ppy) ₃	2,6-lutidine	69
4	Ni(acac) ₂	dtbbpy	Ir(ppy) ₃	2,6-lutidine	13
5	Ni(OTf) ₂	dtbbpy	Ir(ppy) ₃	2,6-lutidine	27

f) Screening of ligands:

$Ar = p-OMe-Ph$ $NiCl_2^{\bullet}DME (5 mol\%)$ $L (7.5 mol\%)$ $Ir(ppy)_3 (2 mol \%)$ $2,6-lutidine, DMF, Ar$ $Ar = p-OMe-Ph$								
entries	Catalyst	Ligand	PC	additive	Solvent	yield		
entires	(5 mol %)	(7.5 mol %)	(2 mol %)	(1.2 equiv.)	Sorvent	(%)		
1	NiCl ₂ ·DME	L1	Ir(ppy) ₃	2,6-lutidine	DMF	86		
2	NiCl ₂ ·DME	L2	Ir(ppy) ₃	2,6-lutidine	DMF	47 (9:1)		
3	NiCl ₂ ·DME	L3	Ir(ppy) ₃	2,6-lutidine	DMF	73		
4	NiCl ₂ ·DME	L4	Ir(ppy) ₃	2,6-lutidine	DMF	21		
5	NiCl ₂ ·DME	L5	Ir(ppy) ₃	2,6-lutidine	DMF	26		
7	NiCl ₂ ·DME	L6	Ir(ppy) ₃	Cs ₂ CO ₃	DMF	44 (8:2)		

^tBu ^tBu MeQ ЮМе N Ň dtbbpy (L1) diOMe-bpy (L2) bpy (**L3**) 'N

Phen (L4)

Bis(2-oxazoline) (L5)

Biquinoline (L6)

5. Mechanism characterization:

a) Control experiment and Radical capture experiment:

Control experiment:

Control experiment indicated that light is essential for initiation of alkyl radical. Radical capture product **2ab** was detected by GC-MS in trace yield under standard conditions through radical inhibition experiments with TEMPO, which indicated that this catalytic system with alkyl DHPs is different from nickel catalyzed allenyl substitution reaction with alkyl organometallic reagents (please see ref. 4).⁴ According these results and previous work by Molander group,⁵ a hypothetical mechanism was proposed as following.

b) Plausible mechanism:

A hypothetical mechanism for this regioselective allenylic alkylation is proposed here. With irradiation by visible light, the excited Ir(III)* complex induces an SET process through a reductive quenching cycle, leading to the low-valent Ir(II) complex and alkyl radical **A** from its 1,4-dihydropyridines precursor **1b**. Meanwhile, nickel(0) catalyst promotes decarboxylation of propargylic carbonate **1a** to generate a Ni(II) species regioselectively, namely allenyl nickel intermediate **B**, which then trapped by alkyl radical to generate Ni(III) intermediate **C** and obtained the desired allenylic alkylation product **1aa** after reductive elimination. Finally, complete co-catalytic system is achieved with reduction of Ni(I) complex to Ni(0) by low-valent Ir(II) complex. However, the process with intermediate **C** from alkylated Ni(I) species **D** would be an alternative pathway.

6. References:

[1] (a) Z.-S. Chen, X.-H. Duan, L.-Y. Wu, S. Ali, K.-G. Ji, P.-X. Zhou, X.-Y. Liu and Y.-M. Liang, *Chem. Eur. J.*, 2011, **17**, 6918; (b) Y. Miyazaki, B. Zhou, H. Tsuji and M. Kawatsura, *Org. Lett.*, 2020, **22**, 2049; (c) P. Wu, M. Jia, W. Lin and S. Ma, *Org. Lett.*, 2018, **20**, 554; (d) C. R. Reddy, S. Z. Mohammed and P. Kumaraswamya, *Org. Biomol. Chem.*, 2015, **13**, 8310.

[2] (a) Á. Gutiérrez-Bonet, J. C. Tellis, J. K. Matsui, B. A. Vara and G. A. Molander, ACS Catal., 2016, 6, 8004; (b) Á Gutiérrez-Bonet, C. Remeur, J. K. Matsui and G. A. Molander, J. Am. Chem. Soc., 2017, 139, 12251.

[3] Z.-Z. Zhou, R.-Q. Jiao, K. Yang, X.-M. Chen and Y.-M. Liang, *Chem. Commun.*, 2020, 56, 12957.

[4] (a) R. Soler-Yanes, I. Arribas-Álvarez, M. Guisán-Ceinos, E. Buñuel and D. Cárdenas, *Chem.-Eur. J.*, 2017, **23**, 1584; (b) J. Terao, F. Bando and N. Kambe, *Chem. Commun.*, 2009, 7336.

