Supporting Information

Construction of Helical Structures with Planar Chiral [2.2]Paracyclophane: Fusing Helical and Planar Chiralities

Motoki Tsuchiya, Hazuki Maeda, Ryo Inoue, Yasuhiro Morisaki

Department of Applied Chemistry for Environment, School of Biological and Environmental Sciencies, Kwansei Gakuin University

2-1 Gakuen, Sanda, Hyogo 669-1337, Japan.
ymo@kwansei.ac.jp (Yasuhiro Morisaki)

General

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded on a JEOL JNM ECZ-500R instrument at 500 and 125 MHz , respectively. Samples were analyzed in CDCl_{3} or $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, and the chemical shift values were expressed relative to $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. Analytical thin layer chromatography (TLC) was performed with silica gel 60 Merck F_{254} plates. Column chromatography was performed with Wakogel C-300 SiO_{2}. Flush column chromatography and recyclable preparative high-performance liquid chromatography (HPLC) were carried out on a YMC LC Forte/R. Diastereomer ratio (dr) was confirmed by a HPLC (TOSOH UV-8020) equipped with a Daicel Chiralpak® IA column ($0.46 \mathrm{~cm} \times$ 25 cm , solvent flow rate $0.5 \mathrm{~mL} / \mathrm{min}$). High-resolution mass (HRMS) spectra were obtained on a JEOL JMS-S3000 spectrometer for matrix assisted desorption/ionization (MALDI) with α-cyano-4hydrixtcubbanuc acid (CHCA), or trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2propenylidene]malononitrile (DCTB) as a matrix. In addition, high-resolution mass (HRMS) spectra were obtained on a Bruker Daltonics microTOF II for atmospheric pressure chemical ionization (APCI). UV-vis spectra were recorded on a JASCO V-730 spectrophotometer, and samples were analyzed in CHCl_{3} at room temperature. Photoluminescence (PL) spectra were recorded on a JASCO FP-8500 spectrofluorometer, and samples were analyzed in CHCl_{3} at room temperature. Absolute PL quantum efficiency was calculated on a JASCO FP8500 with an ILF-835 integrating sphere. The PL lifetime measurement was performed on a Hamamatsu Photonics Quantaurus-Tau fluorescence lifetime system. Circular dichroism (CD) spectra were recorded on a JASCO J-1500 spectropolarimeter with CHCl_{3} as a solvent at room temperature; two scans were accumulated. Circularly polarized luminescence (CPL) spectra were recorded on a JASCO CPL-300 with CHCl_{3} as a solvent at room temperature. All samples for CPL were excited around 290 nm , and five scans were accumulated. Specific rotations $\left([\alpha]^{t} \mathrm{D}\right)$ were measured with a HORIBA SEPA-500 polarimeter.

Materials

Commercially available compounds used without purification:
$\mathrm{B}(\mathrm{OMe})_{3},(1 S, 4 R)$-camphanoyl chloride, $\mathrm{Tf}_{2} \mathrm{O}, 2$-vinylnaphthalene, styrene
$n-\mathrm{BuLi}(1.55 \mathrm{M}$ in hexane $), \mathrm{Pd}(\mathrm{OAc})_{2}$
2-Dicyclohexylphosphino-2',6'-dimethoxybiphenyl (S-Phos)
$\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}$ (30% in $\mathrm{H}_{2} \mathrm{O}$), $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{MgSO}_{4}, \mathrm{KOH}$, conc $\mathrm{HCl}, \mathrm{NaHCO}_{3}, \mathrm{I}_{2}, \mathrm{NaHSO}_{3}$
$\mathrm{Et}_{2} \mathrm{O}$ (dehydrated), $\mathrm{CHCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, pyridine (dehydrated), hexane, EtOH , DMF, toluene (dehydrated), THF (dehydrated)

Compounds prepared as described in the literature:
(rac)-1: H. Maeda, M. Kameda, T. Hatakeyama, Y. Morisaki, Polymers 2018, 10, 1140/1-10.

X-ray structure determination

Crystals suitable for X-ray diffraction studies were analyzed using a Rigaku MicroMax-007HFM $\mathrm{MoK} \alpha$ rotating anode generator equipped with VariMax optics, an AFC1 goniometer, and Saturn 724+ detector. The reflection data for them was integrated, scaled and averaged using Rigaku CrysAlis ${ }^{\text {PRO }}$. The structures were solved by a direct method (SHELXT) and refined using a full-matrix least-squares method on F2 for all reflections (SHELXL-2018/3). The calculations were performed on YadokariXG or Olex2 program package. Crystallographic data are given in Table S1-S4. CCDC-2084825 $\left(\left(R_{\mathrm{p}}, 1 S, 4 R\right)-\mathbf{3}\right), 2084826\left(\left(S_{\mathrm{p}}, 1 S, 4 R\right)-\mathbf{3}\right), 2084827\left(\left(R_{\mathrm{p}}\right)-7\right), 2084828\left(\left(R_{\mathrm{p}}\right)-8\right), 2087318\left(\left(S_{\mathrm{p}}\right)-5\right)$, and $2087319\left(\left(S_{\mathrm{p}}\right)-6\right)$ contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/

Computational methods

All calculations were carried out by using the Gaussian 16 program package. ${ }^{1}$ Optimized geometries in singlet ground state, molecular orbitals, and CD properties were estimated by DFT and TD-DFT calculations ${ }^{2-7}$ with MN15 ${ }^{8}$ functionals and $6-31 \mathrm{G}(\mathrm{d})^{9-11}$ basis set. Optimized geometries in S_{1} state were obtained by $\operatorname{SS}-\operatorname{CASSCF}(16 e, 140)$ calculation ${ }^{12-13}$ with $6-31 \mathrm{G}$ basis set. The CPL properties were estimated by using CIS(D) calculation ${ }^{14-15}$ based on the optimized geometry obtained by SS-CASSCF calculation. Cartesian coordinates of all optimized structures are given in Tables S5-S8.

1) Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
2) M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, J. Chem. Phys. 1998, 108, 4439-4449.
3) R. E. Stratmann, G. E. Scuseria, M. J. Frisch, J. Chem. Phys. 1998, 109, 8218-8224.
4) R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 1996, 256, 454-464.
5) A. C. Tsipis, Coord. Chem. Rev. 2014, 272, 1-29.
6) C. Adamo, D. Jacquemin, Chem. Soc. Rev. 2013, 42, 845-856.
7) C. Adamo, T. Le Bahers, M. Savarese, L. Wilbraham, G. García, R. Fukuda, M. Ehara, N. Rega, I. Ciofini, Coord. Chem. Rev. 2015, 304-305, 166-178.
8) H. S. Yu, X. He, S. L. Li, D. G. Truhlar, Chem. Sci. 2016, 7, 5032-5051.
9) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654-3665.
10) P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213-222.
11) T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. V. R. Schleyer, J. Comput. Chem. 1983, 4, 2940.
12) D. Hegarty and M. A. Robb, Mol. Phys. 1979, 38, 1795-1812.
13) R. H. E. Eade and M. A. Robb, Chem. Phys. Lett. 1981, 83, 362-368.
14) J. A. Pople, R. Seeger, and R. Krishnan, Int. J. Quantum Chem. 1977, 149-163.
15) K. Raghavachari, H. B. Schlegel, and J. A. Pople, J. Chem. Phys. 1980, 72, 4654-4655.
16) K. Raghavachari and J. A. People, Int. J. Quantum Chem. 1981, 20, 1067-1071.

