Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

# Supporting Information

Construction of Helical Structures with Planar Chiral [2.2]Paracyclophane: Fusing Helical and Planar Chiralities

Motoki Tsuchiya, Hazuki Maeda, Ryo Inoue, Yasuhiro Morisaki

Department of Applied Chemistry for Environment, School of Biological and Environmental Sciencies, Kwansei Gakuin University 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan.

ymo@kwansei.ac.jp (Yasuhiro Morisaki)

### General

<sup>1</sup>H and <sup>13</sup>C spectra were recorded on a JEOL JNM ECZ-500R instrument at 500 and 125 MHz, Samples were analyzed in CDCl<sub>3</sub> or CD<sub>2</sub>Cl<sub>2</sub>, and the chemical shift values were respectively. expressed relative to Me<sub>4</sub>Si as an internal standard. Analytical thin layer chromatography (TLC) was performed with silica gel 60 Merck F<sub>254</sub> plates. Column chromatography was performed with Wakogel C-300 SiO<sub>2</sub>. Flush column chromatography and recyclable preparative high-performance liquid chromatography (HPLC) were carried out on a YMC LC Forte/R. Diastereomer ratio (dr) was confirmed by a HPLC (TOSOH UV-8020) equipped with a Daicel Chiralpak® IA column (0.46 cm × 25 cm, solvent flow rate 0.5 mL/min). High-resolution mass (HRMS) spectra were obtained on a JEOL JMS-S3000 spectrometer for matrix assisted desorption/ionization (MALDI) with  $\alpha$ -cyano-4hydrixtcubbanuc acid (CHCA), trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2or propenylidene]malononitrile (DCTB) as a matrix. In addition, high-resolution mass (HRMS) spectra were obtained on a Bruker Daltonics microTOF II for atmospheric pressure chemical ionization (APCI). UV-vis spectra were recorded on a JASCO V-730 spectrophotometer, and samples were analyzed in CHCl<sub>3</sub> at room temperature. Photoluminescence (PL) spectra were recorded on a JASCO FP-8500 spectrofluorometer, and samples were analyzed in CHCl<sub>3</sub> at room temperature. Absolute PL quantum efficiency was calculated on a JASCO FP8500 with an ILF-835 integrating sphere. The PL lifetime measurement was performed on a Hamamatsu Photonics Quantaurus-Tau fluorescence Circular dichroism (CD) spectra were recorded on a JASCO J-1500 lifetime system. spectropolarimeter with CHCl<sub>3</sub> as a solvent at room temperature; two scans were accumulated. Circularly polarized luminescence (CPL) spectra were recorded on a JASCO CPL-300 with CHCl<sub>3</sub> as a solvent at room temperature. All samples for CPL were excited around 290 nm, and five scans were accumulated. Specific rotations ( $[\alpha]^{t}_{D}$ ) were measured with a HORIBA SEPA-500 polarimeter.

## Materials

Commercially available compounds used without purification:

 $B(OMe)_3$ , (1S,4R)-camphanoyl chloride,  $Tf_2O$ , 2-vinylnaphthalene, styrene

*n*-BuLi (1.55 M in hexane), Pd(OAc)<sub>2</sub>

2-Dicyclohexylphosphino-2',6'-dimethoxybiphenyl (S-Phos)

NaOH, H<sub>2</sub>O<sub>2</sub> (30% in H<sub>2</sub>O), NH<sub>4</sub>Cl, MgSO<sub>4</sub>, KOH, conc HCl, NaHCO<sub>3</sub>, I<sub>2</sub>, NaHSO<sub>3</sub>

Et<sub>2</sub>O (dehydrated), CHCl<sub>3</sub>, CH<sub>2</sub>Cl<sub>2</sub>, pyridine (dehydrated), hexane, EtOH, DMF, toluene (dehydrated),

THF (dehydrated)

Compounds prepared as described in the literature:

(rac)-1: H. Maeda, M. Kameda, T. Hatakeyama, Y. Morisaki, Polymers 2018, 10, 1140/1-10.

## X-ray structure determination

Crystals suitable for X-ray diffraction studies were analyzed using a Rigaku MicroMax-007HFM MoKa rotating anode generator equipped with VariMax optics, an AFC1 goniometer, and Saturn 724+ detector. The reflection data for them was integrated, scaled and averaged using Rigaku CrysAlis<sup>PRO</sup>. The structures were solved by a direct method (SHELXT) and refined using a full-matrix least-squares method on F2 for all reflections (SHELXL-2018/3). The calculations were performed on Yadokari-XG or Olex2 program package. Crystallographic data are given in Table S1-S4. CCDC-2084825  $((R_{p}, 1S, 4R)-3)$ , 2084826  $((S_{p}, 1S, 4R)-3)$ , 2084827  $((R_{p})-7)$ , 2084828  $((R_{p})-8)$ , 2087318  $((S_{p})-5)$ , and 2087319 ( $(S_p)$ -6) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/

#### **Computational methods**

All calculations were carried out by using the Gaussian 16 program package.<sup>1</sup> Optimized geometries in singlet ground state, molecular orbitals, and CD properties were estimated by DFT and TD-DFT calculations<sup>2–7</sup> with MN15<sup>8</sup> functionals and 6-31G(d)<sup>9–11</sup> basis set. Optimized geometries in S<sub>1</sub> state were obtained by SS-CASSCF(16e,14o) calculation<sup>12–13</sup> with 6-31G basis set. The CPL properties were estimated by using CIS(D) calculation<sup>14–15</sup> based on the optimized geometry obtained by SS-CASSCF calculation. Cartesian coordinates of all optimized structures are given in Tables S5–S8.

- Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- 2) M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, J. Chem. Phys. 1998, 108, 4439–4449.
- 3) R. E. Stratmann, G. E. Scuseria, M. J. Frisch, J. Chem. Phys. 1998, 109, 8218–8224.
- 4) R. Bauernschmitt, R. Ahlrichs, *Chem. Phys. Lett.* **1996**, 256, 454–464.
- 5) A. C. Tsipis, *Coord. Chem. Rev.* **2014**, 272, 1–29.
- 6) C. Adamo, D. Jacquemin, *Chem. Soc. Rev.* **2013**, *42*, 845–856.
- C. Adamo, T. Le Bahers, M. Savarese, L. Wilbraham, G. García, R. Fukuda, M. Ehara, N. Rega,
   I. Ciofini, *Coord. Chem. Rev.* 2015, 304–305, 166–178.
- 8) H. S. Yu, X. He, S. L. Li, D. G. Truhlar, *Chem. Sci.* **2016**, *7*, 5032–5051.
- M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654–3665.
- 10) P. C. Hariharan, J. A. Pople, *Theor. Chim. Acta* 1973, 28, 213–222.
- 11) T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. V. R. Schleyer, J. Comput. Chem. 1983, 4, 294–0.
- 12) D. Hegarty and M. A. Robb, *Mol. Phys.* **1979**, *38*, 1795–1812.
- 13) R. H. E. Eade and M. A. Robb, Chem. Phys. Lett. 1981, 83, 362–368.
- 14) J. A. Pople, R. Seeger, and R. Krishnan, Int. J. Quantum Chem. 1977, 149–163.
- 15) K. Raghavachari, H. B. Schlegel, and J. A. Pople, J. Chem. Phys. 1980, 72, 4654–4655.
- 16) K. Raghavachari and J. A. People, Int. J. Quantum Chem. 1981, 20, 1067–1071.



A solution of *n*-BuLi (1.55 M in hexane, 8.4 mL, 13.0 mmol) was slowly added to a solution of *rac*-**1** (3.68 g, 10.0 mmol) in Et<sub>2</sub>O (80 mL) at 0 °C. After 1 h , B(OMe)<sub>3</sub> (2.2 mL, 19.7 mmol) was added, and then the mixture was warmed to room temperature. After 1 h, aqueous NaOH (1.0 M, 4.0 mL, 4.0 mmol) and aqueous H<sub>2</sub>O<sub>2</sub> (30%, 6.0 mL, 58.8 mmol) were added, and the mixture was stirred for 1 h at room temperature. After the saturated aqueous NH<sub>4</sub>Cl solution was added to the reaction mixture, the organic layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> three times. The combined organic layer was washed with brine and dried over MgSO<sub>4</sub>. MgSO<sub>4</sub> was removed by filtration, and the solvent was evaporated. The residue was purified by column chromatography on SiO<sub>2</sub> (CHCl<sub>3</sub> as an eluent) to afford *rac*-**2** (2.78 g, 9.2 mmol, 91%) as a pale yellowish green crystal.