[5] (a) O. Gutierrez, J. C. Tellis, D. N. Primer, G. A. Molander and M. C. Kozlowski, J. Am. Chem.
Soc., 2015, 137, 4896; (b) J. C. Tellis, C. B. Kelly, D. N. Primer, M. Jouffroy, N. R. Patel and G.
A. Molander, *Acc. Chem. Res.*, 2016, **49**, 1429.

7. Characterization Data of Products 1aa-1pa:

1aa: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 1.07-1.09 (d, *J* = 8.0 Hz, 6H), 2.39-2.45 (m, 2H), 2.75-2.79 (m, 3H), 3.78 (s, 3H), 5.52-5.55 (dt, *J*₁ = 4.0 Hz, *J*₂ = 8.0 Hz, 1H), 6.81-6.83 (d, *J* = 8.0 Hz, 2H), 7.16-7.28 (m, 7H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 22.2, 22.5, 27.8, 31.2, 35.6, 55.2, 94.7, 112.8, 113.7, 125.8, 127.4, 128.3, 128.5, 129.3, 141.8, 158.1, 202.2;

HRMS (ESI) calcd for $C_{21}H_{24}O [M+H]^+ m/z 293.1900$, found 293.1903.

1ba: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H** NMR (400 MH_Z CDCl₃, δ ppm): 0.93-0.97 (t, *J* = 8.0 Hz, 3H), 1.10-1.11 (d, *J* = 4.0 Hz, 6H), 1.46-1.51 (m, 2H), 2.04-2.10 (m, 2H), 2.73-2.79 (m, 2H), 3.79 (s, 3H), 5.49-5.52 (t, *J* = 4.0 Hz, 1H), 6.84-6.86 (d, *J* = 8.0 Hz, 2H), 7.31-7.33 (d, *J* = 8.0 Hz, 2H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 13.9, 22.2, 22.6, 27.9, 31.5, 55.2, 95.3, 112.3, 113.7, 127.4, 129.7, 158.1, 202.3;

HRMS (ESI) calcd for $C_{16}H_{22}O [M+H]^+ m/z 231.1743$, found 231.1745.

1ca: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 0.86-0.89 (t, *J* = 4.0 Hz, 3H), 1.10-1.12 (m, 6H), 1.31-1.32 (m, 4H), 1.42-1.48 (m, 2H), 2.06-2.11 (dd, *J*₁ = 8.0 Hz, *J*₂ = 12.0 Hz, 2H), 2.72-2.79 (m, 1H), 3.78 (s, 3H), 5.48-5.52 (dt, *J*₁ = 4.0 Hz, *J*₂ = 8.0 Hz, 1H), 6.84-6.86 (d, *J* = 8.0 Hz, 2H), 7.30-7.32 (d, *J* = 8.0 Hz, 2H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 14.0, 22.2, 22.5, 22.6, 27.9, 29.0, 29.3, 31.5, 55.2, 95.4, 112.3, 113.7, 127.4, 129.7, 158.1, 202.2;

HRMS (ESI) calcd for C₁₈H₂₆O [M+H]⁺ m/z 259.2056, found 259.2058.

1da: according to General Procedure; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 0.85-0.89 (t, *J* = 8.0 Hz, 3H), 1.09-1.12 (m, 6H), 1.27-1.36 (m, 6H), 1.42-1.47 (m, 2H), 2.06-2.11 (dd, *J*₁ = 8.0 Hz, *J*₂ = 12.0 Hz, 2H), 2.72-2.79 (m, 1H), 3.79 (s, 3H), 5.48-5.51 (dt, *J*₁ = 4.0 Hz, *J*₂ = 8.0 Hz, 1H), 6.84-6.86 (d, *J* = 8.0 Hz, 2H), 7.30-7.32 (d, *J* = 8.0 Hz, 2H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 14.1, 22.2, 22.6, 22.7, 27.9, 29.0, 29.4, 31.7, 55.2, 95.4, 112.3, 113.7, 127.4, 129.7, 158.1, 202.2;

HRMS (ESI) calcd for C₁₉H₂₈O [M+H]⁺ m/z 273.2213, found 273.2217.

1ea: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 1.10-1.12 (m, 15H), 2.75-2.81 (m, 1H), 3.79 (s, 3H), 5.51 (m, 1H), 6.84-6.87 (d, *J* = 12.0 Hz, 2H), 7.32-7.34 (d, *J* = 8.0 Hz, 2H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 22.2, 22.7, 27.8, 30.3, 32.8, 55.2, 107.3, 113.7, 127.2, 129.7, 158.1, 199.1;

HRMS (ESI) calcd for $C_{17}H_{24}O [M+H]^+ m/z 245.1900$, found 245.1908.