Synthesis of rac-2

A solution of $n-\mathrm{BuLi}(1.55 \mathrm{M}$ in hexane, $8.4 \mathrm{~mL}, 13.0 \mathrm{mmol})$ was slowly added to a solution of rac- $\mathbf{1}(3.68 \mathrm{~g}, 10.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After $1 \mathrm{~h}, \mathrm{~B}(\mathrm{OMe})_{3}(2.2 \mathrm{~mL}, 19.7 \mathrm{mmol})$ was added, and then the mixture was warmed to room temperature. After 1 h , aqueous $\mathrm{NaOH}(1.0 \mathrm{M}, 4.0$ $\mathrm{mL}, 4.0 \mathrm{mmol})$ and aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 6.0 \mathrm{~mL}, 58.8 \mathrm{mmol})$ were added, and the mixture was stirred for 1 h at room temperature. After the saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added to the reaction mixture, the organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layer was washed with brine and dried over $\mathrm{MgSO}_{4} . \mathrm{MgSO}_{4}$ was removed by filtration, and the solvent was evaporated. The residue was purified by column chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CHCl}_{3}\right.$ as an eluent) to afford rac-2 ($2.78 \mathrm{~g}, 9.2 \mathrm{mmol}, 91 \%$) as a pale yellowish green crystal.
$R_{\mathrm{f}}=0.29\left(\mathrm{CHCl}_{3}\right.$ as an eluent $) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.89-3.16(\mathrm{~m}, 6 \mathrm{H}), 3.12-3.18(\mathrm{~m}$, $1 \mathrm{H}), 3.28-3.34(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~m}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=1.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.46$ $(\mathrm{dd}, J=1.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 28.8,34.1,34.4,34.7,121.7,124.5,124.9,127.6,129.6,130.7,130.8$, $136.5,139.3,140.8,141.5,154.3 \mathrm{ppm}$. HRMS (MALDI, DCTB) calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{OBr}, \mathrm{M}^{+}: 302.0306$, found 302.0360 .

${ }^{1} \mathrm{H}$ NMR spectrum of rac-2.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{rac}-\mathbf{2}$.

Optical resolution: synthesis of $\left(R_{\mathrm{p}}, 1 S, 4 R\right)$ - and $\left(S_{\mathrm{p}}, 1 S, 4 R\right)-\mathbf{3}$

A mixture of $\mathrm{rac}-\mathbf{2}(1.82 \mathrm{~g}, 6.0 \mathrm{mmol})$ and $(1 S, 4 R)$-camphanoyl chloride $(2.25 \mathrm{~g}, 10.4 \mathrm{mmol})$ was placed in a round-bottom flask equipped with a magnetic stirring bar. After degassing the reaction mixture several times, dry pyridine (50 mL) was added to the mixture at $0^{\circ} \mathrm{C}$, and the reaction was carried out at room temperature for 24 h with stirring. After the reaction mixture was cooled to $0^{\circ} \mathrm{C}$, $6 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$ was added, and organic species were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layer was washed with 1 M HCl , aqueous NaHCO_{3}, and brine. The organic layer was dried over MgSO_{4}. MgSO_{4} was removed, and the solvent was evaporated. The residue was separated by SiO_{2} column chromatography $\left(\mathrm{CHCl}_{3} /\right.$ hexane $=12 / 1 \mathrm{v} / \mathrm{v}$ as an eluent) to afford $\left(S_{\mathrm{p}}, 1 S, 4 R\right)$ 3 ($R_{\mathrm{f}}=0.23$) and ($\left.R_{\mathrm{p}}, 1 S, 4 R\right)$-3 $\left(R_{\mathrm{f}}=0.29\right)$ as white powders. Each diastereomer was purified by recrystallization from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ to afford $\left(S_{\mathrm{p}}, 1 S, 4 R\right)$ - $\mathbf{3}(740.0 \mathrm{mg}, 1.5 \mathrm{mmol}, 26 \%)$ and ($R_{\mathrm{p}}, 1 S, 4 R$)3 ($693.3 \mathrm{mg}, 1.4 \mathrm{mmol}, 24 \%$).
$\left(S_{\mathrm{p}}, 1 S, 4 R\right)$-3: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.89(\mathrm{~m}$, $1 \mathrm{H}), 1.95-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.85-3.14(\mathrm{~m}, 7 \mathrm{H}), 3.28-3.42(\mathrm{~m}, 1 \mathrm{H})$, $6.11(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 9.8,16.8,17.0$, $29.0,29.6,31.0,34.4,34.5,34.6,54.6,55.0,90.9,127.2,127.6,130.0,130.6,130.9,130.9,131.6$, $136.8,139.2,141.0,141.5,149.0,165.5,178.3 \mathrm{ppm}$. HRMS (MALDI, CHCA) calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{BrO}_{4}$ $+\mathrm{Na}^{+}: 505.0985$, found 505.0919. $[\alpha]^{25} \mathrm{D}=+100.18\left(c 0.25, \mathrm{CHCl}_{3}\right)$.
$\left(R_{\mathrm{p}}, 1 S, 4 R\right)-3:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.90(\mathrm{~m}$, $1 \mathrm{H}), 1.96-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.88-3.14(\mathrm{~m}, 7 \mathrm{H}), 3.28-3.42(\mathrm{~m}, 1 \mathrm{H})$, $6.15(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 9.9$, $16.9,16.9,29.0,29.7,31.2,34.4,34.5,34.7,54.6,55.0,90.9,127.2,127.6,130.0,130.6,130.9,130.9$, 131.5, 136.8, 139.1, 141.1, 141.5, 148.9, 165.4, 178.1 ppm . HRMS (MALDI, CHCA) calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{BrO}_{4}+\mathrm{Na}^{+}: 505.0985$, found 505.0919. $\quad[\alpha]^{25}{ }_{\mathrm{D}}=-100.21\left(c 0.25, \mathrm{CHCl}_{3}\right)$.

Colum: Chiralpak ${ }^{\circledR}$ IA, $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$
Eluent: hexane $/$ THF $=8 / 2 \mathrm{v} / \mathrm{v}$
Flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$
Figure S1. Chromatograms of diastereomers, $\left(R_{\mathrm{p}}, 1 S, 4 R\right)-\mathbf{3}$, and $\left(S_{\mathrm{p}}, 1 S, 4 R\right) \mathbf{- 3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\left(R_{\mathrm{p}}, 1 S, 4 R\right)$-3.

${ }^{13} \mathrm{C}$ NMR spectrum of $\left(R_{\mathrm{p}}, 1 S, 4 R\right)-\mathbf{3}$.

Results of mass spectrometry of $\quad\left(R_{\mathrm{p}}, 1 S, 4 R\right) \mathbf{- 3}$; upper and lower Mass spectra indicate experimental and theoretical spectra, respectively.

${ }^{1} \mathrm{H}$ NMR spectrum of $\left(S_{\mathrm{p}}, 1 S, 4 R\right)$-3.

${ }^{13} \mathrm{C}$ NMR spectrum of $\left(S_{\mathrm{p}}, 1 S, 4 R\right)$-3.

Results of mass spectrometry of $\left(S_{\mathrm{p}}, 1 S, 4 R\right) \mathbf{- 3}$; upper and lower Mass spectra indicate experimental and theoretical spectra, respectively.

Figure S2. ORTEP drawings of (A) $\left(R_{\mathrm{p}}, 1 S, 4 R\right)$-3•EtOH: CCDC-2084825 and (B) $\left(S_{\mathrm{p}}, 1 S, 4 R\right)$-3:
CCDC-2084826. Thermal ellipsoids are shown at the 30% probability level. Hydrogen atoms are omitted for clarity.