 $R_{\rm f} = 0.29$  (CHCl<sub>3</sub> as an eluent). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  2.89-3.16 (m, 6H), 3.12-3.18 (m, 1H), 3.28-3.34 (m, 1H), 4.42 (m, 1H), 5.64 (d, J = 1.5 Hz, 1H), 6.21 (dd, J = 1.5, 8.0 Hz, 1H), 6.46 (dd, J = 1.5, 8.0 Hz, 1H), 6.55 (d, J = 1.5 Hz, 1H), 7.00 (d, 8.0 Hz, 1H), 7.08 (d, J = 8.0 Hz, 1H) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  28.8, 34.1, 34.4, 34.7, 121.7, 124.5, 124.9, 127.6, 129.6, 130.7, 130.8, 136.5, 139.3, 140.8, 141.5, 154.3 ppm. HRMS (MALDI, DCTB) calcd. for C<sub>16</sub>H<sub>15</sub>OBr, M<sup>+</sup>: 302.0306, found 302.0360.



<sup>1</sup>H NMR spectrum of *rac*-2.



<sup>13</sup>C NMR spectrum of *rac*-2.

Optical resolution: synthesis of  $(R_p, 1S, 4R)$ - and  $(S_p, 1S, 4R)$ -3



A mixture of *rac*-**2** (1.82 g, 6.0 mmol) and (1*S*,4*R*)-camphanoyl chloride (2.25 g, 10.4 mmol) was placed in a round-bottom flask equipped with a magnetic stirring bar. After degassing the reaction mixture several times, dry pyridine (50 mL) was added to the mixture at 0 °C, and the reaction was carried out at room temperature for 24 h with stirring. After the reaction mixture was cooled to 0 °C, 6 M HCl (100 mL) was added, and organic species were extracted with  $CH_2Cl_2$  three times. The combined organic layer was washed with 1 M HCl, aqueous NaHCO<sub>3</sub>, and brine. The organic layer was dried over MgSO<sub>4</sub>. MgSO<sub>4</sub> was removed, and the solvent was evaporated. The residue was separated by SiO<sub>2</sub> column chromatography (CHCl<sub>3</sub>/hexane = 12/1 v/v as an eluent) to afford (*S*<sub>p</sub>,1*S*,4*R*)-**3** (*R*<sub>f</sub> = 0.23) and (*R*<sub>p</sub>,1*S*,4*R*)-**3** (*R*<sub>f</sub> = 0.29) as white powders. Each diastereomer was purified by recrystallization from CHCl<sub>3</sub>/MeOH to afford (*S*<sub>p</sub>,1*S*,4*R*)-**3** (740.0 mg, 1.5 mmol, 26%) and (*R*<sub>p</sub>,1*S*,4*R*)-**3** (693.3 mg, 1.4 mmol, 24%).

 $(S_{\rm p}, 1S, 4R)$ -**3**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  1.15 (s, 3H), 1.18 (s, 3H), 1.21 (s, 3H), 1.73-1.89 (m, 1H), 1.95-2.10 (m, 1H), 2.15-2.30 (m, 1H), 2.51-2.66 (m, 1H), 2.85-3.14 (m, 7H), 3.28-3.42 (m, 1H), 6.11 (d, *J* = 2.0 Hz, 1H), 6.47 (d, *J* = 2.0 Hz, 1H), 6.50 (d, *J* = 2.0 Hz, 1H), 6.53 (d, *J* = 2.0 Hz, 1H), 6.95 (d, *J* = 8.0 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 1H) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  9.8, 16.8, 17.0, 29.0, 29.6, 31.0, 34.4, 34.5, 34.6, 54.6, 55.0, 90.9, 127.2, 127.6, 130.0, 130.6, 130.9, 130.9, 131.6, 136.8, 139.2, 141.0, 141.5, 149.0, 165.5, 178.3 ppm. HRMS (MALDI, CHCA) calcd. for C<sub>26</sub>H<sub>27</sub>BrO<sub>4</sub> + Na<sup>+</sup>: 505.0985, found 505.0919. [ $\alpha$ ]<sup>25</sup><sub>D</sub> = +100.18 (*c* 0.25, CHCl<sub>3</sub>).

 $(R_{\rm p}, 1S, 4R)$ -**3**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  1.16 (s, 3H), 1.19 (s, 3H), 1.20 (s, 3H), 1.74-1.90 (m, 1H), 1.96-2.12 (m, 1H), 2.19-2.35 (m, 1H), 2.51-2.66 (m, 1H), 2.88-3.14 (m, 7H), 3.28-3.42 (m, 1H), 6.15 (d, J = 2.0 Hz, 1H), 6.47 (dd, J = 8.0, 2.0 Hz, 1H), 6.50 (dd, J = 8.0, 2.0 Hz, 1H), 6.54 (d, J = 2.0 Hz, 1H), 6.95 (d, J = 8.0 Hz, 1H), 7.24 (d, J = 8.0 Hz, 1H) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  9.9, 16.9, 16.9, 29.0, 29.7, 31.2, 34.4, 34.5, 34.7, 54.6, 55.0, 90.9, 127.2, 127.6, 130.0, 130.6, 130.9, 130.9, 131.5, 136.8, 139.1, 141.1, 141.5, 148.9, 165.4, 178.1 ppm. HRMS (MALDI, CHCA) calcd. for C<sub>26</sub>H<sub>27</sub>BrO<sub>4</sub> + Na<sup>+</sup>: 505.0985, found 505.0919. [ $\alpha$ ]<sup>25</sup><sub>D</sub> = -100.21 (*c* 0.25, CHCl<sub>3</sub>).





**Figure S1.** Chromatograms of diastereomers,  $(R_p, 1S, 4R)$ -3, and  $(S_p, 1S, 4R)$ -3



<sup>1</sup>H NMR spectrum of  $(R_p, 1S, 4R)$ -**3**.



<sup>13</sup>C NMR spectrum of  $(R_p, 1S, 4R)$ -**3**.



Results of mass spectrometry of  $(R_p, 1S, 4R)$ -3; upper and lower Mass spectra indicate experimental and theoretical spectra, respectively.



<sup>1</sup>H NMR spectrum of  $(S_p, 1S, 4R)$ -**3**.



<sup>13</sup>C NMR spectrum of  $(S_p, 1S, 4R)$ -**3**.



Results of mass spectrometry of  $(S_p, 1S, 4R)$ -3; upper and lower Mass spectra indicate experimental and theoretical spectra, respectively.



**Figure S2.** ORTEP drawings of (A)  $(R_p, 1S, 4R)$ -**3**·EtOH: CCDC-2084825 and (B)  $(S_p, 1S, 4R)$ -**3**: CCDC-2084826. Thermal ellipsoids are shown at the 30% probability level. Hydrogen atoms are omitted for clarity.

|                                                                                                                        | $(R_{\rm p}, 1S, 4R)$ - <b>3</b> ·EtOH                                             | $(S_{\rm p}, 1S, 4R)$ - <b>3</b> |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------|--|--|--|
| Formula                                                                                                                | C <sub>26</sub> H <sub>27</sub> BrO <sub>4</sub> , C <sub>2</sub> H <sub>6</sub> O | $C_{26}H_{27}BrO_4$              |  |  |  |
| Formula weight                                                                                                         | 529.45                                                                             | 483.38                           |  |  |  |
| Temperature (K)                                                                                                        | 150                                                                                | 150                              |  |  |  |
| Crystal color, habit                                                                                                   | colorless, plate                                                                   | colorless, needle                |  |  |  |
| Crystal size, mm                                                                                                       | $0.20\times0.10\times0.05$                                                         | $0.50\times0.20\times0.05$       |  |  |  |
| Crystal system                                                                                                         | orthorhombic                                                                       | monoclinic                       |  |  |  |
| Space group                                                                                                            | $P2_{1}2_{1}2_{1}(#19)$                                                            | <i>P</i> 12 <sub>1</sub> 1(#4)   |  |  |  |
| <i>a</i> , Å                                                                                                           | 7.946(9)                                                                           | 9.1381(3)                        |  |  |  |
| b, Å                                                                                                                   | 8.073(10)                                                                          | 7.2746(2)                        |  |  |  |
| <i>c</i> , Å                                                                                                           | 39.47(5)                                                                           | 16.3470(5)                       |  |  |  |
| a, deg                                                                                                                 | 90                                                                                 | 90                               |  |  |  |
| $\beta$ , deg                                                                                                          | 90                                                                                 | 91.457(3)                        |  |  |  |
| γ, deg                                                                                                                 | 90                                                                                 | 90                               |  |  |  |
| <i>V</i> , Å <sup>3</sup>                                                                                              | 2532 (5)                                                                           | 1086.33(6)                       |  |  |  |
| Z value                                                                                                                | 4                                                                                  | 2                                |  |  |  |
| $D_{ m calcd}, { m g~cm^{-3}}$                                                                                         | 1.389                                                                              | 1.478                            |  |  |  |
| $\mu$ (MoK $\alpha$ ), cm <sup>-1</sup>                                                                                | 1.659                                                                              | 1.923                            |  |  |  |
| <i>F</i> (000)                                                                                                         | 1104                                                                               | 1544.00                          |  |  |  |
| $2\theta_{\rm max}$ , deg                                                                                              | 54.97                                                                              | 62.32                            |  |  |  |
| No. of reflections measured                                                                                            | 26196                                                                              | 10203                            |  |  |  |
| No. of observed reflections                                                                                            | 5754                                                                               | 6149                             |  |  |  |
| No. of variables                                                                                                       | 324                                                                                | 283                              |  |  |  |
| $R_1 (\mathbf{I} > 2\sigma(\mathbf{I}))^{[\mathbf{a}]}$                                                                | 0.0427(5336)                                                                       | 0.0372(5699)                     |  |  |  |
| $wR_2$ (all reflns) <sup>[b]</sup>                                                                                     | 0.1088(5754)                                                                       | 0.0880(6149)                     |  |  |  |
| Goodness of fit                                                                                                        | 1.100                                                                              | 1.017                            |  |  |  |
| Flack paramerter                                                                                                       | -0.001(5)                                                                          | -0.009(6)                        |  |  |  |
| a) $R_1 = \Sigma( F_o  -  F_c ) / \Sigma( F_o ).$ [b] $wR_2 = [\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma w(F_o^2)^2]^{1/2}.$ |                                                                                    |                                  |  |  |  |