1fa: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1; **¹H NMR** (400 MH_Z CDCl₃, δ ppm): 0.96 (s, 9H), 1.10-1.13 (m, 6H), 2.00-2.03 (dd, J_1 = 4.0 Hz, J_2 = 8.0 Hz, 2H), 2.72-2.79 (m, 1H), 3.79 (s, 3H), 5.45-5.49 (dt, J_1 = 4.0 Hz, J_2 = 8.0 Hz, 1H), 6.84-6.86 (d, J = 8.0 Hz, 2H), 7.30-7.32 (d, J = 8.0 Hz, 2H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 22.3, 22.6, 28.0, 29.3, 31.1, 44.4, 55.2, 92.2, 111.2, 113.7, 127.5, 129.8, 158.1, 203.3;

HRMS (ESI) calcd for C₁₈H₂₆O [M+H]⁺ m/z 259.2056, found 259.2061.

1ga: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 1.10-1.12 (m, 6H), 1.19-1.30 (m, 4H), 1.63-1.74 (m, 4H), 1.82 (m, 2H), 2.02-2.06 (m, 1H), 2.73-2.80 (m, 1H), 3.79 (s, 3H), 5.50-5.52 (dd, J_1 = 4.0 Hz, J_2 = 8.0 Hz, 1H), 6.84-6.86 (d, J = 12.0 Hz, 2H), 7.32-7.34 (d, J = 8.0 Hz, 2H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 22.2, 22.7, 26.2, 26.2, 27.7, 33.3, 33.4, 38.1, 55.2, 101.5, 113.1, 113.7, 127.3, 129.7, 158.1, 200.9;

HRMS (ESI) calcd for $C_{19}H_{26}O [M+H]^+ m/z 271.2056$, found 271.2063.

1ha: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1; **¹H NMR** (400 MH_z CDCl₃, δ ppm): 1.09-1.12 (m, 6H), 1.54-1.66 (m, 2H), 1.79-1.86 (m, 2H), 2.09-2.15 (m, 2H), 2.73-2.80 (m, 1H), 3.50-3.53 (t, *J* = 8.0 Hz, 2H), 3.79 (s, 3H), 5.48-5.51 (dt, *J*₁ = 4.0 Hz, *J*₂ = 8.0 Hz, 1H), 6.84-6.86 (d, *J* = 8.0 Hz, 2H), 7.29-7.31 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 22.2, 22.5, 26.4, 27.9, 28.5, 32.1, 44.8, 55.2, 94.6, 112.8, 113.7, 127.4, 129.4, 158.2, 202.3;

HRMS (ESI) calcd for $C_{17}H_{23}ClO \ [M+H]^+ \ m/z \ 279.1510$, found 279.1515.

1ia: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1; **1H NMR** (400 MH_Z CDCl₃, δ ppm): 1.09-1.12 (m, 6H), 1.27-1.36 (m, 10H), 1.42-1.47 (m, 2H), 2.00-2.11 (m, 4H), 2.72-2.79 (m, 1H), 3.79 (s, 3H), 4.91-5.01 (m, 2H), 5.48-5.51 (dt, J_I = 4.0 Hz, J_2 = 8.0 Hz, 1H), 5.75-5.86 (m, 1H),6.84-6.86 (d, J = 8.0 Hz, 2H), 7.30-7.32 (d, J = 8.0 Hz, 2H); **13C NMR** (100 MHz, CDCl₃, δ ppm): 22.2, 22.6, 27.9, 28.9, 29.1, 29.3, 29.4, 29.5, 33.8, 55.2, 95.4, 112.3, 113.7, 114.1, 127.4, 129.7, 139.2, 158.1, 202.2; HDMS (ESD) = 1.16 - G. H. O IM+HHz - (-227.2)(82.6) - 1.227.2)(80.7)

HRMS (ESI) calcd for $C_{23}H_{34}O \ [M+H]^+ \ m/z \ 327.2682$, found 327.2689.

1ja: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1; ¹H NMR (400 MH_Z CDCl₃, δ ppm): 0.82-0.84 (d, J = 8.0 Hz, 3H), 1.06-1.08 (d, J = 8.0 Hz, 3H), 2.60-2.68 (m, 1H), 3.76 (s, 3H), 4.84-4.86 (d, J = 8.0 Hz, 1H), 5.98-6.00 (dd, $J_I = 4.0$ Hz, $J_2 = 8.0$ Hz, 1H), 6.80-6.82 (d, J = 8.0 Hz, 2H), 7.17-7.19 (m, 4H), 7.26-7.27 (m, 8H); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 22.1, 22.2, 28.3, 51.8, 55.2, 99.0, 113.7, 114.4, 126.3, 127.5, 128.2, 128.5, 128.6, 129.2, 143.7, 158.3, 203.2;