Table S1. Crystallographic data for (A) $\left(R_{\mathrm{p}}, 1 S, 4 R\right)-\mathbf{3} \cdot \mathrm{EtOH}$ and (B) $\left(S_{\mathrm{p}}, 1 S, 4 R\right)-\mathbf{3}$

	$\left(R_{\mathrm{p}}, 1 S, 4 R\right)-3 \cdot \mathrm{EtOH}$	$\left(S_{\mathrm{p}}, 1 S, 4 R\right)-3$
Formula	$\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{BrO}_{4}, \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	$\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{BrO}_{4}$
Formula weight	529.45	483.38
Temperature (K)	150	150
Crystal color, habit	colorless, plate	colorless, needle
Crystal size, mm	$0.20 \times 0.10 \times 0.05$	$0.50 \times 0.20 \times 0.05$
Crystal system	orthorhombic	monoclinic
Space group	$P 22_{12} 2_{1}(\# 19)$	P1211(\#4)
a, \AA	7.946(9)	9.1381(3)
b, \AA	8.073(10)	7.2746(2)
c, \AA A	39.47(5)	16.3470(5)
α, deg	90	90
β, deg	90	91.457(3)
$\gamma, \operatorname{deg}$	90	90
V, \AA^{3}	2532 (5)	1086.33(6)
Z value	4	2
$D_{\text {calcd, }} \mathrm{g} \mathrm{cm}^{-3}$	1.389	1.478
$\mu(\mathrm{MoK} \alpha), \mathrm{cm}^{-1}$	1.659	1.923
$F(000)$	1104	1544.00
$2 \theta_{\text {max }}$, deg	54.97	62.32
No. of reflections measured	26196	10203
No. of observed reflections	5754	6149
No. of variables	324	283
$R_{1}\left(\mathrm{I}>2 \sigma(\mathrm{I}){ }^{[a]}\right.$	0.0427(5336)	0.0372(5699)
w R_{2} (all reflns) ${ }^{[\mathrm{b}]}$	0.1088(5754)	0.0880(6149)
Goodness of fit	1.100	1.017
Flack paramerter	-0.001(5)	-0.009(6)

$[\mathrm{a}] R_{1}=\Sigma\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right) / \Sigma\left(\left|F_{\mathrm{o}}\right|\right) . \quad[\mathrm{b}] \mathrm{w} R_{2}=\left[\Sigma\left[\mathrm{w}\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma \mathrm{w}\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]^{1 / 2}$.
Recrystallization solvent : chloroform / methanol

Synthesis of (S_{p})-4

$\left(S_{\mathrm{p}}, 1 S, 4 R\right) \mathbf{- 3}(733.7 \mathrm{mg}, 1.5 \mathrm{mmol})$, $\mathrm{EtOH}(40 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was placed in a roundbottom flask equipped with a magnetic stirring bar. After degassing the reaction mixture several times, an aqueous solution of $\mathrm{KOH}\left(872.2 \mathrm{mg}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}(7 \mathrm{~mL})\right)$ was added to the mixture. After stirring for $13 \mathrm{~h}, 6 \mathrm{M} \mathrm{HCl}(3.5 \mathrm{~mL})$ was added to the reaction mixture. The organic layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three timers. The combined organic layer was washed with aqueous NaHCO_{3} and brine, and then dried over MgSO_{4}. MgSO_{4} was removed by filtration, and the solvent was evaporated. The solid of $\left(S_{\mathrm{p}}\right) \mathbf{- 2}$ was used for the next reaction without further purification.

To a solution of $\left(S_{\mathrm{p}}\right)-\mathbf{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{~mL})$ were added pyridine ($1.2 \mathrm{~mL}, 14.9 \mathrm{mmol}$) and $\mathrm{Tf}_{2} \mathrm{O}$ $(0.6 \mathrm{~mL}, 3.57 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred for 2 h at room temperature, $6 \mathrm{M} \mathrm{HCl}(3.5 \mathrm{~mL})$ was added to the reaction mixture. The organic layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three timers. The combined organic layer was washed with aqueous NaHCO_{3} and brine, and then dried over MgSO_{4}. MgSO 4 was removed by filtration, and the solvent was evaporated. The residue was purified by column chromatography on $\mathrm{SiO}_{2}\left(\mathrm{AcOEt} /\right.$ hexane $=1 / 2 \mathrm{v} / \mathrm{v}$ as an eluent) to afford $\left(S_{\mathrm{p}}\right)-4$ $(609.5 \mathrm{mg}, 1.4 \mathrm{mmol}, 92 \%)$ as a colorless liquid. $\quad R_{\mathrm{f}}=0.77(\mathrm{AcOEt} /$ hexane $=1 / 2 \mathrm{v} / \mathrm{v}$ as an eluent).
$R_{\mathrm{f}}=0.31\left(\mathrm{CHCl}_{3} /\right.$ hexane $\left.=1 / 2 \mathrm{v} / \mathrm{v}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.92-3.11(\mathrm{~m}, 6 \mathrm{H}), 3.26-$ $3.30(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.41(\mathrm{~m}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{dd}, J=1.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.89$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 29.4,34.2,34.4$, 118.7 (q, $J=319 \mathrm{~Hz}$), 127.6, 130.9, 131.2, 131.4, 131.5, 131.8, 136.9, 139.0, 141.0, 142.5, 148.6 ppm. HRMS (APCI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrF}_{3} \mathrm{O}_{3} \mathrm{~S} \mathrm{M}^{+}: 433.9794$, found 433.9793. $[\alpha]^{25}{ }_{\mathrm{D}}=-100.90$ (c $0.25, \mathrm{CHCl}_{3}$).
$\left(R_{\mathrm{p}}\right)-4$ was obtained in 90% yield by the same procedure of $\left(S_{\mathrm{p}}\right)-4$. HRMS (APCI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrF}_{3} \mathrm{O}_{3} \mathrm{~S} \mathrm{M}^{+}: 433.9794$, found 433.9794. $\quad[\alpha]^{25} \mathrm{D}=+100.02\left(c 0.25, \mathrm{CHCl}_{3}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\left(S_{\mathrm{p}}\right)-4$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\left(S_{\mathrm{p}}\right)-4$.

Synthesis of $\left(S_{\mathrm{p}}\right)-5$

A mixture of $\left(S_{\mathrm{p}}\right)-\mathbf{4}(201.4 \mathrm{mg}, 0.462 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}\left(11.1 \mathrm{mg}, 4.9 \times 10^{-3} \mathrm{mmol}\right)$ and S-Phos $(62.6 \mathrm{mg}, 0.015 \mathrm{mmol})$ was placed in a round-bottom flask equipped with a magnetic stirring bar. After degassing the reaction mixture several times, DMF (9.0 mL), $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{~mL})$ and 2vinylnaphthalene ($157.3 \mathrm{mg}, 1.02 \mathrm{mmol}$) were added, and the reaction was carried out at reflux temperature for 48 h with stirring. After the reaction mixture was cooled to room temperature, precipitates were removed by filtration. The organic layer was separated, and then aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and dried over MgSO_{4}. MgSO_{4} was removed by filtration, and the solvent was removed with a rotary evaporator. The residue was purified by column chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CHCl}_{3} /\right.$ hexane $=1 / 2 \mathrm{v} / \mathrm{v}$ as an eluent $)$ and recrystallization from $\mathrm{CHCl}_{3} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v}=1 / 1)$ to afford $\left(R_{\mathrm{p}}\right)-5(92.3 \mathrm{mg}, 0.18 \mathrm{mmol}, 39 \%)$ as a light yellow solid.
$R_{\mathrm{f}}=0.34\left(\mathrm{CHCl}_{3} /\right.$ hexane $\left.=1 / 2 \mathrm{v} / \mathrm{v}\right) . \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.89-1.96(\mathrm{~m}, 2 \mathrm{H})$, 3.01$3.07(\mathrm{~m}, 2 \mathrm{H}), 3.16-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.64(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{dd}, J=1.72,7.45 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=7.45$ $\mathrm{Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=1.72 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=16.04 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=16.04 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ (ddd, $J=1.15,6.87,8.02 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{ddd}, J=1.15,6.87,8.02 \mathrm{~Hz}, 2 \mathrm{H}), 7.81-7.89(\mathrm{~m}, 8 \mathrm{H}), 7.92(\mathrm{~s}, 2 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 33.6,35.2,123.6,126.0,126.5,126.6,127.1,127.8,128.1,128.5$, 129.4, 129.7, 131.1, 131.4, 133.1, 133.9, 135.4, 138.0, 138.3, 139.9 ppm. HRMS (APCI) calcd. for $\mathrm{C}_{40} \mathrm{H}_{32}+\mathrm{H}^{+}: 513.2577$, found 513.2567. $\quad[\alpha]^{25} \mathrm{D}=+1103.2\left(c 0.258, \mathrm{CHCl}_{3}\right)$.
$\left(R_{\mathrm{p}}\right)-5$ was obtained in 32% yield by the same procedure of $\left(S_{\mathrm{p}}\right)-5$. HRMS (APCI) calcd. for $\mathrm{C}_{40} \mathrm{H}_{32}+\mathrm{H}^{+}: 513.2577$, found 513.2580. $\quad[\alpha]^{25} \mathrm{D}=-1103.2\left(c 0.051, \mathrm{CHCl}_{3}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\left(S_{\mathrm{p}}\right)-\mathbf{5}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\left(S_{\mathrm{p}}\right)-5$.