**Table S1.** Crystallographic data for (A)  $(R_p, 1S, 4R)$ -**3**·EtOH and (B)  $(S_p, 1S, 4R)$ -**3** 

Recrystallization solvent : chloroform / methanol



 $(S_p, 1S, 4R)$ -3 (733.7 mg, 1.5 mmol), EtOH (40 mL) and CH<sub>2</sub>Cl<sub>2</sub> (30 mL) was placed in a roundbottom flask equipped with a magnetic stirring bar. After degassing the reaction mixture several times, an aqueous solution of KOH (872.2 mg in H<sub>2</sub>O (7 mL)) was added to the mixture. After stirring for 13 h, 6 M HCl (3.5 mL) was added to the reaction mixture. The organic layer was separated and extracted with CH<sub>2</sub>Cl<sub>2</sub> three timers. The combined organic layer was washed with aqueous NaHCO<sub>3</sub> and brine, and then dried over MgSO<sub>4</sub>. MgSO<sub>4</sub> was removed by filtration, and the solvent was evaporated. The solid of ( $S_p$ )-2 was used for the next reaction without further purification.

To a solution of  $(S_p)$ -2 in CH<sub>2</sub>Cl<sub>2</sub> (18 mL) were added pyridine (1.2 mL, 14.9 mmol) and Tf<sub>2</sub>O (0.6 mL, 3.57 mmol) at 0 °C. After being stirred for 2 h at room temperature, 6 M HCl (3.5 mL) was added to the reaction mixture. The organic layer was separated and extracted with CH<sub>2</sub>Cl<sub>2</sub> three timers. The combined organic layer was washed with aqueous NaHCO<sub>3</sub> and brine, and then dried over MgSO<sub>4</sub>. MgSO4 was removed by filtration, and the solvent was evaporated. The residue was purified by column chromatography on SiO<sub>2</sub> (AcOEt/hexane = 1/2 v/v as an eluent) to afford ( $S_p$ )-4 (609.5 mg, 1.4 mmol, 92%) as a colorless liquid.  $R_f = 0.77$  (AcOEt / hexane = 1/2 v/v as an eluent).

 $R_{\rm f} = 0.31$  (CHCl<sub>3</sub>/hexane = 1/2 v/v). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  2.92-3.11 (m, 6H), 3.26-3.30 (m, 1H), 3.36-3.41 (m, 1H), 6.51 (dd, J = 2.0, 8.0 Hz, 1H), 6.54 (dd, J = 1.5, 7.5 Hz, 2H), 6.89 (d, J = 7.5 Hz, 1H), 7.28 (d, J = 7.5 Hz, 1H) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  29.4, 34.2, 34.4, 118.7 (q, J = 319 Hz), 127.6, 130.9, 131.2, 131.4, 131.5, 131.8, 136.9, 139.0, 141.0, 142.5, 148.6 ppm. HRMS (APCI) calcd. for C<sub>17</sub>H<sub>14</sub>BrF<sub>3</sub>O<sub>3</sub>S M<sup>+</sup>: 433.9794, found 433.9793. [ $\alpha$ ]<sup>25</sup><sub>D</sub> = -100.90 (*c* 0.25, CHCl<sub>3</sub>).

 $(R_p)$ -4 was obtained in 90% yield by the same procedure of  $(S_p)$ -4. HRMS (APCI) calcd. for C<sub>17</sub>H<sub>14</sub>BrF<sub>3</sub>O<sub>3</sub>S M<sup>+</sup>: 433.9794, found 433.9794. [ $\alpha$ ]<sup>25</sup><sub>D</sub> = +100.02 (*c* 0.25, CHCl<sub>3</sub>).



<sup>1</sup>H NMR spectrum of  $(S_p)$ -4.



<sup>13</sup>C NMR spectrum of  $(S_p)$ -4.



A mixture of  $(S_p)$ -4 (201.4 mg, 0.462 mmol), Pd(OAc)<sub>2</sub> (11.1 mg, 4.9×10<sup>-3</sup> mmol) and S-Phos (62.6 mg, 0.015 mmol) was placed in a round-bottom flask equipped with a magnetic stirring bar. After degassing the reaction mixture several times, DMF (9.0 mL), Et<sub>3</sub>N (2.0 mL) and 2-vinylnaphthalene (157.3 mg, 1.02 mmol) were added, and the reaction was carried out at reflux temperature for 48 h with stirring. After the reaction mixture was cooled to room temperature, precipitates were removed by filtration. The organic layer was separated, and then aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub>. The organic layer was washed with H<sub>2</sub>O and brine, and dried over MgSO<sub>4</sub>. MgSO<sub>4</sub> was removed by filtration, and the solvent was removed with a rotary evaporator. The residue was purified by column chromatography on SiO<sub>2</sub> (CHCl<sub>3</sub>/hexane = 1/2 v/v as an eluent) and recrystallization from CHCl<sub>3</sub>/MeOH (v/v = 1/1) to afford ( $R_p$ )-**5** (92.3 mg, 0.18 mmol, 39%) as a light yellow solid.

 $R_{\rm f} = 0.34$  (CHCl<sub>3</sub>/hexane = 1/2 v/v). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  2.89-1.96 (m, 2H), 3.01-3.07 (m, 2H), 3.16-3.22 (m, 2H), 3.58-3.64 (m, 2H), 6.47 (dd, J = 1.72, 7.45 Hz, 2H), 6.75 (d, J = 7.45 Hz, 2H), 6.82 (d, J = 1.72 Hz, 2H), 7.12 (d, J = 16.04 Hz, 2H), 7.32 (d, J = 16.04 Hz, 2H), 7.47 (ddd, J = 1.15, 6.87, 8.02 Hz, 2H), 7.51 (ddd, J = 1.15, 6.87, 8.02 Hz, 2H), 7.81-7.89 (m, 8H), 7.92 (s, 2H) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  33.6, 35.2, 123.6, 126.0, 126.5, 126.6, 127.1, 127.8, 128.1, 128.5, 129.4, 129.7, 131.1, 131.4, 133.1, 133.9, 135.4, 138.0, 138.3, 139.9 ppm. HRMS (APCI) calcd. for C<sub>40</sub>H<sub>32</sub> + H<sup>+</sup>: 513.2577, found 513.2567. [ $\alpha$ ]<sup>25</sup><sub>D</sub> = +1103.2 (*c* 0.258, CHCl<sub>3</sub>).

 $(R_p)$ -5 was obtained in 32% yield by the same procedure of  $(S_p)$ -5. HRMS (APCI) calcd. for  $C_{40}H_{32} + H^+$ : 513.2577, found 513.2580.  $[\alpha]^{25}_D = -1103.2$  (*c* 0.051, CHCl<sub>3</sub>).



<sup>1</sup>H NMR spectrum of  $(S_p)$ -**5**.



<sup>13</sup>C NMR spectrum of  $(S_p)$ -**5**.



Results of mass spectrometry of  $(S_p)$ -5; upper and lower Mass spectra indicate experimental and theoretical spectra, respectively.