HRMS (ESI) calcd for $C_{26}H_{26}O \ [M+H]^+ \ m/z \ 355.2056$, found 355.2061

1ka: according to General Procedure; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 1.03-1.10 (m, 9H), 2.44-2.77 (m, 4H), 3.77-3.78 (m, 3H), 5.43-5.53 (m, 1H), 5.88-5.90 (m, 2H), 6.60-6.74 (m, 3H), 6.78-6.84 (m, 2H), 7.10-7.12 (m, 1H), 7.23-7.25 (m, 1H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 19.8, 20.3, 22.1, 22.2, 22.5, 22.6, 27.6, 27.8, 35.9, 36.7, 43.3, 43.7, 55.1, 55.2, 100.6, 100.7, 100.7, 100.8, 107.9, 108.0, 109.6, 109.6, 113.1, 113.5, 113.6, 113.7, 122.0, 122.0, 127.2, 127.3, 129.2, 129.4, 134.4, 134.7, 145.6, 145.6, 147.4, 147.4, 158.1, 158.2, 200.9, 201.0;

HRMS (ESI) calcd for $C_{23}H_{26}O_3$ [M+H]⁺ m/z 351.1955, found 351.1958.

11a: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1; **1H NMR** (400 MH_Z CDCl₃, δ ppm): 1.02-1.36 (m, 6H), 1.67-1.89 (m, 4H), 2.34-2.40 (dt, $J_I = 4.0$ Hz, $J_2 = 8.0$ Hz, 1H), 3.42-3.44 (d, J = 8.0 Hz, 2H), 3.75 (s, 3H), 5.64-5.67 (dt, $J_I = 4.0$ Hz, $J_2 = 8.0$ Hz, 1H), 6.71-6.74 (dd, $J_I = 4.0$ Hz, $J_2 = 8.0$ Hz, 1H), 6.71-6.74 (dd, $J_I = 4.0$ Hz, $J_2 = 8.0$ Hz, 1H), 6.90-6.96 (m, 2H), 7.18-7.30 (m, 6H); **13C NMR** (100 MHz, CDCl₃, δ ppm): 26.4, 26.6, 26.6, 32.7, 33.0, 36.0, 37.9, 55.1, 94.5, 111.8, 112.3, 112.5, 118.8, 126.1, 128.3, 128.6, 129.1, 138.6, 140.4, 159.6, 203.9; **HRMS** (ESI) calcd for C₂₃H₂₆O [M+H]⁺ m/z 319.2056, found 319.2059.

1ma: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H** NMR (400 MH_Z CDCl₃, δ ppm): 0.84-0.89 (dd, J_1 = 8.0 Hz, J_2 = 16.0 Hz, 3H), 1.03-1.10 (dd, J_1 = 8.0 Hz, J_2 = 24.0 Hz, 3H), 1.26-1.56 (m, 4H), 2.59-2.64 (m, 1H), 3.43-3.46 (dd, J_1 = 4.0 Hz, J_2 = 8.0 Hz, 2H), 3.77 (s, 3H), 5.66-5.68 (m, 1H), 6.73-6.75 (d, J = 8.0 Hz, 1H), 6.92-6.98 (m, 2H), 7.20-7.29 (m, 6H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 14.2, 14.3, 20.1, 20.4, 20.4, 20.5, 33.1, 33.1, 35.9, 36.0, 38.4, 38.7, 55.1, 94.8, 94.8, 111.9, 112.0, 112.2, 112.6, 112.7, 118.9, 126.1, 126.1, 128.3, 128.4, 128.6, 128.6, 129.2, 139.0, 139.0, 140.4, 140.4, 159.6, 203.7, 203.8;

HRMS (ESI) calcd for $C_{22}H_{26}O [M+H]^+ m/z 307.2056$, found 307.2058.

1na: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_z CDCl₃, δ ppm): 1.42-1.45 (m, 6H), 3.47-3.51 (t, *J* = 8.0 Hz, 2H), 3.77 (s, 3H), 3.91-4.19 (m, 2H), 4.95-5.03 (m, 1H), 5.77-5.91 (dt, *J*₁ = 4.0 Hz, *J*₂ = 40.0 Hz, 1H), 6.77-6.79 (d, *J* = 8.0 Hz, 1H), 6.95-7.04 (m, 2H), 7.22-7.29 (m, 6H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 25.9, 26.6, 26.6, 35.3, 35.4, 55.2, 68.5, 68.9, 4.0, 74.2, 76.7, 77.0, 96.1, 96.3, 106.0, 106.2, 109.6, 109.7, 112.2, 112.4, 112.7, 118.9, 119.1, 126.4, 126.4, 128.5, 128.5, 128.6, 129.4, 136.6, 136.6, 139.5, 139.7, 159.6, 203.7, 203.8;

HRMS (ESI) calcd for C₂₂H₂₄O₃ [M+H]⁺ m/z 337.1798, found 337.1802.