Results of mass spectrometry of $\left(S_{\mathrm{p}}\right)-\mathbf{5}$; upper and lower Mass spectra indicate experimental and theoretical spectra, respectively.

Figure S3. ORTEP drawings (top and side views) of $\left(S_{\mathrm{p}}\right)$-5; CCDC-2087318. Thermal ellipsoids are shown at the 30% probability level. Hydrogen atoms are omitted for clarity.

Table S2. Crystallographic data and structure refinements for $\left(S_{\mathrm{p}}\right)$-5.

Formula	$\mathrm{C}_{40} \mathrm{H}_{32}$
Formula weight	512.65
Temperature (K)	150
Crystal color, habit	colorless, needle
Crystal size, mm	$0.4 \times 0.1 \times 0.05$
Crystal system	Orthorhombic
Space group	P 212121 (\#19)
$a, ~ \AA ̀$	8.3890(2)
b, \AA	21.6023(6)
c, \AA	30.9026(8)
$\alpha, \operatorname{deg}$	90
β, deg	90
$\gamma, \operatorname{deg}$	90
V, \AA^{3}	5600.2(3)
Z value	8
$D_{\text {calcd, }} \mathrm{g} \mathrm{cm}^{-3}$	1.216
$\mu(\mathrm{MoK} \alpha), \mathrm{cm}^{-1}$	0.690
$F(000)$	2176
$2 \theta_{\text {max }}$, deg	60.7440
No. of reflections measured	109620
No. of observed reflections	16867
No. of variables	721
$R_{1}\left(\mathrm{I}>2 \sigma(\mathrm{I}){ }^{[a]}\right.$	$0.0676(8550)$
w R_{2} (all reflns) ${ }^{[\mathrm{b}]}$	0.1250(16867)
Goodness of fit	1.000
Flack paramerter	1.9(10)
$[\mathrm{a}] R_{1}=\Sigma\left(\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right) / \Sigma\left(\left\|F_{\mathrm{o}}\right\|\right) . \quad[\mathrm{b}] \mathrm{w} R_{2}=\left[\Sigma\left[\mathrm{w}\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma \mathrm{w}\left(F_{\mathrm{o}}^{2}\right)^{2}\right]^{1 / 2} .$	

Recrystallization solvent : chloroform / methanol
The single crystal X-ray experimental data above do not support the determination of the absolute structure, which was determined by the corresponding diastereomer precursor.

Synthesis of (S_{p})-7

$\left(S_{\mathrm{p}}\right)-\mathbf{5}(26.3 \mathrm{mg}, 0.051 \mathrm{mmol})$ was placed in a round-bottom flask equipped with a magnetic stirring bar. After toluene $(50 \mathrm{~mL})$, THF $(1.0 \mathrm{~mL})$, and $\mathrm{I}_{2}(6.9 \mathrm{mg}, 0.025 \mathrm{mmol})$ were added, the mixture was irradiated from a UV lamp (LED $\lambda=365 \mathrm{~nm}$), and the reaction was carried out at room temperature for 7 h with stirring under air. $\mathrm{H}_{2} \mathrm{O}$ and NaHSO_{3} were added in the reaction mixture. The organic layer was separated, and then aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and dried over MgSO_{4}. MgSO_{4} was removed by filtration, and the solvent was removed with a rotary evaporator. The residue was purified by recycled HPLC (eluent: $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford $\left(R_{\mathrm{p}}\right)-7(4.6 \mathrm{mg}, 0.009 \mathrm{mmol}, 18 \%)$ as a colorless solid.
$R_{\mathrm{f}}=0.56\left(\mathrm{CHCl}_{3} /\right.$ hexane $\left.=1 / 2 \mathrm{v} / \mathrm{v}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.59-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.67-$ $2.77(\mathrm{~m}, 2 \mathrm{H}), 3.30-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.97-4.04(\mathrm{~m}, 2 \mathrm{H}), 5.53(\mathrm{~d} J=6.87 \mathrm{~Hz}, 2 \mathrm{H}), 6.12(\mathrm{~d}, J=6.87 \mathrm{~Hz}$, 2 H), 7.38 (dd, $J=6.87,8.59 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{dd}, J=7.45,7.45 \mathrm{~Hz}, 2 \mathrm{H}), 7.95-7.96(\mathrm{~m}, 8 \mathrm{H}), 8.03$ (d, $J=$ $9.16 \mathrm{~Hz}, 2 \mathrm{H}), 8.28(\mathrm{~d}, J=8.59 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 32.9,37.7,124.3,125.5$, $125.6,125.7,126.6,127.2,127.5,127.6,127.8,128.7,129.1,130.4,130.6,130.7,132.3,134.09$, 134.14, 138.3 ppm . HRMS (APCI) calcd. for $\mathrm{C}_{40} \mathrm{H}_{28}+\mathrm{H}^{+}: 509.2264$, found 509.2266. $[\alpha]^{25}{ }_{\mathrm{D}}=$ $+878.0\left(c 0.041, \mathrm{CHCl}_{3}\right)$.
$\left(S_{\mathrm{p}}\right)-7$ was obtained in 14% yield by the same procedure of $\left(R_{\mathrm{p}}\right)-7$. HRMS (APCI) calcd. for $\mathrm{C}_{40} \mathrm{H}_{28}+\mathrm{H}^{+}: 509.2264$, found 509.2264. $\quad[\alpha]^{25}{ }_{\mathrm{D}}=-878.4\left(c 0.050, \mathrm{CHCl}_{3}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\left(R_{\mathrm{p}}\right)-7$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\left(R_{\mathrm{p}}\right)-7$.

| \# | m/z | Res. | S/N | I | FWHM | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 509.2266 | 10168 | 875.8 | 5607 | 0.0501 | | | | | |
| 2 | 510.2305 | 10522 | 388.3 | 2488 | 0.0485 | | | | | |
| 3 | 511.2291 | 8532 | 119.0 | 764 | 0.0599 | | | | | |
| 4 | 512.2377 | 7533 | 38.1 | 245 | 0.0680 | | | | | |
| Sum Formula | Sigma | m/z | Err [ppm] | Mean Err [ppm] | Err[mDa] | rdb | N Rule | \mathbf{e}^{-} | | |
| C 40 H 29 | 0.027 | 509.2264 | -0.51 | -0.21 | -0.26 | 26.50 | ok | even | | |

Results of mass spectrometry of $\left(R_{\mathrm{p}}\right)$-7.; upper and lower Mass spectra indicate experimental and theoretical spectra, respectively.

Figure S4. ORTEP drawings (top and side views) of $\left(R_{\mathrm{p}}\right)$-7; CCDC-2084827. Thermal ellipsoids are shown at the 30% probability level. Hydrogen atoms are omitted for clarity.

Table S3. Crystallographic data and structure refinements for $\left(R_{\mathrm{p}}\right)-7$.