**Figure S3.** ORTEP drawings (top and side views) of  $(S_p)$ -**5**; CCDC-2087318. Thermal ellipsoids are shown at the 30% probability level. Hydrogen atoms are omitted for clarity.

| Table S2.  | Crystallographic        | data and structure | refinements | for ( <i>S</i> <sub>p</sub> )- <b>5</b> . |
|------------|-------------------------|--------------------|-------------|-------------------------------------------|
| 100010 010 | er / starte Brack print |                    |             | $\sim p = (\sim p) = 0$                   |

| Formula                                                                                               | C40H32                                              |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Formula weight                                                                                        | 512.65                                              |
| Temperature (K)                                                                                       | 150                                                 |
| Crystal color, habit                                                                                  | colorless,needle                                    |
| Crystal size, mm                                                                                      | 0.4×0.1×0.05                                        |
| Crystal system                                                                                        | Orthorhombic                                        |
| Space group                                                                                           | $P 2_1 2_1 2_1(\#19)$                               |
| <i>a</i> , Å                                                                                          | 8.3890(2)                                           |
| b, Å                                                                                                  | 21.6023(6)                                          |
| <i>c</i> , Å                                                                                          | 30.9026(8)                                          |
| a, deg                                                                                                | 90                                                  |
| $\beta$ , deg                                                                                         | 90                                                  |
| γ, deg                                                                                                | 90                                                  |
| <i>V</i> , Å <sup>3</sup>                                                                             | 5600.2(3)                                           |
| Zvalue                                                                                                | 8                                                   |
| $D_{ m calcd}, { m g~cm^{-3}}$                                                                        | 1.216                                               |
| $\mu$ (MoK $\alpha$ ), cm <sup>-1</sup>                                                               | 0.690                                               |
| <i>F</i> (000)                                                                                        | 2176                                                |
| $2\theta_{\max}$ , deg                                                                                | 60.7440                                             |
| No. of reflections measured                                                                           | 109620                                              |
| No. of observed reflections                                                                           | 16867                                               |
| No. of variables                                                                                      | 721                                                 |
| $R_1 (\mathrm{I} > 2\sigma(\mathrm{I}))^{[\mathrm{a}]}$                                               | 0.0676(8550)                                        |
| $wR_2$ (all reflns) <sup>[b]</sup>                                                                    | 0.1250(16867)                                       |
| Goodness of fit                                                                                       | 1.000                                               |
| Flack paramerter                                                                                      | 1.9(10)                                             |
| [a] $R_1 = \sum ( F_0  -  F_c ) / \sum ( F_0 )$ . [b] w $R_2 = \sum ( F_0  -  F_c ) / \sum ( F_0 )$ . | $[w(F_0^2 - F_c^2)^2] / \Sigma w(F_0^2)^2]^{1/2}$ . |

Recrystallization solvent : chloroform / methanol The single crystal X-ray experimental data above do not support the determination of the absolute structure, which was determined by the corresponding diastereomer precursor.

Synthesis of  $(S_p)$ -7



 $(S_p)$ -5 (26.3 mg, 0.051 mmol) was placed in a round-bottom flask equipped with a magnetic stirring bar. After toluene (50 mL), THF (1.0 mL), and I<sub>2</sub> (6.9 mg, 0.025 mmol) were added, the mixture was irradiated from a UV lamp (LED  $\lambda$  = 365 nm), and the reaction was carried out at room temperature for 7 h with stirring under air. H<sub>2</sub>O and NaHSO<sub>3</sub> were added in the reaction mixture. The organic layer was separated, and then aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub>. The organic layer was washed with H<sub>2</sub>O and brine, and dried over MgSO<sub>4</sub>. MgSO<sub>4</sub> was removed by filtration, and the solvent was removed with a rotary evaporator. The residue was purified by recycled HPLC (eluent: CH<sub>2</sub>Cl<sub>2</sub>) to afford (*R*<sub>p</sub>)-7 (4.6 mg, 0.009 mmol, 18%) as a colorless solid.

 $R_{\rm f} = 0.56 \; (\text{CHCl}_3/\text{hexane} = 1/2 \; \text{v/v}).$  <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  2.59-2.66 (m, 2H), 2.67-2.77 (m, 2H), 3.30-3.36 (m, 2H), 3.97-4.04 (m, 2H), 5.53 (d  $J = 6.87 \; \text{Hz}, 2\text{H}), 6.12$  (d,  $J = 6.87 \; \text{Hz}, 2\text{H}$ ), 7.38 (dd,  $J = 6.87, 8.59 \; \text{Hz}, 2\text{H}$ ), 7.50 (dd,  $J = 7.45, 7.45 \; \text{Hz}, 2\text{H}$ ), 7.95-7.96 (m, 8H), 8.03 (d,  $J = 9.16 \; \text{Hz}, 2\text{H}$ ), 8.28 (d,  $J = 8.59 \; \text{Hz}, 2\text{H}$ ) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  32.9, 37.7, 124.3, 125.5, 125.6, 125.7, 126.6, 127.2, 127.5, 127.6, 127.8, 128.7, 129.1, 130.4, 130.6, 130.7, 132.3, 134.09, 134.14, 138.3 ppm. HRMS (APCI) calcd. for C<sub>40</sub>H<sub>28</sub> + H<sup>+</sup>: 509.2264, found 509.2266. [ $\alpha$ ]<sup>25</sup><sub>D</sub> = +878.0 (*c* 0.041, CHCl<sub>3</sub>).

 $(S_p)$ -7 was obtained in 14% yield by the same procedure of  $(R_p)$ -7. HRMS (APCI) calcd. for  $C_{40}H_{28} + H^+$ : 509.2264, found 509.2264.  $[\alpha]^{25}_D = -878.4$  (*c* 0.050, CHCl<sub>3</sub>).



<sup>1</sup>H NMR spectrum of  $(R_p)$ -7.



<sup>13</sup>C NMR spectrum of  $(R_p)$ -7.



Results of mass spectrometry of  $(R_p)$ -7.; upper and lower Mass spectra indicate experimental and theoretical spectra, respectively.



**Figure S4.** ORTEP drawings (top and side views) of  $(R_p)$ -7; CCDC-2084827. Thermal ellipsoids are shown at the 30% probability level. Hydrogen atoms are omitted for clarity.

| Farmula                                                                        |                                                      |
|--------------------------------------------------------------------------------|------------------------------------------------------|
| Formula                                                                        | C40H28                                               |
| Formula weight                                                                 | 508.62                                               |
| Temperature (K)                                                                | 123                                                  |
| Crystal color, habit                                                           | colourless,plate                                     |
| Crystal size, mm                                                               | 0.10×0.05×0.01                                       |
| Crystal system                                                                 | orthorhombic                                         |
| Space group                                                                    | $P2_{1}2_{1}2_{1}$ (#19)                             |
| <i>a</i> , Å                                                                   | 11.0786(7)                                           |
| <i>b</i> , Å                                                                   | 15.0781(9)                                           |
| <i>c</i> , Å                                                                   | 15.4237(9)                                           |
| $\alpha$ , deg                                                                 | 90                                                   |
| $\beta$ , deg                                                                  | 90                                                   |
| γ, deg                                                                         | 90                                                   |
| <i>V</i> , Å <sup>3</sup>                                                      | 2576.4(3)                                            |
| Z value                                                                        | 4                                                    |
| $D_{ m calcd}, { m g~cm^{-3}}$                                                 | 1.311                                                |
| $\mu$ (MoK $\alpha$ ), cm <sup>-1</sup>                                        | 0.74                                                 |
| <i>F</i> (000)                                                                 | 1072                                                 |
| $2\theta_{\rm max}$ , deg                                                      | 62.228                                               |
| No. of reflections measured                                                    | 12553                                                |
| No. of observed reflections                                                    | 6631                                                 |
| No. of variables                                                               | 361                                                  |
| $R_1 (\mathrm{I} > 2\sigma(\mathrm{I}))^{[\mathrm{a}]}$                        | 0.0630                                               |
| $wR_2$ (all reflns) <sup>[b]</sup>                                             | 0.1219                                               |
| Goodness of fit                                                                | 1.015                                                |
| Flack paramerter                                                               | 2.5(10)                                              |
| [a] $R_1 = \Sigma( F_o  -  F_c ) / \Sigma( F_o )$ . [b] w $R_2 = [\Sigma_{a}]$ | $\Sigma[w(F_o^2-F_c^2)^2]/\Sigma w(F_o^2)^2]^{1/2}.$ |

**Table S3.** Crystallographic data and structure refinements for  $(R_p)$ -7.

Recrystallization solvent: toluene The single crystal X-ray experimental data above do not support the determination of the absolute structure, which was determined by the corresponding diastereomer precursor.