10a: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1; ¹H NMR (400 MH_Z CDCl₃, δ ppm): 0.97-1.04 (m, 3H), 2.30-2.41 (m, 1H), 2.77-2.88 (m, 2H), 3.36-3.46 (m, 2H), 3.78 (s, 3H), 5.66-5.73 (m, 1H), 5.87-5.90 (m, 2H), 6.57-6.77 (m, 4H), 6.91-7.01 (m, 2H), 7,20-7.31 (m, 6H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 19.0, 19.7, 34.9, 35.4, 35.7, 35.9, 41.9, 55.2, 95.2, 95.3, 100.7, 107.9, 107.9, 109.5, 109.6, 112.1, 112.2, 118.8, 122.0, 122.1, 126.2, 128.4, 128.6, 129.3, 129.3, 134.4, 134.7, 138.5, 140.2, 140.3, 145.6, 145.6, 147.3, 147.3, 159.7, 159.7, 204.0;
HRMS (ESI) calcd for C₂₇H₂₆O₃ [M+H]⁺ m/z 399.1955, found 399.1959.

1pa: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H** NMR (400 MH_Z CDCl₃, δ ppm): 1.07-1.08 (d, *J* = 4.0 Hz, 3H), 1.26-1.34 (m, 2H), 1.56 (s, 3H), 1.68 (s, 3H), 2.00-2.05 (m, 2H), 2.39-2.45 (m, 2H), 2.56-2.60 (m, 1H), 2.75-2.80 (m, 2H), 3.77 (s, 3H), 5.09-5.11 (d, *J* = 8.0 Hz, 1H), 5.51-5.54 (dd, *J*₁ = 4.0 Hz, *J*₂ = 8.0 Hz, 1H), 6.80-6.82 (d, *J* = 8.0 Hz, 2H), 7.20-7.26 (m, 7H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 17.6, 17.7, 20.0, 20.6, 25.7, 25.7, 25.8, 25.9, 31.2, 31.3, 32.7, 32.8, 35.6, 35.8, 36.1, 36.4, 55.2, 94.6, 94.7, 111.5, 111.7, 113.7, 124.7, 124.7, 125.8, 125.8, 127.4, 128.3, 128.3, 128.5, 128.5, 129.6, 131.3, 131.4, 141.8, 141.8, 158.2, 202.6;
HRMS (ESI) calcd for C₃₂H₃₆O [M+H]⁺ m/z 437.2839, found 437.2845.

8. Characterization Data of Products 2aa-2oa:

2aa: according to General Procedure; colorless oil; Eluent: *n*-hexane;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 1.08 (s, 3H), 1.10 (s, 3H), 2.40-2.45 (m, 2H), 2.75-2.82 (m, 3H), 5.53-5.57 (dt, $J_I = 4.0$ Hz, $J_2 = 8.0$ Hz, 1H), 7.13-7.19 (m, 4H), 7.24-7.31 (m, 6H); ¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 22.2,22.5, 27.7, 31.1, 35.6, 94.8, 113.3, 125.8, 126.3, 126.4, 128.3, 128.3, 128.5, 137.1, 141.7, 202.8;

HRMS (ESI) calcd for $C_{20}H_{22}$ [M+H]⁺ m/z 263.1794, found 263.1797.

2ba: according to General Procedure; colorless oil; Eluent: n-hexane;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 1.03-1.05 (d, J = 8.0 Hz, 3H), 1.08-1.10 (d, J = 8.0 Hz, 3H), 2.32 (s, 3H), 2.72-2.79 (m, 1H), 3.43-3.45 (d, J = 8.0 Hz, 2H), 5.64-5.67 (dt, $J_I = 4.0$ Hz, $J_2 = 8.0$ Hz, 1H), 7.10-7.12 (m, 2H), 7.17-7.30 (m, 7H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 21.0, 22.2, 22.5, 28.0, 36.1, 94.7, 113.4, 126.1, 126.4, 128.3, 128.7, 129.0, 134.1, 136.1, 140.5, 203.1;

HRMS (ESI) calcd for $C_{20}H_{22}$ [M+H]⁺ m/z 263.1794, found 263.1797.