Formula	$\mathrm{C}_{40} \mathrm{H}_{28}$
Formula weight	508.62
Temperature (K)	123
Crystal color, habit	colourless,plate
Crystal size, mm	$0.10 \times 0.05 \times 0.01$
Crystal system	orthorhombic
Space group	$P 22_{1} 2_{1}(\# 19)$
a, \AA	$11.0786(7)$
b, \AA	$15.0781(9)$
c, \AA	$15.4237(9)$
α, deg	90
β, deg	90
γ, deg	90
V, \AA^{3}	$2576.4(3)$
Z value	4
$D_{\text {calcd }, \mathrm{g} \text { cm }}{ }^{-3}$	1.311
$\mu($ MoK $\alpha), \mathrm{cm}^{-1}$	0.74
$F(000)$	1072
$2 \theta_{\text {max }}$, deg	62.228
No. of reflections measured	12553
No. of observed reflections	6631
No. of variables	361
$R_{1}(\mathrm{I}>2 \sigma(\mathrm{I}))^{[\mathrm{a}]}$	0.0630
$\mathrm{w} R_{2}(\text { all reflns })^{[\mathrm{b}]}$	0.1219
Goodness of fit	1.015
Flack paramerter	$2.5(10)$
$[\mathrm{a}] R_{1}=\Sigma\left(\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right) / \Sigma\left(\left\|F_{\mathrm{o}}\right\|\right)$.	$[\mathrm{b}] \mathrm{w} R_{2}=\left[\Sigma\left[\mathrm{w}\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma \mathrm{w}\left(F_{\mathrm{o}}^{2}\right)^{2}\right]^{1 / 2}$.

Recrystallization solvent: toluene
The single crystal X-ray experimental data above do not support the determination of the absolute structure, which was determined by the corresponding diastereomer precursor.

Synthesis of $\left(S_{\mathrm{p}}\right)-6$

A mixture of $\left(S_{\mathrm{p}}\right)-\mathbf{4}(50.7 \mathrm{mg}, 0.115 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.8 \mathrm{mg}, 0.0125 \mathrm{mmol})$, and S-Phos ($15.4 \mathrm{mg}, 0.038 \mathrm{mmol}$) was placed in a round-bottom flask equipped with a magnetic stirring bar. After degassing the reaction mixture several times, DMF (2.1 mL), $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{~mL})$, and styrene (0.03 $\mathrm{ml}, 28.30 \mathrm{mg}, 0.27 \mathrm{mmol}$) were added, and the reaction was carried out at reflux temperature for 48 h with stirring. After the reaction mixture was cooled to room temperature, precipitates were removed by filtration. The organic layer was separated, and then aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and dried over $\mathrm{MgSO}_{4} . \quad \mathrm{MgSO}_{4}$ was removed by filtration, and the solvent was removed with a rotary evaporator. The residue was purified by column chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CHCl}_{3} /\right.$ hexane $=1 / 2 \mathrm{v} / \mathrm{v}$ as an eluent $)$ and recrystallization from $\mathrm{CHCl}_{3} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v}=1 / 1)$ to afford $\left(R_{\mathrm{p}}\right)-\mathbf{6}(19.6 \mathrm{mg}, 0.048 \mathrm{mmol}, 36 \%)$ as a white solid.
$\left(S_{\mathrm{p}}\right)-\mathbf{6}: R_{\mathrm{f}}=0.38\left(\mathrm{CHCl}_{3} /\right.$ hexane $\left.=1 / 2 \mathrm{v} / \mathrm{v}\right) . \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.85(\mathrm{dd}, J=10.31$, $5.15 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{~m}, 2 \mathrm{H}) 3.15(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{dd}, J=10.31,5.73 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{dd}, J=1.72,8.02$ $\mathrm{Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=8.02 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=1.15 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=16.61 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J$ $=16.61 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.45 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=7.45,7.45 \mathrm{~Hz}, 4 \mathrm{H}), 7.57(\mathrm{~d}, J=7.45 \mathrm{~Hz}, 2 \mathrm{H})$ $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 33.52,35.16,126.61,126.74,127.62,128.84,129.18,129.68$, $130.99,131.29,137.90,137.96,138.19,139.82 \mathrm{ppm}$. HRMS (APCI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{28}+\mathrm{H}^{+}$: 413.2264, found 413.2272. $[\alpha]^{25} \mathrm{D}=+974.4\left(c \quad 0.10, \mathrm{CHCl}_{3}\right)$.
$\left(R_{\mathrm{p}}\right)-\mathbf{6}$ was obtained in 39% yield by the same procedure of $\left(S_{\mathrm{p}}\right) \mathbf{- 6}$. HRMS (APCI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{28}+\mathrm{H}^{+}: 413.2264$, found 413.2260. $\quad[\alpha]^{25} \mathrm{D}=-974.4\left(c 0.10, \mathrm{CHCl}_{3}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\left(S_{\mathrm{p}}\right)-6$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\left(S_{\mathrm{p}}\right)$-6.

\#	\mathbf{m} / \mathbf{z}	Res.	\mathbf{S} / \mathbf{N}	I	FWHM
1	413.2260	9607	1322.1	6927	0.0430
2	414.2295	10092	472.0	2464	0.0410
3	415.2338	7926	134.1	698	0.0524

Sum Formula	Sigma	m/z	Err [ppm]	Mean Err [ppm]	Err [mDa]	rdb	N Rule	\mathbf{e}^{-}
C 32 H 29	0.024	413.2264	1.02	0.81	0.42	18.50	ok	even

Results of mass spectrometry of $\left(R_{\mathrm{p}}\right) \mathbf{- 6}$; upper and lower Mass spectra indicate experimental and theoretical spectra, respectively.

Figure S5. ORTEP drawings (top and side views) of (S_{p}-6; CCDC-2087319. Thermal ellipsoids are shown at the 30% probability level. Hydrogen atoms are omitted for clarity.

Table S4. Crystallographic data and structure refinements for $\left(S_{\mathrm{p}}\right)$-6.

Formula	$\mathrm{C}_{32} \mathrm{H}_{28}$
Formula weight	412.54
Temperature (K)	123
Crystal color, habit	colorless, platelet
Crystal size, mm	$0.40 \times 0.20 \times 0.10$
Crystal system	monoclinic
Space group	P1211 (\#4)
$a, ~ \AA{ }^{\text {a }}$	14.7972(6)
b, \AA	8.0733(3)
c, \AA	18.9373(7)
α, deg	90
β, deg	96.319(4)
$\gamma, \operatorname{deg}$	90
V, \AA^{3}	2248.55(15)
Z value	4
$D_{\text {calcd, }} \mathrm{g} \mathrm{cm}^{-3}$	1.219
$\mu(\mathrm{MoK} \alpha), \mathrm{cm}^{-1}$	0.69
$F(000)$	880.0
$2 \theta_{\text {max }}$, deg	62.3520
No. of reflections measured	21741
No. of observed reflections	12890
No. of variables	577
$R_{1}(\mathrm{I}>2 \sigma(\mathrm{I}))^{[a]}$	0.0572(9411)
w R_{2} (all reflns) ${ }^{[\mathrm{b}]}$	0.1263(12690)
Goodness of fit	1.008
Flack paramerter	1.8(10)
$\overline{[\mathrm{a}]} R_{1}=\Sigma\left(\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right) / \Sigma\left(\left\|F_{\mathrm{o}}\right\|\right) . \quad[\mathrm{b}] \mathrm{w} R_{2}=\left[\Sigma\left[\mathrm{w}\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma \mathrm{w}\left(F_{\mathrm{o}}^{2}\right)^{2}\right]^{1 / 2} .$	

Recrystallization solvent : chloroform / methanol
The single crystal X-ray experimental data above do not support the determination of the absolute structure, which was determined by the corresponding diastereomer precursor.