A mixture of  $(S_p)$ -4 ( 50.7mg, 0.115 mmol), Pd(OAc)<sub>2</sub> (2.8 mg, 0.0125 mmol), and S-Phos (15.4mg, 0.038 mmol) was placed in a round-bottom flask equipped with a magnetic stirring bar. After degassing the reaction mixture several times, DMF (2.1 mL), Et<sub>3</sub>N (0.5 mL), and styrene (0.03 ml, 28.30 mg, 0.27 mmol) were added, and the reaction was carried out at reflux temperature for 48 h with stirring. After the reaction mixture was cooled to room temperature, precipitates were removed by filtration. The organic layer was separated, and then aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub>. The organic layer was washed with H<sub>2</sub>O and brine, and dried over MgSO<sub>4</sub>. MgSO<sub>4</sub> was removed by filtration, and the solvent was removed with a rotary evaporator. The residue was purified by column chromatography on SiO<sub>2</sub> (CHCl<sub>3</sub>/hexane = 1/2 v/v as an eluent) and recrystallization from CHCl<sub>3</sub>/MeOH (v/v = 1/1) to afford ( $R_p$ )-6 (19.6 mg, 0.048 mmol, 36%) as a white solid.

 $(S_{\rm p})$ -6:  $R_{\rm f} = 0.38$  (CHCl<sub>3</sub>/hexane = 1/2 v/v). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  2.85 (dd, J = 10.31, 5.15 Hz, 2H), 3.00 (m, 2H) 3.15 (m, 2H), 3.53 (dd, J = 10.31, 5.73 Hz, 2H), 6.42 (dd, J = 1.72, 8.02 Hz, 2H), 6.70 (d, J = 8.02 Hz, 2H), 6.75 (d, J = 1.15 Hz, 2H), 6.92 (d, J = 16.61 Hz, 2H), 7.17 (d, J = 16.61 Hz, 2H), 7.29 (t, J = 7.45 Hz, 2H), 7.40 (dd, J = 7.45, 7.45 Hz, 4H), 7.57 (d, J = 7.45 Hz, 2H) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  33.52, 35.16, 126.61, 126.74, 127.62, 128.84, 129.18, 129.68, 130.99, 131.29, 137.90, 137.96, 138.19, 139.82 ppm. HRMS (APCI) calcd. for C<sub>32</sub>H<sub>28</sub> + H<sup>+</sup>: 413.2264, found 413.2272. [ $\alpha$ ]<sup>25</sup><sub>D</sub> = +974.4 (*c* 0.10, CHCl<sub>3</sub>).

 $(R_p)$ -6 was obtained in 39% yield by the same procedure of  $(S_p)$ -6. HRMS (APCI) calcd. for  $C_{32}H_{28} + H^+$ : 413.2264, found 413.2260.  $[\alpha]^{25}_D = -974.4$  (*c* 0.10, CHCl<sub>3</sub>).



<sup>1</sup>H NMR spectrum of  $(S_p)$ -**6**.



<sup>13</sup>C NMR spectrum of  $(S_p)$ -**6**.



Results of mass spectrometry of  $(R_p)$ -6; upper and lower Mass spectra indicate experimental and theoretical spectra, respectively.



**Figure S5.** ORTEP drawings (top and side views) of  $(S_p)$ -**6**; CCDC-2087319. Thermal ellipsoids are shown at the 30% probability level. Hydrogen atoms are omitted for clarity.

| Table S4. | Crystallographic | data and structure | refinements for | or $(S_p)$ -6. |
|-----------|------------------|--------------------|-----------------|----------------|
|           |                  |                    |                 | \ E/           |

| Formula                                                                            | C32H28                                                              |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Formula weight                                                                     | 412.54                                                              |
| Temperature (K)                                                                    | 123                                                                 |
| Crystal color, habit                                                               | colorless, platelet                                                 |
| Crystal size, mm                                                                   | $0.40 \times 0.20 \times 0.10$                                      |
| Crystal system                                                                     | monoclinic                                                          |
| Space group                                                                        | <i>P</i> 1 2 <sub>1</sub> 1 (#4)                                    |
| <i>a</i> , Å                                                                       | 14.7972(6)                                                          |
| <i>b</i> , Å                                                                       | 8.0733(3)                                                           |
| <i>c</i> , Å                                                                       | 18.9373(7)                                                          |
| $\alpha$ , deg                                                                     | 90                                                                  |
| $\beta$ , deg                                                                      | 96.319(4)                                                           |
| γ, deg                                                                             | 90                                                                  |
| $V, Å^3$                                                                           | 2248.55(15)                                                         |
| Zvalue                                                                             | 4                                                                   |
| $D_{ m calcd}, { m g~cm^{-3}}$                                                     | 1.219                                                               |
| $\mu$ (MoK $\alpha$ ), cm <sup>-1</sup>                                            | 0.69                                                                |
| <i>F</i> (000)                                                                     | 880.0                                                               |
| $2\theta_{\max}$ , deg                                                             | 62.3520                                                             |
| No. of reflections measured                                                        | 21741                                                               |
| No. of observed reflections                                                        | 12890                                                               |
| No. of variables                                                                   | 577                                                                 |
| $R_1 (\mathbf{I} > 2\sigma(\mathbf{I}))^{[\mathbf{a}]}$                            | 0.0572(9411)                                                        |
| wR <sub>2</sub> (all reflns) <sup>[b]</sup>                                        | 0.1263( 12690)                                                      |
| Goodness of fit                                                                    | 1.008                                                               |
| Flack paramerter                                                                   | 1.8(10)                                                             |
| [a] $R_1 = \Sigma(\overline{ F_0  -  F_c })/\Sigma( F_0 )$ . [b] w $R_2 = [\Sigma$ | $\Sigma[w(F_o^2 - \overline{F_c^2})^2] / \Sigma w(F_o^2)^2]^{1/2}.$ |

Recrystallization solvent : chloroform / methanol The single crystal X-ray experimental data above do not support the determination of the absolute structure, which was determined by the corresponding diastereomer precursor.



 $(S_p)$ -6 (51.3 mg, 0.12 mmol) was placed in a round-bottom flask equipped with a magnetic stirring bar. After toluene (100 mL), THF (1.0 mL), and I<sub>2</sub> (13.8 mg, 0.05 mmol) were added, the mixture was irradiated from a UV lamp (LED  $\lambda = 365$  nm), and the reaction was carried out at room temperature for 2 h with stirring under air. H<sub>2</sub>O and NaHSO<sub>3</sub> were added in the reaction mixture. The organic layer was separated, and then aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub>. The organic layer was washed with H<sub>2</sub>O and brine, and dried over MgSO<sub>4</sub>. MgSO<sub>4</sub> was removed by filtration, and the solvent was removed with a rotary evaporator. The residue was purified by GPC (CH<sub>2</sub>Cl<sub>2</sub>) to afford ( $R_p$ )-8 (6.6 mg, 0.016 mmol, 13%) as a colorless solid.

 $R_{\rm f} = 0.46 \; ({\rm CHCl_3/hexane} = 1/2 \; {\rm v/v}).$  <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  3.14 (dd, J = 10.31, 5.15, 2H), 3.20 (dd, J = 14.32, 7.16 Hz, 2H) 3.87 (dd, J = 9.74, 4.87 Hz, 2H), 4.08 (dd, J = 15.46, 6.87 Hz, 2H), 5.72 (d, J = 7.45 Hz, 2H), 6.04 (d, J = 7.45 Hz, 2H), 7.55 (dd, J = 6.87, 2.29 Hz, 2H), 7.56 (dd, J = 6.87, 2.29 Hz, 2H), 7.58 (d, J = 8.59 Hz, 2H), 7.78 (d, J = 8.59 Hz, 2H), 7.92 (dd, J = 6.87, 2.29 Hz, 2H), 8.44 (dd, J = 6.87, 2.29 Hz, 2H) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  32.5, 37.3, 123.7, 125.4, 125.8, 126.1, 128.0, 128.2, 128.5, 130.3, 130.6, 132.2, 132.8, 133.3, 135.1, 135.6 ppm. HRMS (APCI, [M+H]<sup>+</sup>) calcd. for C<sub>32</sub>H<sub>24</sub> + H<sup>+</sup>: 409.1951, found 409.1959. [ $\alpha$ ]<sup>25</sup>D = +713.3 (*c* 0.02, CHCl<sub>3</sub>).

 $(S_p)$ -8 was obtained in 12% yield by the same procedure of  $(R_p)$ -8. HRMS (APCI) calcd. for  $C_{32}H_{24} + H^+$ : 409.1951, found 409.1963.  $[\alpha]^{25}_D = -713.3$  (*c* 0.03, CHCl<sub>3</sub>).



<sup>1</sup>H NMR spectrum of  $(R_p)$ -8.



<sup>13</sup>C NMR spectrum of  $(R_p)$ -8.