2ca: according to General Procedure; colorless oil; Eluent: n-hexane;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 1.05-1.07 (d, J = 8.0 Hz, 3H), 1.10-1.12 (d, J = 8.0 Hz, 3H), 1.31 (s, 9H), 2.72-2.83 (m, 1H), 3.43-3.44 (d, J = 4.0 Hz, 2H), 5.66-5.69 (dt, $J_1 = 4.0$ Hz, $J_2 = 8.0$

Hz, 1H), 7.19-7.34 (m, 9H); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 22.3, 22.6, 28.0, 31.3, 34.4, 36.1, 94.8, 113.3, 125.2, 126.1, 128.3, 128.6, 134.0, 140.5, 149.3, 203.3; HRMS (ESI) calcd for C₂₃H₂₈ [M+H]⁺ m/z 305.2264, found 305.2269.

2da: according to General Procedure; colorless oil; Eluent: n-hexane;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 1.07-1.09 (d, J = 8.0 Hz, 3H), 1.12-1.14 (d, J = 8.0 Hz, 3H), 2.78-2.85 (m, 1H), 3.46-3.47 (d, J = 4.0 Hz, 2H), 5.71-5.74 (t, J = 8.0 Hz, 1H), 7.19-7.21 (m, 1H), 7.26-7.33 (m, 5H), 7.40-7.44 (m, 4H), 7.53-7.55 (d, J = 4.0 Hz, 2H), 7.58-7.60 (d, J = 4.0 Hz, 2H); ¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 22.2, 22.5, 27.9, 36.0, 95.1, 113.4, 126.1, 126.8, 126.9, 127.0, 127.1, 128.4, 128.7, 128.7, 136.1, 139.2, 140.3, 140.8, 203.5;

HRMS (ESI) calcd for $C_{25}H_{24}$ [M+H]⁺ m/z 329.1951, found 329.1955.

2ea: according to General Procedure; colorless oil; Eluent: n-hexane;

¹**H** NMR (400 MH_Z CDCl₃, δ ppm): 1.02-1.04 (d, *J* = 8.0 Hz, 3H), 1.08-1.10 (d, *J* = 8.0 Hz, 3H), 2.68-2.75 (m, 1H), 3.43-3.44 (d, *J* = 4.0 Hz, 2H), 5.66-5.70 (dt, *J*₁ = 4.0 Hz, *J*₂ = 8.0 Hz, 1H), 6.95-7.00 (t, *J* = 8.0 Hz, 2H), 7.18-7.30 (m, 7H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 22.1, 22.3, 28.2, 36.0, 95.1, 112.9, 115.0, 115.2, 126.2, 127.9-128.0 (d, *J* = 7.0 Hz), 128.4-128.6 (d, *J* = 29.0 Hz), 133.0, 133.0, 140.2, 160.4-162.8 (d, *J* = 244.0 Hz), 203.3;

¹⁹**F NMR** (376 MHz, CDCl₃, δ ppm): -116.5 (s, 1F);

HRMS (ESI) calcd for $C_{19}H_{19}F [M+H]^+ m/z 267.1544$, found 267.1547.

2fa: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1; **¹H NMR** (400 MH_Z CDCl₃, δ ppm): 1.01-1.03 (d, *J* = 8.0 Hz, 3H), 1.07-1.09 (d, *J* = 8.0 Hz, 3H), 2.67-2.74 (m, 1H), 3.42-3.44 (d, *J* = 8.0 Hz, 2H), 5.68-5.72 (dt, *J*₁ = 4.0 Hz, *J*₂ = 8.0 Hz, 1H), 7.17-

7.30 (m, 9H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 22.0, 22.3, 28.0, 35.9, 95.4, 112.9, 126.2, 127.7, 128.4, 128.6, 132.0, 135.6, 140.1, 203.4;

HRMS (ESI) calcd for $C_{19}H_{19}Cl [M+H]^+ m/z 283.1248$, found 283.1252.

2ga: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 1.04-1.06 (d, J = 8.0 Hz, 3H), 1.09-1.11 (d, J = 8.0 Hz, 3H), 2.72-2.79 (m, 1H), 3.43-3.45 (d, J = 8.0 Hz, 2H), 3.76 (s, 3H), 5.67-5.71 (dt, $J_I = 4.0$ Hz, $J_2 = 8.0$ Hz, 1H), 6.73-6.75 (d, J = 8.0 Hz, 1H), 6.91-6.97 (m, 2H), 7.19-7.30 (m, 6H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 22.2, 22.5, 28.0, 36.0, 55.1, 95.0, 112.0, 112.2, 113.6, 118.9, 126.1, 128.3, 128.6, 129.1, 138.7, 140.4, 159.6, 203.4;

HRMS (ESI) calcd for $C_{20}H_{22}O [M+H]^+ m/z 279.1743$, found 279.1749.