Synthesis of (S_{p})-8

$\left(S_{\mathrm{p}}\right) \mathbf{- 6}(51.3 \mathrm{mg}, 0.12 \mathrm{mmol})$ was placed in a round-bottom flask equipped with a magnetic stirring bar. After toluene (100 mL), THF (1.0 mL), and $\mathrm{I}_{2}(13.8 \mathrm{mg}, 0.05 \mathrm{mmol})$ were added, the mixture was irradiated from a UV lamp (LED $\lambda=365 \mathrm{~nm}$), and the reaction was carried out at room temperature for 2 h with stirring under air. $\mathrm{H}_{2} \mathrm{O}$ and NaHSO_{3} were added in the reaction mixture. The organic layer was separated, and then aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and dried over MgSO_{4}. MgSO_{4} was removed by filtration, and the solvent was removed with a rotary evaporator. The residue was purified by GPC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford $\left(R_{\mathrm{p}}\right) \mathbf{- 8}(6.6 \mathrm{mg}, 0.016 \mathrm{mmol}, 13 \%)$ as a colorless solid.
$R_{\mathrm{f}}=0.46\left(\mathrm{CHCl}_{3} /\right.$ hexane $\left.=1 / 2 \mathrm{v} / \mathrm{v}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 3.14(\mathrm{dd}, J=10.31,5.15$, $2 \mathrm{H}), 3.20(\mathrm{dd}, J=14.32,7.16 \mathrm{~Hz}, 2 \mathrm{H}) 3.87(\mathrm{dd}, J=9.74,4.87 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{dd}, J=15.46,6.87 \mathrm{~Hz}$, $2 \mathrm{H}), 5.72$ (d, $J=7.45 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{~d}, J=7.45 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{dd}, J=6.87,2.29 \mathrm{~Hz}, 2 \mathrm{H}), 7.56$ (dd, J $=6.87,2.29 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.59 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.59 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{dd}, J=6.87,2.29 \mathrm{~Hz}$, $2 \mathrm{H}), 8.44(\mathrm{dd}, J=6.87,2.29 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 32.5,37.3,123.7,125.4$, $125.8,126.1,128.0,128.2,128.5,130.3,130.6,132.2,132.8,133.3,135.1,135.6 \mathrm{ppm}$. HRMS (APCI, $[\mathrm{M}+\mathrm{H}]^{+}$) calcd. for $\mathrm{C}_{32} \mathrm{H}_{24}+\mathrm{H}^{+}: 409.1951$, found 409.1959. $[\alpha]^{25}{ }_{\mathrm{D}}=+713.3\left(c 0.02, \mathrm{CHCl}_{3}\right)$.
$\left(S_{\mathrm{p}}\right) \mathbf{- 8}$ was obtained in 12% yield by the same procedure of $\left(R_{\mathrm{p}}\right)-\mathbf{8}$. HRMS (APCI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{24}+\mathrm{H}^{+}: 409.1951$, found 409.1963. $[\alpha]^{25} \mathrm{D}=-713.3\left(c 0.03, \mathrm{CHCl}_{3}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\left(R_{\mathrm{p}}\right)$-8.

${ }^{13} \mathrm{C}$ NMR spectrum of $\left(R_{\mathrm{p}}\right)-\mathbf{8}$.

Results of mass spectrometry of $\left(R_{\mathrm{p}}\right) \mathbf{- 8}$; upper and lower Mass spectra indicate experimental and theoretical spectra, respectively.

Figure S6. ORTEP drawings (top and side views) of $\left(R_{\mathrm{p}}\right)$-8; CCDC-2084828. Thermal ellipsoids are shown at the 30% probability level. Hydrogen atoms are omitted for clarity.

Table S5. Crystallographic data and structure refinements for $\left(R_{p}\right)-\mathbf{8}$.

Formula	$\mathrm{C}_{32} \mathrm{H}_{24}$
Formula weight	408.51
Temperature (K)	123
Crystal color, habit	colourless, plate
Crystal size, mm	$0.01 \times 0.01 \times 0.005$
Crystal system	monoclini
Space group	P1 21 1(\#4)
a, \AA	8.2667(12)
b, \AA	12.9527(18)
c, \AA	9.9631(16)
α, deg	90
β, deg	102.109(15)
$\gamma, \operatorname{deg}$	90
V, \AA^{3}	1043.1(3)
Z value	2
$D_{\text {calcd, }} \mathrm{g} \mathrm{cm}^{-3}$	1.301
$\mu(\mathrm{MoK} \alpha), \mathrm{cm}^{-1}$	0.073
$F(000)$	432.0
$2 \theta_{\text {max }}$, deg	62.112
No. of reflections measured	5071
No. of observed reflections	4589
No. of variables	289
$R_{1}\left(\mathrm{I}>2 \sigma(\mathrm{I}){ }^{[a]}\right.$	0.0800(2719)
$\mathrm{w} R_{2}$ (all reflns) ${ }^{[\mathrm{b}]}$	0.1571(4589)
Goodness of fit	1.038
Flack paramerter	1.9(10)

$[\mathrm{a}] R_{1}=\Sigma\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right) / \Sigma\left(\left|F_{\mathrm{o}}\right|\right) . \quad[\mathrm{b}] \mathrm{w} R_{2}=\left[\Sigma\left[\mathrm{w}\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma \mathrm{w}\left(F_{\mathrm{o}}^{2}\right)^{2}\right]^{1 / 2}$.
Recrystallization solvent: toluene
The single crystal X-ray experimental data above do not support the determination of the absolute structure, which was determined by the corresponding diastereomer precursor.

Figure S7. UV-vis absorption, CD, PL, and CPL spectra of $\left(R_{\mathrm{p}}\right)$ - and $\left(S_{\mathrm{p}}\right)-5$ in dilute $\mathrm{CHCl}_{3}(1.0 \times$ $10^{-5} \mathrm{M}$); excitation wavelength $=349 \mathrm{~nm}$ for PL and 290 nm for CPL .

Figure S8. UV-vis absorption, CD, PL, and CPL spectra of $\left(R_{\mathrm{p}}\right)$ - and $\left(S_{\mathrm{p}}\right)-\mathbf{6}$ in dilute $\mathrm{CHCl}_{3}(1.0 \times$ $10^{-5} \mathrm{M}$); excitation wavelength $=349 \mathrm{~nm}$ for PL and 290 nm for CPL.
$\left(S_{p}\right)-5$

$\left(S_{p}\right)-6$

$\left(R_{\mathrm{p}}\right)-7$

$\left(R_{\mathrm{p}}\right)-8$

Figure S9. PL decay curves and the data ($\tau=$ PL lifetime, $k_{\mathrm{r}}=$ radiative decay rate, and $k_{\mathrm{nr}}=$ nonradiative decay rate). The decay curves were obtained in their CHCl_{3} solution $\left(1.0 \times 10^{-5} \mathrm{M}\right)$, and monitored at each PL peak top. All PL decay profiles were fitted with a single exponential function.

Figure S10. Molecular orbitals of $(\mathrm{A})\left(R_{\mathrm{p}}\right)-7$ and $(\mathrm{B})\left(R_{\mathrm{p}}\right)-\mathbf{8}$ with monomeric units (MN15/6-31G(d)).

Figure S11. Calculated ECD spectra of $\left(R_{\mathrm{p}}\right)$ - 7 estimated by TD-DFT calculation (TD-MN15/6-31G(d)//MN15/6-31G(d)).

Table S6. Selected data for excitation energy, major configuration, coefficient, oscillator strength, and rotatory strengths for $\left(R_{\mathrm{p}}\right)$-7. ${ }^{\text {a }}$

State	Excitation energy $\mathrm{eVV}(/ \mathrm{nm})$	Major Configuration	Coefficient	Oscillator strength	Rotatory Strengths $/ 10^{-40} \mathrm{esu}^{2} \mathrm{~cm}^{2}$
$\mathrm{~S}_{1}$	$3.65(340)$	$\mathrm{H} \rightarrow \mathrm{L}+2$	0.4128	0.0072	9.9302
$\mathrm{~S}_{2}$	$3.68(337)$	$\mathrm{H}-1 \rightarrow \mathrm{~L}+2$	0.2977	0.0000	0.2658
$\mathrm{~S}_{3}$	$3.78(328)$	$\mathrm{H} \rightarrow \mathrm{L}+1$	0.5240	0.0039	49.1631
$\mathrm{~S}_{4}$	$3.84(323)$	$\mathrm{H} \rightarrow \mathrm{L}$	0.5150	0.0425	-37.5011
$\mathrm{~S}_{5}$	$4.16(298)$	$\mathrm{H}-1 \rightarrow \mathrm{~L}+1$	0.5577	0.0245	97.2531
$\mathrm{~S}_{6}$	$4.17(297)$	$\mathrm{H}-2 \rightarrow \mathrm{~L}$	0.3838	0.0089	11.3506
$\mathrm{~S}_{7}$	$4.29(289)$	$\mathrm{H} \rightarrow \mathrm{L}+2$	0.4367	0.0587	137.9363
$\mathrm{~S}_{8}$	$4.34(286)$	$\mathrm{H}-1 \rightarrow \mathrm{~L}+2$	0.4929	0.9610	156.3373
$\mathrm{~S}_{9}$	$4.42(280)$	$\mathrm{H}-2 \rightarrow \mathrm{~L}+2$	0.3955	0.1525	233.2631
$\mathrm{~S}_{10}$	$4.53(274)$	$\mathrm{H}-2 \rightarrow \mathrm{~L}+1$	0.3949	0.1662	-52.7694

${ }^{\text {a }}$ Estimated from TD-DFT calculations (TD-MN15 /6-31G(d)) based on optimized structures determined by DFT calculation (MN15/6-31G(d)). H and L denote HOMO and LUMO.