Results of mass spectrometry of  $(R_p)$ -8; upper and lower Mass spectra indicate experimental and theoretical spectra, respectively.



**Figure S6.** ORTEP drawings (top and side views) of  $(R_p)$ -**8**; CCDC-2084828. Thermal ellipsoids are shown at the 30% probability level. Hydrogen atoms are omitted for clarity.

| Table 55. Crystanographic data t                                       | ind structure refinements for (Rp) (                  |
|------------------------------------------------------------------------|-------------------------------------------------------|
| Formula                                                                | C <sub>32</sub> H <sub>24</sub>                       |
| Formula weight                                                         | 408.51                                                |
| Temperature (K)                                                        | 123                                                   |
| Crystal color, habit                                                   | colourless,plate                                      |
| Crystal size, mm                                                       | 0.01×0.01×0.005                                       |
| Crystal system                                                         | monoclini                                             |
| Space group                                                            | <i>P</i> 1 2 <sub>1</sub> 1(#4)                       |
| <i>a</i> , Å                                                           | 8.2667(12)                                            |
| <i>b</i> , Å                                                           | 12.9527(18)                                           |
| <i>c</i> , Å                                                           | 9.9631(16)                                            |
| α, deg                                                                 | 90                                                    |
| $\beta$ , deg                                                          | 102.109(15)                                           |
| γ, deg                                                                 | 90                                                    |
| <i>V</i> , Å <sup>3</sup>                                              | 1043.1(3)                                             |
| Zvalue                                                                 | 2                                                     |
| $D_{ m calcd}, { m g~cm^{-3}}$                                         | 1.301                                                 |
| $\mu$ (MoK $\alpha$ ), cm <sup>-1</sup>                                | 0.073                                                 |
| <i>F</i> (000)                                                         | 432.0                                                 |
| $2\theta_{\max}$ , deg                                                 | 62.112                                                |
| No. of reflections measured                                            | 5071                                                  |
| No. of observed reflections                                            | 4589                                                  |
| No. of variables                                                       | 289                                                   |
| $R_1 (\mathbf{I} > 2\sigma(\mathbf{I}))^{[\mathbf{a}]}$                | 0.0800(2719)                                          |
| wR <sub>2</sub> (all reflns) <sup>[b]</sup>                            | 0.1571( 4589)                                         |
| Goodness of fit                                                        | 1.038                                                 |
| Flack paramerter                                                       | 1.9(10)                                               |
| $[a] R_1 = \Sigma( F_o  -  F_c ) / \Sigma( F_o ).  [b] wR_2 = [\Sigma$ | $\sum [w(F_o^2 - F_c^2)^2] / \sum w(F_o^2)^2]^{1/2}.$ |

Table S5. Crystallographic data and structure refinements for  $(R_p)$ -8.

Recrystallization solvent: toluene The single crystal X-ray experimental data above do not support the determination of the absolute structure, which was determined by the corresponding diastereomer precursor.



**Figure S7.** UV-vis absorption, CD, PL, and CPL spectra of  $(R_p)$ - and  $(S_p)$ -**5** in dilute CHCl<sub>3</sub> (1.0 × 10<sup>-5</sup> M); excitation wavelength = 349 nm for PL and 290 nm for CPL.



**Figure S8.** UV-vis absorption, CD, PL, and CPL spectra of  $(R_p)$ - and  $(S_p)$ -**6** in dilute CHCl<sub>3</sub> (1.0 × 10<sup>-5</sup> M); excitation wavelength = 349 nm for PL and 290 nm for CPL.



**Figure S9.** PL decay curves and the data ( $\tau$  = PL lifetime,  $k_r$  = radiative decay rate, and  $k_{nr}$  = non-radiative decay rate). The decay curves were obtained in their CHCl<sub>3</sub> solution (1.0 × 10<sup>-5</sup> M), and monitored at each PL peak top. All PL decay profiles were fitted with a single exponential function.





**Figure S10.** Molecular orbitals of (A)  $(R_p)$ -7 and (B)  $(R_p)$ -8 with monomeric units (MN15/6-31G(d)).



**Figure S11.** Calculated ECD spectra of  $(R_p)$ -7 estimated by TD-DFT calculation (TD-MN15/6-31G(d)//MN15/6-31G(d)).

**Table S6.** Selected data for excitation energy, major configuration, coefficient, oscillator strength, and rotatory strengths for  $(R_p)$ -7.<sup>a</sup>

| State                 | Excitation energy<br>/ eV (/ nm) | Major<br>Configuration    | Coefficient | Oscillator<br>strength | Rotatory Strengths $/ 10^{-40} \text{ esu}^2 \text{ cm}^2$ |
|-----------------------|----------------------------------|---------------------------|-------------|------------------------|------------------------------------------------------------|
| $\mathbf{S}_1$        | 3.65 (340)                       | $H \rightarrow L+2$       | 0.4128      | 0.0072                 | 9.9302                                                     |
| $S_2$                 | 3.68 (337)                       | $H-1 \rightarrow L+2$     | 0.2977      | 0.0000                 | 0.2658                                                     |
| $S_3$                 | 3.78 (328)                       | $H \rightarrow L+1$       | 0.5240      | 0.0039                 | 49.1631                                                    |
| $S_4$                 | 3.84 (323)                       | H→L                       | 0.5150      | 0.0425                 | -37.5011                                                   |
| $S_5$                 | 4.16 (298)                       | $H - 1 \rightarrow L + 1$ | 0.5577      | 0.0245                 | 97.2531                                                    |
| $S_6$                 | 4.17 (297)                       | H–2→L                     | 0.3838      | 0.0089                 | 11.3506                                                    |
| $S_7$                 | 4.29 (289)                       | $H \rightarrow L+2$       | 0.4367      | 0.0587                 | 137.9363                                                   |
| $S_8$                 | 4.34 (286)                       | $H-1 \rightarrow L+2$     | 0.4929      | 0.9610                 | 156.3373                                                   |
| <b>S</b> <sub>9</sub> | 4.42 (280)                       | $H - 2 \rightarrow L + 2$ | 0.3955      | 0.1525                 | 233.2631                                                   |
| $\mathbf{S}_{10}$     | 4.53 (274)                       | $H-2\rightarrow L+1$      | 0.3949      | 0.1662                 | -52.7694                                                   |

<sup>a</sup> Estimated from TD-DFT calculations (TD-MN15 /6-31G(d)) based on optimized structures determined by DFT calculation (MN15/6-31G(d)). H and L denote HOMO and LUMO.



**Figure S12.** Calculated ECD spectra of  $(R_p)$ -8 estimated by TD-DFT calculation (TD-MN15/6-31G(d)//MN15/6-31G(d)).

**Table S7.** Selected data for excitation energy, major configuration, coefficient, oscillator strength, and rotatory strengths for  $(R_p)$ -8.<sup>a</sup>

| State             | Excitation energy<br>/ eV (/ nm) | Major<br>Configuration    | Coefficient | Oscillator<br>strength | Rotatory Strengths $/ 10^{-40} esu^2 cm^2$ |
|-------------------|----------------------------------|---------------------------|-------------|------------------------|--------------------------------------------|
| $\mathbf{S}_1$    | 3.79 (327)                       | H→L                       | 0.5216      | 0.0036                 | 26.5888                                    |
| $S_2$             | 3.88 (319)                       | $H - 2 \rightarrow L$     | 0.4026      | 0.0015                 | 2.7175                                     |
| $S_3$             | 4.09 (303)                       | $H \rightarrow L+2$       | 0.4549      | 0.0914                 | -86.0892                                   |
| $S_4$             | 4.16 (298)                       | $H \rightarrow L+2$       | 0.4114      | 0.0373                 | 90.9670                                    |
| $S_5$             | 4.34 (285)                       | $H - 1 \rightarrow L$     | 0.4843      | 0.1082                 | 197.6851                                   |
| $S_6$             | 4.52 (274)                       | $H - 2 \rightarrow L + 1$ | 0.4743      | 0.0025                 | 40.8013                                    |
| $\mathbf{S}_7$    | 4.56 (272)                       | H–2→L                     | 0.4624      | 0.0008                 | 35.7537                                    |
| $\mathbf{S}_8$    | 4.57 (271)                       | $H \rightarrow L+2$       | 0.4638      | 0.0021                 | 33.0991                                    |
| <b>S</b> 9        | 4.72 (263)                       | $H \rightarrow L+3$       | 0.4574      | 0.2597                 | -179.5021                                  |
| $\mathbf{S}_{10}$ | 4.80 (258)                       | $H-2\rightarrow L+2$      | 0.5731      | 0.8068                 | 29.4767                                    |

<sup>a</sup> Estimated from TD-DFT calculations (TD-MN15 /6-31G(d)) based on optimized structures determined by DFT calculation (MN15/6-31G(d)). H and L denote HOMO and LUMO.