2ha: according to General Procedure; colorless oil; Eluent: n-hexane;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 0.98-1.03 (m, 6H), 1.57-1.64 (m, 4H), 2.00-2.03 (m, 4H), 2.50-2.58 (m, 1H), 3.36-3.37 (d, *J* = 4.0 Hz, 2H), 5.49-5.53 (t, *J* = 8.0 Hz, 1H), 5.73 (m, 1H), 7.17-7.36 (m, 5H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 22.5, 22.9, 23.1, 26.0, 26.4, 27.8, 36.5, 94.6, 115.4, 122.0, 126.0, 128.3, 128.6, 132.0, 140.7, 202.9;

2ia: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1; ¹H NMR (400 MH_Z CDCl₃, δ ppm): 0.86-0.92 (m, 6H), 1.27-1.28 (m, 4H), 1.35-1.41 (m, 2H), 1.88-1.94 (m, 2H), 2.12-2.14 (m, 1H), 2.25-2.36 (m, 1H), 2.66-2.72 (m, 1H), 3.26-3.28 (m, 2H), 5.27-5.29 (m, 1H), 5.88 (s, 2H), 6.55-6.71 (m, 3H), 7.18-7.30 (m, 5H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 14.1, 19.0, 19.4, 22.6, 27.5, 27.5, 30.9, 31.3, 31.6, 36.3, 36.4, 38.4, 39.0, 41.9, 42.0, 92.7, 92.8, 100.6, 100.6, 107.8, 109.5, 109.5, 109.7, 109.9, 121.9, 122.0, 125.9, 128.2, 128.2, 128.6, 135.0, 135.2, 141.0, 141.0, 145.5, 147.3, 201.0, 201.1;
HRMS (ESI) calcd for C₂₅H₃₀O₂ [M+H]⁺ m/z 363.2319, found 363.2323.

2ja: according to General Procedure; colorless oil; Eluent: n-hexane;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 0.90-0.95 (m, 3H), 1.57-1.65 (m, 4H), 2.05-2.14 (m, 4H), 2.25-2.34 (m, 1H), 2.60-2.66 (m, 1H), 2.71-2.81 (m, 1H), 3.27-3.38 (m, 2H), 5.48-5.54 (m, 1H), 5.77-5.79 (m, 1H), 5.87-5.90 (m, 2H), 6.55-6.63 (m, 2H), 6.69-6.72 (m, 1H), 7.17-7.22 (m, 3H), 7.27-7.32 (m, 2H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 19.2, 19.9, 22.5, 23.1 26.0, 26.0, 27.8, 27.9, 33.1, 33.5, 36.2, 36.3, 42.3, 42.4, 94.8, 95.0, 100.6, 107.8, 107.8, 109.5, 109.6, 113.7, 113.9, 121.9, 122.0, 122.0, 122.1, 126.0, 128.3, 128.6, 128.6, 132.0, 135.0, 135.2, 140.6, 145.4, 145.5, 147.2, 203.5;
HRMS (ESI) calcd for C₂₆H₂₈O₂ [M+H]⁺ m/z 373.2162, found 373.2166.

2ka: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1; **¹H NMR** (400 MH_Z CDCl₃, δ ppm): 1.04 (s, 9H), 3.12-3.20 (m, 4H), 3.75 (s, 3H), 5.06-5.10 (m, 1H), 6.77-6.79 (d, *J* = 8.0 Hz, 2H), 6.90-6.92 (d, *J* = 8.0 Hz, 2H), 7.02-7.04 (d, *J* = 8.0 Hz, 2H), 7.117.20 (m, 3H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 29.5, 33.7, 33.9, 36.0, 55.1, 92.7, 113.3, 114.7, 125.8, 128.0, 128.7, 130.1, 132.8, 140.5, 157.7, 202.0;

HRMS (ESI) calcd for $C_{22}H_{26}O \ [M+H]^+ m/z \ 307.2056$, found 307.2061.

2la: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H** NMR (400 MH_Z CDCl₃, δ ppm): 3.37-3.39 (d, *J* = 8.0 Hz, 2H), 3.66 (s, 2H), 3.73 (s, 3H), 5.58-5.62 (t, *J* = 8.0 Hz, 1H), 5.85 (s, 2H), 6.63-6.73 (m, 4H), 6.94-6.99 (m, 2H), 7.09-7.11 (d, *J* = 8.0 Hz, 2H), 7.16-7.20 (t, *J* = 8.0 Hz, 2H), 7.23-7.27 (t, *J* = 8.0 Hz, 2H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 35.6, 36.8, 55.1, 94.1, 100.7, 105.7, 108.0, 108.0, 108.8, 109.3, 111.8, 112.2, 118.6, 121.1, 121.7, 126.2, 128.3, 128.5, 129.2, 133.1, 135.4, 138.0, 139.9, 145.8, 147.4, 159.5, 205.6;

HRMS (ESI) calcd for $C_{25}H_{22}O_3$ [M+H]⁺ m/z 371.1642, found 371.1647.