Figure S12. Calculated ECD spectra of $\left(R_{\mathrm{p}}\right)-\mathbf{8}$ estimated by TD-DFT calculation (TD-MN15/6-31G(d)//MN15/6-31G(d)).

Table S7. Selected data for excitation energy, major configuration, coefficient, oscillator strength, and rotatory strengths for $\left(R_{\mathrm{p}}\right)$-8. ${ }^{\text {a }}$

State	Excitation energy $\mathrm{eVV}(/ \mathrm{nm})$	Major Configuration	Coefficient	Oscillator strength	Rotatory Strengths $/ 10^{-40} \mathrm{esu}^{2} \mathrm{~cm}^{2}$
$\mathrm{~S}_{1}$	$3.79(327)$	$\mathrm{H} \rightarrow \mathrm{L}$	0.5216	0.0036	26.5888
$\mathrm{~S}_{2}$	$3.88(319)$	$\mathrm{H}-2 \rightarrow \mathrm{~L}$	0.4026	0.0015	2.7175
$\mathrm{~S}_{3}$	$4.09(303)$	$\mathrm{H} \rightarrow \mathrm{L}+2$	0.4549	0.0914	-86.0892
$\mathrm{~S}_{4}$	$4.16(298)$	$\mathrm{H} \rightarrow \mathrm{L}+2$	0.4114	0.0373	90.9670
$\mathrm{~S}_{5}$	$4.34(285)$	$\mathrm{H}-1 \rightarrow \mathrm{~L}$	0.4843	0.1082	197.6851
$\mathrm{~S}_{6}$	$4.52(274)$	$\mathrm{H}-2 \rightarrow \mathrm{~L}+1$	0.4743	0.0025	40.8013
$\mathrm{~S}_{7}$	$4.56(272)$	$\mathrm{H}-2 \rightarrow \mathrm{~L}$	0.4624	0.0008	35.7537
$\mathrm{~S}_{8}$	$4.57(271)$	$\mathrm{H} \rightarrow \mathrm{L}+2$	0.4638	0.0021	33.0991
$\mathrm{~S}_{9}$	$4.72(263)$	$\mathrm{H} \rightarrow \mathrm{L}+3$	0.4574	0.2597	-179.5021
$\mathrm{~S}_{10}$	$4.80(258)$	$\mathrm{H}-2 \rightarrow \mathrm{~L}+2$	0.5731	0.8068	29.4767

${ }^{\text {a }}$ Estimated from TD-DFT calculations (TD-MN15 $/ 6-31 \mathrm{G}(\mathrm{d})$) based on optimized structures determined by DFT calculation (MN15/6-31G(d)). H and L denote HOMO and LUMO.

atom	x	y	z
C	5.62526	-0.94375	1.23681
C	5.26244	0.35763	1.39375
C	4.13911	0.90112	0.69272
C	3.3391	0.07746	-0.1269
C	3.85309	-1.24111	-0.45733
C	4.96227	-1.76221	0.26956
H	6.46353	-1.36507	1.78821
H	5.8139	1.01541	2.06303
C	2.09862	0.61386	-0.65465
C	0.98487	-0.20495	-1.04023
C	1.90769	2.03243	-0.64099
C	-0.02263	0.38421	-1.78181
C	0.72362	2.60679	-1.18709
C	-0.13396	1.78241	-1.88987
H	-0.86634	-0.22303	-2.11016
H	-1.03121	2.20213	-2.34226
C	2.83207	2.85005	0.08371
C	3.85724	2.29728	0.7895
H	4.52059	2.91714	1.38991
H	2.67798	3.9261	0.10208
C	0.69046	-1.5405	-0.36525
H	1.4798	-1.74966	0.3634
H	0.69796	-2.38514	-1.06676
C	0.22216	3.9686	-0.75572
H	0.95579	4.77174	-0.90267
H	-0.64459	4.21812	-1.37978
C	-0.22257	3.9688	0.75518
C	-0.724	2.60709	1.18689
H	-0.95622	4.77196	0.90193
H	0.64417	4.2185	1.37918
C	-1.90805	2.03257	0.64091
C	0.13363	1.78289	1.88983
C	-2.09885	0.61399	0.65475
C	-2.83255	2.85002	-0.08383

C	0.02236	0.38466	1.78206
H	1.03087	2.20274	2.34213
C	-3.3392	0.07738	0.12696
C	-0.98509	-0.20469	1.04057
C	-3.8577	2.29708	-0.78951
H	-2.67858	3.92608	-0.10231
H	0.86608	-0.22248	2.11058
C	-4.13938	0.90088	-0.69264
C	-3.85283	-1.24136	0.45729
C	-0.69069	-1.54041	0.36596
H	-4.52115	2.91681	-1.38993
C	-5.26267	0.3572	-1.39359
C	-4.96197	-1.76264	-0.26952
H	-1.48004	-1.74977	-0.36263
H	-0.69819	-2.38486	1.0677
C	-5.62524	-0.94426	-1.23665
H	-5.81429	1.01487	-2.06283
H	-6.46347	-1.36573	-1.78801
C	-5.44832	-3.06006	0.02158
C	-3.37189	-2.00767	1.55036
C	-3.88337	-3.25557	1.83802
H	-3.50018	-3.8101	2.69095
C	-4.91288	-3.80648	1.04708
H	-5.30235	-4.7966	1.26933
C	5.44896	-3.05948	-0.02161
C	3.37257	-2.00737	-1.55062
C	3.88439	-3.25511	-1.83835
H	3.5015	-3.80961	-2.69144
C	4.91386	-3.8059	-1.04729
H	5.30361	-4.7959	-1.26961
H	-6.27921	-3.44277	-0.56859
H	6.27985	-3.44206	0.56863
H	2.60607	-1.5819	-2.19143
H	-2.60533	-1.58212	2.19105

atom	x	y	z
C	5.8615	-1.66499	0.42284
C	5.5447	-0.33584	0.61035
C	4.29991	0.18339	0.18752
C	3.33446	-0.67977	-0.39686
C	3.71586	-2.02295	-0.63727
C	4.94342	-2.50909	-0.23051
H	6.82461	-2.05158	0.74594
H	6.26	0.34485	1.06887
H	3.04379	-2.67141	-1.19198
H	5.20779	-3.54373	-0.43391
C	2.04191	-0.15015	-0.80237
C	0.91755	-0.98468	-1.09353
C	1.85972	1.2644	-0.81015
C	-0.15029	-0.40644	-1.75876
C	0.62475	1.82662	-1.23836
C	-0.2872	0.98807	-1.85331
H	-1.00666	-1.02344	-2.03048
H	-1.22533	1.39793	-2.22553
C	2.87861	2.10322	-0.23902
C	4.02443	1.58742	0.27784
H	4.77874	2.23526	0.72059
H	2.71216	3.17774	-0.21794
C	0.67561	-2.32007	-0.39414
H	1.48973	-2.50601	0.31251
H	0.66545	-3.17357	-1.0868
C	0.14954	3.18642	-0.77252
H	0.85428	3.99855	-0.99247
H	-0.77769	3.41934	-1.31058
C	-0.14953	3.18646	0.77249
C	-0.62482	1.82671	1.2384