**Table S8.** Cartesian coordinate of  $(R_p)$ -7 in the ground state (MN15/6-31G(d)).

| atom | Х        | У        | Z        |
|------|----------|----------|----------|
| С    | 5.62526  | -0.94375 | 1.23681  |
| С    | 5.26244  | 0.35763  | 1.39375  |
| С    | 4.13911  | 0.90112  | 0.69272  |
| С    | 3.3391   | 0.07746  | -0.1269  |
| С    | 3.85309  | -1.24111 | -0.45733 |
| С    | 4.96227  | -1.76221 | 0.26956  |
| Н    | 6.46353  | -1.36507 | 1.78821  |
| Η    | 5.8139   | 1.01541  | 2.06303  |
| С    | 2.09862  | 0.61386  | -0.65465 |
| С    | 0.98487  | -0.20495 | -1.04023 |
| С    | 1.90769  | 2.03243  | -0.64099 |
| С    | -0.02263 | 0.38421  | -1.78181 |
| С    | 0.72362  | 2.60679  | -1.18709 |
| С    | -0.13396 | 1.78241  | -1.88987 |
| Н    | -0.86634 | -0.22303 | -2.11016 |
| Н    | -1.03121 | 2.20213  | -2.34226 |
| С    | 2.83207  | 2.85005  | 0.08371  |
| С    | 3.85724  | 2.29728  | 0.7895   |
| Н    | 4.52059  | 2.91714  | 1.38991  |
| Н    | 2.67798  | 3.9261   | 0.10208  |
| С    | 0.69046  | -1.5405  | -0.36525 |
| Н    | 1.4798   | -1.74966 | 0.3634   |
| Н    | 0.69796  | -2.38514 | -1.06676 |
| С    | 0.22216  | 3.9686   | -0.75572 |
| Η    | 0.95579  | 4.77174  | -0.90267 |
| Н    | -0.64459 | 4.21812  | -1.37978 |
| С    | -0.22257 | 3.9688   | 0.75518  |
| С    | -0.724   | 2.60709  | 1.18689  |
| Η    | -0.95622 | 4.77196  | 0.90193  |
| Н    | 0.64417  | 4.2185   | 1.37918  |
| С    | -1.90805 | 2.03257  | 0.64091  |
| С    | 0.13363  | 1.78289  | 1.88983  |
| С    | -2.09885 | 0.61399  | 0.65475  |
| С    | -2.83255 | 2.85002  | -0.08383 |

| С | 0.02236  | 0.38466  | 1.78206  |
|---|----------|----------|----------|
| Н | 1.03087  | 2.20274  | 2.34213  |
| С | -3.3392  | 0.07738  | 0.12696  |
| С | -0.98509 | -0.20469 | 1.04057  |
| С | -3.8577  | 2.29708  | -0.78951 |
| Н | -2.67858 | 3.92608  | -0.10231 |
| Н | 0.86608  | -0.22248 | 2.11058  |
| С | -4.13938 | 0.90088  | -0.69264 |
| С | -3.85283 | -1.24136 | 0.45729  |
| С | -0.69069 | -1.54041 | 0.36596  |
| Н | -4.52115 | 2.91681  | -1.38993 |
| С | -5.26267 | 0.3572   | -1.39359 |
| С | -4.96197 | -1.76264 | -0.26952 |
| Н | -1.48004 | -1.74977 | -0.36263 |
| Н | -0.69819 | -2.38486 | 1.0677   |
| С | -5.62524 | -0.94426 | -1.23665 |
| Н | -5.81429 | 1.01487  | -2.06283 |
| Н | -6.46347 | -1.36573 | -1.78801 |
| С | -5.44832 | -3.06006 | 0.02158  |
| С | -3.37189 | -2.00767 | 1.55036  |
| С | -3.88337 | -3.25557 | 1.83802  |
| Н | -3.50018 | -3.8101  | 2.69095  |
| С | -4.91288 | -3.80648 | 1.04708  |
| Н | -5.30235 | -4.7966  | 1.26933  |
| С | 5.44896  | -3.05948 | -0.02161 |
| С | 3.37257  | -2.00737 | -1.55062 |
| С | 3.88439  | -3.25511 | -1.83835 |
| Н | 3.5015   | -3.80961 | -2.69144 |
| С | 4.91386  | -3.8059  | -1.04729 |
| Н | 5.30361  | -4.7959  | -1.26961 |
| Н | -6.27921 | -3.44277 | -0.56859 |
| Н | 6.27985  | -3.44206 | 0.56863  |
| Н | 2.60607  | -1.5819  | -2.19143 |
| Н | -2.60533 | -1.58212 | 2.19105  |

| atom | X        | y        | Z        |
|------|----------|----------|----------|
| С    | 5.8615   | -1.66499 | 0.42284  |
| С    | 5.5447   | -0.33584 | 0.61035  |
| С    | 4.29991  | 0.18339  | 0.18752  |
| С    | 3.33446  | -0.67977 | -0.39686 |
| С    | 3.71586  | -2.02295 | -0.63727 |
| С    | 4.94342  | -2.50909 | -0.23051 |
| Η    | 6.82461  | -2.05158 | 0.74594  |
| Η    | 6.26     | 0.34485  | 1.06887  |
| Η    | 3.04379  | -2.67141 | -1.19198 |
| Η    | 5.20779  | -3.54373 | -0.43391 |
| С    | 2.04191  | -0.15015 | -0.80237 |
| С    | 0.91755  | -0.98468 | -1.09353 |
| С    | 1.85972  | 1.2644   | -0.81015 |
| С    | -0.15029 | -0.40644 | -1.75876 |
| С    | 0.62475  | 1.82662  | -1.23836 |
| С    | -0.2872  | 0.98807  | -1.85331 |
| Н    | -1.00666 | -1.02344 | -2.03048 |
| Н    | -1.22533 | 1.39793  | -2.22553 |
| С    | 2.87861  | 2.10322  | -0.23902 |
| С    | 4.02443  | 1.58742  | 0.27784  |
| Н    | 4.77874  | 2.23526  | 0.72059  |
| Η    | 2.71216  | 3.17774  | -0.21794 |
| С    | 0.67561  | -2.32007 | -0.39414 |
| Η    | 1.48973  | -2.50601 | 0.31251  |
| Η    | 0.66545  | -3.17357 | -1.0868  |
| С    | 0.14954  | 3.18642  | -0.77252 |
| Η    | 0.85428  | 3.99855  | -0.99247 |
| Н    | -0.77769 | 3.41934  | -1.31058 |
| С    | -0.14953 | 3.18646  | 0.77249  |
| С    | -0.62482 | 1.82671  | 1.2384   |

**Table S9.** Cartesian coordinate of  $(R_p)$ -8 in ground state (MN15/6-31G(d)).

| Н | -0.85424 | 3.99864  | 0.99238  |
|---|----------|----------|----------|
| Н | 0.7777   | 3.41938  | 1.31056  |
| С | -1.85972 | 1.26445  | 0.81005  |
| С | 0.28704  | 0.98822  | 1.85358  |
| С | -2.04194 | -0.1501  | 0.80243  |
| С | -2.87849 | 2.10322  | 0.23864  |
| С | 0.15012  | -0.4063  | 1.75916  |
| Н | 1.2251   | 1.39812  | 2.2259   |
| С | -3.33446 | -0.67973 | 0.39684  |
| С | -0.91762 | -0.9846  | 1.09384  |
| С | -4.02425 | 1.58738  | -0.27832 |
| Н | -2.71201 | 3.17773  | 0.21742  |
| Н | 1.00645  | -1.02327 | 2.03108  |
| С | -4.29979 | 0.18338  | -0.18782 |
| С | -3.71597 | -2.02284 | 0.63745  |
| С | -0.67558 | -2.32006 | 0.39461  |
| Н | -4.77848 | 2.23518  | -0.72128 |
| С | -5.54454 | -0.33588 | -0.61074 |
| С | -4.9435  | -2.50899 | 0.23061  |
| Н | -3.04403 | -2.67123 | 1.1924   |
| Н | -1.48967 | -2.50613 | -0.31204 |
| Н | -0.66539 | -3.17348 | 1.08736  |
| С | -5.86144 | -1.66497 | -0.42304 |
| Н | -6.25975 | 0.34478  | -1.06948 |
| Н | -5.20796 | -3.54358 | 0.43417  |
| Н | -6.82452 | -2.05157 | -0.7462  |