2ma: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1; **¹H NMR** (400 MH_Z CDCl₃, δ ppm): 3.34-3.35 (d, *J* = 4.0 Hz, 2H), 3.68 (s, 2H), 3.72 (s, 3H), 5.57-5.60 (m, 1H), 6.71-6.74 (dd, *J*₁ = 4.0 Hz, *J*₂ = 8.0 Hz, 1H), 6.88-6.98 (m, 4H), 7.05-7.10 (m, 4H),

7.16-7.26 (m, 4H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 35.5, 36.3, 55.1, 94.3, 105.8, 111.8, 112.2, 114.9, 115.1, 118.5, 126.2, 128.3-128.5 (d, *J* = 18.0 Hz), 129.2, 130.2-130.3 (d, *J* = 8.0 Hz), 134.9, 135.0, 137.9, 139.8, 159.6, 160.2-162.6 (d, *J* = 42.0 Hz), 205.6;

¹⁹**F NMR** (376 MHz, CDCl₃, δ ppm): -117.1 (s, 1F);

HRMS (ESI) calcd for $C_{24}H_{21}FO [M+H]^+ m/z 345.1649$, found 345.1652.

2na: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1; **¹H NMR** (400 MH_z CDCl₃, δ ppm): 3.35-3.37 (d, *J* = 8.0 Hz, 2H), 3.75 (s, 3H), 3.78 (s, 2H), 5.605.63 (m, 1H), 6.73-6.76 (dd, *J*₁ = 4.0 Hz, *J*₂ = 8.0 Hz, 1H), 6.92-6.97 (m, 2H), 7.05-7.07 (d, *J* = 8.0 Hz, 2H), 7.19-7.25 (m, 6H), 7.47-7.49 (d, *J* = 8.0 Hz, 2H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 35.4, 36.9, 55.1, 94.7, 105.1, 111.9, 112.3, 118.5, 123.0, 125.1-125.2 (q, *J* = 4.0 Hz), 125.7, 126.3, 128.3-128.6 (q, *J* = 10.0 Hz), 129.2, 129.3, 137.7, 139.7, 143.5, 159.7, 205.7;

¹⁹**F NMR** (376 MHz, CDCl₃, δ ppm): -62.2 (s, 3F);

HRMS (ESI) calcd for $C_{25}H_{21}F_{3}O [M+H]^+ m/z 395.1617$, found 395.1621.

20a: according to **General Procedure**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1; ¹H NMR (400 MH_Z CDCl₃, δ ppm): 3.29-3.33 (t, *J* = 8.0 Hz, 2H), 3.75 (s, 3H), 3.79-3.91 (m, 2H), 5.52-5.56 (m, 1H), 6.72-6.74 (d, *J* = 8.0 Hz, 1H), 6.96-7.03 (m, 4H), 7.12-7.35 (m, 8H); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 34.5, 35.3, 55.1, 94.7, 104.5, 111.6, 112.4, 118.4, 126.1, 126.7, 127.6, 128.3, 128.5, 129.2, 129.3, 130.8, 134.3, 137.1, 138.0, 139.9, 159.6, 205.3; HRMS (ESI) calcd for C₂₄H₂₁ClO [M+H]⁺ m/z 361.1354, found 361.1359.

3aa+3ab: according to General Procedure; colorless oil; Eluent: n-hexane;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 0.90-1.03 (m, 3H), 1.09-1.12 (m, 4.5H), 1.76-1.79 (m, 4.5H), 1.97-1.98 (m, 0.25H), 2.76-2.84 (m, 0.75H), 7.10-7.38 (m, 5H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 19.0, 20.5, 21.7, 22.5, 22.5, 22.6, 22.8, 22.9, 26.5, 28.3, 28.3, 44.1, 99.2, 102.8, 110.9, 111.2, 116.4, 125.9, 126.0, 126.4, 126.5, 126.8, 127.4, 128.2, 128.2, 128.5, 129.2, 138.3, 200.8;

HRMS (ESI) calcd for $C_{14}H_{18}$ [M+H]⁺ m/z 187.1481, found 187.1483.

9. ¹H NMR and ¹³C NMR Spectra of the Products 1aa-1pa:

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 fl (ppm) 2000

1000

-0

_L_1000

-10

1

50

40 30

20

10 0

10. ¹H NMR and ¹³C NMR Spectra of the Products 2aa-2oa, 3aa/3ab:

80

70 60 50 40

30 20

210 200 190 180 170 180 150 140 130 120 110 100 90 fl (ppm) -500

-10

10 0

50 40 30 20 10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 f1 (ppm) 0

-- 500

0 -10