H	-0.85424	3.99864	0.99238
H	0.7777	3.41938	1.31056
C	-1.85972	1.26445	0.81005
C	0.28704	0.98822	1.85358
C	-2.04194	-0.1501	0.80243
C	-2.87849	2.10322	0.23864
C	0.15012	-0.4063	1.75916
H	1.2251	1.39812	2.2259
C	-3.33446	-0.67973	0.39684
C	-0.91762	-0.9846	1.09384
C	-4.02425	1.58738	-0.27832
H	-2.71201	3.17773	0.21742
H	1.00645	-1.02327	2.03108
C	-4.29979	0.18338	-0.18782
C	-3.71597	-2.02284	0.63745
C	-0.67558	-2.32006	0.39461
H	-4.77848	2.23518	-0.72128
C	-5.54454	-0.33588	-0.61074
C	-4.9435	-2.50899	0.23061
H	-3.04403	-2.67123	1.1924
H	-1.48967	-2.50613	-0.31204
H	-0.66539	-3.17348	1.08736
C	-5.86144	-1.66497	-0.42304
H	-6.25975	0.34478	-1.06948
H	-5.20796	-3.54358	0.43417
H	-6.82452	-2.05157	-0.7462

Table S10. Cartesian coordinate of $\left(R_{\mathrm{p}}\right)-7$ in S_{1} state (SS-CASSCF $(16 \mathrm{e}, 14 \mathrm{o}) / 6-31 \mathrm{G})$.

atom	x	y	z
C	5.850078	-0.919742	1.174836
C	5.445165	0.339489	1.414223
C	4.284150	0.883368	0.772601
C	3.496133	0.065917	-0.081019
C	4.036601	-1.240849	-0.466483
C	5.180904	-1.735014	0.193080
H	6.709657	-1.325036	1.674169
H	5.982123	0.962917	2.104459
C	2.215514	0.580014	-0.523996
C	1.061913	-0.236488	-0.892923
C	1.976291	2.069372	-0.453932
C	0.138399	0.358448	-1.808261
C	0.830118	2.591638	-1.127130
C	0.058122	1.711981	-1.938703
H	-0.572406	-0.267119	-2.315724
H	-0.703859	2.134495	-2.565167
C	2.816023	2.827769	0.314562
C	3.916706	2.254481	0.988204
H	4.533448	2.863197	1.620535
H	2.645995	3.880896	0.419116
C	0.686996	-1.508751	-0.151702
H	1.423770	-1.689656	0.618715
H	0.725235	-2.372953	-0.809942
C	0.258666	3.955700	-0.801037
H	1.011782	4.734742	-0.858072
H	-0.485705	4.197680	-1.549831
C	-0.415264	4.026390	0.626236
C	-0.928466	2.674381	1.083693
H	-1.186819	4.787400	0.602614
H	0.321223	4.364491	1.344002
C	-2.062991	2.029243	0.454208
C	-0.156671	1.927579	1.938799
C	-2.239233	0.640851	0.559971
C	-2.967345	2.787644	-0.343042

C	-0.223496	0.506940	1.901430
H	0.661562	2.384939	2.459632
C	-3.457067	0.048757	0.042366
C	-1.124205	-0.139906	1.091028
C	-3.970522	2.187002	-1.021591
H	-2.826591	3.845391	-0.433048
H	0.588342	-0.043735	2.339288
C	-4.241914	0.805031	-0.841197
C	-3.965896	-1.255697	0.435313
C	-0.739896	-1.494619	0.496486
H	-4.610384	2.756976	-1.668627
C	-5.336145	0.202691	-1.534174
C	-5.035590	-1.823503	-0.271525
H	-1.461425	-1.770218	-0.257358
H	-0.761030	-2.284596	1.239114
C	-5.683038	-1.079161	-1.303345
H	-5.873014	0.795756	-2.250273
H	-6.490084	-1.537108	-1.843114
C	-5.528093	-3.113084	0.089266
C	-3.511189	-1.952658	1.603545
C	-4.024959	-3.172721	1.953788
H	-3.679694	-3.664291	2.843028
C	-5.034336	-3.781507	1.159163
H	-5.417470	-4.746920	1.427946
C	5.702219	-2.993131	-0.158554
C	3.515182	-2.001058	-1.531932
C	4.051946	-3.218300	-1.875163
H	3.636233	-3.771057	-2.695707
C	5.144929	-3.733354	-1.169578
H	5.555717	-4.688663	-1.433759
H	-6.320693	-3.535862	-0.499417
H	6.563598	-3.359867	0.367836
H	2.699633	-1.612878	-2.104534
H	-2.787585	-1.489788	2.239056

Table S11. Cartesian coordinate of $\left(R_{\mathrm{p}}\right)-\mathbf{8}$ in S_{1} state (SS-CASSCF $(16 e, 14 \mathrm{o}) / 6-31 \mathrm{G})$.

atom	x	y	z
C	-5.94169	-1.74278	-0.46234
C	-5.63654	-0.42682	-0.70642
C	-4.41010	0.11977	-0.29507
C	-3.45373	-0.69264	0.33656
C	-3.81662	-2.02251	0.62691
C	-5.02745	-2.54022	0.23147
H	-6.88362	-2.14957	-0.77608
H	-6.34680	0.20935	-1.20082
H	-3.15450	-2.63983	1.19656
H	-5.27599	-3.55642	0.47048
C	-2.16681	-0.11463	0.75459
C	-1.04328	-0.91608	1.16730
C	-2.00558	1.28554	0.70636
C	-0.05244	-0.29162	1.89773
C	-0.80167	1.88632	1.19695
C	0.05058	1.11555	1.92765
H	0.76961	-0.86604	2.28087
H	0.92552	1.55356	2.36787
C	-3.02720	2.09070	0.06939
C	-4.15046	1.53428	-0.44618
H	-4.89434	2.14278	-0.92517
H	-2.88470	3.15039	0.00417
C	-0.72686	-2.27360	0.54338
H	-1.47398	-2.51231	-0.19721
H	-0.74289	-3.07841	1.27373
C	-0.32405	3.23998	0.71451
H	-1.07100	4.02040	0.80360

H	0.51240	3.54552	1.33063
C	0.14576	3.16395	-0.78809
C	0.71085	1.81745	-1.18957
H	0.85986	3.96423	-0.95901
H	-0.70333	3.37434	-1.42778
C	1.95872	1.29726	-0.63349
C	-0.10259	0.90054	-1.93924
C	2.17171	-0.18486	-0.63913
C	2.95370	2.10640	-0.08397
C	0.02894	-0.44224	-1.82903
H	-0.90083	1.30434	-2.53416
C	3.50552	-0.70074	-0.35871
C	1.01150	-1.03736	-0.95090
C	4.16513	1.57828	0.36143
H	2.79808	3.16595	-0.01682
H	-0.66580	-1.08581	-2.33818
C	4.48449	0.16733	0.17613
C	3.86694	-2.02860	-0.60990
C	0.67158	-2.29189	-0.15900
H	4.91319	2.22078	0.78416
C	5.74972	-0.32377	0.48184
C	5.13466	-2.49927	-0.30735
H	3.15789	-2.69218	-1.06144
H	1.43774	-2.45121	0.58700
H	0.68979	-3.16962	-0.80411
C	6.07844	-1.65028	0.25090
H	6.48305	0.34385	0.89475
H	5.38435	-3.52261	-0.51255
H	7.05946	-2.01205	0.49121

Figure S13. Selected Molecular orbitals of (A) $\left(R_{\mathrm{p}}\right)-\mathbf{7}$ and (B) $\left(R_{\mathrm{p}}\right)-\mathbf{8}$ and their data for S_{1} excitation energy, oscillator strength, major configuration, ad coefficient (CIS(D)/6-31G//SS$\operatorname{CASSCF}(16 \mathrm{e}, 14 \mathrm{o}) / 6-31 \mathrm{G})$.