**Table S10.** Cartesian coordinate of  $(R_p)$ -7 in S<sub>1</sub> state (SS-CASSCF(16e,14o)/6-31G).

| atom | Х         | У         | Z         |
|------|-----------|-----------|-----------|
| С    | 5.850078  | -0.919742 | 1.174836  |
| С    | 5.445165  | 0.339489  | 1.414223  |
| С    | 4.284150  | 0.883368  | 0.772601  |
| С    | 3.496133  | 0.065917  | -0.081019 |
| С    | 4.036601  | -1.240849 | -0.466483 |
| С    | 5.180904  | -1.735014 | 0.193080  |
| Н    | 6.709657  | -1.325036 | 1.674169  |
| Н    | 5.982123  | 0.962917  | 2.104459  |
| С    | 2.215514  | 0.580014  | -0.523996 |
| С    | 1.061913  | -0.236488 | -0.892923 |
| С    | 1.976291  | 2.069372  | -0.453932 |
| С    | 0.138399  | 0.358448  | -1.808261 |
| С    | 0.830118  | 2.591638  | -1.127130 |
| С    | 0.058122  | 1.711981  | -1.938703 |
| Н    | -0.572406 | -0.267119 | -2.315724 |
| Н    | -0.703859 | 2.134495  | -2.565167 |
| С    | 2.816023  | 2.827769  | 0.314562  |
| С    | 3.916706  | 2.254481  | 0.988204  |
| Н    | 4.533448  | 2.863197  | 1.620535  |
| Н    | 2.645995  | 3.880896  | 0.419116  |
| С    | 0.686996  | -1.508751 | -0.151702 |
| Н    | 1.423770  | -1.689656 | 0.618715  |
| Н    | 0.725235  | -2.372953 | -0.809942 |
| С    | 0.258666  | 3.955700  | -0.801037 |
| Н    | 1.011782  | 4.734742  | -0.858072 |
| Н    | -0.485705 | 4.197680  | -1.549831 |
| С    | -0.415264 | 4.026390  | 0.626236  |
| С    | -0.928466 | 2.674381  | 1.083693  |
| Н    | -1.186819 | 4.787400  | 0.602614  |
| Н    | 0.321223  | 4.364491  | 1.344002  |
| С    | -2.062991 | 2.029243  | 0.454208  |
| С    | -0.156671 | 1.927579  | 1.938799  |
| С    | -2.239233 | 0.640851  | 0.559971  |
| С    | -2.967345 | 2.787644  | -0.343042 |

| С | -0.223496 | 0.506940  | 1.901430  |
|---|-----------|-----------|-----------|
| Н | 0.661562  | 2.384939  | 2.459632  |
| С | -3.457067 | 0.048757  | 0.042366  |
| С | -1.124205 | -0.139906 | 1.091028  |
| С | -3.970522 | 2.187002  | -1.021591 |
| Н | -2.826591 | 3.845391  | -0.433048 |
| Н | 0.588342  | -0.043735 | 2.339288  |
| С | -4.241914 | 0.805031  | -0.841197 |
| С | -3.965896 | -1.255697 | 0.435313  |
| С | -0.739896 | -1.494619 | 0.496486  |
| Н | -4.610384 | 2.756976  | -1.668627 |
| С | -5.336145 | 0.202691  | -1.534174 |
| С | -5.035590 | -1.823503 | -0.271525 |
| Н | -1.461425 | -1.770218 | -0.257358 |
| Н | -0.761030 | -2.284596 | 1.239114  |
| С | -5.683038 | -1.079161 | -1.303345 |
| Н | -5.873014 | 0.795756  | -2.250273 |
| Н | -6.490084 | -1.537108 | -1.843114 |
| С | -5.528093 | -3.113084 | 0.089266  |
| С | -3.511189 | -1.952658 | 1.603545  |
| С | -4.024959 | -3.172721 | 1.953788  |
| Н | -3.679694 | -3.664291 | 2.843028  |
| С | -5.034336 | -3.781507 | 1.159163  |
| Н | -5.417470 | -4.746920 | 1.427946  |
| С | 5.702219  | -2.993131 | -0.158554 |
| С | 3.515182  | -2.001058 | -1.531932 |
| С | 4.051946  | -3.218300 | -1.875163 |
| Н | 3.636233  | -3.771057 | -2.695707 |
| С | 5.144929  | -3.733354 | -1.169578 |
| Н | 5.555717  | -4.688663 | -1.433759 |
| Н | -6.320693 | -3.535862 | -0.499417 |
| Н | 6.563598  | -3.359867 | 0.367836  |
| Н | 2.699633  | -1.612878 | -2.104534 |
| Н | -2.787585 | -1.489788 | 2.239056  |

**Table S11.** Cartesian coordinate of  $(R_p)$ -**8** in S<sub>1</sub> state (SS-CASSCF(16e,14o)/6-31G).

| atom | Х        | У        | Z        |
|------|----------|----------|----------|
| С    | -5.94169 | -1.74278 | -0.46234 |
| С    | -5.63654 | -0.42682 | -0.70642 |
| С    | -4.41010 | 0.11977  | -0.29507 |
| С    | -3.45373 | -0.69264 | 0.33656  |
| С    | -3.81662 | -2.02251 | 0.62691  |
| С    | -5.02745 | -2.54022 | 0.23147  |
| Н    | -6.88362 | -2.14957 | -0.77608 |
| Н    | -6.34680 | 0.20935  | -1.20082 |
| Н    | -3.15450 | -2.63983 | 1.19656  |
| Н    | -5.27599 | -3.55642 | 0.47048  |
| С    | -2.16681 | -0.11463 | 0.75459  |
| С    | -1.04328 | -0.91608 | 1.16730  |
| С    | -2.00558 | 1.28554  | 0.70636  |
| С    | -0.05244 | -0.29162 | 1.89773  |
| С    | -0.80167 | 1.88632  | 1.19695  |
| С    | 0.05058  | 1.11555  | 1.92765  |
| Н    | 0.76961  | -0.86604 | 2.28087  |
| Н    | 0.92552  | 1.55356  | 2.36787  |
| С    | -3.02720 | 2.09070  | 0.06939  |
| С    | -4.15046 | 1.53428  | -0.44618 |
| Н    | -4.89434 | 2.14278  | -0.92517 |
| Н    | -2.88470 | 3.15039  | 0.00417  |
| С    | -0.72686 | -2.27360 | 0.54338  |
| Н    | -1.47398 | -2.51231 | -0.19721 |
| Н    | -0.74289 | -3.07841 | 1.27373  |
| С    | -0.32405 | 3.23998  | 0.71451  |
| Н    | -1.07100 | 4.02040  | 0.80360  |

| Н | 0.51240  | 3.54552  | 1.33063  |
|---|----------|----------|----------|
| С | 0.14576  | 3.16395  | -0.78809 |
| С | 0.71085  | 1.81745  | -1.18957 |
| Н | 0.85986  | 3.96423  | -0.95901 |
| Н | -0.70333 | 3.37434  | -1.42778 |
| С | 1.95872  | 1.29726  | -0.63349 |
| С | -0.10259 | 0.90054  | -1.93924 |
| С | 2.17171  | -0.18486 | -0.63913 |
| С | 2.95370  | 2.10640  | -0.08397 |
| С | 0.02894  | -0.44224 | -1.82903 |
| Н | -0.90083 | 1.30434  | -2.53416 |
| С | 3.50552  | -0.70074 | -0.35871 |
| С | 1.01150  | -1.03736 | -0.95090 |
| С | 4.16513  | 1.57828  | 0.36143  |
| Н | 2.79808  | 3.16595  | -0.01682 |
| Н | -0.66580 | -1.08581 | -2.33818 |
| С | 4.48449  | 0.16733  | 0.17613  |
| С | 3.86694  | -2.02860 | -0.60990 |
| С | 0.67158  | -2.29189 | -0.15900 |
| Н | 4.91319  | 2.22078  | 0.78416  |
| С | 5.74972  | -0.32377 | 0.48184  |
| С | 5.13466  | -2.49927 | -0.30735 |
| Н | 3.15789  | -2.69218 | -1.06144 |
| Н | 1.43774  | -2.45121 | 0.58700  |
| Н | 0.68979  | -3.16962 | -0.80411 |
| С | 6.07844  | -1.65028 | 0.25090  |
| Н | 6.48305  | 0.34385  | 0.89475  |
| Н | 5.38435  | -3.52261 | -0.51255 |
| Н | 7.05946  | -2.01205 | 0.49121  |
|   |          |          |          |



**Figure S13.** Selected Molecular orbitals of (A)  $(R_p)$ -7 and (B)  $(R_p)$ -8 and their data for S<sub>1</sub> excitation energy, oscillator strength, major configuration, ad coefficient (CIS(D)/6-31G//SS-CASSCF(16e,14o)/6-31G).